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Abstract: An organotetrasulfide consists of a linear chain of four sulfur atoms that could accept up to 6e- in 

reduction reactions, thus providing a promising high-capacity electrode material. Herein, we study three 

bis(aryl) tetrasulfides as cathode materials in lithium batteries. Each tetrasulfide exhibits two major voltage 

regions in the discharge. The high voltage slope region is governed by the formation of persulfides and 

thiolates, and the low voltage plateau region is due to the formation of Li2S2/Li2S. Based on theoretical 

calculations and spectroscopic analysis, three reduction reaction processes are revealed, and the discharge 

products are identified. Lithium half cells with tetrasulfide catholytes deliver high specific capacities over 

200 cycles. The effects of the functional groups on the electrochemical characteristics of tetrasulfides are 
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investigated, which provides guidance for developing optimum aryl polysulfides as cathode materials for 

high energy lithium batteries. 

 

Energy storage is rising to an unprecedented level of importance in the utilization 

of intermittent renewable energies, such as solar and wind.[1] Energy storage technologies 

that can enable advanced portable devices and electric vehicles are also critical. 

Rechargeable batteries are one of the most promising and practical choices for these 

applications due to the low-cost, high reliability, and long cycle life.[2] Li-ion batteries 

have the highest energy density compared to other aqueous electrolyte-based counterparts, 

(e.g., lead-acid and nickel-metal hydride batteries) and are not only widely used in 

portable electronics but also hold promise for electric vehicles and grid energy storage.[3] 

The lithium storage capacity (<250 mAh g-1) in Li-ion batteries is limited, however, by 

the transition metal oxide cathode materials. To further increase the energy density of 

rechargeable lithium batteries, alternative electrode materials with higher specific 

capacities are highly needed.[4] 

Sulfur-based cathodes have shown promising properties and performance, such as 

abundance and high specific capacities (1,675 mAh g-1), which could enable high energy 

density lithium batteries,.[5] A remaining challenge, however, is that elemental sulfur is 

prone to form lithium polysulfides (i.e., Li2Sx, 4 ≤ x ≤ 8) during discharge and charge 
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cycling, which results in the shuttle effect and short cycle life. Some approaches have 

been developed to overcome these issues,[6] such as using nano carbon hosts,[7] applying 

polysulfide absorbers,[8] and developing novel cell configurations.[9] Organopolysulfides, 

as a form of sulfur compounds, possess unique properties that could overcome some 

issues associated with lithium polysulfides. Recently, organotrisulfides such as methyl 

trisulfide (CH3S3CH3) and phenyl trisulfide (C6H5S3C6H5) that can accept up to 4e- per 

molecule have shown promising electrochemical performance.[10] To further increase 

specific capacities, high order organopolysulfides are needed.  

Motivated by this unmet need, we report here the use of phenyl tetrasulfide (PTS, 

C6H5S4C6H5) and related derivatives as cathode materials for rechargeable lithium 

batteries for the first time. The tetrasulfides were synthesized by the treatment of parent 

thiols with S2Cl2 and pyridine, as recently reported to access analytically-pure 

tetrasulfides.[11] The phenyl rings not only improve cycling stability,[10b] but also provide 

sites for attaching functional groups that can be used to tune the electronic and physical 

properties of each tetrasulfide. The functional group can be OCH3, CH3, F, CF3, and 

N(CH3)2 etc. In this study, we selected two derivatives for comparison, including 

p-methoxyphenyl tetrasulfide (CH3OPTS), which contains an electron-donating OCH3 

group, and p-trifluoromethylphenyl tetrasulfide (CF3PTS), which contains an 
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electron-withdrawing CF3 group. The tetrasulfide moiety in these molecules can be 

reduced by taking up to 6e- and 6Li+, affording them with theoretical specific capacities 

of 569.3 mAh g-1, 469.5 mAh g-1, and 384.3 mAh g-1 for PTS, CH3OPTS, and CF3PTS, 

respectively, as shown in Scheme 1. We use electrochemical techniques, first-principle 

density functional theory (DFT) calculations, and spectroscopic analysis to investigate the 

electrochemical characteristics of these compounds in rechargeable lithium batteries. This 

study intends to explore the new class, high-capacity tetrasulfides with particular 

structures and correlate their structure-property-performance relationship, which will help 

design higher order organopolysulfides such as pentasulfides and hexasulfides. 

