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Abstract

Bisulfite treatment of DNA followed by high-throughput sequencing (Bisulfite-seq) is an important method for
studying DNA methylation and epigenetic gene regulation, yet current software tools do not adequately address
single nucleotide polymorphisms (SNPs). Identifying SNPs is important for accurate quantification of methylation
levels and for identification of allele-specific epigenetic events such as imprinting. We have developed a model-
based bisulfite SNP caller, Bis-SNP, that results in substantially better SNP calls than existing methods, thereby
improving methylation estimates. At an average 30× genomic coverage, Bis-SNP correctly identified 96% of SNPs
using the default high-stringency settings. The open-source package is available at http://epigenome.usc.edu/
publicationdata/bissnp2011.

Background

Cytosine methylation of DNA plays an important role in

mammalian gene regulation, chromatin structure and

imprinting during normal development and the develop-

ment of pathological conditions such as cancer. With the

dramatic increase in throughput made possible by next-

generation DNA sequencing technologies, sodium bisulfite

conversion followed by massively parallel sequencing

(Bisulfite-seq) has become an increasingly popular method

for investigating epigenetic profiles in the human genome

(reviewed in [1]). Several sequencing strategies have been

applied that vary in terms of cost and the regions of the

genome covered. Reduced Representation Bisulfite-Seq

(RRBS [2]) uses restriction fragment size selection to select

a portion of the genome enriched for CpG Islands and

gene regulatory sequences. Bisulfite Padlock Probes (BSPP

[3]) or solution-based hybridization capture (Agilent, Inc.,

Santa Clara, CA, USA) can be designed for customizable

selection of hundreds of thousands of regions throughout

the genome. Whole-Genome Bisulfite-Seq (WGBS [4]) is

the most comprehensive technique, covering more than

90% of cytosines in the human genome. Bisulfite-seq is

well-suited to the investigation of epigenetic changes from

clinical tissue samples [5,6], and can be applied to very

small quantities of DNA [7] including formalin-fixed

samples [8]. WGBS and RRBS data have been used to pro-

file a number of cell lines and human tissues by large

sequencing consortia including the ENCODE project [9],

the NIH Epigenomics Roadmap, and The Cancer Genome

Atlas (TCGA), and these datasets are publicly available for

download.

Bisulfite treatment of DNA converts unmethylated

cytosines to uracils, which are replaced by thymines dur-

ing amplification. This dramatic change to sequence

composition necessitates specialized software for almost

all sequence analysis tasks. Typically, the first step in pro-

cessing high-throughput sequencing data is to map and

align each read to the correct location in the reference

genome (genome mapping), and a number of powerful

tools have been developed to map bisulfite-converted

reads (reviewed in [10]). The next step is to identify dif-

ferences between the reference genome and the sample

genome, including single-nucleotide polymorphisms

(SNPs) and insertion/deletion events (indels). The identi-

fication of SNPs has been an active area of research and a

number of powerful statistical tools have been developed

for SNP calling of non-bisulfite sequencing data [11-13].

SNP calling of bisulfite sequencing data has significant

complications. First, reads from the two genomic strands

are not complementary, and this assumption of comple-

mentarity is made by all SNP calling algorithms. Second,

true (evolutionary) C>T SNPs in the sample cannot be

distinguished from C>T substitutions that are caused by

bisulfite conversion, and can thus be misidentified as
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unmethylated Cs. Consequently, identification of such

SNPs is important for accurate quantification of methyla-

tion levels, especially so given the fact that C>T is the

most common substitution in the human population

(65% of all SNPs in dbSNP) and these usually occur in

the CpG context [14].

Accurate SNP calling at the positions immediately sur-

rounding a cytosine is equally important. Those nucleo-

tides lying one or two positions 3’ of the cytosine are

particularly critical, as they are subject to the specificity

of particular methyltransferases. These methyltransfer-

ase-specific context positions can be organism or cell

type specific. In mammals, CpG dinucleotides are often

highly methylated in most cell types, while CpA dinu-

cleotides have much lower methylation levels and are cell

type restricted [4,15]. In plants, by contrast, CHG trinu-

cleotides are often methylated [16,17]. Other sequences

within a slightly wider genomic neighborhood can also

have strong cis effects on methylation, perhaps due to the

presence of key regulatory motifs [18]. Heterozygous

SNPs in proximity to cytosines can be used to reveal

widespread allele-specific methylation patterns [19] and

important regulatory changes such as loss of imprinting

[20-22].

Despite the great interest in Bisulfite-seq and the

availability of a number of tools for genomic mapping,

no adequate software exists for SNP calling [10]. In

order to overcome the difficulty in identifying SNPs in

bisulfite-treated sequences, some groups have relied on

matched non-bisulfite sequencing data in the same sam-

ple [23-25]. Others have used non-bisulfite SNP micro-

arrays [26,27], or used study designs relying on isogenic

mouse strains with known parental genotypes [22,24].

A key property of some bisulfite-related protocols is that

G nucleotides on the strand opposing a C are not affected

by conversion. This strand-specificity principle has been

exploited in order to distinguish bisulfite conversion from

C>T SNPs [28]. The Illumina-based protocol currently

being used in most Bisulfite-seq studies has this important

property, and thus it has been classified as a directional

bisulfite-seq protocol [10]. Non-directional protocols

(those that also result in G>A substitutions) have been

used [17], but have not been widely adopted. Figure 1 illus-

trates the directional protocol, where approximately half

the reads at a given cytosine position (those mapping to

the ‘C-strand’) can be used for methylation quantification

but cannot distinguish C>T SNPs. The other half (those

mapping to the ‘G-strand’, boxed in Figure 1a) yield no

methylation information but can be used to identify C>T

SNPs. When these C>T SNPs are heterozygous, they can

be used in the analysis of allele specific methylation (Addi-

tional File 1).

The inherent directionality of Illumina Bisulfite-seq has

thus far been used only in a limited and ad hoc way. The

Salk Institute group filtered out cytosines which did not

have one or more unconverted Cs on the C-strand, but

this approach can result in lost information about comple-

tely unmethylated cytosines (which play a crucial role in

gene regulation) [4,29]. Our own group filtered out refer-

ence Cs if opposing reads contained As, but the number

of such A reads required was somewhat arbitrary [6].

