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BACKGROUND: Birth weight has an impact on adult bone
mass. Higher birth weight is associated with greater bone
mineral content (BMC) and children born small for gestational
age (SGA) are at an increased risk for impaired accrual of bone
mass. Our aim was to study whether the impact of birth size
or early childhood growth on bone mass is visible already in
mid-childhood.
METHODS: We studied 49 children born large for gestational
age (LGA), 56 children born appropriate for gestational age
(AGA), and 23 children born SGA at 5.0–8.7 years of age. Body
composition was assessed by whole-body dual-energy X-ray
absorptiometry. Fasting blood samples and anthropometric
data were collected.
RESULTS: The children born SGA had lower bone mineral
density (BMD) Z-score (Po0.001) and age- and sex-adjusted
BMD (Po0.005) than the LGA and AGA children. Adjusted
BMC, muscle mass, and body fat percentage (%BF) did not
differ between the study groups. Muscle mass, BMI SD score
(SDS), %BF, and serum dehydroepiandrosterone sulfate
(DHEAS) concentration were the strongest predictors of high
BMD in mid-childhood.
CONCLUSION: SGA-born children had lower BMD in mid-
childhood compared with AGA- and LGA-born ones. Muscle
mass or BMI SDS, %BF, and DHEAS were significant predictors
of childhood BMD.

B irth weight affects bone mass in adulthood, as higher
birth weight is associated with greater bone mineral

content (BMC) (1). Intrauterine growth restriction and
programming are acknowledged to have an influence on
cardiometabolic health in childhood and adulthood (2,3), and
children born small for gestational age (SGA), especially
preterm, are at an increased risk for impaired accrual of adult
bone mass (1,4,5). Children born SGA without catch-up
growth have lower total body bone mineral density (BMD) in
early adulthood compared with those with catch-up
growth (6).
Almost maximal bone mass is achieved during the first two

decades of life (7). Nutrition, especially calcium and vitamin D,

and mechanical load affect the final accrual (8). The association
between BMI and volumetric BMD in children may mostly be
determined by lean mass (LM) (9), not body fat mass that has
been reported to have a negative association with bone mass in
childhood (10,11).
Vitamin D is essential for bone metabolism (12). Although

serum 25-hydroxyvitamin D (25(OH)D) concentrations are
recommended to exceed 50 nmol/l in children (13), there is
evidence that low 25(OH)D status is common in children
(14). The association between birth size and 25(OH)D
concentrations has not been widely studied. No differences
in serum 25(OH)D concentrations were detected between
newborn infants born SGA, appropriate (AGA), and large for
gestational age (LGA) (15); however, it is unclear whether the
status is similar also in older children. In adults, higher BMI
leads to lower 25(OH)D (16) and the association of
overweight with low 25(OH)D is seen also in children and
adolescents (17).
The purpose of our study was to investigate whether the

impact of birth size or early childhood growth on bone mass
is visible already in prepubertal children.

METHODS
The study cohort included 128 Caucasian children (67 boys) born
singleton at term between 2004 and 2007 in Eastern Finland (18,19).
In brief, the children were enrolled according to their birth size and
studied at 5.0–8.7 years of age (mean (95% confidence interval (CI),
6.9 (6.8–7.1) years; Table 1). SGA was defined as gender-specific
birth weight ≤− 2.0 SD score (SDS), LGA as birth weight ≥+2.0
SDS, and AGA as birth weight and length being between − 1.0 and
+1.0 SDS. Anthropometric data at birth, at the age of 2 years, and at
examination were recorded.
BMI was calculated as the body weight divided by the square of the

height (kg/m2). Sex- and age-specific SDS for weight, height, and
BMI were calculated according to the recently published Finnish
growth reference (20). Catch-up or catch-down growth was
determined as an increase or decrease in weight or height SDS
more than 0.67 during the first 2 years of life, respectively (21).
Areal BMD and BMC, body fat percentage (%BF), and muscle

mass were assessed by whole-body dual-energy X-ray absorptiome-
try, using the Lunar device (Lunar Prodigy Advance; GE-Medical
Systems, Madison, WI). BMD Z-scores were calculated using the
recently published data by Crabtree et al. (22). LM was defined as a
sum of muscle mass and BMC. Total body less head parameters were
used for the analyses.
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Fasting blood samples were collected for serum analyses
of 25(OH)D, ionized calcium, dehydroepiandrosterone sulfate
(DHEAS), IGF-1 concentrations, and plasma analysis of alkaline
phosphatase (ALP) concentrations. DHEAS Z-scores were created

using recently published reference data on Caucasian children (23).
Serum 25(OH)D concentrations were assessed using chemilumines-
cence immunoassay (DiaSorin, Stillwater, MN). Serum-ionized
calcium and plasma ALP concentrations were determined with

