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BISECTION SEARCH WITH NOISY RESPONSES∗

ROLF WAEBER† , PETER I. FRAZIER† , AND SHANE G. HENDERSON†

Abstract. Bisection search is the most efficient algorithm for locating a unique point X∗ ∈ [0, 1]
when we are able to query an oracle only about whether X∗ lies to the left or right of a point x of
our choosing. We study a noisy version of this classic problem, where the oracle’s response is correct
only with probability p. The probabilistic bisection algorithm (PBA) introduced by Horstein [IEEE
Trans. Inform. Theory, 9 (1963), pp. 136–143] can be used to locate X∗ in this setting. While the
method works extremely well in practice, very little is known about its theoretical properties. In
this paper, we provide several key findings about the PBA, which lead to the main conclusion that
the expected absolute residuals of successive search results, i.e., E[|X∗ − Xn|], converge to 0 at a
geometric rate.
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1. Introduction. The goal of a bisection search is to locate a unique unknown
pointX∗ ∈ [0, 1]. To obtain information aboutX∗, one queries an oracle as to whether
X∗ lies to the left or to the right of a given point x. If the oracle always answers
the question correctly, the well-known bisection algorithm, which halves the search
space at each iterate, can be used to locate X∗ efficiently. Conversely, if the oracle’s
responses are noisy with probability p ∈ (1/2, 1) of being correct, the deterministic
bisection algorithm will fail almost surely, as a single wrong answer will divert the
search from the right path. To account for noise, Horstein [11] introduced the proba-
bilistic bisection algorithm (PBA), which updates a probability density according to
Bayes’ rule at each iteration such that the posterior probability density reflects one’s
current belief about the location of X∗. After the nth iteration, the median Xn of the
resulting posterior density fn provides a new estimate of the point X∗ and is used as
the reference point for the (n+ 1)th query to the oracle.

Examples of PBA application include the following:
(i) Transmission over a noisy channel with noiseless feedback [11]: a real number

X∗ ∈ [0, 1] should be transmitted from a sender to a receiver. Only one
bit of information (0’s or 1’s) can be sent at each iteration, and the signal is
sometimes wrong due to corruption by noise. In addition, a noiseless feedback
loop informs the sender of what has been recorded by the receiver after each
iteration. In this setting, the PBA can be used to efficiently transmit the
number X∗.

(ii) Boundary detection with an airborne radar [4]: an airplane equipped with a
scanner flies over a predetermined geographical area several times to locate
an edge, such as a coast line. At each pass-over, the scanner receives an input
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as to whether the scanned point is water surface or solid ground, but the
signal can be wrong. The PBA can be used to determine which point should
be scanned at each time so that a good estimate of the edge can be obtained.

(iii) Stochastic root-finding [21]: stochastic root-finding algorithms aim to solve
the equation g(x) = 0 for some unknown function g that can only be observed
with noise. A one-dimensional stylized version of this problem, where g is a
step function with a single jump at some point X∗, can be solved efficiently
using the PBA.

(iv) Zone-detection on a hard disk [22]: a hard disk stores each block of data in
one of the disk’s several zones, which have different transfer rates. The per-
formance of a file system can be improved by accounting for such differences
explicitly, but in order to do so, one must be able to identify where each
zone begins and ends on the disk. Reading a small collection of data at any
location on the disk provides a noisy observation of the transfer rate and thus
the zone identity of that section. The PBA can then efficiently determine the
exact zone borders.

Discretized versions of the PBA, which divide the domain [0, 1] into a finite num-
ber of intervals, have been studied extensively [3, 20, 19, 8, 13, 1, 2, 4, 5, 17, 18].
However, very little is known about the original PBA with continuous search space
[0, 1]. Castro and Nowak [4] conclude the following in their review article: “The Prob-
abilistic Bisection Algorithm seems to work extremely well in practice, but it is hard
to analyze and there are few theoretical guarantees for it, especially pertaining error
rates of convergence.”