A third group removed all C/T reads on the C-strand, and

called SNPs by requiring a minimum number of reads

containing two different alleles [30]. Importantly, none of

these so-called ‘k-allele’ approaches took advantage of base

calling quality scores, which have been shown to be extre-

mely important for distinguishing true SNPs from sequen-

cing errors [31]. Others used various methods that did not

attempt to identify C/T or other SNPs occurring at cyto-

sines [3,20,21]. Such methods may be useful for analyzing

allele-specific patterns in a limited way, but do not address

the need to improve methylation quantification by identi-

fying SNPs.

Here, we describe a probabilistic SNP caller, Bis-

SNP, that is based on methods that have proven suc-

cessful in non-bisulfite SNP calling [12,13]. Bis-SNP

uses Bayesian inference to evaluate a model of strand-

specific base calls and base call quality scores, along

with prior information on population SNP frequencies,

experiment-specific bisulfite conversion efficiency, and

site-specific DNA methylation estimates. It also takes

advantage of base call quality score recalibration, an

addition that has greatly improved SNP calling in the

non-bisulfite context [12]. Bis-SNP is open-source and

based on the GATK framework [32], which takes advan-

tage of the parallel Map-Reduce computation strategy

and provide practical execution times. Bis-SNP accepts

either single-end or paired-end mapped Bisulfite-seq

data in the form of BAM files, and outputs SNP and

methylation information using standard file formats. We

show that Bis-SNP is a practical tool that can both (1)

improve DNA methylation calling accuracy by detecting

SNPs at cytosines and adjacent positions, and (2) iden-

tify heterozygous SNPs that can be used to investigate

mono-allelic DNA methylation and polymorphisms in

cis-regulatory sequences.

Results and discussion

Bis-SNP workflow

The two primary steps in the Bis-SNP workflow are out-

lined in Figure 2a and include base quality re-calibration

and local realignment followed by SNP calling. Bis-SNP

accepts standard alignment files (.bam format), which can

be generated by popular Bisulfite-seq mapping programs

such as MAQ, Bismark, BSMAP, PASH, or Novoalign

(reviewed in [10]). This allows the user to decide which

mapping criteria are most important for their specific

application. This also makes Bis-SNP compatible with
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Figure 1 Detecting single nucleotide polymorphisms from Bisulfite-seq data. Hypothetical bisulfite-sequencing data is shown, with reference
genome at top, genome of the individual sequenced (unobserved) in the middle, and bisulfite sequencing reads bottom. (a) shows three reference

cytosine positions, with the first being a match to the reference genome and the second two being homozygous single nucleotide polymorphisms.

The first case shows a true C:G genotype, and all reads on the same strand as the C (the ‘C-strand’) are read as T, indicating an unmethylated state

(shown as blue). Because the Illumina Bisulfite-seq protocol is ‘directional’, reads on the opposite strand (the ‘G-strand’) are read as the true genotype,
G (’genotype’ reads on the G-strand are boxed in this figure). The second case illustrates a true C>T SNP, which can be distinguished by the A reads

present on the G-strand. In this case, the reads on the C-strand are inferred to be from a true ‘T’ and should not be used for methylation calling

(crossed out here). The third case shows a T>C SNP, which again can be identified based on G-strand reads. (b) A cytosine position with 50%

unmethylated (T) and 50% methylated (C) reads can be associated with a heterozygous SNP on the same sequencing reads. In this case, the
unmethylated reads are those on the ‘A’ allele chromosome (here shown as maternal) and the methylated reads are on the ‘T’ allele chromosome.

Figure 2 Bis-SNP workflow. (a) Bis-SNP accepts .bam files, produced by a genome mapping tool (BSMAP, MAQ, Novoalign, Bismark, and so

on). The local realignment and base quality recalibration steps result in a new BAM with the recalibrated base quality scores. Finally, Bis-SNP
performs SNP calling and outputs both methylation levels and SNP calls. (b) The SNP calling step is performed on each genomic position

independently. Differences between the reference genome and the sample genome can produce one of 10 possible allele pairs or genotype

(G, only 4 shown here). Frequencies of all possible substitutions in the population are taken from the dbSNP database and represented as π(G).

A probabilistic model that incorporates prior probabilities for methylation level and bisulfite conversion efficiency is used to calculate the
probability of observing the actual bisulfite read data (D) assuming each of the 10 genotypes (Pr(G|D)) Finally, bayesian inference uses the

population frequencies of each SNP to calculate the posterior likelihood Pr(D|G).
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specialized mappers such as RRBSMAP [33] and any other

program that can output (.bam) files.

The Bis-SNP model relies on the accuracy of base qual-

ity scores, which are initially estimated by the instrument-

specific base caller. However, these initial base scores do

not accurately represent true error probabilities, which are

highly dependent on local sequence context [12]. In the

GATK workflow, empirical mismatch rates for each

nucleotide at each sequencing cycle are calculated by com-

paring base calls to the reference genome, and these mis-

match rates are used to recalibrate instrument-generated

values [12]. We cannot use this default implementation

with bisulfite-seq data, because true C>T sequencing

errors can not be identified when the underlying methyla-

tion state of each bisulfite-converted DNA fragment is

unknown. Therefore, instead of treating Ts at reference

cytosines as errors, we treat them as a 5th base X, and esti-

mate these as a group separately from T>T, A>T, or G>T.

The effect is that we can effectively recalibrate base call

quality scores for all except the X nucleotide, improving

our ability to accurately identify SNPs. Importantly, we are

able to improve SNP calling at cytosines by recalibrating

‘G-strand’ Gs that are complementary to the cytosine.

The user can choose among several output files. For

methylation levels, Bis-SNP can return a standard

UCSC .bed or .wig file, and a separate output file is

generated for each cytosine context specified by the

user on the command line. Example cytosine contexts

are CG, CH, or CHH (H is the IUPAC symbol for A,C,

or T). The .wig output contains the methylation per-

centage for each methylated cytosine, while the .bed

format also contains the number of C/T reads the per-

centage is based on, plus the strand of each cytosine

relative to the reference genome. For SNPs, Bis-SNP

can return a Variant Calling Format (.vcf) file, which

contains all SNP calls and likelihood scores in addition

to methylation percentages.