Table 1. Anthropometric, biochemical, and imaging characteristics of the study groups

LGA AGA SGA P

Total number (boys) 49 (25) 56 (29) 23 (13)

At birth

Gestational age, weeks 39.8 (39.5–40.1) 39.9 (39.6–40.2) 39.7 (39.2–40.3) 0.810

Weight (g) 4,722 (4,631–4,812) 3,561 (3,484–3,637) 2,476 (2,345–2,607) o0.001

Weight (SDS) 2.63 (2.46–2.79) − 0.02 (−0.16–0.12) − 2.39 (−2.53 to − 2.25) o0.001

Length (cm) 53.0 (52.6–53.4) 50.0 (49.7–50.4) 46.2 (45.5–46.9) o0.001

Length (SDS) 1.58 (1.40–1.76) − 0.11 (−0.24–0.03) − 2.16 (−2.43 to − 1.88) o0.001

At the age of 2 years

Weight (SDS) 0.65 (0.41–0.90) 0.16 (−0.14–0.45) − 0.95 (−1.37 to − 0.53) o0.001

Height (SDS) 0.40 (0.17–0.63) − 0.05 (−0.34–0.24) − 0.98 (−1.33 to − 0.63) o0.001

At examination

Age (years) 6.89 (6.62–7.16) 7.09 (6.86–7.33) 6.65 (6.22–7.07) 0.130

Weight (kg) 27.6 (26.2–29.0) 27.5 (25.7–29.4) 21.8 (19.8–23.7) o0.001

Weight (SDS) 0.68 (0.38–0.97) 0.39 (0.11–0.67) − 0.80 (−1.26 to − 0.33) o0.001

Height (cm) 126.1 (124.0–128.3) 125.7 (123.8–127.7) 119.0 (115.6–122.4) o0.001

Height (SDS) 0.54 (0.30–0.78) 0.20 (−0.07–0.46) − 0.64 (−1.01 to − 0.27) o0.001

BMI (SDS) 0.56 (0.22–0.89) 0.36 (0.05–0.67) − 0.65 (−1.18 to − 0.12) o0.001

25(OH)D (nmol/l)a 72.4 (68.0–77.2) 78.6 (73.9–83.7) 76.8 (70.3–83.9) 0.121

25(OH)D (nmol/l)b 73.5 (68.9–78.4) 80.5 (75.4–86.0) 74.5 (67.9–81.7) 0.082

Ionized calcium (mmol/l)c 1.27 (1.26–1.28) 1.26 (1.25–1.27) 1.27 (1.25–1.28) 0.217

ALP (U/l)c 230 (217–243) 251 (239–263) 228 (208–248) 0.038

DHEAS (μmol/l)d 0.49 (0.38–0.62) 0.67 (0.54–0.81) 0.83 (0.60–1.09) 0.028d

BMD (g/cm2)e 0.70 (0.69–0.71) 0.70 (0.69–0.71) 0.66 (0.64–0.68) 0.002e

BMD (g/cm2)f 0.69 (0.68–0.70) 0.70 (0.69–0.71) 0.68 (0.67–0.70) 0.242

BMD (g/cm2)g 0.69 (0.68–0.70) 0.70 (0.69–0.71) 0.68 (0.67–0.70) 0.320

BMD (g/cm2)h 0.70 (0.69–0.71) 0.70 (0.69–0.71) 0.68 (0.66–0.69) 0.068

BMD (Z-score)i 0.43 (0.13–0.74) 0.36 (0.08–0.63) − 0.65 (−1.15 to − 0.14) o0.001i

