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MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional

evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing,

we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian

lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our

analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA

families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally,

our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being

lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression

levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert

regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression

levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-

divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian

miRNA genes and the associated selective forces.

[Supplemental material is available for this article.]

Understanding the molecular basis of phenotypic differences

amongmammals has been a central topic in evolutionary biology.

In addition to protein sequence changes, gene expression alter-

ations due to regulatory mutations are thought to underlie many

or even most phenotypic innovations (King and Wilson 1975).

MicroRNAs (miRNAs) are short (approximately 22 nucleo-

tides) noncoding RNA molecules that bind to complementary

sequences in target messenger RNAs (mRNAs), thus promot-

ing mRNA degradation or translational repression (Carthew and

Sontheimer 2009;Guo et al. 2010). In the past decade, it has become

clear that miRNAs are key post-transcriptional regulators of gene

expression and are involved in most biological processes (Bartel

2009). For example, they are essential for the regulation of tissue

differentiation during development (Stefani and Slack 2008) and

the regulation of the immune response (Xiao and Rajewsky 2009).

In the evolutionary context, it is noteworthy that expansions

of miRNAs seem to be associated with body-plan innovations and

other phenotypic changes in bilaterians and vertebrates (Niwa and

Slack 2007; Heimberg et al. 2008; Christodoulou et al. 2010;

Berezikov 2011). They may therefore have significantly contrib-

uted to phenotypic evolution in animals. However, their origins

and functional evolution remain overall little understood. Evolu-

tionary studies of mammalian miRNAs and their expression have

been hampered by the lack of appropriate data that can be com-

pared in an unbiased manner among mammalian species. So

far, miRNAs have only been annotated on a larger scale in a few

species (Landgraf et al. 2007; Dannemann et al. 2012), and avail-

able miRNA expression data were produced using different tech-

nologies (e.g., Sanger or next generation sequencing approaches,

microarrays), rendering cross-mammalian comparisons difficult.

To overcome these limitations, we used high-throughput

RNA sequencing (RNA-seq) to generate extensive miRNA data for

five major organs from six species that represent all main mam-

malian lineages and birds. Our analyses of this essentially unbiased

data set, in conjunction with small RNA-seq data generated for

mouse spermatogenic cells and our previous mammalian mRNA-

seq data (Brawand et al. 2011), provide detailed insights into the

birth and evolution of mammalian miRNA genes and the associ-

ated selective forces.

Results

An unbiased miRNA catalog of mammals and birds

We generated small RNA-seq data for brain (cerebral cortex or

whole brain without cerebellum), cerebellum, heart, kidney, and

testis from one male representative of six species (Methods; Sup-

plemental Table S1): placentalmammals (human, rhesusmacaque,

mouse), marsupials (gray short-tailed opossum), monotremes (platy-

pus), and birds (red jungle fowl, a nondomesticated chicken).

Specifically, we prepared libraries for RNAs of approximately 20–30

nucleotides (nt) from each sample and sequenced each of the 35
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libraries (including five biological replicates; Methods) using Illu-

mina Genome Analyser IIx platforms, resulting in a total of 766

million reads of 37 nt. We identified miRNA genes by running

a detection pipeline centered around miRDeep (Friedländer et al.

2008), using as input the same total number of mapped RNA-seq

reads (47million) in the expected size range ofmiRNAs (i.e., 15–23

nt) for each species (Methods). The resulting data were then eval-

uated to ensure that our procedure was not biased toward any

species (Methods; Supplemental Note; Supplemental Figs. S1, S2)

and consistent with the expected size range of mature miRNAs:

88%–97% of our detected miRNAs have a mature sequence of

length of 21–23 nt (Supplemental Fig. S3). We also calculated ex-

pression values, normalized across tissues, for each miRNA gene

(Methods).

We thus identified 231–417 expressed miRNA genes per

species, which group, on the basis of their sequence similarity

(Methods), into 143–266 families (Table 1; Supplemental Tables

S2–S7). The largest number of miRNA genes is found in the opos-

sum, followed by the primates, mouse, chicken, and platypus.

Using our RNA-seq data, we could initially detect >80% of the

miRNAs annotated inmiRBase (Release 15), whichnarrowed down

to 33%–72% (depending on the species) after a stringent detection

procedure (Methods; Supplemental Fig. S4). miRBase-annotated

miRNAs not maintained after our rigorous filtering procedure may

be too lowly expressed to display reliable characteristics of miRNA

processing (at least in the five tissues covered in our study) or may

not represent bona fide miRNAs. Several lines of evidence suggest

that our RNA-seq–based data are indeed more suited for compar-

ative analyses than those collected by miRBase. First, the number

of miRNAs for the six species varies fivefold in miRBase, whereas

this number only varies twofold in our data. Second, we detect

approximately the same number of miRNAs in closely related

species (human andmacaque), whereasmiRBase records 270more

miRNAs for humans than for macaque. Third, the genomic den-

sities of miRNA loci detected in our study are very similar among

mammals (Table 1).

It is also noteworthy that we reliably identified 648 miRNA

genes that were previously unannotated or annotated differently

in miRBase (Table 1). A large proportion of these novel loci are

found in the opossum. Specifically, we identified 256 completely

novelmiRNA genes for this species in addition to the 161 opossum

miRNAs that were previously annotated in miRBase. However, we

also detected about 50 novel loci for each of the previously already

well-studied human and mouse species. The majority (77%) of

newly detected miRNA genes emerged relatively recently in evo-

lution on one of the terminal branches of the phylogeny for the

investigated species (Supplemental Table S1), whereas a signifi-

cantly smaller proportion of previously known miRNAs (17%) are

lineage-specific (P < 10�10, Fisher’s exact test). Furthermore, the

new loci detected here are characterized by low expression levels

(see also below), which likely explains why they have previously

remained undetected.

Birth and death rates of miRNAs in mammals

With our sets of miRNA gene annotations, we first sought to esti-

mate the birth and death rates and ancestral gene content of

miRNA gene families during mammalian evolution using a maxi-

mum likelihood procedure (Methods; Csuros 2010). This analysis

revealed an overall increase in the number of families in both

mammals and birds (from approximately 78 ancestral families to

143–266 families) since the split of these lineages ;310 million

years ago (MYA) (Fig. 1; Table 1). Remarkably, however, the net

increase in miRNA gene families since the mammal-bird split is

significantly higher in placental and marsupial (i.e., therian)

mammals (157 � 188 families) than in platypus (65 families) and

chicken (94 families) during this evolutionary time period

(Benjamini-Hochberg corrected P < 10�2, one-sample binomial

test; Fig. 1). Consequently, the net gain rate of miRNA families

in therians (about 0.83 new families per MY) is approximately

threefold higher than in monotremes (about 0.23 families/MY)

and birds (about 0.3 families/MY). This pattern is due to higher

rates of miRNA family birth in therians (Fig. 1). Specifically,

although more miRNA families originated in therians (173–193

families) than in monotremes (69 families) since the split of

these lineages ;200 MYA, numbers of family losses during the

same time period are comparable (17–48 family losses in therians

versus 20 in monotremes; Fig. 1).