Description of SNP calling algorithm

The core of the SNP calling algorithm is based on the

Bayesian inference model of GATK [12], and implemen-

ted using GATK’s LocusWalker class. For each locus,

Bis-SNP evaluates one of ten possible diploid genotypes

(G), as shown in Figure 2B (a diploid genotype is made

up of two parental alleles, referred to as A and B). The

prior probability of each genotype, π(G), is determined

using population data from dbSNP (including 1000 gen-

omes data) similar to SOAPsnp [13] (See Materials and

Methods). In this model, the likelihood of observing all

base calls at a particular locus, assuming a particular

diploid genotype AB, is expressed as Pr(D|G = AB) and

is the product of observing the base call at each indivi-

dual read j (Equation 2 of Materials and Methods). As

described below, Pr(Dj|G = AB) is calculated according

to the strand of read j and several bisulfite-specific para-

meters, b,a and g (Figure 2b).

In the GATK non-bisulfite SNP calling model, the

probability of observing a base call different from the pre-

sumed genotype G is simply the base call quality score

(defined as the probability of a base calling error). In the

case of Bisulfite-seq, this is true for A:T genotypes but

not C:G. For C:G genotypes, the probability of observing

a T depends on the strand of the read, the methylation

state, and the efficiency of bisulfite conversion. Reads on

the G-strand opposite the cytosine are treated with the

normal GATK model. Reads on the C-strand use an

alternate model that considers C>T substitutions as

either potential errors or bisulfite conversions (see Mate-

rials and Methods). The probability of observing a bisul-

fite conversion event depends on both the underlying

methylation state and bisulfite conversion errors. While

none of these are observed directly, they are included in

the model as variables b,a and g as described in Equation

5 in the Methods section.

After bisulfite treatment, an unmethylated C that fails to

get converted to a T is referred to as an underconversion,

while a methylated C that is converted to T is referred to

as an overconversion. The underconversion rate, a, is often

estimated using either a spike in control [4] or the

unmethylated mitochondrial genome [6]. This rate can be

set manually by the user and has a value of 0.25% by

default. While bisulfite overconversion can not be reliably

measured using current Bisulfite-seq data, we include an

additional parameter, g, which is set to 0% by default. In

the future, this could be estimated by spiking in fully-

methylated control DNA.

The percentage of methylated reads at a given cytosine

position can vary widely. Since C reads and T reads yield

more information about the presence of a C>T SNP than

T reads, the locus-specific methylation rate can strongly

influence SNP calling. In mammalian genomes, CpG

methylation levels are multimodal, with various classes of

functional elements having distinct methylation patterns.

At least four different classes exist with mean methylation

rates ranging from around 0% to over 80% [4,24]. Further-

more, methylation at particular di- or tri-nucleotide con-

texts is organism and even cell type specific. To better

understand how methylation estimates could affect SNP

calling performance, we implemented several different

methods for estimating the methylation frequency para-

meter b, which we describe next.

First, we used a naive estimate for b where the prob-

ability of a read being methylated or unmethylated at

any particular cytosine position was 0.5. Second, we

used context-specific estimates which were determined

in a two-round procedure as follows. In the first round,

naive estimates were used as described above, and the

resulting SNP calls were used along with dbSNP to
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select a set of high-confidence non-SNP homozygous

cytosines (probability>99.99%). These homozygous cyto-

sines were used to estimate average methylation levels

for a set of cytosine sequence contexts that could be

specified on the Bis-SNP command line (by default, set

to bCG and bCH). In the third and final estimation

method, b was estimated for each cytosine locus indivi-

dually using the number of C and T reads ( c
c+t). The

rationale for this locus-specific method was our concern

that genome-wide estimates might be inappropriate

CpGs, given the strongly bimodal nature of CpG methy-

lation levels. Each of these three b estimation methods

was run individually as described below. The default

method for the public version of Bis-SNP is locus-

specific estimation.

Evaluation of SNP calls at known SNPs

We evaluated Bis-SNP calling accuracy for each of the

three different methylation estimation methods (naive,

context-specific, and locus-specific). The latter two methods

performed substantially better than naive estimation, so

those are the only two discussed below. We evaluated

accuracy using an actual whole-genome Bisulfite-seq data-

set from a normal (male) human colon mucosa sample

published previously by our lab [6] (sequence available via

accession dbGap:phs000385). All reads were 75 bp long

single-end, and generated using the Illumina Genome

Analyzer IIx platform. The complete dataset had an aver-

age read depth of 32X. The Bisulfite-seq data were com-

pared to Illumina Human1M-Duo BeadChip SNP array

data from same sample.

The primary goal of bisulfite sequencing is the accurate

determination of cytosine methylation levels, so we first

investigated the ability of Bis-SNP to correctly identify

homozygous cytosines. As the ‘ground truth’, we used

435,120 positions identified as homozygous cytosines on

the 1 M SNP array, and examined false negative and false

positive calls made by Bis-SNP (Figure 3a-c). Calls at

varying stringencies were generated by adjusting the Bis-

SNP score cutoff, which is defined as the odds ratio

between the first and second most likely genotype (see

Methods). Evaluating the different Bis-SNP methylation

estimates with and without base quality recalibration

showed that the locus-specific b estimation plus recalibra-

tion produced the most accurate results. Using the com-

plete sequence dataset and the default score cutoff

(Figure 3c, red circle), Bis-SNP was able to detect 95.22%

of the true cytosines (414,327 features) with a false posi-

tive rate of 0.37% (2,461 features). We simulated lighter

sequencing coverage by randomly picking reads from the

full dataset to estimate accuracy at 8× (Figure 3a) and

16× (Figure 3b) genomic coverage. The reader should

note that these false positive rates are not indicative of

the genome-wide false positive rates, since most false

positives come from heterozygous SNPs which are fre-

quent on the SNP array but very infrequent in the

genome.

For comparison, we determined the accuracy of homo-

zygous cytosine calling using several published methods

(Figure 3a-c). Bismark[34] returns methylation estimates

for all cytosines in the reference genome. It is thus not

surprising that Bismark performs poorly for features on

the 1 M SNP array, which were selected for their poly-

morphism and differences from the reference genome.

Several other published studies use the same strategy and

estimate methylation at all reference cytosines [35,36]. In

our own earlier work [6], we also restricted methylation

calling to reference cytosines. Thus it is not surprising that

when we applied this method (’Berman2012’) to the 1 M

SNP array dataset, it achieved almost the same false nega-

tive rate as Bismark. However, ‘Berman2012’ filtered out

positions where less than 90% of reads were C or T on the

C-strand and G on the G-strand, resulting in a substan-

tially lower false positive rates than Bismark, but not as

low as Bis-SNP.