BMC (g)f 589 (567–611) 599 (578–621) 561 (529–594) 0.163

Muscle mass (kg)f 16.7 (16.3–17.1) 16.4 (16.1–16.8) 16.0 (15.4–16.6) 0.154

Lean mass (kg)f 17.3 (16.9–17.7) 17.0 (16.7–17.4) 16.6 (16.0–17.2) 0.165

Body fat (%)f 21.0 (18.6–23.5) 21.1 (18.9–23.6) 18.6 (15.6–22.1) 0.454

AGA, appropriate for gestational age; ALP, alkaline phosphatase; ANCOVA, analysis of covariance; BMC, bone mineral content; BMD, bone mineral density; BMI, body mass
index; CI, confidence interval; DHEAS, dehydroepiandrosterone sulfate; LGA, large for gestational age; SDS, standard deviation score; SGA, small for gestational age; 25(OH)D, 25-
hydroxyvitamin D.
Data are presented as mean (95% CI), except 25(OH)D, ionized calcium, DHEAS, BMC, and percent of body fat (geometric mean (95% CI)).
ANCOVA between the three study groups, except anthropometric data and BMD Z-score (ANOVA).
aAdjusted for the month of blood sampling.
bAdjusted for the month of blood sampling, age, and BMI SDS at examination.
cAdjusted for age and sex.
dAdjusted for age, sex, and BMI SDS.
eAdjusted for age and sex. The post hoc test (Sidak correction) between SGA and LGA/AGA Po0.005.
fAdjusted for age, sex, and height.
gAdjusted for age, sex, and weight.
hAdjusted for age, sex, and BMI.
iThe post hoc test (Sidak correction) between SGA and LGA/AGA Po0.001.
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routine automated methods [ion-selective electrode and photometric
(The International Federation of Clinical Chemistry and Laboratory
Medicine recommendation), respectively] in the laboratory of
Kuopio University Hospital. Serum DHEAS concentrations were
analyzed using electrochemiluminescence immunoassay (Roche
Diagnostics, Mannheim, Germany). Serum IGF-1 concentrations
were determined using an ELISA kit (Mediagnost, Reutlingen,
Germany).
A written informed consent was obtained from all parents and

participating children aged ≥ 6 years. The study protocol was
approved by the Committee on Research Ethics of the Hospital
District of Northern Savo.

Statistical Analyses
Data are presented as mean (95% CI). Analyses were conducted
using SPSS statistical software (version 24; SPSS, IBM, Armonk, NY).
A significance level of 0.05 was used in all analyses. Skewed data were
either logarithm or square root-transformed before parametric
analyses, and power-transformed to geometric means for presenta-
tion. ANOVA was used for comparisons between the study groups
on anthropometric measures and BMD Z-scores. ANCOVA was
used for comparisons between the study groups on metabolic and
imaging parameters. Following factors were used for adjusting
ANCOVA (vary between analyses): month of the blood sampling,
age, sex, BMI SDS, weight, and height. Obtained estimated means
are presented in Table 1. Linear regression was used to analyze
factors predicting BMD. The regression coefficients are expressed
as standardized betas. Each model contained sex, age, 25(OH)D,
ionized calcium, ALP, DHEAS, and IGF-1, and additional predictors
were as follows: Model 1: birth weight SDS, muscle mass, %BF;
Model 2: birth length SDS, muscle mass, %BF; Model 3: the change
in weight SDS from birth to the age of 2 years, muscle mass, %BF;
Model 4: the change in height SDS from birth to the age of 2 years,
muscle mass, %BF; Model 5: birth size group, muscle mass, %BF;
Model 6: birth weight SDS, BMI SDS.

RESULTS
Subject characteristics for the three birth weight groups are shown
in Table 1. The SGA children had significantly lower age- and
sex-adjusted BMD and BMD Z-scores compared with the LGA
and AGA groups (Table 1). The boys in the whole study
population had lower BMD than the girls [adjusted for age and
height, P=0.028, mean (95% CI) 0.69 (0.68–0.70) and 0.70 (0.69–
0.71) g/cm2, respectively]. The boys had higher muscle mass
[P=0.006, mean (95% CI) 16.8 (16.5–17.1) kg] and LM
[P=0.011, mean (95% CI) 17.4 (17.0–17.7) kg] than the girls
[16.1 (15.8–16.5) and 16.7 (16.4–17.1) kg, respectively]. The mean
%BF of the boys was lower [Po0.001, mean (95% CI) 17.7 (16.0–
19.5)] than that of the girls [23.8 (21.5–26.5)] when adjusted for
age and height. There were no statistical differences between the
birth weight groups in BMC, muscle mass, LM, or %BF (Table 1).
A significant difference was seen in plasma ALP concentrations
between the groups (Table 1), but not between the sexes. The girls
had significantly higher serum-ionized calcium concentrations
than the boys [P=0.001, mean (95% CI) 1.27 (1.26–1.28) and
1.25 (1.25–1.26) mmol/l, respectively]. A trend toward lower
25(OH)D concentrations (adjusted for the month of the blood-
sampling time, age, and BMI SDS) was seen in the LGA children
compared with the AGA ones [Table 1, the post hoc test (Sidak
correction) P=0.086].
Muscle mass or BMI SDS was the strongest weight-related

predictor of higher BMD in the whole study population.
In addition, %BF was a significant predictor in the whole
study population (Table 2). In the boys, being born SGA

