Bisection algorithm of increasing algebraic connecti\by adding an edge
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Abstract—For a given graph (or network) G, consider configuration. The same problem is approached via a sphere-
another graph G’ by adding an edgee to G. We propose packing idea in [12].
a computationally efficient algorithm of finding e such that In [6], a similar problem of finding the best network but

g;e égciznc:nzgﬂzgzg.elgrine\ga:leutﬁ:éﬁ;getbt{glcp;:gggse:élvggeé?itg% subject to a constraint on the number of edges in the network

runs in O(4mnlog(d/e)), where n is the number of nodes IS considered. The authors propose a greedy perturbation
in G, m is the number of disconnected edges inG, d is heuristic to find the network with the largest(G) by

the difference betweenA3;(G) and X:(G), and ¢ > 0 is a  adding edges one by one until the constraint is satisfieds Thi
sufficiently small constant. However, extensive simulatits o istic turns out to be useful for network synchronizatio

show that the practical computational complexity of the . . .. .
Sroposed algorithpm, 0(5.7mn),pis nearly comgarab¥e to that N [10]. In[10], the authors consider rewiring a given netio

of a simple greedy-type heuristic,0(2mn). This algorithm can by adding or deleting an edge to increasg(G) while
also be easily modified for findinge which affects X\2(G) the  keeping the same number of edges in the network. The

least. same network design problem subject to the constraint on
the number of edges is also considered in [11] for relay
deployment in wireless sensor networks. In [11], the agthor
propose a semi-definite programming relaxation technique
to find the best locations for a given set of relays. There
. INTRODUCTION are few other related works in the literature which address
similar problems, such as [3], [9], but it seems that only few
ideas are around to deal with the optimal network design
problems of involving\z (G).

As stated in the beginning, we are interested in finding the
best edge which can increase the currentG) the most.

Key words: algebraic connectivity; Laplacian matrix.

Suppose a graph or netwoék is given which consists of
the set of nodes) = {v1,vs,...,v,}, and the set of edges,
E = {ean|va,vp € V}. Consider then another graghf in
which the set of nodes is the same)adut the set of edges

is the union of€ and an edge;; € &° (i.e.¢i; ¢ £), where  cjeqry “the greedy perturbation heuristic proposed in [6]
v;,v; € V. In this note, we are interested in findiag such may do aproper job in this regard with small computa-
that the second smallest eigenvalge (alg_eb_raic conn@_ctivitionm power. In this note, we however aim to propose an
A2(G")) of the graph Laplaciatlc: is maximized. As will - 545rithm doing theperfect job at the expense of a little
beco/mg clear, similar problems, e.g. finding such that pi'ore computational power. To this end, in the following
A2(G’) is minimized, can be easily handled by modifyinggections, we introduce a computationally efficient biserti
the method to be discussed in this note. algorithm utilizing the secular equation [2] and compase it

_ The algebraic connectivity\;(¢), originally defined erformance to the greedy perturbation heuristic thezatiji
in [4], has been identified as an important parameter g \vell as numerically.

many systems problems defined over networks [5], [13],
[14], [15], [16] (see [7] for a good introduction to the
algebraic connectivity). It is interesting to note that(G)

is also used for biological applications, e.g. [1]. In thitey A A motivating example and two existing approaches

Il. METHODS

we are particularly interested in using(G) for optimal To begin with, consider a grapfi in Figure 1, where
network design. This interest is motivated by the obseovati
that \»(G) is a measure of stability and robustness of th& = {v1,v2,-.-,vs} and & = {eiz, €13, €14, €15, €35, €45}

networked dynamic system [5], [13]. A few works can be 1o Laplacian

_ ) A matrix of the graph reads as follows:
found in the literature along this line. In [13], the authase

A2 (@) for finding the best node configuration with the largest 4 -1 -1 -1 -1
A2 (G) when the nodes are subject to proximity constraints. -1 0 0 0
The proximity constraints are then linearized to solve a Lg=| -1 0 2 0 -1
series of semi-definite programs to find a locally optimal -1 0 0 2 -1

-1 0 -1 -1 3
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‘ 2 TABLE |

BISECTION ALGORITHM

Input A2(G) and A3(G) with d = A3(G) — X2(G) > 0, € with
|E€| = m, ande > 0.

