
Bisection algorithm of increasing algebraic connectivityby adding an edge

Yoonsoo Kim

Abstract— For a given graph (or network) G, consider
another graph G′ by adding an edge e to G. We propose
a computationally efficient algorithm of finding e such that
the second smallest eigenvalue (algebraic connectivity,λ2(G

′))
of G′ is maximized. Theoretically, the proposed algorithm
runs in O(4mnlog(d/ǫ)), where n is the number of nodes
in G, m is the number of disconnected edges inG, d is
the difference betweenλ3(G) and λ2(G), and ǫ > 0 is a
sufficiently small constant. However, extensive simulations
show that the practical computational complexity of the
proposed algorithm, O(5.7mn), is nearly comparable to that
of a simple greedy-type heuristic,O(2mn). This algorithm can
also be easily modified for findinge which affects λ2(G) the
least.

Key words: algebraic connectivity; Laplacian matrix.

I. I NTRODUCTION

Suppose a graph or networkG is given which consists of
the set of nodes,V = {v1, v2, . . . , vn}, and the set of edges,
E = {eab | va, vb ∈ V}. Consider then another graphG′ in
which the set of nodes is the same asV but the set of edges
is the union ofE and an edgeeij ∈ Ec (i.e. eij 6∈ E), where
vi, vj ∈ V . In this note, we are interested in findingeij such
that the second smallest eigenvalue (algebraic connectivity,
λ2(G

′)) of the graph LaplacianLG′ is maximized. As will
become clear, similar problems, e.g. findingeij such that
λ2(G

′) is minimized, can be easily handled by modifying
the method to be discussed in this note.

The algebraic connectivityλ2(G), originally defined
in [4], has been identified as an important parameter in
many systems problems defined over networks [5], [13],
[14], [15], [16] (see [7] for a good introduction to the
algebraic connectivity). It is interesting to note thatλ2(G)
is also used for biological applications, e.g. [1]. In this note,
we are particularly interested in usingλ2(G) for optimal
network design. This interest is motivated by the observation
that λ2(G) is a measure of stability and robustness of the
networked dynamic system [5], [13]. A few works can be
found in the literature along this line. In [13], the authorsuse
λ2(G) for finding the best node configuration with the largest
λ2(G) when the nodes are subject to proximity constraints.
The proximity constraints are then linearized to solve a
series of semi-definite programs to find a locally optimal

This work is supported by the Young Researcher Fund (Subcommittee
B fund) from the University of Stellenbosch in South Africa.The author
thanks to Mehran Mesbahi and Frank Janse van Vuuren for theirthoughtful
comments on this manuscript.

The author is with the Department of Mechanical and Mechatronic
Engineering, University of Stellenbosch, Matieland 7602,South Africa.
Email: ykim@sun.ac.za.

configuration. The same problem is approached via a sphere-
packing idea in [12].

In [6], a similar problem of finding the best network but
subject to a constraint on the number of edges in the network
is considered. The authors propose a greedy perturbation
heuristic to find the network with the largestλ2(G) by
adding edges one by one until the constraint is satisfied. This
heuristic turns out to be useful for network synchronization
in [10]. In [10], the authors consider rewiring a given network
by adding or deleting an edge to increaseλ2(G) while
keeping the same number of edges in the network. The
same network design problem subject to the constraint on
the number of edges is also considered in [11] for relay
deployment in wireless sensor networks. In [11], the authors
propose a semi-definite programming relaxation technique
to find the best locations for a given set of relays. There
are few other related works in the literature which address
similar problems, such as [3], [9], but it seems that only few
ideas are around to deal with the optimal network design
problems of involvingλ2(G).

As stated in the beginning, we are interested in finding the
best edge which can increase the currentλ2(G) the most.
Clearly, the greedy perturbation heuristic proposed in [6]
may do aproper job in this regard with small computa-
tional power. In this note, we however aim to propose an
algorithm doing theperfect job at the expense of a little
bit more computational power. To this end, in the following
sections, we introduce a computationally efficient bisection
algorithm utilizing the secular equation [2] and compare its
performance to the greedy perturbation heuristic theoretically
as well as numerically.

II. M ETHODS

A. A motivating example and two existing approaches

To begin with, consider a graphG in Figure 1, where

V = {v1, v2, . . . , v5} and E = {e12, e13, e14, e15, e35, e45}.

The Laplacian matrix of the graph reads as follows:

LG =













4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 2 0 −1
−1 0 0 2 −1
−1 0 −1 −1 3













.