Table 2. Determinants of bone mineral density (total body less head) in the whole study population at examination (linear regression analysis)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

P (Model) o0.001 o0.001 o0.001 o0.001 o0.001 o0.001

R square 0.78 0.78 0.79 0.79 0.79 0.70
N 117 117 115 115 117 117

Beta P Beta P Beta P Beta P Beta P Beta P

Female sex 0.10 0.071 0.11 0.065 0.11 0.049 0.13 0.026 0.10 0.088 0.02 0.679

SGA-born — — — — — — — — − 0.10 0.069 — —

LGA-born — — — — — — — — − 0.04 0.501 — —

Birth weight SDS 0.04 0.504 — — — — — — 0.12 0.045

Birth length SDS — — 0.03 0.583 — — — — — — — —

Δ Weight SDS 0–2 years — — — — − 0.07 0.133 — — — —

Δ Length SDS 0–2 years — — — — — — − 0.08 0.086 — — — —

Age 0.18 0.009 0.18 0.009 0.17 0.012 0.17 0.013 0.17 0.011 0.53 o0.001

Muscle mass 0.61 o0.001 0.61 o0.001 0.63 o0.001 0.63 o0.001 0.60 o0.001 — —

Body fat percentage 0.18 o0.001 0.19 o0.001 0.19 o0.001 0.18 0.001 0.18 0.001 — —

BMI SDS (at examination) — — — — — — — — — — 0.40 o0.001

25(OH)D 0.04 0.400 0.04 0.427 0.05 0.299 0.05 0.310 0.02 0.637 0.08 0.175

Ionized calcium 0.00 0.947 0.00 0.936 0.00 0.968 0.00 0.943 0.02 0.756 0.00 0.969

ALP − 0.03 0.489 − 0.04 0.456 − 0.03 0.508 − 0.03 0.554 − 0.05 0.300 − 0.02 0.757

DHEAS 0.17 0.002 0.17 0.002 0.19 o0.001 0.18 o0.001 0.17 0.002 0.24 o0.001

IGF-1 0.05 0.389 0.05 0.390 0.05 0.394 0.05 0.396 0.04 0.416 0.11 0.083

25(OH)D, 25-hydroxyvitamin D; ALP, alkaline phosphatase; BMI, body mass index; DHEAS, dehydroepiandrosterone sulfate; IGF-1, insulin-like growth factor 1; LGA, large for
gestational age; SDS, SD score; SGA, small for gestational age; .
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predicted lower BMD in mid-childhood (beta − 0.27,
Po0.001). Higher DHEAS concentrations predicted higher
BMD in all models in the whole study population (Table 2
and Figure 1) and among the boys (beta 0.22–0.26, P= 0.001–
0.006), but the association between BMD and DHEAS in
girls remained weaker (beta 0.05–0.19, P= 0.053–0.548). The
other biochemical parameters [25(OH)D, ionized calcium,
ALP, IGF-1] did not significantly associate with BMD
(Table 2).

DISCUSSION
In this study, we evaluated the effect of birth size on BMD in
prepubertal children. Being born SGA predicted lower BMD
in prepubertal boys, but not in girls. Being born LGA had no
significant impact on BMD. Current weight, especially muscle
mass, was the strongest predictor of BMD in mid-childhood,
but also birth weight SDS and serum DHEAS concentrations
were positively associated with BMD.
There are not many studies on birth size and bone mass in

childhood. In a recent cohort study, 6-year-old SGA-born
children had lower and LGA-born children had higher BMC,
but not BMD compared with AGA-born ones (24). Biosca
et al. showed a significant difference in age-, sex-, and weight-
adjusted total body BMC between SGA (lowest mean), AGA,
and LGA (highest mean) children at the age of 8 years, but
when adjusted additionally for height the difference turned
nonsignificant. No differences between the birth size groups
were found in total body BMD (25). In a previous study on
children aged 3–12 years, lumbar spine and femoral neck
BMD were lower in SGA than in AGA children (26). In our
study, the SGA children had the lowest BMD among the study
groups, and lower birth weight SDS in the whole study
population and being born SGA in the boys predicted lower