In this paper we provide such convergence guarantees for the PBA. The main
result shows that the expected absolute residuals E[|X∗ −Xn|] converge to 0 at least
at a geometric rate; i.e., there exists a constant c > 1 such that E[|X∗ − Xn|] =
o(c−n).1 This implies that the rate of convergence of the bisection search with noisy
responses is faster than any polynomial rate and is hence comparable to the rate of
the noise-free bisection search, which is O(2−n). Our main result is shown in the
Bayesian setting, where X∗ is modeled as an absolutely continuous random variable
with known probability density f0. Since we are considering residuals under the
expectation operator, our result provides an average-case performance guarantee for
the PBA. A consequence of this main result is that the PBA is a consistent method for
locating X∗. This means that the sequence (Xn)n generated by the PBA converges
almost surely to X∗.

The most popular discretized version of the PBA, first introduced in Burnashev
and Zigangirov [3], is called the BZ algorithm. The algorithm splits the search domain
[0, 1] into a finite number of intervals and aims to locate the interval that contains the
pointX∗. It is known [3] that the BZ algorithm converges geometrically in the number
of points queried for the probabilistic setting considered in this paper. The current
paper confirms that a similar rate of convergence holds for the original PBA (without
discretization) and effectively closes a gap between the theoretical understanding of
the original continuous-space algorithm and that of the corresponding discrete-space
version. Although the PBA and the BZ algorithm are conceptually similar, the proof
techniques used to analyze the PBA are quite different from the proof techniques
usually used to study the BZ algorithm. Such new proof techniques become necessary
because the BZ algorithm only samples at breakpoints of the predefined intervals,

1f(x) = o(g(x)) means that limx→∞ |f(x)/g(x)| = 0, and f(x) = O(g(x)) means that
lim supx→∞ |f(x)/g(x)| < ∞.
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whereas the PBA can sample on the whole domain [0, 1].
There are two reasons for preferring the PBA over the BZ algorithm. First, the

PBA is a consistent algorithm, in the sense that it maintains a best estimate Xn

of the sought-after point X∗, and Xn converges to X∗ almost surely as n → ∞
(see Corollary 5.10). The BZ algorithm, on the other hand, requires a prespecified
precision (the discretization grid), beyond which no better accuracy can be expected.
Since the sequence of estimates Xn does not converge to X∗ almost surely, the BZ
algorithm is not consistent. While one can specify any strictly positive precision,
this precision must be specified in advance, which can be inconvenient. Although it
might be possible to modify the BZ algorithm to make it consistent, for example, by
refining the discretization grid during a run, no such extension has been considered
in the literature to the best of our knowledge. The second reason for preferring the
PBA to the BZ algorithm is that its implementation is easier (see also [4] and [5]).
For example, at each step the BZ algorithm requires an additional coin flip to decide
which point on the discrete grid should be queried next. Such “splitting” between the
discretization points is not necessary for the PBA.

While there are reasons for preferring the PBA over the BZ algorithm, and the
current paper closes a gap between the theoretical understanding of the two algo-
rithms, there are probabilistic settings beyond the scope of this paper in which the
BZ algorithm has been analyzed but the PBA has not. For example, the BZ algorithm
has been analyzed by [5] when the probability of receiving a correct response from the
oracle depends on the query point. The analysis of the original PBA for such settings
is still an open research direction.

In addition to the main convergence results, we show that the PBA is optimal
in reducing the expected posterior entropy. This result has been proven recently in
[12] using concepts from information theory, in particular, the mutual information of
the responses and X∗. In this paper, we adopt a more direct approach, showing that
the PBA minimizes expected posterior entropy using fewer concepts from information
theory. To do so, we formulate a dynamic program corresponding to the objective of
expected posterior entropy, and we solve this dynamic program analytically.

The outline of the paper is as follows. Section 2 introduces the exact problem
statement. Section 3 provides the updating mechanism and the PBA. Section 4 shows
optimality in terms of minimizing expected posterior entropy. Section 5 presents the
main result of the paper. Section 6 summarizes and discusses possible future research
directions. The main proofs are given in section 5. All other proofs are given in the
appendix.

Throughout the paper we use the following standard abbreviations: iid for inde-
pendent and identically distributed, pdf for probability density function, and cdf for
cumulative distribution function. We also use the abbreviations PBA for probabilis-
tic bisection algorithm and DP for dynamic program. Furthermore {·} denotes the
indicator function, which is 1 if the argument is true and 0 otherwise.