Each diagonal entry ofLG represents the number of adjacent
nodes (neighbours) of the corresponding node, while each
off-diagonal entry represents the connectivity between each
pair of nodes (−1 if connected;0 otherwise). For this
example, one can easily check that the second smallest



3
1

5

2

4

Fig. 1. A graph on 5 vertices

eigenvalue ofLG, λ2(G), and the third smallest eigenvalue
of LG, λ3(G), are1 and2, respectively.

We now consider choosing an edgee ∈ Ec =
{e23, e24, e25, e34} which increasesλ2(G) the most. It is
well-known that adding an edge always yieldsλ2(G) ≤
λ2(G

′) ≤ λ3(G), where G′ is the graph obtained by
adding the edge toG, and λ2(G

′) = λ2(G) if λ2(G) =
λ3(G) (see [2] for more details). Due to these relationships
betweenλ2(G) andλ2(G

′), our focus in this note is on the
graphsG with λ2(G) 6= λ3(G) which guaranteeλ2(G) <
λ2(G

′).
The easiest approach to findinge is to go over all the

possible edges for each of which the correspondingλ2(G
′)

is computed. Using this way, one can see thate = e25 yields
the largestλ2(G

′) = λ3(G) = 2. However, this approach is
manageable only if the numbern of nodes and the number
m of unconnected edges, i.e.m = |Ec|,1 in G are relatively
small. Note that if the symmetric QR algorithm in [8] is used
to compute eigenvalues, this approach runs inO(4mn3/3).

Another approach is the greedy perturbation heuristic
proposed in [6]. Once the eigenvector (Fiedler vector)v2

associated withλ2(G) is obtained, the heuristic chooses
an edgeeij ∈ Ec with largest (v2i − v2j)

2, where v2i

is the ith entry of v2. This approach is motivated by the
fact that (v2i − v2j)

2 gives the first order approximation
of the increase inλ2(G) (see [6] for more details). Clearly,
this approach requires a lot less computational power than
the first approach: its computational complexity isO(2mn),
excluding the once-off calculation ofv2. The solution quality
of the heuristic is generally good, as reported in [6] and
will be shown in §III. We however note that there are still
many cases in which the heuristic returns a poor solution. In
fact, for the example in Figure 1, one obtainse = e23 with
λ2(G

′) = 1.5858 using this heuristic.

B. Bisection algorithm

In the hope of finding an exact solution yet with small
computational power, we propose a new algorithm in this

1For a setS, |S| means the number of elements inS.

TABLE I

BISECTION ALGORITHM

Input λ2(G) andλ3(G) with d = λ3(G)− λ2(G) > 0, E with
|Ec| = m, andǫ > 0.

Step 0 L← λ2(G), U ← λ3(G), M ← (L + U)/2, x← 0,
andSx ← Ec.

Step 1 If |Sx| = 1 or x > log2(d/ǫ), then go toOutput ;
otherwise,S+ ← {}, S− ← {}, and go toStep 2.

Step 2 For each elementeij ∈ Sx,
S+ ← S+ ∪ eij if f(M) > 0; S− ← S− ∪ eij otherwise.

Step 3 If |S−| = 0, U ←M andSx+1 ← S+;
otherwise,L←M andSx+1 ← S−.

Step 4 x← x + 1 and go toStep 1.

Output Sx.

section. To this end, consider the following modified version
of the secular equation in [2]:

f(λ(G′)) = 1 + ρ

n
∑

k=2

(vki − vkj)
2

λk(G) − λ(G′)
= 0, (2.1)

whereρ = 1, G′ is obtained by addingeij ∈ Ec to G, vk is
the eigenvector associated with thekth smallest eigenvalue
of LG, vki is theith entry ofvk, andλ(G′) is an eigenvalue
of LG′ . Note thatρ = −1 corresponds to the case where an
edge is deleted fromG. In general, the secular equation is
used to find eigenvalues of diagonal plus rank-one matrices.
As adding an edge toG may be viewed as a rank-one
modification of LG, the original secular equation can be
written as (2.1) using a similarity transformation.2

If λk(G) and vk for every k are known, the problem
reduces to solving (2.1) forλ(G′), actually forλ2(G

′). As
observed in [8], the derivative off(λ(G′)) with respect to
λ(G′) implies that f(λ(G′)) is monotonically increasing
betweenλ2(G) and λ3(G). Since λ2(G) < λ2(G

′) ≤
λ3(G), we thus have

f(λ(G′))







> 0 if λ(G′) > λ2(G
′),

= 0 if λ(G′) = λ2(G
′),

< 0 if λ(G′) < λ2(G
′).