We next focused on the ability of Bis-SNP to determine

heterozygous SNPs, which can be used both for improving

methylation calling accuracy as well as allele-specific

methylation analysis (see Figure 1b). Heterozygous SNPs

are more difficult to identify than homozygous SNPs, due

to the approximately 1/2 the read coverage for each allele.

We excluded the haploid × chromosome, leaving 303,656

autosomal loci called as heterozygous by the 1 M SNP

array. As before, the locus-specific b methylation estima-

tion plus recalibration performed the best of all methods.

Using the full dataset with the default Bis-SNP cutoff

(Figure 3c, red circle), Bis-SNP was able to identify 93.18%

of heterozygous SNPs (282,944 loci) with a false positive

rate of 0.094% (755 loci). Of the 303,656 heterozygous loci

examined, 242,347 (79.81%) were C/T heterozygotes. C>T

is the most common SNP in mammals, arising from evo-

lutionary deamination of methylated cytosines. It is also

the most difficult SNP to detect in bisulfite-treated DNA,

because the C-strand reads are often uninformative

(see Figure 1). As expected, Bis-SNP (and other methods)

performed more poorly on C/T heterozygous SNPs

than others, due to C>T conversion ambiguity (Additional

File 2).

We compared Bis-SNP results to heterozygous SNPs

called using two alternate ‘k-allele’ techniques that used

read count cutoffs without incorporating base quality

scores. We implemented a generalized form of the method

used by [21,30] to use a variable read count cutoff. This

cutoff, k, was defined as the minimum percentage of reads

with a secondary allele necessary to call a heterozygous

SNP. As in [30], we counted C and T as a single allele at
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reference cytosines (on the C-strand only). In addition to

k-allele, we also tried the Shoemaker method [20], which

does not evaluate C/T SNPs at all and requires observa-

tions of the less frequent allele on at least 20% of reads on

each strand. Finally, we tried the bisReadMapper algo-

rithm [3], which calls SNPs independently on each strand

using a non-bisulfite SNP caller, SAMTOOLS [11], and

reports only those SNPs that agree between strands.

Figures 3d-f show that each variation of Bis-SNP performs

better than other methods.

An important practical question is the minimum read

depth required for accurate SNP identification.

We addressed this problem by downsampling our 32×

Bisulfite-seq genome to various coverage levels from 2×

to 30× (Figure 4). For each coverage level, we deter-

mined the number of false positives and false negatives

across a range of Bis-SNP stringency cutoffs using the

1 M SNP array data, as in Figure 3. At each coverage

level, we then selected the least stringent cutoff that

produced a False Discovery Rate (FDR) of less than 5%,

and plotted the number of true positives (sensitivity). For

both homozygous cytosines (Figure 4a) and heterozygous

SNPs (Figure 4b), sensitivity increased dramatically up to

about 10× coverage and then began to level off. Homozy-

gous SNPs were almost fully detected (98% sensitivity) by

10× coverage, while heterozygous SNPs had a more gra-

dual increase from 80% detected at 10× to 95% detected

at 30×.

Accuracy of genome-wide methylation calling

To verify the ability of Bis-SNP to correctly identify cyto-

sines and improve methylation quantification genome-

wide, we ran Bis-SNP across an entire chromosome for

the OTB colon mucosa sample and four additional whole-

genome bisulfite-seq samples (Table 1). TCGA normal

lung and normal breast were generated by the USC Epi-

genome Center and aligned using BSMAP, while the two

mouse methylomes were generated by UCSD and aligned

using Novoalign [22]. Runtimes for chromosome 1 were

about 3 hours using a standard 12-core Intel server with

10 GB RAM (Intel, Santa Clara, CA, shown). The entire

human genome takes about 30-40 hours on a single server

(data not shown).

We used Bis-SNP to identify four classes of cytosines in

the sample genome (Figure 5 and Table 2 ‘Sample Geno-

types’), and separated these by their corresponding

Figure 3 Bis-SNP error frequencies in detecting SNPs on the Illumina 1 M SNP array. Receiver Operating Characteristics (ROC curves) are

shown for Bis-SNP accuracy at detecting SNPs in Bisulfite-seq data derived from human colonic mucosa tissue. The ‘true’ genotypes were

determined using an Illumina Duo 1 M Human SNP array, and Bis-SNP results were only evaluated at these million genomic positions. All
datasets were from [6]. The three ROC curves at the top (a-c) show accuracy at positions corresponding to 435,120 homozygous cytosines on

the 1 M SNP array. By randomly downsampling from the average 32× read depth of the Bisulfite-seq data, we are able to show results

corresponding to 8× coverage (a), 16× coverage (b). Bis-SNP using three different conditions is compared to Bismark and the method used in

‘Berman2012’ [6], both of which restrict their results to reference cytosines. For ‘Berman2012’, we varied the number of reverse strand G reads
required to plot a range of stringencies. The three plots at the bottom (d-f) show accuracy at the 303,656 positions that are heterozygous

according to the 1 M SNP array. For comparison, we show results from the k-allele method (similar to the approach of [30]), Shoemaker2010 [20]

and bisReadMapper[3].
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sequences in the reference genome (Figure 5 and Table 2

‘Reference Genotypes’). As shown in Table 2 about 0.5-

0.6% of reference CpGs were lost in the sample genome,

and 0.5-0.6% of CpGs in the sample genome were lost in

the reference. The two mouse samples had significantly

higher SNP rates, presumably due to true strain differ-

ences between the crossed strains and the C57BL/6J strain

sequenced for the mouse reference genome. In both F1

mice, about 2.5% of reference CpGs were lost in the sam-

ple genome, and about 1.1% of CpGs in the sample gen-

ome were lost in the reference.

We next compared average methylation levels across

each sample genotype (Figure 5). As expected, homozy-

gous CpHs were consistently low, while homozygous

CpGs were consistently high, regardless of the corre-

sponding reference sequence. Both mouse frontal cortex

brain samples showed elevated levels of CpH methylation

as described in the original publication [22]. Interestingly,

homozygous CpGs that represented SNPs (where the

sample differed from the reference genome) had consis-

tently higher methylation. This fits with what is known

about mammalian genome evolution - evolutionary C>T

changes occur much more frequently at methylated than

unmethylated CpGs because the C>T deamination and

deamination repair process is methylation-specific. We

next looked at heterozygous CpGs (Figure 5, right). CpG/

CpH positions had methylation about halfway between

CpG homozygous and CpH homozygous positions.