2. Problem statement. Let X∗ be a unique but unknown point in [0, 1]. At
time n = 0 (the beginning of the experiment) we do not know which exact value X∗

has attained, but we assume it is a realization of an absolutely continuous random
variable with density f0. The density f0 has domain [0, 1] and is known. The oracle,
on the other hand, knows the exact realization of X∗. At each iteration we are
allowed to query the oracle as to whether X∗ is to the left or to the right of a point x.
We denote by Xn the queried point at iteration n, which can depend on previously
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received replies of the oracle. The oracle answers this question with

Zn|X∗, Xn = ( {X∗ ≥ Xn} − {X∗ < Xn}) (2Qn − 1) ,

where (Qn)n is a sequence of iid Bernoulli(p) random variables and p is a fixed constant
in (1/2, 1). We often simply write Zn(Xn) instead of Zn|X∗, Xn. By querying the
oracle at Xn we receive the answer Zn(Xn) ∈ {−1,+1}. The answer Zn(Xn) = +1
indicates that X∗ is to the right of Xn, whereas the answer Zn(Xn) = −1 indicates
that X∗ is to the left of Xn. With probability 1 − p this indication is wrong. If we
query exactly at the point X∗, i.e., Xn = X∗, then the oracle is more likely to indicate
that X∗ is to the right of Xn, but this does not affect our analysis because the event
{X∗ = Xn} occurs in finite time with probability 0.

We assume that the parameter p, the probability of a correct answer, does not
depend on Xn and is known. In many applications these are realistic assumptions
since the reliability of a given device is known and does not depend on the queried
point, e.g., the error probability of a scanner in an airplane or the error probability of
transmitting a signal over a noisy channel. In other applications, such as stochastic
root-finding, p is unknown and varies with x. See [21] for a detailed discussion of this
setting.

The assumption p ∈ (1/2, 1) is without loss of generality: if p ∈ (0, 1/2), then we
can consider −Zn(Xn) as the reply from the oracle; the case p ∈ {0, 1} corresponds
to the noise-free bisection search, and convergence properties are well known; and the
case p = 1/2 corresponds to a noninformative oracle; i.e., querying the oracle does
not improve our knowledge about X∗. Hence the only interesting case is p ∈ (1/2, 1).

The task is to select points X0, X1, X2, . . . at which the oracle should be queried
in order to learn about the location of X∗ as efficiently as possible. The PBA is
a fully sequential method, meaning that the decision of where to sample at time n
depends on the information available at time n. Formally, (Xn)n is a predictable
stochastic process with respect to the filtration generated by (Xn)n and (Zn(Xn))n,
i.e., Xn ∈ Fn−1 := σ(Xm, Zm(Xm) : 0 ≤ m ≤ n − 1) for n ∈ N. Furthermore, at
each iteration a current best estimate X̂n of X∗ should be provided. This estimate
X̂n is also an Fn−1-measurable random variable. Finally, the considered performance
measure is the expected L1-loss E[|X∗ − X̂n|] as a function of time n.

3. The probabilistic bisection algorithm. The PBA aims to locate X∗ for
the above setting. In order to learn about X∗, the density f0 is updated in each step
according to Bayes’ rule. After n iterations the posterior density fn is the conditional
distribution of X∗ given the query history (Xj)

n−1
j=0 and replies (Zj(Xj))

n−1
j=1 . First,

we give the updating process after measuring at a generic point x ∈ [0, 1], and then we
introduce the PBA, which provides a tool for choosing the point Xn at each iteration.

3.1. Updating process. At time n = 0 our knowledge about X∗ is reflected
by the density f0. If we have no prior knowledge of X∗, then a natural choice of f0
is the uniform U [0, 1] distribution, i.e., f0(y) = {y ∈ [0, 1]}. After n iterations, we
can measure at any point x in the interior of fn and receive the noisy response Zn(x).
The density fn can then be updated using Bayes’ rule as follows.

Lemma 3.1. The domain of the prior density function f0 is [0, 1]. The sequence
of posterior densities (fn)n is given by the following iterative process, where x is a
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point in the interior of fn at which the oracle is called at step n:

If Zn(x) = +1, then fn+1(y) =

{
γ(x)−1pfn(y) if y ≥ x,
γ(x)−1(1− p)fn(y) if y < x;

(3.1)

if Zn(x) = −1, then fn+1(y) =

{
(1− γ(x))−1(1− p)fn(y) if y ≥ x,
(1− γ(x))−1pfn(y) if y < x,

(3.2)

where γ(x) = P(Zn(x) = +1|Fn−1) = (1−Fn(x))p+Fn(x)(1− p) and Fn denotes the
cdf of the density fn.