However, miRNA family gain rates are also variable within the

therian clade (0.43–2 families/MY; Fig. 1). Notably, net gain rates

are substantially higher for terminal branches than for internal

branches. In particular, the recent terminal branches leading to

humans and the macaque show high rates of net miRNA family

gain (1.32 and 2 families/MY, respectively), resulting from very

high rates of miRNA family origination (2.8–2.9 families/MY),

which are only partly counterbalanced by high rates of family loss

(0.9–1.5 families/MY). Together, these observations suggest a high

rate of miRNA family turnover in mammals. Thus, it seems that

many newly born mammalian miRNA families are nonessential

and therefore not preserved by purifying selection over long evo-

lutionary time periods, consistent with observations in fruitflies

(Lu et al. 2008). Based on the differences in gain rates between

internal (0.43–0.69 families/MY) and terminal branches (0.73–2.0

families/MY), we estimate that approximately half of the newly

born miRNA families in mammals are lost in the course of evolution.

Introns as catalysts for de novo miRNA family origination

in mammals

To study the mechanisms that may underlie the de novo origina-

tion of miRNA families, we first assessed the genomic locations of

new mammalian miRNA genes. We thus screened for overlaps of

miRNA precursor sequences (;50–70 nt) in the genome with ge-

nomic elements of different types, including exons and introns of

protein-coding genes, pseudogenes, and transposable elements

(Supplemental Table S8). Only intronic sequences showed a sizable

overrepresentation ofmiRNA loci, consistentwith previous reports

(Berezikov 2011). A detailed analysis revealed that 36%–65% of

Table 1. Summary of the miRNA comparative data set

Species

miRBasea
This study

No.
miRNA

No.
miRNAs

No.
families
(FSb)

No.
PU (RA)
miRNAsc miRNA/Mbd

Human 750 344 239 (1.44) 49 (4) 0.111
Macaque 483 345 256 (1.35) 72 (26) 0.111
Mouse 601 317 234 (1.35) 55 (3) 0.117
Opossum 161 417 266 (1.75) 258 (47) 0.116
Platypus 352 233 143 (1.63) 42 (17) 0.112
Chicken 483 231 172 (1.34) 73 (2) 0.21

aRelease15.
bMean number of miRNAs per family (family size, FS).
cPreviously unknown (PU) miRNA genes; reannotated (RA) miRNA genes.
dMegabase pairs.
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miRNAgenes are overlappingwith introns of protein-coding genes

in the different species, although annotated introns only consti-

tute ;22%–45% of the entire genome (Table 2). The overrepre-

sentation of miRNA families in introns is highly significant in all

species (corrected P < 0.005, randomization test; Table 2).

We further noticed that the overrepresentation of miRNA

families in introns is more pronounced for recent miRNAs that

emerged after the bird-mammal split than for ancientmiRNAs that

originated before this split (42%–71% versus 30%–54%; Table 2).

Given that recent miRNA families are expected to better reflect

miRNA birth processes (e.g., old miRNAs may have moved away

from their original genomic location during evolution), this ob-

servation further emphasizes the important role of introns for the

de novo origination of miRNAs. In fact, introns may represent

a natural place for the miRNA de novo formation (Berezikov

2011; Campo-Paysaa et al. 2011), given that the host gene pro-

vides the capacity for miRNA transcription and that Drosha, the

first enzyme in the miRNA processing pathway, can interact with

the spliceosome and thus crop intronic hairpins to form miRNA

precursors (Kim et al. 2009).

If miRNAs indeed profit from the transcription of the host

gene for their formation,we canhypothesize that they are encoded

in the same orientation as their host gene (i.e., on the host gene’s

sense strand) and that their transcription levels are positively

correlated with those of their host genes. Consistently, >88%

of intronic miRNA genes are located on the sense strand of their

host gene in all investigated species, a significantly larger pro-

portion than expected by chance (corrected P < 0.005, one-sam-

ple binomial test assuming equal strand probabilities). We also

assessed the correlation of miRNA expression and host gene ex-

pression levels, taking advantage of our mRNA expression level

data recently established for the six species studied here using RNA-

seq (Brawand et al. 2011). This analysis reveals significant positive

correlations of miRNA and host gene expression levels in most tis-

sues in the different species (Table 2).

Expansion of new miRNA families by gene duplication

In addition to the birth of newmiRNA families, miRNA repertoires

can also expand through the duplication and subsequent di-

vergence of pre-existing miRNA genes (Chen and Rajewsky 2007).

To assess the contribution of duplication versus de novo origina-

tion for the expansion of miRNA repertoires in mammals, we

contrasted numbers of miRNA families (assuming each of them

represents an independent de novo emergence event) with those of

their paralogous constituent members (resulting from duplication

of ancestral copies). This analysis suggests that 143–256 miRNA

genes emerged de novo, whereas 59–151 miRNA genes originated

via gene duplication (Supplemental Table S9). However, some di-

vergent families may have arisen from ancient duplication events

and thus nevertheless have a common origin (i.e., they did not

arise independently in mammals in a de novo manner). Using

relaxed sequence similarity criteria (Methods), we detected a num-

ber of potential cross-family relationships. When these are consid-

ered in the analysis, we estimate that 88–211 new miRNA genes

originated by gene duplication and 113–206 miRNAs through de

novo mechanisms during mammalian evolution (Supplemental

Table S9). Overall, our analyses thus suggest that de novo forma-

tion and duplicationmechanisms contributed in similar degrees to

miRNA repertoires in mammals.

Expression and target gene pool evolution of miRNA genes

To explore the functional evolution of new miRNA gene families,

we first contrasted expression levels of miRNA families with their

age (Methods), which revealed a striking positive correlation be-

tween these two parameters (Spearman rho: 0.47 to 0.71, corrected

P < 10�10; Fig. 2A). For example, primate-specific miRNA gene

families have approximately 30-fold lower median expression

levels than ancient families that originated in the common am-

niote ancestor (Fig. 2A). These observations suggest that newly

emerged miRNAs generally have very low expression levels that

gradually increase during evolution, consistent with a previous

hypothesis (Chen and Rajewsky 2007) and a recent study (Roux

et al. 2012) that was based on human and mouse low-throughput

sequencing data (Landgraf et al. 2007).