The tetrasulfides are either yellow solids (CH3OPTS) or viscous yellow liquids 

(PTS and CF3PTS) at room temperature and are all instantly miscible with the 

ether-based liquid electrolyte that is widely used in Li-S battery studies, rendering 0.5 M 

or 0.2 M catholytes that can be evaluated in lithium half cells directly. The low catholyte 

concentrations and high electrolyte/active material ratios used in this study are needed to 

maintain a relatively stable lithium metal anode which consumes blank electrolyte upon 

cycling, so that we can evaluate the true electrochemical behavior of the cathode 

materials. Carbon nanotube (CNT) paper was used as the current collector on the cathode 

which also serves as an effective reservoir for holding discharged and charged products 
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upon cycling. This cell configuration has been successfully used in previous studies with 

polysulfide and organotrisulfide catholytes.[10, 12] 

Cyclic voltammograms (CV) and the voltage profiles of the three tetrasulfides are 

shown in Figures 1a-c, which reveal their redox characteristics. During the initial 

cathodic scan from open circuit voltage to 1.8 V, all samples show three cathodic peaks. 

Peak currents in peaks III are all shown at 2.0 V, whereas peaks I and II show up at 

different higher potentials. The discharge voltage profiles can be separated into two 

regions: high voltage slope region (>2.1 V) and low voltage plateau region (~2.1 V). The 

middle voltages in the high voltage regions are in the order of CH3OPTS (2.18 V) < PTS 

(2.22 V) < CF3PTS (2.30 V), which agrees with the electron accepting ability of OCH3, H, 

and CF3 groups. During the following anodic scan from 1.8 V to 3.0 V in the CV, 

overlapping anodic peaks are observed. The charge voltage profiles also exhibit two 

regions. The cells with PTS and CH3OPTS show long voltage plateaus followed by short 

voltage slopes at the end of charge. However, the cell with CF3PTS shows two almost 

equivalent voltage plateaus. The voltage hysteresis between charge and discharge are also 

in the order of CH3OPTS < PTS < CF3PTS, indicating the cell with CH3OPTS has the 

lowest overpotential. 

To further investigate the discharge processes, first-principles DFT calculations 
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were performed. The equilibrium geometries and electrostatic potentials, which are the 

interaction energies of the molecules with a positive ion, are shown in Figure 1d. As 

expected, the sulfur atoms in the chain are the lithiation sites on these molecules. To 

further understand where the reduction reactions start, the S-S bond energies were 

calculated and are summarized in Figure 1e. The α-sulfur is the one bonded to the phenyl 

ring and the β-sulfur is the one next to the α-sulfur. The β-sulfur bond (Sβ-Sβ) energies 

(1.43-1.45 eV) are much lower than the α-sulfur and β-sulfur bond (Sα-Sβ) energies 

(1.68-1.87 eV), indicating the Sβ-Sβ bonds break when the reduction reactions start. 

Therefore, the first reduction reaction in the discharge is: R-S-S-S-S-R + 2Li → 

2R-S-S-Li (reaction 1), which forms two aryl persulfides. Figure 1f shows the lowest 

unoccupied molecular orbital (LUMO) configurations of the three tetrasulfides and their 

LUMO and highest occupied molecular orbital (HOMO) energies. The LUMO energy 

falls in the order of CF3PTS < PTS < CH3OPTS, indicating the reduction potentials in the 

reaction 1 are in the order of CH3OPTS < PTS < CF3PTS. The two R-S-S-Li molecules 

formed in the first step will subsequently react through: 2R-S-S-Li + 2Li → 2R-S-Li + 

Li2S2 (reaction 2). Reactions 1 and 2 could take place simultaneously at different 

molecular sites leading to overlapped slopes in the high voltage regions in all three 

molecules. The LUMO and HOMO energies of the aryl persulfides (Figure S1 in 
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Supporting Information) demonstrate that the energy difference (0.65 eV) between the 

LUMO energy level of CF3PTS (-1.21 eV) and the corresponding aryl persulfide, i.e., 

CF3C6H4SSLi (-0.56 eV), is much larger than those in PTS (0.42 eV) and CH3OPTS 

(0.28 eV), indicating that the first reduction (reaction 1) of CF3PTS is more favorable, 

and thus provides a more stable plateau region. When Li2S2 is formed in reaction 2, the 

voltage drops to about 2.1 V. The low voltage plateau is indicative of the conversion 

reaction: Li2S2 + 2Li → 2Li2S (reaction 3) which is similar to that in Li-S battery 

chemistry.[13] 