BMD in mid-childhood. A positive association between birth
weight and adult BMC, but not BMD, at the lumbar spine and
hip has been reported previously (1). Children born SGA,
especially preterm, are at an increased risk for impaired
accrual of adult bone mass (1,4,5).
Not only birth size, but also early growth has an impact on

future bone mass. Catch-up growth especially during the first
2 years of life reduced the adverse effect of small birth size on
childhood bone mass (24). SGA-born children had lower
lumbar spine BMD Z-scores than AGA-born children when
there was no catch-up growth (26). Children born SGA with
no catch-up growth had lower total body BMD in early
adulthood compared with children born SGA with catch-up
growth (6). Weight at the age of 1 year had a positive
association with adult bone mass (1), and catch-up growth in
weight but not in height predicted higher BMD in adulthood
(6). Our data did not show any significant impact of early
catch-up or catch-down growth in weight or height on BMD
in mid-childhood.
The association between BMI and volumetric BMD in

children may mostly be mediated by LM. It has been debated
whether fat mass is protective against fractures in childhood
as it is in adults (27). Body fat mass is reported to have both
positive and negative associations with bone mass in child-
hood (10,11,28). Our results did not show any differences in
muscle mass, LM, or %BF between the birth size groups when
adjusted for age, sex, and height. In linear regression analysis
both high muscle mass and %BF predicted higher BMD in the
whole study population.
Vitamin D is vital for bone metabolism by regulating

calcium homeostasis, but it has also a positive effect on
cardiometabolism (29), as serum 25(OH)D deficiency associ-
ates with cardiovascular disease (30), diabetes (31), and
hypertension (32). Interestingly, vitamin D did not have a
significant impact on BMD in our study cohort. However, the
LGA-born children did have a trend toward lower 25(OH)D
concentrations than the AGA-born children. Other studies
have showed an association between low vitamin D
concentrations and low bone density in children and
adolescents (33). In this study vitamin D concentrations were
adequate in all groups, which may explain our result. Serum
25(OH)D concentrations are recommended to exceed
50 nmol/l in children for health benefits (13).
DHEAS is an adrenal androgen precursor and its

concentrations increase individually through childhood (34).
Children with premature adrenarche had higher areal BMD
than their controls, but the differences were nonsignificant
after adjusting for height SDS (35). We demonstrated recently
that LGA children had lowest and SGA children highest
DHEAS concentrations in mid-childhood (18). Linear
regression analysis in the current study showed that DHEAS
concentrations had a positive association with BMD in the
whole study population and separately in boys but not in girls.
DHEAS is metabolized to a more potent androgen testoster-
one and to estrone (36). There is evidence that both
androgens and estrogens have a positive effect on bone mass
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Figure 1. Bone mineral density (BMD) mean Z-score (22) by tertile
groups of dehydroepiandrosteronesulfate (DHEAS) Z-score (23) and
body mass index SD score (BMI SDS) (20) of 120 prepubertal children.
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accrual (36,37). Our recent study showed a positive associa-
tion between DHEAS and IGF-1 concentrations, but no
differences in IGF-1 concentration were found between the
birth size groups (18). IGF-1 has a significant impact on bone
mineral accrual, and it has been positively associated with
BMC in prepubertal children (38,39). In this study IGF-1 did
not have any impact on BMD. This is in agreement with a
previous report showing that IGF-I is a determinant of
cortical bone mass but not cortical bone density (38).
We acknowledge several limitations in this study. First, the

sample size was relatively small, thus affecting the power of
the analyses. Second, the AGA children were heavier than the
Finnish children on average at examination. This might have
an impact on the results, and that is why our analyses were
adjusted also for body size. Third, the BMD was not measured
as volumetric but areal. The International Society for Clinical
Densitometry recommends total body less head dual-energy
X-ray absorptiometry measurement as one of the methods for
performing BMC and areal BMD measurements in pediatric
subjects (40). The strengths of our study include the detailed
data from birth, early childhood growth, and examination.
The data at examination included anthropometric, biochem-
ical, and imaging data. In addition, the study participants
were enrolled strictly according to the birth size, and the AGA
group was selected to represent the children close to the mean
birth weight and length.
In conclusion, children born SGA had lower BMD in mid-

childhood compared with children born AGA and LGA.
Muscle mass or BMI SDS was the strongest weight-related
predictor of childhood BMD, whereas %BF and serum
DHEAS as a marker of adrenal androgen secretion were also
associated positively with BMD.
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