At CpG/ApG or CpG/GpG heterozygous positions,

methylation can only be measured for the C allele, and

the methylation state is about the same as homozygous

CpGs. CpG/TpG heterozygous positions are not shown,

because we can not accurately measure methylation at

these positions. Together, these data show that Bis-SNP

genotype calling produces accurate methylation quantifi-

cation even when the sample genome differs from the

reference genome.

Conclusions

We have described a publicly-available software tool,

Bis-SNP, which extracts methylation information and

SNP information simultaneously from data generated

using the Illumina Bisulfite-seq protocol. Command-line

executables (Additional File 3) and open-source code

(Additional File 4) are both freely available for download

[37]. The directional nature of the Illumina protocol

Figure 4 Sensitivity as a function of sequence coverage. Comparisons between Bis-SNP SNP calls and 1 M SNP array from Figure 3 ROC

curves were extended to a range of coverage levels from 2×-30×. At each coverage level, we selected the least stringent threshold that yielded
a False Discovery Rate (FDR) less than 0.05, and plotted the Sensitivity (1 - False Negative rate). As in Figure 3, separate plots show sensitivity at

detecting homozygous cytosines (a) and heterozygous SNPs (b). For heterozygous SNPs, we include the overall detection rate (red line), as well

as separate lines for C/T heterozygous SNPs (blue line) and non-C/T heterozygous SNPs (green line).

Table 1 Chromosome 1 Bis-SNP detection

Sample Aligner reference cvg Het SNPs Hom SNPs Callable bases runtime

OTB MAQ hg18 32× 119,103 67,725 211,042,010 2.8 h

TCGA-lung-normal BSMAP hg19 19× 118,412 58,309 222,763,786 3.1 h

TCGA-breast-normal BSMAP hg19 19× 113,009 57,281 221,014,965 2.7 h

Mouse-F1i Novoalign mm9 50× 663,528 65,364 178,718,615 3.1 h

Mouse-F1r Novoalign mm9 41× 682,979 67,068 178,847,508 3.1 h

Notes: All benchmarking performed using a single Intel(R) Xeon (X5650,2.67 GHz) server with 12 CPU cores and 10 GB memory. SE refers to single-end

sequencing and PE to paired-end.
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allows for analysis of DNA methylation and the identifi-

cation of a SNP at the same position, by combining infor-

mation from each strand separately. This is the dominant

Bisulfite-sequencing protocol in use today by individual

labs and genomics consortia such as ENCODE, the NIH

Epigenomics Roadmap, and The Cancer Genome Atlas.

By correctly identifying and filtering SNPs correctly, we

can obtain more accurate methylation levels and hetero-

zygous SNPs, including C/T SNPs, can be used to iden-

tify allele-specific methylation patterns. Bis-SNP is

implemented using the efficient GATK framework,

which allows for runtimes that are reasonable for modern

whole-genome analysis. An entire 32× whole-genome

dataset took about 30 hours to run on a typical 12-pro-

cessor compute node with 10 GB of memory, or 3 hours

when each chromosome was run in parallel on a separate

compute node. This performance profile makes Bis-SNP

accessible to most users.

We included the capability to perform base quality re-

calibration on bisulfite-seq data, which improves the over-

all SNP calling accuracy of Bis-SNP. Not only do more

accurate base quality scores allow us better identification

of SNPs as shown here, but could be used in the future to

calculate more precise DNA methylation estimates. Biolo-

gical DNA samples do not typically have a large number

of cytosines that are always 100% methylated, so there is

not a reliable way to identify true C>T mismatches and

recalibrate quality scores at these positions. Recalibration

could be improved in the future by spiking a library of

DNA that has not been treated with bisulfite into the

same sequencing lane.

The potential applications of Bisulfite-seq in basic biol-

ogy and medicine are broad, and Bis-SNP can be used for

the majority of Bisulfite-seq experimental designs includ-

ing Whole-Genome Bisulfite-Seq (WGBS), Reduced

Representation Bisulfite-Seq (RRBS), and customizable

genome selection methods. While we have focused on

human studies, Bis-SNP can output methylation levels

split up according to user-defined cytosine contexts,

which makes it applicable to analysis of Arabidopsis or

any other organism. It also allows Bis-SNP to accommo-

date novel study designs, such as in vitro methylation by

methyltransferases with arbitrary sequence specificities,

or even the study 5-hydromethyl-cytosine (5-hmC) using

a novel bisulfite-sequencing approach [38].

An intriguing potential use of Bisulfite-seq and Bis-SNP

is the study of genome-wide associations between SNPs

and DNA methylation patterns (i.e. methQTLs, reviewed

in [39]). While the experimental designs thus far have

envisioned paired SNP and methylation assays, our

encouraging results with Bis-SNP suggest that both could

be captured in a single Bisulfite-sequencing experiment.

Sequencing depths of 50× or greater for Whole-genome

Bisulfite-seq are not unattainable from a cost perspective,

and would likely provide sufficient SNP and methylation

coverage for methQTL studies. Another potential applica-

tion could be a Genome-Wide Association Study (GWAS)

that uses Bisulfite-seq rather than traditional sequencing,

to identify disease associations at the genetic and epige-

netic levels simultaneously. This could be especially useful

given the large number of GWAS hits that appear to affect

regulatory regions rather than gene coding regions.
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Figure 5 Accurate methylation calling at SNPs. Bis-SNP was run on five different datasets, single-end sequencing from Colon Mucosa Tissue

[6] (a), two TCGA samples using paired-end sequencing from breast and lung tissues (normal, non-cancer), and two mouse samples using
paired-end sequencing from [22] (see Table 1). In each case, Bis-SNP was used to identify cytosines in one of four sequence context in the

sample genome. For each sample genotype, cytosines were further divided by their sequence context in the reference genome (’ref CpG’, ‘ref

CpH’, or ‘refNotC’). All cytosines within a particular category in a particular sample were averaged to yield a mean methylation level. The number

of cytosines in each category can be found in Table 2.
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Bis-SNP and other Bisulfite-seq analysis tools will be

important in the development of these exciting new

technologies.