1 Step 0 L — Ao(G), U — A3(G), M — (L +U)/2, = — 0,

3‘ ' ‘4 andS, «— &°.

Step 1 If |[Sz| =1 or z > logy(d/¢), then go toOutput;
otherwise,St «— {}, S~ « {}, and go toStep 2

Step 2 For each element;; € Sq,
St Stue;if f(M)>0; S~ « S~ Ue;; otherwise.

5 Step3 If|S7|=0,U« M andS;41 < ST;
otherwise,L «— M andS,41 «— S—.

Fig. 1. A graph on 5 vertices
9 grap Step4 x« x+ 1andgo toStep 1

Output  S;.

eigenvalue ofLs, A\2(G), and the third smallest eigenvalue
of Lg, A3(G), arel and2, respectively.

We now consider choosing an edge € £
{eas, €4, €25, €34} Which increases\o(G) the most. It is
well-known that adding an edge always yields(G) < )
A2(G") < A3(G), where G’ is the graph obtained by , "L (Vi — Vi)
adding the edge @, and As(G) = Mo(G) if Ao(G) — FNE)) = 1+pk2_:2—Ak(G) m7el)
A3(G) (see [2] for more details). Due to these relationships -
between\, (G) and X, (G’), our focus in this note is on the Wherep =1, G’ is obtained by adding;; € £ to G, v is
graphsG with X\2(G) # A3(G) which guarantee\,(G) < the eigenvector associated with thth smallest eigenvalue
A2 (G). of L, vk, Is theith entry ofvy, and\(G’) is an eigenvalue

The easiest approach to findingis to go over all the of Lg/. Note thatp = —1 corresponds to the case where an
possible edges for each of which the corresponding?’) edge is deleted frond7. In general, the secular equation is
is computed. Using this way, one can see that o5 yields used to find eigenvalues of diagonal plus rank-one matrices.
the largest\s(G’) = A3(G) = 2. However, this approach is AS adding an edge tdz may be viewed as a rank-one
manageable only if the numberof nodes and the number modification of Lg, the original secular equation can be
m of unconnected edges, i.e = |£°|,1 in G are relatively written as (2.1) using a similarity transformatién.
small. Note that if the symmetric QR algorithm in [8] is used If Ax(G) and vy for every k are known, the problem
to compute eigenvalues, this approach run®igmn3/3).  reduces to solving (2-1)_f0)‘_(G/)- actually f?”@(G/)- As

Another approach is the greedy perturbation heuristi@oserved in [8], the derivative of (\(G")) with respect to
proposed in [6]. Once the eigenvector (Fiedler vectos) A(G') implies that f(A(G”)) is monotonically increasing
associated with\»(G) is obtained, the heuristic choosesPetWeenx(G) and A3(G). Since Ay (G) < A(G) <
an edgee;; € £° with largest(ve; — v2;)?, wherevy; A3(G), we thus have

section. To this end, consider the following modified vemnsio
of the secular equation in [2]:

-0, (2.12)

is the ith entry of v,. This approach is motivated by the >0 if AMG) > M(G),
fact that (vz; — v2;)? gives the first order approximation MGNL =0 if AG) = (G, (2.2)
of the increase in\2(G) (see [6] for more details). Clearly, <0 if MG < x(G).

this approach requires a lot less computational power than o

the first approach: its computational complexityi¢2mn), ~From these characteristics 6t\>(G’)), one can deduce the
excluding the once-off calculation of. The solution quality following useful facts: (1) If f(A(G")) > 0 for a certain
of the heuristic is generally good, as reported in [6] and(G'), the added edge;; to G gives rise toAs(G') €
will be shown in §lIl. We however note that there are still(*2(G); A(G")); (2) If F(MG)) < 0 for a certain\(G), the
many cases in which the heuristic returns a poor solution. fided edge;; to G gives rise tohx(G') € (AM(G), A3(G)]-

fact, for the example in Figure 1, one obtains- 23 with These two simple facts lead to our bisection algorithm in
A2(G') = 1.5858 using this heuristic. which A\(G") (M in Table 1) is varied until the best edge (