Next, we contrasted the age of miRNA gene families and the

number of their predicted target genes, using a set of randommock

mature miRNAs as a control (Methods). We could not detect any

Figure 1. Birth and death rates of miRNA families. Phylogeny of the six
studied amniote species and estimated rates of miRNA family gain and
loss, as inferred by a maximum likelihood procedure (Methods), are
shown. Note that the estimated number of families in the amniote an-
cestor that have been completely lost during evolution (i.e., with no
representative in extant species) is zero. Branch lengths reflect evolu-
tionary divergence times in million of years (MY). Number of gained (+)
and lost (–) families (in black) as well as the net gain rate of miRNA families
per MY (in red) are indicated next to each branch. The therian net gain
rate was computed based on the gain and loss of miRNA families across
the entire therian clade (light blue box). The net number of families that
have been gained since the bird-mammal split are indicated in the orange
box, and the total number of families for each species are indicated above.
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significant correlation betweenmiRNA family age and the number

of predicted targets (Fig. 2B; Spearman rho: -0.002 to 0.14, cor-

rected P > 0.17 using predictions obtained with PITA target pre-

diction tool; Spearman rho: -0.073 to 0.094, corrected P > 0.87

using TargetScan predictions). Thus, our analysis provides no evi-

dence for selectively driven elimination of deleterious target sites

during evolution (Chen and Rajewsky 2007). However, given the

potentially large number of false positive predictions that may be

obtained using these in silico methods, differences in target sites,

which could be subtle, may not be easily detectable.

We then traced the evolution of miRNA mature sequences

and its effect onpotential target gene pools. Of 237miRNA families

with two or more representatives, almost half (45%) displayed

differences in theirmature sequences. Changesmodifying the seed

were significantly less frequent than other mature sequence al-

terations (Fig. 2C), which is consistent with the notion that seeds

generally represent themost conserved parts of miRNA precursors.

Specifically, 12% of all miRNA families experienced substitutions

in their seed sequences during evolution, and 23% evolved new

predominant mature 59 ends that also affect the seed sequence. A

significantly larger proportion of families were affected by sub-

stitutions (35% of 237 families) or 39 end shifts (41%) in the 39 end

of their mature sequences that do not affect seed sequences (pro-

portion test; P < 10�11). Consistently, the correlation coefficients

between predicted target ranks of within-species miRNA paralogs

with different seeds were significantly lower compared to those

computed for within-species paralogs with identical seeds but

different mature sequences (median rho = 0.029 6 0.005 versus

rho = 0.393 6 0.022 using PITA target predictions ; median rho =

0.176 6 0.013 versus rho = 0.985 6 0.003 using TargetScan; P <

10�11 in both cases). The observation that, among changes af-

fecting the seed sequence, 59 end shifts are twice as frequent as

substitutions (12%versus 23%; proportion test; P = 0.0025)may be

explained by the fact that frequencies of 59 end mature sequence

variants can change gradually during evolution, whereas sub-

stitutions in the seed sequence instantaneously redefine the target

gene pool, which may generally have highly deleterious conse-

quences. Notably, our corresponding analyses focusing on 1:1

miRNAorthologs andwithin-species paralogs revealed very similar

patterns (Supplemental Tables S10, S11). Interestingly, mature se-

quences of within-species paralogs in mammalian-specific miRNA

families were particularly frequently affected by changes (Supple-

mental Table S11), indicating that recent duplications in mam-

malian-specific miRNA families facilitated the diversification of

miRNA mature sequences.

Spatial expression pattern of mammalian miRNA genes

and coevolution with target genes

We then investigated spatial expression patterns of miRNA gene

families of different ages. We do not detect a clear difference in

terms of tissue-specificity between young and old families (Sup-

plemental Fig. S5). However, young miRNAs families (i.e., those

that emerged since the mammal-bird split) and old families (i.e.,

those that originated prior to the mammal-bird split) generally

have distinct tissue-specific expression profiles in the different

species (Fig. 3A; corrected P < 0.05, permutation test). Remarkably,

although ancient miRNAs tend to be predominantly expressed in

heart and kidney, recent miRNAs tend to be predominantly

expressed in the two nervous tissues, cortex and cerebellum, in

mammals (Fig. 3A).

Given that 39 UTRs are the main targets of miRNAs and that

39-UTR length is likely to be an important factor in miRNA–target

co-evolution (Berezikov 2011), we performed analyses of 39-UTR

lengths and miRNA targeting of mRNAs in different organs based

on our miRNA and mRNA sequencing data sets. Our analysis

shows that genes predominantly expressed in nervous tissues

have significantly longer 39 UTRs in all species (Fig. 3B), consis-

tent with previous human and mouse studies (Zhang et al. 2005;

Ramskold et al. 2009). The mRNAs of such genes are therefore

predicted to be targeted by larger numbers of both old and young

miRNA families (Fig. 3C) given the strong (and expected) cor-

relation between 39-UTR length and the number of miRNA

families that potentially target them (Supplemental Fig. S6).

Taken together, our observations suggest that the prevalent

origination of new miRNA genes with brain-specific expression

patterns contributed to the evolution of gene expression networks

in the mammalian brain.

Sequence evolution of miRNA genes of different ages

The birth/death and expression/target analyses described above

suggest that the selective pressures acting on young and old

miRNA genes are generally different. To further explore this dif-

ference, we contrasted nucleotide substitution rates (across pri-

mates) in human miRNA precursor sequences from different age

Table 2. Enrichment of miRNAs in introns

Proportion of miRNAs in intronsa

Expected (stdb) Allc (n) Ancient (n) Recentc (n) TRc,d (std) rho
e

Human 0.4 (0.035) 0.65 (199) 0.54 (67) 0.71 (132) 0.88 (0.07) 0.25–0.48 (5)
Macaque 0.34 (0.032) 0.58 (216) 0.45 (67) 0.64 (149) 0.90 (0.06) 0.21–0.38 (5)
Mouse 0.38 (0.035) 0.53 (195) 0.44 (63) 0.57 (132) 0.88 (0.07) 0.0047–0.46 (4)
Opossum 0.32 (0.032) 0.55 (219) 0.37 (67) 0.62 (152) 0.88 (0.08) 0.22–0.48 (5)
Platypus 0.22 (0.04) 0.36 (109) 0.3 (56) 0.42 (53) 0.90 (0.14) 0.40–0.56 (5)
Chicken 0.45 (0.044) 0.57 (134) 0.52 (56) 0.62 (78) 0.90 (0.09) �0.036–0.33 (2)

aOnly single-member miRNA families are considered in this analysis, as the overlap of members from the same family with genomic elements may be
inconsistent.
bStandard deviation.
cSignificant deviation from expected proportions (randomization test; corrected P < 0.005; Methods).
dProportion of intronic miRNAs on the transcribed (TR) strand.
eRange of Spearman correlation coefficients (rho) in each species and tissue for intronic miRNAs and host genes expression values. The number of tissues
with significant positive correlations (P < 0.05) is indicated in parentheses.