Materials and methods

Local realignment, base quality recalibration and other

BAM file preprocessing

Reads with mapping quality scores less than 30 and

those mapped to multiple genomic regions were

removed, as are PCR duplicates (optional). For paired-

end reads, we remove read pairs that do not have the

ProperlyPaired field set.

We use GATK to perform local multiple sequence rea-

lignment and sequence recalibration mostly as described

[12]. Since most of bisulfite sequencing mapping tools (e.

g. Bismark, BSMAP, MAQ etc) do not provide correct

CIGAR string in the BAM file for GATK’s indel realign-

ment, the CIGAR string is recalculated when necessary.

We extend GATK’s RealignerTargetCreator to

count mismatch number but not count thymine as a mis-

match when the reference genome position is cytosine.

After we create a potential indel interval, we realign

using a modified version of GATK’s IndelRealigner.

PCR duplicate reads are marked after indel realignment.

For base quality recalibration, we modify the GATK

algorithm to account for bisulfite conversion by

extending the GATK CountVariantWalker and

TableRecalibrationWalker classes. The algo-

rithm first tabulates empirical mismatches to the refer-

ence at all loci not known to vary in the population

(i.e., not in dbSNP build 135). These counts are cate-

gorized by their reported instrument-reported quality

score (R) and position (cycle) within the read (C). In

tabulating mismatches, we do not count thymine as a

mismatch when the reference genome position is cyto-

sine (on the second end of a paired-end read, we

instead don’t count adenine as a mismatch when the

reference is guanine).

Table 2: Chromosome 1 cytosine counts and methylation

Sample Sample genotype Reference Genotypes % methylation

Reference CpG Reference CpH Reference DpN (D = A,T,G) Ref CpG Ref CpH Ref DpN

OTB normal colon CpG 3,758,803 99.39% 12,540 0.02% 11,838 0.01% 73% 80% 82%

CpH 7,773 0.21% 78,427,918 99.95% 18,804 0.01% 1% 1% 1%

DpN 5,658 0.15% 14,166 0.02% 128,570,817 99.97% NA NA NA

CpG/CpH het 7,218 0.19% 8,998 0.01% NA NA 39% 39% NA

CpG/RpG het 2,512 0.07% NA NA 1,826 0.00% 74% NA 77%

TCGA Normal lung CpG 4,153,196 99.52% 10,995 0.01% 10,511 0.01% 76% 84% 85%

CpH 5,460 0.13% 85,031,960 99.96% 16,420 0.01% 1% 1% 1%

DpN 5,310 0.13% 13,725 0.02% 133,490,905 99.98% NA NA NA

CpG/CpH het 6,682 0.16% 8,529 0.01% NA NA 37% 39% NA

CpG/RpG het 2,476 0.06% NA NA 1,993 0.00% 80% NA 78%

TCGA normal breast CpG 4,100,643 99.54% 10,893 0.01% 10,657 0.01% 75% 85% 86%

CpH 5,286 0.13% 80,654,084 99.96% 13,390 0.01% 1% 1% 1%

DpN 4,954 0.12% 13,310 0.02% 136,180,779 99.98% NA NA NA

CpG/CpH het 6,289 0.15% 8,120 0.01% NA NA 39% 40% NA

CpG/RpG het 2,413 0.06% NA NA 1,854 0.00% 78% NA 79%

Xie 2012 Mouse F1i (chr1) CpG 2,125,320 97.51% 10,990 0.02% 11,757 0.01% 76% 83% 84%

CpH 4,314 0.20% 57,706,841 99.87% 20,312 0.02% 3% 3% 3%

DpN 5,300 0.24% 20,905 0.04% 118,570,097 99.96% NA NA NA

CpG/CpH het 28,896 1.33% 36,735 0.06% NA NA 43% 42% NA

CpG/RpG het 15,754 0.72% NA NA 12,917 0.01% 78% NA 82%

Xie 2012 Mouse F1r (chr1) CpG 2,199,907 97.52% 11,268 0.02% 11,974 0.01% 75% 83% 84%

CpH 4,476 0.20% 58,685,115 99.87% 20,933 0.02% 3% 3% 4%

DpN 5,171 0.23% 20,765 0.04% 117,647,445 99.96% NA NA NA

CpG/CpH het 29,983 1.33% 38,159 0.06% NA NA 43% 42% NA

CpG/RpG het 16,371 0.73% NA NA 13,147 0.01% 78% NA 82%

Notes: ‘het’ signifies heterozygous. Two non-reference bases in a row automatically filtered out. CpH = C(A/C/T). DpN = (A/T/G)(A/C/T/G). RpG = (A/G)G. CpG/TpG

heterozygous genotypes are filtered out because they can not be used for methylation calling.
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By default, only positions with a recalibrated Base

Calling Quality Score of greater than 5 are used for SNP

calling. This quality cutoff can be set using a command

line parameter (see User Manual in Additional File 3).

BisSNP probabilistic model

We begin with the bayesian likelihood model of GATK

([12]), and make a number of bisulfite-specific adapta-

tions. Assuming the underlying genome is diploid, we

let D = (D1, D2, ..., Dr) represent the base calls at a par-

ticular genomic position i that is covered by r sequen-

cing reads. We then calculate the posterior probability

by (1) as in GATK:

Pr(G|D) =
π(G)Pr(D|G)

Pr(D)
(1)

Here, G is the underlying diploid genotype, AB, with A

and B being the two parental alleles. π(G) is a genotype

prior probability for observing the given genotype based

on the genotype of the reference genome and population

frequencies, the same as discussed in Table 1 of SOAPsnp

paper [13]. Pr(D) is defined as the sum over all possible

genotypes ∑AB π(AB) Pr (D|AB), but is the same in each

case and can generally be ignored since we are concerned

with likelihood ratios. We assume that each of the two

alleles are equally likely to be sequenced, and calculate the

overall likelihood of D as the product of all individual

reads (2),(3):

Pr(D|G) =

r
∏

j=1

Pr(Dj|G) (2)

Pr(Dj|G = AB) =
1

2
Pr(Dj|A) +

1

2
Pr(Dj|B) (3)

The following steps are shown for single-end sequences.

For paired end sequences, the first end is treated as

described, but the second end is reverse complemented

before performing these calculations (because the Illumina

second end is the complementary strand of the same tem-

plate as the first end). This changes G>A bisulfite substitu-

tions, which occur on the second end, to the actual C>T

substitutions present on the bisulfite-converted template.