(2.2)

From these characteristics off(λ2(G
′)), one can deduce the

following useful facts: (1) Iff(λ(G′)) > 0 for a certain
λ(G′), the added edgeeij to G gives rise toλ2(G

′) ∈
(λ2(G), λ(G′)); (2) If f(λ(G′)) < 0 for a certainλ(G′), the
added edgeeij to G gives rise toλ2(G

′) ∈ (λ(G′), λ3(G)].
These two simple facts lead to our bisection algorithm in
which λ(G′) (M in Table 1) is varied until the best edge (∈
Sx in Table 1) is found.

The bisection algorithm presented in Table 1 essentially
decreases the size ofSx as x increases. The size ofSx

is initially m when x = 0, but becomes smaller whenever
edges inSx which satisfyf(M) ≤ 0 are found. The final

2A generalized version of (2.1) is to be derived in a journal version of
this paper.



2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

x (iteration number)

|S
x|

p=0.5

p=0.6

p=0.7

p=0.8

Fig. 2. |Sx| for four sets of1000 random graphs with differentp

size of Sx must be1 unless there exist two edges inEc

which yield the same or very close (less thanǫ) λ2(G
′). For

the numerical examples in §III, we chooseǫ = 10−4. The
termination criteria inStep 1 are based on the following.
The difference between the upper bound (U ) and the lower
bound (L) for somex is

|U − L| =
1

2x
(λ3(G) − λ2(G)) =

1

2x
d.

Thus, if one wishes to terminate the algorithm when|U −
L| < ǫ, thenx must be greater thanlog2(d/ǫ).

The computational complexity of the proposed bisection
algorithm depends on the size ofSx at each iteration. In view
of |Sx| ≤ m and (2.1), one can easily show that the algorithm
runs in O(4mn log2(d/ǫ)). However, we observe that as
x increases,|Sx| decreases rapidly to1 for most random
graphs. For this observation, we create several sets of1000
random graphsG with λ3(G) > λ2(G) > 0. The number
of nodes in the random graphs is set to100, and the edge
between two nodes is added with a fixed probability ofp.
Figure 2 depicts|Sx| for four sets of the1000 random graphs
with different p. As shown in the figure,|Sx| decreases
drastically for all the random graphs created, regardless of
p.

For a more quantitative analysis, we calculateκ for each
random graph such that

x̄
∑

x=1

|Sx| = κm,

where x̄ is the x when the algorithm is terminated. Fig-
ure 3 showsκ for 1000 random graphs withp = 0.7.
The maximum but very much isolatedκ is 4.112 and the
averageκ is 1.4352. This implies that theaverage or prac-
tical computational complexity of the proposed algorithm,
O(4κmn) ≈ O(5.7mn), is quite comparable to that of the
simple greedy perturbation heuristic,O(2mn).

Another remark is that our bisection algorithm does not
allow λ(G′) to be λi(G) (i = 2, 3, . . . , n), so no divide-
by-zero error occurs whenf(λ2(G)) in (2.1) is evaluated.

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

4.5

Simulation number

κ

Fig. 3. κ for 1000 random graphs withp = 0.7

However, the algorithm can be successfully applied to the
cases like the one shown in Figure 1, whereλ2(G

′) = λ3(G).
This is because the algorithm does not find the exactroots
of (2.1), but just find a bestedge.

III. C OMPARISON OFALGORITHMS

In this section, we compare the three algorithms: Alg
I (first approach presented in §II-A), Alg II (second approach
presented in §II-A) and Alg III (bisection algorithm in Table
1). For this purpose, we generate100 random graphs with
100 nodes andp = 0.7 in the same manner as in the previous
section.

As shown in Figure 4-(a), Alg III (cross) returns the
exactly sameλ2(G

′) as Alg I (square) does. However,
Figure 4-(b) clearly suggests that Alg I requires much more
computational power to do the same job. The solution quality
of Alg II (circle) is generally good, as described in Figure 4-
(c), except for several cases. Figure 4-(d) demonstrates that
the computational times of Alg II and Alg III are quite close.
This exactly supports the computational complexity analysis
done in the previous section.

In conclusion, Alg III (proposed bisection algorithm) is
indeed an efficient means of finding an edge such thatλ2(G

′)
is maximized by adding the edge.