To identify the discharge products of these tetrasulfides, X-ray photoelectron 

spectroscopy (XPS) was performed, and the sulfur spectra are shown in Figure 2a. All 

three samples show two pairs of doublet peaks. The pairs of doublet peaks with the S 

2p3/2 peaks centered at 160.2 eV are assigned to the sulfur in Li2S,[14] which is the 

β-sulfur in tetrasulfides, indicating Li2S is one of the discharged products. The other pairs 

of doublet peaks in these samples are assigned to the sulfur in aryl thiolates (i.e., C6H5SLi, 

CH3OC6H4SLi, and CF3C6H4SLi), which is the α-sulfur in tetrasulfides. The three S 2p3/2 

peaks have small binding energy differences, which are in the order of CH3OC6H4SLi < 

C6H5SLi < CF3C6H4SLi as expected from their electron-donating or electron withdrawing 

behavior. The α-sulfur peak intensities are much lower than those of the β-sulfur, which is 
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due to the washing process causing most aryl thiolates to be washed away. 

To further understand the discharges of these compounds, we turned to X-ray 

diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray 

spectroscopy (EDS). The XRD results in Figure S2 show that the three discharged 

electrodes are almost amorphous. The main crystalline peaks at 2θ = 26° are known as 

the (002) crystal planes of CNTs.[15] The SEM and EDS images of the washed, discharged 

electrodes are shown in Figure 2b-d. The PTS electrode shows a porous morphology 

indicating most soluble species (e.g., LiTFSI and C6H5SLi) were removed during the 

washing process. The CNTs are coated with insoluble sulfur species, which are believed 

to be amorphous Li2S and some residual C6H5SLi. The elemental mappings of carbon and 

sulfur evidently validate that the discharged products are homogeneously distributed in 

the discharged electrode. The CNTs maintain a self-weaving network in the discharged 

electrode forming continuous electron conducting pathways. In contrast, the CH3OPTS 

and CF3PTS electrodes are much less porous. The CH3OPTS electrode is uniformly filled 

and covered with sulfur species having some nano fringes facilitating ion and charge 

transport, whereas the CF3PTS electrode shows large and isolated particles which can 

result in high overpotential. This observation is believed to be related to the electrolyte 

compatibility of tetrasulfides, with the addition of the -OCH3 group enhancing and the 
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-CF3 group decreasing the compatibility with the ether electrolyte, respectively. 

After investigating the chemical transformations of these tetrasulfides, we further 

explore their electrochemical performance in lithium half cells. Figure 3a presents the 

cycling performance of cells with 0.5 M catholytes at C/10. The mass loadings are 2.8 mg 

cm-2 (PTS), 3.4 mg cm-2 (CH3OPTS), and 4.2 mg cm-2 (CF3PTS). The lithium half cells 

deliver initial discharge specific capacities of 486 mAh g-1
PTS, 324 mAh g-1

CH3OPTS, and 

272 mAh g-1
CF3PTS and retain 74%, 81%, and 43% of the initial capacities over 100 cycles, 

respectively. The cycling stability is in the order of CF3PTS < PTS < CH3OPTS. The 

electrochemical performance of PTS is comparable to that of phenyl trisulfide,[10b] but 

with much higher specific capacities. All cells show a stable Coulombic efficiency of 

above 97.5% after the first cycles. The discharge specific capacities obtained are lower 

than the theoretical capacities of these tetrasulfides, which is due to the relatively high 

active material mass loadings. When the catholyte concentration was reduced to 0.2 M, 

much higher initial discharge capacities were obtained as shown in Figure 3b. The 

capacity retention is about 60% over 200 cycles. Clearly, PTS shows the highest 

discharge capacities due to its lowest molecular weight, the CH3OPTS electrode shows 

the lowest overpotential and highest cycling stability because of the 

electrolyte-compatible OCH3 group. The CF3PTS electrode shows the lowest discharge 
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capacities due to its highest molecular weight and poorest cycling performance. The 

voltage profiles in different cycles are shown in Figure S3. The major capacity loss of the 

CF3PTS electrode is shown in the low voltage plateau, which is reduced more than 80% 

after 100 cycles. The inhomogeneity of the discharged electrode shown in the SEM image 

results in poor reversibility of the β-sulfur back to the oxidation reaction shown in 

Scheme 1 after Li2S is formed. The effects of the functional group X on the properties 

and electrochemical characteristics of aryl tetrasulfides are summarized in Figure 3c. 