The proof of Lemma 3.1 is given in the appendix.
The updating of the density is very natural: querying at the point x divides

the posterior distribution into two regions. The posterior probability mass in the
region where X∗ is believed to be, as indicated by the noisy response of the oracle, is
increased, and the probability mass in the other region, where X∗ is believed not to
be, is decreased. We will see that if we always measure at the median of fn (as the
PBA does), the probability mass will eventually concentrate at the point X∗.

The updating mechanism in Lemma 3.1 defines a stochastic sequence of pdfs
(fn)n and hence a sequence of random probability measures on [0, 1]. We denote
the corresponding probability measure as Pn(·), i.e., Pn(B) :=

∫
B fn(y) dy for B ∈

B([0, 1]), where B([0, 1]) is the Borel σ-field on [0, 1], and denote the expectation under
this probability measure as En[·]. To prove our main results we study the stochastic
sequence of probability measures Pn(·) induced by the PBA. The random measure
Pn(·) and the random density fn are Fn−1-measurable mappings for n ∈ N.

3.2. The probabilistic bisection algorithm. The PBA uses the updating
mechanism described in Lemma 3.1 to learn about X∗. The key rule of the policy is
that it always measures at the median of the current posterior distribution function.
More specifically, the PBA works as follows:

1. Choose a prior density function f0 that is positive on [0, 1].
2. For n = 0 to N − 1, do the following:

(a) Calculate the next measurement point, Xn = F−1
n (1/2), where Fn is the

cdf of fn. Note that Xn is uniquely defined since fn is a density with
domain [0, 1].

(b) Query the oracle at the pointXn to obtain the random variable Zn(Xn) ∈
{−1,+1}.

(c) Update the density fn+1 using inputs p, fn, Xn, and Zn(Xn) and the
updating formulas (3.1) and (3.2). (Since Xn is the median of fn, the
multiplicative constant in the updating is 2 for both cases.)

3. Return X̂N = F−1
N (1/2) as the current best estimate of X∗.

Note that Xn can only assume a finite number of values for any finite n ∈ N

(a maximum of 2n possible values), X∗ is a random variable with density f0, and
hence the event {X∗ = Xn} has probability 0 for every finite time n ∈ N. The
final estimate X̂N is the median of fN , which is optimal if we want to minimize the
expected absolute error under the probability measure PN(·); i.e., X̂N is the solution
to the optimization problem minx EN [|X∗ − x|]. In this case, each median Xn is the
best estimate of X∗ after n calls to the oracle. This allows us to drop the notation
X̂N and to simply focus on the sequence of medians (Xn)n from here onward. At any
time during a sample run a best estimate of X∗ is maintained and it is expected that
Xn approaches X∗ the more queries we ask the oracle. In Corollary 5.10 we confirm
this by showing that Xn → X∗ as n→ ∞ almost surely, a property that is in general
not satisfied by discretized versions of the PBA.
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Figure 3.1 shows a sample path of the density fn after n = 0, 1, 2, 3, 50, 100 calls
to the oracle where p = 0.6 and X∗ = 0.372. In this example, the prior density f0 is
that of a U [0, 1] random variable, i.e., f0(y) = {y ∈ [0, 1]}. The piecewise constant
line depicts the posterior density fn. In each subfigure the point X∗ is shown at
the top and Xn is shown on the x-axis. Above every plot the (noisy) answer of the
oracle is given. The posterior density appears to converge to a point mass at X∗, and
Corollary 5.9 confirms that this happens.