Evolution of mammalian microRNA genes

Genome Research 37
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


classes with rates in the genomic back-

ground using a recently developed phy-

logenetic method (phyloP; Methods)

(Pollard et al. 2010). In relatively ancient

miRNAs (predating the human-mouse

split), we observe an overrepresentation of

relatively slowly evolving sites (phyloP

score >0.5), whereas fast-evolving site

categories are generally underrepresented

(Fig. 4A). Thus, these miRNAs have prob-

ably evolved under purifying selection in

primates. In contrast, the rate of sequence

evolution in more recent miRNAs, which

originated in the common primate an-

cestor, is comparable to that of the ge-

nomic background, whereas even youn-

ger miRNAs that originated in Old World

primates (catarrhines) show an excess of

fast-evolving sites (phyloP score <�2).

Thus, primate-specific miRNAs seem to

have been evolving overall neutrally at

the sequence level, consistent with our

inferences from the birth/death rate and

expression analyses (see above). However,

our results suggest that at least some

catarrhine miRNAs have been evolving

rapidly, which may reflect the action of

positive selection or nonadaptive forces,

such as rapid evolution at CpG dinu-

cleotides and/or biased gene conversion

(Duret and Galtier 2009).

Among the 29 previously unan-

notated catarrhine miRNAs, six have

precursor sequences with statistically sig-

nificant fast-evolving sites (Supplemental

Table S12). Detailed analyses of folding

structures across primate species of these

cases suggest that these miRNAs arose de

novo in various ancestors in great apes

(Supplemental Table S12). For example,

the precursor sequence of hsa-mir-7160

located in intron 12 of MYOM2, a gene

with functions related to muscle con-

traction (van der Ven et al. 1999), has

three sites with significantly accelerated

evolution (corrected P < 0.05; Methods)

(Supplemental Fig. S7A). It is noteworthy

that these three sites correspond to CpG

dinucleotides in great apes and/or out-

group species (Supplemental Fig. S8),

which might indicate that the rapid

evolution of these sites is due to CpG

hypermutability. Our folding structure

analyses suggest that it arose de novo

as a functional miRNA in the common

ancestor of the great apes, 12–25 MYA

(Supplemental Fig. S9). Similar to its host

gene, the expression level of this miRNA

is approximately 10-fold higher in hu-

man heart than in the other four tissues

(Supplemental Fig. S7B). An analysis of

enriched functional categories among

Figure 2. Age of miRNA families relative to their expression levels and numbers of predicted
target genes. (A) Expression level distributions of miRNA families of different ages. Expression
values for each miRNA family were computed as the median expression levels of all family mem-
bers across all tissues. Also, common expression values associated with two or more miRNA loci
with highly similar mature sequences were divided by the number of loci involved. Age categories
of miRNA families are represented from the most recent (far left) to the most ancient (far right)
for each species based on their phylogenetic distribution (see Methods). (B) Number of predicted
target genes of miRNA families of different ages divided by the number of predicted targets for
mock miRNAs from random intronic sequences (Methods) using PITA. Number of target genes
per miRNA family was computed as the median number of targets of all family members. (C )
Evolution of mature miRNA sequences. The percentage of miRNA families displaying one or more
modifications in the mature sequence (substitutions in the seed or in the rest of the mature se-
quence; shifts in the 59 or 39 end of the mature miRNA) is shown together with 95% confidence
intervals.
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potential target genes suggests that itmay

be involved in various vascular functions

(Supplemental Table S12).

Emergence of miRNA gene families

on the mammalian X chromosomes

Previous studies indicated that miRNAs

located on the therian X chromosome

have evolved in peculiar ways. Thus,

clusters of duplicated miRNA genes with

testis-expression, some of which were

shown tohave been rapidly evolving, were

identified on the X chromosome of all ma-

jormammalian lineages (Zhang et al. 2007;

Devor and Samollow 2008; Murchison

et al. 2008; Guo et al. 2009; Li et al. 2010).

Motivated by these findings, we sought to

characterize in detail the birth and expres-

sion pattern of X-linked miRNAs.

Our analyses confirm that the den-

sities of miRNA genes are significantly

higher on the X chromosome than on

autosomes in all mammals (Supplemen-

tal Table S13). Furthermore, contrary to

autosomes, most miRNA genes on the X

emerged recently in the different therian

lineages and tend to be organized in

clusters. Large proportions (50%–92%) of

recent X-linked miRNA genes in clusters

have paralogous copies in their vicinity

(i.e., within the cluster). Notably, we

found a significant excess (relative to the

random expectation) of blast hits be-

tween families of the same cluster (10-

fold to 22-fold excess; P < 10�4, random-

ization test), suggesting that many of

them are the result of duplications. Thus,

when taking into account potential cross-

family relationships, the proportions of

paralagous copies of recent clustered

miRNAs increase to 72%–97%. Thus, re-

cently duplicated miRNA gene copies on

the X seem to have diverged rapidly. Con-

sistently, our analysis of human miRNA

sequence evolution in primates reveals

overall low selective constraint and an

excess of fast-evolving sites for X-linked

miRNA families with more than one

member, whereas single-member families

on the X or autosomal miRNA genes show

an excess of sites under purifying selection

(Fig. 4B). Together, our observations sug-

gest multiple independent and selectively

driven expansions of miRNA gene reper-

toires on the X by tandem duplication in

the different therian lineages. Although

the numbers of X-linkedmiRNAgenes and

clusters in the platypus are relatively small,

the overall pattern in monotremes seems

to be similar to that of therians (Supple-

mental Table S13).

Figure 3. Spatial expression patterns of miRNAs and 39-UTR structures of predicted target genes. (A)
Age of miRNA families and their relative expression by tissues. Relative expression values for each family
were calculated as the sumof expression values of all familymembers in a given tissue divided by their total
expression across all tissues. Colored symbols indicate the median relative expression value of miRNA
families. Ancient/recent families: families that originated before/after themammal-bird split. Samples sizes
(n) are indicated (note that miRNA families with low expression levels were filtered out in this analysis; see
Methods for details). For all but the ancientmacaque and recent platypus families, the difference between
themaximum andminimummedian values is significantly higher than expected by chance (permutation
test on tissue labels, corrected P < 0.05). (B) 39-UTR lengths of protein-coding genes. Protein-coding genes
were classified according to the tissue in which they are most highly expressed. (C ) Numbers of miRNA
families targeting protein-coding genes (using PITA predictions). AmiRNA family was considered to target
a gene if one ormore of themiRNAs were predicted to target the gene’s 39 UTR. Patterns are shown for all
miRNA families. Notably, similar results are obtained for ancient and recent families when these are an-
alyzed separately and using TargetScan target predictions (Supplemental Fig. S15).
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To explore the functional relevance of these expansions, we

performed spatial expression pattern analyses, restricting the

analysis tomiRNAs of one age category per species (Fig. 5), in order

to avoid age-related expression variations (see above). These re-

vealed that therian X-linked miRNA genes from multimember

families have at least fourfold higher expression levels in the testis

(per copy) than single-member family miRNAs on the X or auto-

somal miRNAs (corrected P < 10�3, Mann-Whitney U-test), whereas

expression patterns in somatic tissues are inconspicuous (Fig. 5A).