In summary, we have demonstrated the fidelity of three bis(aryl) tetrasulfides as 

potential high-capacity cathode materials for rechargeable lithium batteries. Our studies 

reveal the discharge processes and electrochemical characteristics of these tetrasulfides, 

and the observed high specific capacities are appealing for battery application. 

Importantly, the ease of structural modification of the tetrasulfides provides the 

opportunity to specifically tune electronic properties, and therefore the resulting 

electrochemical behavior in tetrasulfide-based lithium batteries. Moreover, the findings in 

this work provide new insights and guidance for developing optimum organopolysulfides 

as cathode materials for high energy rechargeable lithium batteries. 
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Experimental Section 

Materials: Thiophenol was purchased from Alfa Aesar. Sulfur monochloride and 

4-methoxythiophenol was purchased from Sigma-Aldrich. 4-(Trifluoromethyl)benzene 

thiol was purchased from Toyko Chemical Industry (TCI). Lithium 

bis(trifluoromethanesulfonimide) (LiTFSI, LiN(CF3SO2)2, 99%, Acros Organics), lithium 

nitrate (LiNO3, 99.999%, Acros Organics), 1,2-dimethoxyethane (DME, 99.5%, Sigma 

Aldrich), and 1,3-dioxolane (DOL, 99.8%, Sigma Aldrich) were purchased. All reagents 

were used as received. 

Preparation of bis(aryl) tetrasulfides: Details about the synthesis and characterization 

of bis(aryl) tetrasulfides are described in the previous report.[11] 

Electrolyte and catholyte preparation: The ether electrolyte is composed of 1.0 M 

LiTFSI and 0.2 M LiNO3 in mixture solvent of DME and DOL (1:1 v/v). To prepare 

catholytes, tetrasulfides were dissolved in the electrolyte to render 0.5 M or 0.2 M 

solutions. 

Li/catholyte cell fabrication and electrochemical evaluation: Commercial binder-free 

carbon nanotube paper called buckypaper (NanoTechLabs, Inc) was used as the current 

collector in this study. The carbon paper was cut into ∼0.97 cm2 discs (D = 11 mm, about 

2 mg each) and dried at 100 °C for 24 h in a vacuum oven before use. CR2032 coin cells 
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were used and the cells were made in an Ar-filled glove box. First, 20 μL 0.5 M or 0.2 M 

catholyte was added into the current collector. The tetrasulfide loadings are 2.8 mg (PTS), 

3.4 mg (CH3OPTS), and 4.2 mg (CF3PTS) and the active material mass/carbon ratios in 

the electrodes are 1.4, 1.7, and 2.1, respectively, when 0.5 M catholytes were used. Then, 

a Celgard 2400 separator was placed on the top of the electrode followed by adding 20 

μL blank electrolyte on the separator. Finally, a piece of lithium foil and nickel foam as a 

spacer was placed on the separator. The cell was crimped and taken out of the glove box 

for the electrochemical evaluation. 

Cyclic voltammetry (CV) was performed on a BioLogic VSP potentiostat. The potential 

was swept from open circuit voltage to 1.8 V and then cycled between 1.8 and 3.0 V at a 

scanning rate of 0.05 mV s-1. Cells were galvanostatically cycled on an Arbin BT2000 

battery cycler at C/10 rates. 1C = 569 mA g-1 for PTS, 1C = 470 mA g-1 for CH3OPTS, 

and 1C = 384 mA g-1 for CF3PTS. 

Characterizations:  

The X-ray diffraction (XRD) data of the discharged electrodes were collected on a Bruker 

D8 Discover XRD Instrument equipped with Cu Kα radiation. The scanning rate was 2° 

min−1, and 2θ was set between 20° and 60°. The discharged electrodes of tetrasulfides 

were protected by a Kapton tape and characterized with the same procedure. The 
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morphological characterization of the cycled electrodes was conducted with a JEOL 

JSM-7800F field emission scanning electron microscopy (SEM). The elemental mapping 

was performed with energy-dispersive X-ray spectroscopy (EDS) attached to the SEM. 