IV. CONCLUSION

We presented a computationally efficient bisection al-
gorithm of finding an edge which affects the algebraic
connectivity of a graphG the most. The proposed algorithm
makes use of a special property of the secular equation which
gives eigenvalues of the modified graphG′. As a result, the
proposed algorithm returns exact solutions but requires small
computational power nearly comparable to the simple greedy
perturbation heuristic. This merit was verified by extensive
computer simulations.



0 20 40 60 80 100
50

51

52

53

54

55

56

57

58

59

60

Simulation number

λ 2(G
’)

(a) λ2(G′) obtained from Alg I (square) and Alg III (cross)

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Simulation number

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
on

ds
)

(b) Computational times of Alg I (square) and Alg III (cross)

0 20 40 60 80 100
50

51

52

53

54

55

56

57

58

59

60

Simulation number

λ 2(G
’)

(c) λ2(G′) obtained from Alg II (circle) and Alg III (cross)

0 20 40 60 80 100
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Simulation number

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
on

ds
)

(d) Computational times of Alg II (circle) and Alg III (cross)

Fig. 4. Comparison ofλ2(G′) and computational times using100 random
graphs withp = 0.7

REFERENCES

[1] D. Barash. “Spectral Decomposition for the Search and Analysis of
RNA Secondary Structure,”Journal of Computational Biology, 11(6):
1169-1174, 2004.

[2] J. Bunch, C. Nielsen and D. Sorensen. “Rank one modification of the
symmetric eigenproblem,”Numerical Mathematics, vol. 31, no. 1, pp.
31–48, 1978.

[3] S. Fallat and S. Kirkland. “Extremizing algebraic connectivity subject
to graph theoretic constraints,”The Electronic Journal of Linear
Algebra, vol. 3, no. 1, pp. 48–74, 1998.

[4] M. Fiedler. “Algebraic connectivity of graphs,”Czechoslovak Mathe-
matical Journal, (23) 98: 298–305, 1973.

[5] J. A. Fax and R. M. Murray. “Information flow and cooperative control
of vehicle formations,” IEEE Transactions on Automatic Control,
(49) 9: 1465-1476, 2004.

[6] A. Ghosh and S. Boyd. “Growing well-connected graphs,”Proceed-
ings of the IEEE Conference on Decision and Control, pp. 6605–6611,
December 2006.

[7] C. Godsil and G. Royle.Algebraic Graph Theory, Springer-Verlag,
2001.

[8] G. Golub and C. F. Van Loan.Matrix Computations, The Johns
Hopkins University Press, 1996.

[9] J. Guo. “The effect on the Laplacian spectral radius of a graph by
adding or grafting edges,”Linear Algebra and its Applications, vol.
413, no. 1, pp. 59-71, 2006.

[10] A. Hagberg and D. A. Schult. “Rewiring networks for synchroniza-
tion,” Chaos, vol. 18, pp. 037105, 2008.

[11] A.S. Ibrahim, K. G. Seddik, K. J. R Liu. “Improving Connectivity
via Relays Deployment in Wireless Sensor Networks,”Proceedings
of the IEEE Global Telecommunications Conference, pp 1159–1163,
November 2007.

[12] Y. Kim, D.-W. Gu and I. Postlethwaite. “Tight formationflying and
sphere packing,”In Proceedings of American Control Conference, pp.
1085–1090, July 2007.

[13] Y. Kim and M. Mesbahi. “On maximizing the second smallest
eigenvalue of a state-dependent Laplacian,”IEEE Transactions on
Automatic Control, vol. 51, no. 1, pp. 116–120, 2006.

[14] M. Mesbahi. “On state-dependent dynamic graphs and their control-
lability properties,” IEEE Transactions on Automatic Control, vol. 50,
no. 3, pp. 387–392, 2005.

[15] B. Mohar. “Some Applications of Laplace Eigenvalues ofGraphs,”
Graph Symmetry: Algebraic Methods and Applications, Eds. G. Hahn
and G. Sabidussi, NATO ASI Ser. C 497, Kluwer, pp. 225–275, 1997.

[16] R. Olfati-Saber and M. Murray. “Agreement problems in networks
with directed graphs and switching topology,”Proceedings of the
IEEE Conference on Decision and Control, December 2003.

[17] T. Timothy. “Advances in sliding window subspace tracking,” PhD
Thesis, University of Rhode Island, 2005.