This result is suggestive of selectively driven expression level in-

creases of duplicated X-linked miRNAs in the mammalian testis.

To investigate these patterns in more detail, we turned to the

mouse as a model system. We produced additional small RNA-seq

data for three major testis cell types (Methods): spermatocytes

(meiotic germ cells), round spermatids (haploid germ cells derived

from spermatocytes), and sertoli cells (somatic cells that nurture

developing germ cells during spermatogenesis). Our analyses of

these data show that multimember family miRNAs on the X have

significantly higher expression levels than all other miRNA cate-

gories in the spermatocytes and spermatids (Fig. 5B), which

explains the high expression of these miRNAs in the testis as

a whole given that spermatocytes and in particular spermatids

constitute a large proportion of cells in the testis (Grabske et al.

1975). Our observation of high expression of X-linked duplicated

miRNAs in spermatocytes may seem surprising in view of

the mechanism of meiotic sex chromosome inactivation (MSCI)

(Turner 2007), but it is consistent with a recent observation that

miRNAs may escape MSCI (Song et al. 2009). Together with our

finding that miRNAs without paralogous copies on the X have

particularly reduced expression levels in spermatocytes (Fig. 5B), our

results refine previous conclusions (Song et al. 2009) in that ap-

parently only miRNA families that expanded by gene duplication

escape transcriptional silencing by MSCI. Our finding is consistent

with recent observations that increased copy number of X-linked

Figure 4. Evolution of miRNA precursor sequences. (A) Comparisons of phyloP score category frequencies between humanmiRNA precursor sequences
and the genomic background. miRNA/genome frequency ratios >1 indicate a higher frequency of sites with a given phyloP score category in miRNAs
relative to the genomic background (and vice versa). Primate-based phyloP scores: rapidly evolving sites (score <�0.5); slowly evolving sites (score > 0.5).
Error bars: 95% confidence intervals. The age (i.e., phylogenetic distribution; Methods) of miRNAs and the total number of miRNA sites considered (n) are
indicated at the bottom of the panel. (B) Sequence evolution of miRNA families on the X chromosome and autosomes. To limit biases due to age variations,
only eutherian-specific miRNA families predating the human-mouse split were considered.
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protein-coding genes counteracts MSCI (Sin et al. 2012) as well as

post-meiotic repression (Mueller et al. 2008; Sin et al. 2012), a sec-

ondary consequence ofMSCI (Turner 2007). Copynumber increase

through gene duplication thus seems to represent a general

mechanism that allows genes of various types to evade MSCI and

post-meiotic silencing, thus ensuring sufficient expression of these

genes, which may provide crucial reproductive functions during

these stages of spermatogenesis. The precise underlying molecular

mechanisms remain to be explored.

Discussion

Here we report a comprehensive set of

small RNA-seq data formajor organs from

representatives of all main mammalian

lineages and a bird as well as small RNA-

seq data for mouse spermatogenic cells.

Our analyses of these data provide the

first global picture of miRNA birth and

expression evolution in mammals, in

which several general patterns stand out.

We first uncover a global expansion of

miRNA family repertoires in mammals

that was facilitated by the frequent de

novo formation of miRNA families in

host gene introns. Remarkably, the rate of

miRNA family gain accelerated signifi-

cantly in the therian lineage, leading to

substantially larger miRNA family reper-

toires in extant therian species. Previous

attempts to assess miRNA expansions

did not uncover this expansion due to

noncomparable and limited data (Hertel

et al. 2006). The therian rate increase

might be associated, for example, with

the evolution of new developmental pro-

grams in therians (e.g., the switch from

egg-laying to a lifebearing reproductive

mode). It may have been partly facilitated

by an overall increase in genome size

in these species. Indeed, the density of

miRNA genes is remarkably similar across

mammals (0.11–0.12 miRNAs/Mb), im-

plying that the number of detected

miRNA genes is very well correlated with

genome size in mammals (Pearson’s r =

0.99, P < 0.01). Thus, the larger size of

therian genomes (;2.7–3.1 billion base

pairs, Mb) compared to that of the mono-

treme platypus (;2.1 Mb) may have pro-

vided more opportunities for the emer-

gence of miRNA precursor sequences on

which selection could potentially act.

Generally, however, the precise reasons

underlying thepronounced therianmiRNA

family expansion warrant further inves-

tigation. In addition to the de novo

emergence of new miRNA families, gene

duplication substantially contributed to

the expansion and functional diversifi-

cation of miRNA gene repertoires inmam-

mals, in particular with respect to the

X chromosome (see below).

Our analyses of new mammalian miRNA families revealed sev-

eral remarkable patterns. Young mammalian miRNA genes are

expressed at low levels and are apparently subject to weak or no pu-

rifying selection. Given their generally low expression levels, the

regulatory effect of youngmiRNAs on their target genes is expected to

be low. Overall, our data suggest that large proportions of newly

emerged miRNA genes were deleterious or effectively neutral and

were therefore rapidly lost during evolution, whereas beneficial

miRNAs gradually evolved increased expression levels, thus exerting

Figure 5. Expression patterns of sex chromosome-linked and autosomal miRNAs. (A) Spatial ex-
pression pattern of miRNA genes on the therian X, platypus X1–X5, and bird Z chromosomes. Ex-
pression level distributions of miRNA genes shared among and specific to eutherians, marsupials,
monotremes, or specific to chicken (seeMethods formiRNA age definitions) are shown. The sample size,
n, corresponds to the number of independent expression values. Note that we define expression levels
of miRNA genes in somatic tissues as their median expression levels across all four somatic tissues. Also,
common expression values associated with two or more miRNA loci with highly similar mature se-
quences were divided by the number of loci involved. (B) Expression of miRNA genes shared among and
specific to eutherians in mouse spermatogenic cells. Sample sizes are the same as indicated for mouse in
panel A.
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strong regulatory effects. Our findings lend support to previous pre-

dictions (Chen and Rajewsky 2007) and are in line with patterns

observed in insects and plants (Lu et al. 2008; Fahlgren et al. 2010).

Our analyses also revealed that ;25% of miRNA families also expe-

rienced changes in the seed sequence that redefined their potential

target genes, mainly by altering the 59 end of the mature sequence.