X-ray photoelectron spectroscopy (XPS) experiments were performed using PHI Versa 

Probe II instrument equipped with focused monochromatic Al Kα source. The X-ray 

power of 50 W at 15 kV was used for 200 µm beam size. The PHI dual charge 

compensation system was used on all samples. XPS spectra with the energy step of 0.1 eV 

were recorded using software SmartSoft–XPS v2.0 and processed using Casa 2.317 

software. The spectrum was calibrated using HOPG strips attached alongside the samples 

as standard and setting its C 1s binding energy (BE) to 284.4 eV and verified using 

adventitious (aliphatic) carbon BE. The XPS spectra were fitted using a combination of 

Gaussians and Lorentzians with 0-50% of Lorentzian contents. Shirley background was 

used for curve-fitting. The S 2p3/2 and S 2p1/2 doublets were constrained using peak areas of 

2:1 with a splitting of 1.18 eV. Cells for the XPS analysis were cycled using 20 µL 0.2 M 

catholytes at C/10 till the cut-off voltage at 1.8 V. The cells were then opened, the cathode 

was extracted, washed using DME and dried in glovebox atmosphere before mounting on 

instrument sample holders. The samples were transferred to the instrument in an 

argon-filled airtight container. 
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Computational Section: 

First principles calculations based on the density functional theory (DFT) were performed 

using SPARTAN software package (Wave function, Irvine, CA), and the M06-2X 

exchange-correlation functional[16] and the 6-31G* basis set were used. The equilibrium 

structures of different molecules were determined through geometry optimization, and 

then total energy calculations were performed to obtain the bond energies and 

LUMO/HOMO levels. The effects of solvent were simulated using a polarizable 

continuum model (PCM), and the dielectric constant was set to that of DME that was 

used as electrolyte in this study (the dielectric constant of DOL is similar to that of 

DME). 
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Scheme 1. Potential chemical transformations of three representative bis(aryl) 

tetrasulfides in rechargeable lithium batteries, and molecular weights (M.W.) and 

theoretical specific capacities (S.C.) of these molecules. 
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Figure 1. Cyclic voltammetry (CV) and voltage profile of lithium half cells with a) PTS, 

b) CH3OPTS, and c) CF3PTS electrodes. d) Equilibrium structures and electrostatic 

potentials of tetrasulfides. Note that colors toward red correspond to a negative potential, 

while colors toward blue correspond to a positive potential. e) Sulfur-sulfur bond energies 

in tetrasulfides. The α-sulfur is the one bonded to the phenyl ring and the β-sulfur is the 

one next to the α-sulfur. f) LUMO configurations, where the blue color indicates a 

positive phase whereas the red color refers to a negative phase, and LUMO/HOMO 

energy levels of tetrasulfides.
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Figure 2. a) Sulfur 2p XPS spectra of the fully discharged electrodes of tetrasulfides. 

SEM images of b) PTS, c) CH3OPTS, and d) CF3PTS discharged electrodes. The insets 

are EDS images with carbon (red) and sulfur (yellow). 
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i. specific capacity ↓ ● ↓
ii. electrophilicity ↓ ● ↑
iii. discharge voltage ↓ ● ↑
iv. overpotential ↓ ● ↑
v. electrolyte compatibility ↑ ● ↓
vi. cycling stability ↑ ● ↓
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Figure 3. a) Cycling performance of tetrasulfide catholytes (0.5 M) at C/10 rate. b) 

Cycling performance of tetrasulfide catholytes (0.2 M) at C/2 rate. c) Effects of 

functional groups on phenyl rings on the properties and electrochemical characteristics of 

bis(aryl) tetrasulfides, positive effects are highlighted in blue. 

 

10.1002/chem.201703895Chemistry - A European Journal



Entry for the Table of Contents 

 

Wei Guo, Zachary D. Wawrzyniakowski, Matthew M. Cerda, Amruth Bhargav, Michael D. 

Pluth,* Ying Ma,* and Yongzhu Fu* 

 

Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries 

i. specific capacity ↓ ● ↓
ii. electrophilicity ↓ ● ↑
iii. discharge voltage ↓ ● ↑
iv. overpotential ↓ ● ↑
v. electrolyte compatibility ↑ ● ↓
vi. cycling stability ↑ ● ↓

X

S
S

S
S

X

X

S
Li

2 +
+ 6e- + 6Li+

- 6e- - 6Li+
Li2S2

 

In this report, three bis(aryl) tetrasulfides were studied as cathode materials in 

rechargeable lithium batteries. Based on theoretical calculations and spectroscopic 

analysis, three reduction reaction processes are revealed, and the discharge products are 

identified. Lithium half cells with tetrasulfide catholytes deliver high specific capacities 

over 200 cycles. The effects of the functional groups on the electrochemical 

characteristics of tetrasulfides are investigated. 
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