S, in Table 1) is found.
The bisection algorithm presented in Table 1 essentially
B. Bisection algorithm decreases the size &, as x increases. The size af,

In the hope of finding an exact solution yet with small> initially m whenz = 0, but becomes smaller whenever

computational power, we propose a new algorithm in thigdges in,, which satisfy (M) < 0 are found. The final

2A generalized version of (2.1) is to be derived in a journaisian of
IFor a setS, |S| means the number of elementsS$h this paper.
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size of S, must bel unless there exist two edg/es & However, the algorithm can be successfully applied to the
which yield the same or very close (less tham\»(G’). For  5ses like the one shown in Figure 1, whaséG’) = As(G).

the numerical examples in §lll, we choose= 1077 The  This is because the algorithm does not find the exaats
termination criteria inStep 1 are based on the following. ¢ (2.1), but just find a bestdge.

The difference between the upper boud @nd the lower
bound () for somezx is

1 1 I11. COMPARISON OFALGORITHMS
U—L|= 2—1()\3(G) - X(G)) = 2—Id-
In this section, we compare the three algorithms: Alg
| (first approach presented in 8lI-A), Alg Il (second appiieac

L| < e thenz must be greater thalg,(d/c). .. presented in §II-A) and Alg Il (bisection algorithm in Tabl
The computational complexity of the proposed bisectio ). For this purpose, we generatg0 random graphs with

algorithm depends on the size8f at each iteration. In view . . .
. 1 d =0.7inth th
of | S| < m and (2.1), one can easily show that the algonthmOO nodes ang = 0.7 in the same manner as in the previous

: section.
runs in O(4mnlog,(d/e)). However, we observe that as N
x increases|S,| decreases rapidly t@ for most random As shown in Figure 4-(a), Alg lll (cross) returns the

/
graphs. For this observation, we create several sel®(f le:>_<acrttlay 4_53)?3);(5 )s as eélti tha(tSquIJarler)e do_?; gozvr?\rlr?cr)'re
random graphs? with A3(G) > X2(G) > 0. The number 'gu y sugg g | requi u

of nodes in the random graphs is setlt@), and the edge computatignal power to do the same job. The so!utiqn quality
between two nodes is added with a fixed probabilitypof of Alg Il (circle) is generally gooq, as described in Figure 4
Figure 2 depictssS, | for four sets of the 000 random graphs (c), except fqr sevgral cases. Figure 4-(d) demon_strams th
with different p. As shown in the figure|S,| decreases the computational times of Alg Il and Alg Il are quite close.

drastically for all the random graphs created, regardléss his e_xactly supports the .computatlonal complexity arialys
» one in the previous section.

For a more quantitative analysis, we calculatéor each !N conclusion, Alg Il (proposed bisection algorithm) is
random graph such that indeed an efficient means of finding an edge suchXhét’)
B is maximized by adding the edge.
Z |SI| = Kkm,
z=1

where z is the x when the algorithm is terminated. Fig-

ure 3 showsk for 1000 random graphs withp = 0.7. We presented a computationally efficient bisection al-
The maximum but very much isolated is 4.112 and the gorithm of finding an edge which affects the algebraic
averagex is 1.4352. This implies that theaverage or prac-  connectivity of a grapltz the most. The proposed algorithm
tical computational complexity of the proposed algorithmmakes use of a special property of the secular equation which
O(4kmn) =~ O(5.7mn), is quite comparable to that of the gives eigenvalues of the modified gragh. As a result, the

Thus, if one wishes to terminate the algorithm wHéh—

IV. CONCLUSION

simple greedy perturbation heuristio(2mn). proposed algorithm returns exact solutions but requiresism
Another remark is that our bisection algorithm does notomputational power nearly comparable to the simple greedy
allow A\(G') to be \;(G) (i = 2,3,...,n), so no divide- perturbation heuristic. This merit was verified by exteasiv

by-zero error occurs wheyfi(A2(G)) in (2.1) is evaluated. computer simulations.
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Fig. 4. Comparison oAz (G’) and computational times usiri@0 random
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