The recalibrated base quality scores are on a phred scale

which represents the probability ε that the position is an

error, which is used in the following calculation.

When the underlying allele is adenine (a), thymine

(t), bisulfite conversion does not apply and the prob-

ability estimation is straightforward as shown for t:

Pr(Dj|B = t) =

{ εj

3
if Dj �= t

1 − εj if Dj = t
(4)

Here, εj is the probability of a sequencing or base call-

ing error at position j, i.e. probability that the true allele

B is a t, but base call Dj is observed as an a, c, or g.

The likelihood function for a is equivalent to that of

Equation (4). When the underlying allele is a c or a g,

however, the probabilities are strand-specific since bisul-

fite conversion only affects one strand in the directional

Bisulfite-seq protocol (Figure 1). The probability of see-

ing a t in the read depends on the probability that the

position is methylated (b), as well as the bisulfite con-

version efficiency (a and g). Bisulfite treatment converts

all unmethylated cytosines to thymine, but in practice it

is not 100% efficient [4]. The parameter a is the esti-

mated frequency of unmethylated cytosines which are

not converted (typically taken from unmethylated spiked

in DNA [4] or the mammalian mitochondrial sequences,

which we have found to be almost completely unmethy-

lated [6]. In this case, a = bchrM). By default, a is set to

0.0025 but can be specified by the user. We also include

a g parameter for over-conversion, i.e. the rate at which

methylated cytosines are converted. Although this is not

routinely measured in practice, it could be estimated by

including an enzymatically methylated control DNA

[40], or a sequencing library without bisulfite conver-

sion. By default, g is set to 0 but can be specified by the

user. The full likelihood calculation for cytosines is as

follows:

Pr(Dj|B = c) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − εj)[βj(1 − γ ) + (1 − βj)α] if Dj = c+

εj

3
+ (1 − εj)[βjγ + (1 − βj)(1 − α)] if Dj = t+

1 − εj if Dj = c−

εj

3
otherwise

βj (1 − γ ) = methylated and
(

properly
)

not converted

βjγ = methylated and
(

improperly
)

converted

(1 − βj)α = unmethylated and
(

improperly
)

not converted

(1 − βj)(1 − α) = unmethylated and
(

properly
)

converted

(5)

The key to these calculations is that reads on the same

strand as the inferred cytosine allele (denoted with +)

are treated differently than reads from the opposite

strand (denoted with -). As expected based on the

example in Figure 1, a true allele of B = c results in a

very high probability of seeing a t+ (a ‘t’ read on the C-

strand), but a very low probability of seeing a t- (an ‘a’

read on the G-strand). The genotype Gbest with the

highest posterior probability Pr(G|D) is chosen, and the

final output score is the odds ratio between the best

(Gbest) and the second best (Gnextbest), as in Equation (6).

In practice, we optimize execution by evaluating only

the subset of the 10 possible diploid genotypes that are

possible given the sequences read.

score = log(
Pr(Gbest|D)

Pr(Gnextbest|D)
(6)
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Bisulfite efficiency, i.e. a and g typically vary by less than

1%, so the critical parameter included in Equation 5 is the

methylation rate b. Since this rate varies by genomic con-

text, organism, and even cell type, we allow the user to

specify the possible contexts as a set of n nucleotides

sequences specified by their IUPAC degeneracy codes (for

instance, CH represents CC, CT, or CA). In mammalian

genomes where typically only the single base 3’ of the

cytosine is considered relevant, the user would specify CG

and CH (the Bis-SNP default). For Arabidopsis, one

might specify CG, CHH, and CHG. Any arbitrary number

of 5’ and 3’ bases may be specified in order to accommo-

date the full range of Bisulfite-seq assays. For instance a

CCGG pattern could be specified for MspI restriction sites

inherent to the RRBS protocol ( [41]).

One methylation output file (BED6+2 format) is cre-

ated for each cytosine context specified by the user. For

each cytosine determined to have the particular sequence

context, the percent methylated (the number of C reads

on the C-strand divided by the number of C or T reads

on the C-strand) is output as the score field. To aid in

statistical analysis, a second field contains the total num-

ber of C/T reads.

Five-prime bisulfite non-conversion filter

Non-conversion of unmethylated Cs is known to preferen-

tially affect the 5’ end of Illumina-generated reads, most

likely driven by the re-annealing of sequences adjacent to

the fully methylated sequence adapters during bisulfite

conversion. We control for this using a 5’ non-conversion

filter as implemented in our earlier work [6]. For each

read, we walk along the read from 5’ to 3’, and we remove

any Cs on the C-strand until we reach the first reference

C which is converted to a T. By applying this filter, early

bisulfite conversion in early cycles is brought to levels very

similar to those of late cycles, thus removing a potential

source of methylation bias (data not shown). Notice that

this filter should be turned off for RRBS data, which gleans

most of its methylation data from the first cycle (see user

manual).

Pre-SNP calling quality filters

Using the approach of GATK, we apply additional quality

filters before SNP calling to avoid known sources of false

positives. SNPs found in clusters (two or more within a

ten-base-pair window) were filtered out. SNPs with cov-

erage depth above 120, Strand Bias(SB) score more than

-0.02, or Quality by Depth(QD) less than 1.0 are filtered

out. All of these parameters are configurable (see User

Manual). If BAM contains Mapping Quality scores, sus-

picious regions are filtered out when greater than 10% of

aligned reads (minimum of 40 reads) have mapping qual-

ity of 0.

Bisulfite sequencing can have higher strand biases

since high bisulfite concentration can lead to DNA

degradation when the depurination step causes random

strand breaks [42,43]. We calculated strand bias score as

in GATK, but bisulfite converted reads have an apparent

strand bias which is higher than the actual strand bias,

since the G-strand contributes more than the C-strand

at cytosines. For this reason, we used a substantially less

stringent strand bias cutoff (-0.02) than the GATK

default.