This observation is probably explained by the fact that frequencies of

59 end mature sequence variants can change gradually during evo-

lution, whereas substitutions in the seed sequence instantaneously

redefine the target gene pool, which may generally have highly del-

eterious consequences. We also note that our preliminary analyses

revealed frequent single-nucleotide (adenine) additions to the 39 end

ofmaturemiRNAs aswell as the conservation of such events between

human andmouse (data not shown), consistent with a recent report

(Burroughs et al. 2010), which suggests that our data will facilitate

future evolutionary investigations of mature miRNA variants

(isomiRs) (Morin et al. 2008). Finally, although old miRNA genes are

mainly expressed in heart and/or kidney, young miRNAs are pre-

dominantly expressed in neural tissues that also tend to express

protein-coding genes with long 39 UTRs and many potential target

sites. Together, these observations may indicate that young mam-

malian miRNAs contributed to the evolution of complex expression

networks in the mammalian brain.

Our specific analyses of miRNA origination and evolution on

the mammalian X chromosome uncovered peculiar patterns. We

found that many X-linked miRNA families substantially expanded

through tandem gene duplication after the origination of mamma-

lian sex chromosomes. Rather than being expressed in the brain,

these miRNAs are predominantly expressed in the testis. Indeed,

contrary to other X-linked and autosomal miRNAs, duplicated

miRNA genes on themouseX showhigh expression levels inmeiotic

spermatocytes and post-meiotic spermatids. Our results thus suggest

that the fixation of new miRNA gene copies was selectively favored

during evolution to allow for their expression in spermatocytes and

spermatids in spite of MSCI and its post-meiotic aftermath. Consis-

tent with the notion that MSCI and post-meiotic silencing represent

the evolutionary forces driving the duplication of X-linked miRNAs,

we observed miRNA copy amplification on the X in therians, where

MSCI is present (Turner 2007), but not in chicken, for which a recent

study reported the absence of MSCI (Guioli et al. 2012). Notably,

amplified X-linked miRNA families show rapid sequence evolution,

potentially driven by positive selection. Collectively, our findings

may suggest that the rapid duplication-divergence pattern observed

for X-linked miRNAs reflects the selectively driven evolution of new

male functions. Our finding is in line with evolutionary theory,

which predicts that the X provides a favorable selective environment

for male-beneficial (recessive) alleles (Rice 1984) as well as with

a number of previous expression studies, invoking the theory by Rice

(1984). These studies showed that protein-coding genes with expres-

sion in testis (Zhang et al. 2011; Julien et al. 2012), specifically during

spermatogenesis (before and after meiosis) (Wang et al. 2001; Khil

et al. 2004; Mueller et al. 2008; Sin et al. 2012), or other male tissues

(i.e., prostate) (Lercher et al. 2003) have accumulated on the therianX

chromosome, apparently after the differentiation of sex chromo-

somes fromancestral autosomes (Zhang et al. 2011; Julien et al. 2012).

Methods

Samples

The 30 main organ samples (five different organs from the six

amniote species) and five biological replicate samples (macaque:

brain, testis, and kidney; opossum: brain and kidney) used in this

study were obtained from various sources (Supplemental Table

S1). In addition, we extracted three types of spermatogenic cells

fromC57BL/6J mice (M Soumillon, A Necsulea, MWeier, X Zhang,

HGu, P Barthès, M Kokkinaki, A Gnirke,MDym, B deMassy, et al.,

in prep.) Briefly, pachytene spermatocytes and round spermatids

were purified by centrifugal elutriation of testes cells as previously

described (Buard et al. 2009). Purity of the round spermatid cell

fraction was estimated to be ;90% based on cellular morphology.

Purity of the pachytene spermatocyte sample was estimated at

;70% based on fluorescence analysis using anti-SYCP3 (a marker

of the synaptonemal complex) and anti-phospho-H2AX (a marker

of double-strand breaks and the sex body). Sertoli cells were iso-

lated from 3-wk-old animals using Datura Stramonium agglutinin

(DSA) coated dishes as previously described (Scarpino et al. 1998),

with a purity of ;95%.

Small RNA library preparation and sequencing

We extracted high-quality RNA from the 38 samples described

above using standard protocols. We then prepared small RNA-seq

libraries for each of these samples using Illumina Small RNA v1.5

Sample Preparation protocol with the following optimizations.We

first purified small RNAs (18–30 nt) from total RNA using de-

naturing PAGE gel electrophoresis. We used 10%Novex TBE PAGE

gel instead of the 6% described in the protocol to ensure a better

separation of the cDNA constructs during the purification step. In

addition, we produced two technical replicate libraries (macaque

cerebellum). The 40 libraries were each sequenced (37 cycles) in

one lane of llumina Genome Analyzer IIx platforms, resulting in a

total of 790 million RNA-seq reads, from which adaptor sequences

were removed using standard procedures.

Detection of miRNA genes

The genomes and related annotations from the six studied species

were downloaded from Ensembl (Release 57). MiRNA detection

was performed by running miRDeep (Friedländer et al. 2008) with

default parameters on our RNA-sequencing data, without using

seed conservation and using Bowtie (Langmead et al. 2009) tomap

RNA-seq reads on their respective genomes (allowing for no mis-

matches: bowtie -v 0 -m 10 -k 10). For each species, we used a total

of 47 million mapped reads (15-23 nt); 11 million were sampled

from each somatic tissue and 3 million from the testis (because

of the expression of germline-related small RNAs, piRNAs, the

sequencing of testis libraries resulted in fewer 15-23 nt miRNA

reads; Supplemental Note). Finally, we removed miRNAs from the

resulting output that lacked reads matching their star strand, as

well as miRNAs for which >10% of reads mapped to genomic lo-

cations that do not overlap with detected miRNA loci [see Kim

et al. (2009) for details on miRNA structure and biogenesis and

Kozomara and Griffiths-Jones (2011) for miRNA annotation from

RNA-seq data]. As a result, miRNAs in our data set are supported by

90% or more reads that map only to miRNA genes and are not

enriched with repeated elements (Supplemental Table S8).

Inference of miRNA clusters and families

MiRNA genes within 50 kb of each other were merged into the

same cluster. Distances of 5, 10, and 20 kb resulted in almost

identical clusters because the distance between two consecutive

miRNA genes was almost always <5 kb or >50 kb. To identify

miRNA families, we performed an all-against-all blast (Altschul

et al. 1990) analysis (blastall parameters were chosen to optimize

the similarity search for short sequences) of miRNA precursors (as
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detected by miRDeep). We then retained hits with >50% of both

precursors aligned, an identity of 70% or more and an e-value

<10�5. The miRNA genes interconnected through blast hits were

then grouped into families using single-linkage clustering. Blast

hits that did not pass the above criteria and that involved two

miRNAs belonging to different families are referred to as cross-

family blast hits (see main text). To evaluate the validity of our

family annotation procedure, we assessed the overlap of our

family definitions with those of miRBase (Griffiths-Jones et al.

2006). In nearly all cases (99.7%), two miRNAs belonging

to distinct families in our data set (and present in miRBase)

are consistently annotated as belonging to distinct families in

miRBase. Conversely, two miRNAs of the same family in our data

set are also classified into the samemiRBase family in 77.1% of the

cases. Thus, our family annotation procedure results in family

definitions that are very consistent with those of miRBase (family

size distribution is shown in Supplemental Fig. S10). Precursor

sequences from the same miRNA family were then aligned using

Muscle (Edgar 2004) with standard parameters to identify sub-

stitutions and/or shifts in the mature sequences of homologous

miRNA genes.

Age of miRNA families

To assess the age of miRNA families, we first searched for genomic

sequences similar (potentially homologous) to all miRNA pre-

cursor sequences using blastall (same parameters and filtering

criteria as above). The following genomes were used in this

analysis (Ensembl, Release 60): mammals (platypus, opossum,

wallaby, armadillo, sloth, mouse, rat, human, macaque, and

treeshrew), diapsids (chicken, zebra finch, and Anolis lizard), and

Xenopus. The age of miRNA families was based on the species or

group of species in which family members (detected using our

RNA-seq data) or homologous genomic sequences were identified

(parsimony principle). The following distinct groups were con-

sidered: amniotes, birds, mammals, marsupials, therians, euthe-

rians, boreoeutheria (rodents and primates but not sloth and

armadillo), rodents, primates, and catarrhines.

Expression of miRNAs

To assess expression levels of miRNAs, we first mapped reads onto

the mature strand of miRNAs using Bowtie, allowing for multiple

mappings but nomismatch (bowtie -v 0 -a). Reads were required to

map within the 59 position of the mature sequence and three nu-

cleotides downstream from its 39 end position to account for al-

ternative precursor cleavage that does not affect the seed sequence.

To obtain raw expression values, we then counted the number of

reads for each miRNA. We tested various mapping options, in-

cluding one that allows for one nucleotide mismatch between the

read and mature sequence. These options led to very similar ex-

pression values (Spearman rho: 0.99 6 0.01). When two (or more)

miRNA genes shared >10% of their reads, a single joint expression

value was computed for them, thus only counting once every

single read (i.e., the two miRNAs are considered as one in the rel-

evant analyses). For two analyses (miRNA family age versus ex-

pression level; miRNA duplicates on X chromosomes), this value

was divided by the number of loci sharing this single expression

value in order to obtain an average expression level per gene

copy. If two (or more) miRNA genes shared <10% of their reads,

then shared reads were equally distributed across the miRNA

genes. Thus, in all cases, multiple mapping reads are never

counted more than once for expression values. Notably, we

assessed whether our use of multiple mapping reads introduced

any bias by repeating all major biological analyses using only the

subset of miRNAs without ambiguously mapping reads. Results

from these analyses are very similar to our original results (data

not shown), which validates our multiple mapping read treat-

ment procedure. Normalization across tissues was performed

using edgeR (Robinson et al. 2010), which takes into account

variable library sizes and corrects for biases in expression level

estimates caused by highly expressed genes in a subset of tissues.

Notably, expression levels in our technical replicates are very

highly correlated (rho > 0.98), which suggests that our data are

essentially unaffected by biases in the RNA-seq procedure

(Supplemental Fig. S11A). Correlation coefficients in our ex-

pression level comparisons of biological replicate samples are

very high as well (rho > 0.97 and rho > 0.94 for opossum and

macaque replicates, respectively) (Supplemental Fig. S11B); they

are higher than coefficients estimated for between-tissue or be-

tween-species comparisons (Supplemental Fig. S11C–D). Thus,

comparisons of tissues and miRNA categories (e.g., miRNAs of

different ages) are essentially unaffected by inter-individual

variation. Finally, we assessed the correlation between expres-

sion level and expression variability in our technical replicates.

We found no significant correlation when removing miRNAs

with less than 30 sequenced reads (Supplemental Fig. S12). Thus,

for analyses of tissue-specificity, miRNAs with on average <30

reads per tissue were discarded.

Birth and death of miRNA families

We assessed the birth and death of miRNA families using the

Count software (Csuros 2010) based on the presence/absence of

miRNA families in each species. We used the maximum likelihood

procedure implemented in Count with the default settings, which

provided estimates of gain and loss rates along the species tree as

well as an estimation of the ancestral gene content. Our data were

best explained when allowing for variable gain/loss ratios across

lineages (likelihood ratio test; df=9; P = 0.026), so we used this

option for our analysis (Fig. 1). As an alternative, we also used the

parsimony approach implemented in Count. Specifically, we used

the Wagner parsimony model with parameters that slightly favor

gain events (gain penalty parameter: 0.6–1), given that previous

work is indicative of an overall gain of miRNAs during metazoan

evolution (Berezikov 2011). Notably, the results from the parsi-

mony approach are very similar to those of the maximum likeli-

hood procedure (Supplemental Fig. S13).

Target prediction

To obtain extensive sets of 39-UTR sequence data, even in species

with more limited annotation (e.g., platypus), we dowloaded ge-

nomic coding sequence coordinates from Ensembl and combined

them with refined exon and gene boundaries from (Brawand

et al. 2011). For each gene, the 39-UTR sequence was estimated

by concatenating all the exonic sequences downstream from the

Ensembl-annotated stop codon. We confirmed that our procedure

provides a reasonable estimate of the longest 39 UTR of human

genes, a specieswithwell-annotatedUTR structures (Supplemental

Fig. S14). We used PITA with default parameters (Kertesz et al.

2007) as well as the TargetScan context score method, which can

identify nonconserved target sites, i.e., it predicts site efficacy

without recourse to evolutionary conservation (Grimson et al.

2007) to predictmiRNA target sites in the 39UTRs.We thendefined

all protein-coding geneswith a PITA score <–10 (the recommended

cutoff) (Kertesz et al. 2007) as predicted target genes. Similarly, for

TargetScan, genes yielding predicted target sites with a context

score above zero were defined as predicted target genes (Grimson

et al. 2007). We obtained very similar results when considering
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only 7-mer and 8-mer seeds with no mismatches using PITA. Fi-

nally, to assess random genomic target site patterns for compari-

sons to distributions in 39 UTR, we selected, for each mature

miRNA sequence in our data set, a corresponding mock miRNA

from a random intronic sequence with the exact same length and

GC-content and predicted their targets as above.

Overlap of miRNA loci with genomic elements

We screened for overlaps of miRNA precursor sequence co-

ordinates with genomic elements as annotated by Ensembl

(Supplemental Table S8; Hubbard et al. 2009). To assess miRNA

overrepresentation in introns, deviations from expected pro-

portions were assessed by randomization tests (i.e., for each spe-

cies, we randomly sampled genomic locations corresponding to

the number of miRNA genes in that species, a process that was

repeated 1000 times).