Downsampling coverage

We downsampled the human colon mucosa Bisulfite-seq

dataset into different mean coverages using GATK,

which randomly picks z reads at each individual nucleo-

tide locus. The following formula is used, where N is

the mean coverage of total dataset before downsampling

(32× in this case), n is the desired downsampling cover-

age, and m is the actual coverage at the particular locus.

z =
m ∗ n

N
(7)

External tools used for comparison

K-allele method

The K-allele method was used to identify heterozygous

SNPs as a generalization of described methods [21,30],

both of which count the number of alternate alleles pre-

sent and exclude C/T SNPs. For reference cytosine posi-

tions, we only use counts from the G-strand, while at

other positions we combine the two strands to get read

counts. After these filters, we use a K cutoff which can

vary from 0-10 and apply the K-allele threshold as follows.

For positions with n passing reads where n is less than 10,

we require that each of the two alleles have at least K

reads. For positions where n is greater than 10, we require

at least n k
10

reads. Fore reference, the Hudson Alpha group

[21] used a set definition K of 7 reads and at least 10%,

and excluded all C/T SNPs. The UCLA group [30] speci-

fied that the allele with the lower read count had to con-

tain at least 40% of reads, and excluded C/T reads.

bisReadMapper

We downloaded bisReadMapper version 1 [3]. We

first use genomePrep.pl to preprocess the reference

genome and extract cytosine position in each chromo-

some. The built in read mapper could not handle our

large BAM file, so we circumvented the mapping step

and used the BAM files directly as input. This is not a

standard part of the bisReadMapper package, and

required us to divide our BAM alignment files to separate

reads aligning to the forward strand of the reference gen-

ome from those aligning to the reverse strand. We used

the following bisReadMapper parameters: allC=1;

Liu et al. Genome Biology 2012, 13:R61

http://genomebiology.com/2012/13/7/R61

Page 11 of 14



length=75; snp=dbsnp135.rod; alignMode=S;

qualBase=33; trim3=0; trim5=0; refDir=/

path/to/GenomePreparationProcessedDir/

Shoemaker

The Shoemaker [20] method was implemented as

described in their supplemental materials with clarifica-

tions from the author. The reads are handled differently

based on the ratio of C to T nucleotides within the read

and the ratio of G to A nucleotides (if C to T ratio was

higher, it was considered a bisulfite-converted C-strand

read, otherwise it was considered a complementary read

from the 2nd end and it was reverse complemented). All

reads are then demethylated in silico (Cs converted to Ts).

Input reads are filtered by their criteria: (1) Base calls at

the examined SNP site and three flanking positions on

either side needed to have a minimum Base Quality score

of 15. (2) If a certain base was present in more than 20%

of reads on one strand, its reverse complement needed to

be present on at least 20% of the reads on the opposing

strand. Only positions passing these two criteria were ana-

lyzed. Base Quality scores were used to weight the nucleo-

tide count contributions to the nucleotide frequency

matrix. This matrix was normalized, multiplied by the

read count to get final nucleotide number matrix in each

location (normalized and weighted A,C,G,T number in

each loci). The Fisher exact test was applied to each

nucleotide in each of the alleles (e.g. nucleotide number of

G vs. nucleotide number of not G, expected nucleotide

number of G vs. expected nucleotide number of not G).

Two p-values of each allele were multiplied together for

each of ten possible genotypes and then normalized. The

SNPs were selected out when (1) The best genotype was

10 times more than the next most likely genotype, (2) the

SNP was in reported in dbSNP, and (3) had at least 10×

read depth.

Bismark

We downloaded Bismark-0.50 [34]. We converted our

input BAM file to SAM format and ran genome_-

methylation_bismark2bedGraph.pl to extract

cytosines. Default settings were used.

Berman2012

We implemented a generalized version of the method

described in our earlier work [6]. We only included refer-

ence cytosine positions that had at least 3 overlapping C

or T reads. We required at least k% of reads on the C-

strand to be C or T, and k% of the reads on the G-strand

to be G. The default setting (used in [6] and shown as an

orange rectangle in Figure 3) was k = 10%.

Datasets used for whole-genome comparisons

OTB-colon

75 bp Single End Whole-Genome Bisulfite-Seq data

from [6] was generated using Illumina GAIIx sequen-

cing (available at dbGap:phs000385). Sample was normal

adjacent colon mucosa from a male colon cancer

patient.

TCGA-lung and TCGA-breast

100 bp Paired End Whole Genome Bisulfite-Seq

(WGBS) data generated at USC by the TCGA (The

Cancer Genome Atlas) USC-JHU Epigenome Character-

ization Center. Data is unpublished, but available for

download via the UCSC Cancer Genomics Hub (CG-

Hub [44]). The lung normal sample is adjacent tissue

from case TCGA-60-2722 (data available in CG-Hub

analysis ID 964a8130-d061-472f-9839-9c1f07b24205),

and the breast normal sample is adjacent tissue from

case TCGA-A7-A0CE (CG-Hub analysis ID 279507dd-

4c62-4975-877d-5cfebd2e7c6f.

Mouse-F1i and Mouse-F1r

One hundred-base pair paired-end sequence datasets from

two independent mouse samples were used[22]. We

downloaded alignments from the original publication

(GEO accessions GSM753569 and GSM753570), which

were performed using Novoalign. High-confidence geno-

types were available for both parental strains via the

Mouse Genome Database. We inferred high-confidence

genotypes for the progeny only when each parent was

homozygous at the particular position.

Additional material

Additional file 1: Detecting heterozygous C/T single nucleotide

polymorphisms from Bisulfite-seq data. Hypothetical bisulfite-seq data
with all labels as in Figure 1. This illustrates detection of a C/T
heterozygous position (left), and that the G-strand alleles can be used to
associate methylation state of an adjacent cytosine on the opposite
strand with two parental alleles.

Additional file 2: Bis-SNP error frequencies at C:T heterozygous

SNPs. The data for heterozygous SNP calling in Figure 3c is broken up
into C:T SNPs vs. other heterozygous SNPs.

Additional file 3: Bis-SNP executable, utility scripts, and User

Manual. We suggest that the user download the most recent version of
these files directly from [37].

Additional file 4: Bis-SNP source code. We suggest that the user
download the most recent version of these files directly from [37].
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CpG: dinucleotide sequencing consisting of a cytosine followed by guanine;
CpH: cytosine followed by an H nucleotide (H is one of C, A, or T); SNP:
Single-nucleotide polymorphisms; WGBS: Whole-Genome Bisulfite-Seq; RRBS:
Reduced Representation Bisulfite Sequencing; BSPP: Bisulfite Padlock Probes;
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Depth.
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