Evolution of miRNA precursor sequences

PhyloP scores for the human genome, based on primate geno-

mic alignments (Pollard et al. 2010), were downloaded from the

UCSC Genome Browser (http://genome.ucsc.edu/). We computed

phyloP score distributions for the genomic sequences encoding

miRNAprecursors and the rest of the human genome. To assess the

presence of fast-evolving sites in individual precursor sequences,

we computed for each site the P-value associated with its phyloP

score and corrected this value for multiple testing. Sites with

a negative phyloP score and a corrected P-value <0.05 were defined

as statistically significant fast-evolving sites. For the functional

analysis of targets of primate-specific miRNA genes with fast-

evolving sites, we first downloaded gene ontology (GO) annota-

tions of human protein-coding genes from Ensembl (Release 62).

Gene set enrichment analysis (GSEA) was then performed with

the topGO R package (using the Kolmogorov-Smirnov test and

the elim algorithm), ranking protein-coding genes by PITA target

scores. We then selected the biological process with <500 genes

that has the lowest P-value. Folding structures of catharrine

miRNAs were predicted with RNAfold (Bernhart et al. 2006).

Multiple test correction

All corrections for multiple tests were performed using the

Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).

Data access

Sequencing data are available from the the NCBI Gene Expression

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under ac-

cession number GSE40499. Novel miRNA genes were submitted to

miRBAse (http://www.mirbase.org/). The genomic locations, ex-

pression levels, and predicted targets of reported miRNA genes are

available as Supplemental material.
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We thank L. Andersson, F. Grützner, P. Jensen, and U. Zeller for

tissue or RNA samples; K. Harshman and the Lausanne Genomic

Technologies Facility for high-throughput sequencing support;

I. Xenarios and the Vital-IT computational facility (Swiss Institute

of Bioinformatics) for computational support; A. Necsulea for

providing RNA-Seq-refined genome annotations; and the mem-

bers of the H.K. group, Y. Romero, M. Sémon, J. Roux, C. Vejnar,

G. Degueurce, M. Warnefors, and three anonymous reviewers for

valuable comments. This research was supported by grants from

the European Research Council (Starting Independent Researcher

Grant: 242597, SexGenTransEvolution) and the Swiss National

Science Foundation (grant 31003A_130287) to H.K.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol 215: 403–410.

Bartel DP. 2009. MicroRNAs: Target recognition and regulatory functions.
Cell 136: 215–233.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical
and powerful approach to multiple testing. JR Stat Soc 57: 289–300.

Berezikov E. 2011. Evolution of microRNA diversity and regulation in
animals. Nat Rev Genet 12: 846–860.

Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL. 2006.
Partition function and base pairing probabilities of RNA heterodimers.
Algorithms Mol Biol 1: 3. doi: 10.1186/1748-7188-1-3.

Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, Weier
M, Liechti A, Aximu-Petri A, Kircher M, et al. 2011. The evolution of
gene expression levels in mammalian organs. Nature 478: 343–348.

Buard J, Barthes P, Grey C, de Massy B. 2009. Distinct histone modifications
define initiation and repair of meiotic recombination in the mouse.
EMBO J 28: 2616–2624.

Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R,
Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y, et al. 2010. A
comprehensive survey of 39 animal miRNA modification events and
a possible role for 39 adenylation in modulating miRNA targeting
effectiveness. Genome Res 20: 1398–1410.

Campo-Paysaa F, Sémon M, Cameron RA, Peterson KJ, Schubert M. 2011.
microRNA complements in deuterostomes: Origin and evolution of
microRNAs. Evol Dev 13: 15–27.

Carthew RW, Sontheimer EJ. 2009. Origins andmechanisms ofmiRNAs and
siRNAs. Cell 136: 642–655.

Chen K, Rajewsky N. 2007. The evolution of gene regulation by
transcription factors and microRNAs. Nat Rev Genet 8: 93–103.

Christodoulou F, Raible F, Tomer R, SimakovO, Trachana K, Klaus S, Snyman
H, Hannon GJ, Bork P, Arendt D. 2010. Ancient animal microRNAs and
the evolution of tissue identity. Nature 463: 1084–1088.

Csuros M. 2010. Count: Evolutionary analysis of phylogenetic profiles with
parsimony and likelihood. Bioinformatics 26: 1910–1912.

Dannemann M, Nickel B, Lizano E, Burbano HA, Kelso J. 2012. Annotation
of primate miRNAs by high throughput sequencing of small RNA
libraries. BMC Genomics 13: 116. doi: 10.1186/1471-2164-13-116.

Devor EJ, Samollow PB. 2008. In vitro and in silico annotation of conserved
and nonconserved microRNAs in the genome of the marsupial
Monodelphis domestica. J Hered 99: 66–72.

Duret L, Galtier N. 2009. Biased gene conversion and the evolution of
mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:
285–311.

Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res 32: 1792–1797.

Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S,
Smith LM, Dasenko M, Givan SA, Weigel D, et al. 2010. MicroRNA gene
evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:
1074–1089.

Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S,
Rajewsky N. 2008. Discovering microRNAs from deep sequencing data
using miRDeep. Nat Biotechnol 26: 407–415.

Grabske RJ, Lake S, Gledhill BL, MeistrichML. 1975. Centrifugal elutriation:
Separation of spermatogenic cells on the basis of sedimentation velocity.
J Cell Physiol 86: 177–189.

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 2006.
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic
Acids Res 34: D140–D144.

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP.
2007. MicroRNA targeting specificity in mammals: Determinants
beyond seed pairing. Mol Cell 27: 91–105.

Guioli S, Lovell-Badge R, Turner JM. 2012. Error-prone ZW pairing and no
evidence for meiotic sex chromosome inactivation in the chicken germ
line. PLoS Genet 8: e1002560. doi: 10.1371/journal.pgen.1002560.

Guo X, Su B, Zhou Z, Sha J. 2009. Rapid evolution of mammalian X-linked
testis microRNAs. BMCGenomics 10: 97. doi: 10.1186/1471-2164-10-97.

Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs
predominantly act to decrease targetmRNA levels.Nature 466: 835–840.

Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ. 2008.
MicroRNAs and the advent of vertebratemorphological complexity. Proc
Natl Acad Sci 105: 2946–2950.

Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL,
Stadler PF, The students of Bioinformatics Computer Labs of 2004 and

Meunier et al.

44 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo/
http://www.mirbase.org/
http://genome.cshlp.org/
http://www.cshlpress.com


2005. 2006. The expansion of the metazoan microRNA repertoire. BMC
Genomics 7: 25. doi: 10.1186/1471-2164-7-25.

Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y,
Clapham P, Clarke L, et al. 2009. Ensembl 2009. Nucleic Acids Res 37:
D690–D697.

Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, Daish T,
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