0 1

f
n
(x)

n = 0, X
n
 = 0.5, Z

n
(X

n
) = −1

X*

X
n

0 1

f
n
(x)

n = 1, X
n
 = 0.38462, Z

n
(X

n
) = −1

X*

X
n

0 1

f
n
(x)

n = 2, X
n
 = 0.29586, Z

n
(X

n
) = 1

X*

X
n

0 1

f
n
(x)

n = 3, X
n
 = 0.36413, Z

n
(X

n
) = −1

X*

X
n

0 1

f
n
(x)

n = 50, X
n
 = 0.36904, Z

n
(X

n
) = 1

X*

X
n

0 1

f
n
(x)

n = 100, X
n
 = 0.3752, Z

n
(X

n
) = 1

X*

X
n

Fig. 3.1. The density fn at time points n = 0, 1, 2, 3, 50, 100 on a sample path. We chose f0 to
be the uniform density over [0, 1] in this example.
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4. Optimality in reducing the expected posterior entropy. In this section,
we show that the PBA is optimal in reducing the expected posterior entropy. This
result has recently been proven in [12] using the mutual information of the responses
(Zn(Xn))n and X∗. In the appendix, we provide a different and more direct proof
of this result that borrows fewer concepts from information theory. This proof relies
solely on the dynamic programming principle.

The optimality result, stated in Theorem 4.1, uses the entropy to measure the
information content of the density fn. For a random variable Y with density f
the entropy is defined as H(f) := E[− log2 f(Y )]. The entropy is the predominant
measure of uncertainty in information theory; see, for example, [6]. Using this measure
of uncertainty and given a fixed simulation budget N ∈ N, the optimality analysis
seeks a policy π that minimizes the expected entropy of the posterior distribution at
time N . Here, a policy refers to the allocation rule of the measurements X0, . . . , XN ,
where Xn has to be Fn−1-measurable. A generic policy is denoted π, and the space
of all possible policies is denoted Π. This optimization problem can be solved using
a dynamic programming approach. The value function of the DP for fixed N ∈ N is
defined by

(4.1) Vn(fn) := inf
π∈Π

E
π [H(fN)|fn] for n = 0, 1, . . . , N.

Any policy π induces, together with the input density f0 and the parameter p, a
distribution on (Xj , Zj(Xj))

N−1
j=0 and through it a distribution on the sequence of pdfs

(fj)
N
j=0. It is under this distribution that E

π is taken, and any policy π∗ attaining

the infimum is called optimal, that is, Eπ∗
[H(fN )|f0] = infπ∈Π E

π [H(fN)|f0].
The value function (4.1) satisfies Bellman’s recursion,

(4.2) Vn(fn) = inf
π∈Π

E
π [Vn+1(fn+1)|fn] = inf

x∈[0,1]
E[Vn+1(fn+1)|Xn = x, fn],

where the last equation follows from the fact that the control of a policy π ∈ Π is
the point at which to query the oracle. The DP formulated in (4.1) can be solved
explicitly.

Theorem 4.1. For N ∈ N, the PBA, which always measures at the median of fn
for n = 0, . . . , N − 1, minimizes the expected entropy of the density fN . Furthermore,
the expected posterior entropy at time N using the PBA is

Vn(fn) = E[H(fN )|fn]
= H(fn)− (N − n)(1 + p log2 p+ (1− p) log2(1− p))(4.3)

for n = 0, . . . , N .
The key step in the proof of Theorem 4.1 is the analysis of the knowledge-gradient

policy for the DP formulated in (4.1). A knowledge-gradient policy is a policy that
acts optimally if there is only one measurement remaining, i.e., when n = N − 1.
See [9] for more details on knowledge-gradient policies. For this knowledge-gradient
policy the value attained by the infimum is equal to the entropy of fn minus an
additional amount which may be interpreted as the maximum information content of
a single measurement. The fact that this amount does not depend on fn is important
in proving that the knowledge-gradient policy is in fact the optimal policy in general
when more than just one measurement is remaining. The next proposition shows that
the PBA is indeed the knowledge-gradient policy for the problem stated in (4.1).
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Proposition 4.2. For any N ∈ N,

inf
x∈[0,1]

E[VN (fN )|XN−1 = x, fN−1]

= inf
x∈[0,1]

E[H(fN )|XN−1 = x, fN−1]

= H(fN−1)− p log2 p− (1− p) log2(1− p)− 1,

and the infimum is achieved by choosing XN−1 to be the median of fN−1.
We provide proofs of Theorem 4.1 and Proposition 4.2 in the appendix.

5. Main result: Geometric rate of L1-convergence. In this section we
present and prove the main result of this paper, which is that the expected absolute
residuals of the PBA converge to 0 at a rate of o(c−n) for some c > 1. This, in par-
ticular, implies that the asymptotic rate of convergence is faster than any polynomial
rate and is comparable to the rate of convergence of the noise-free bisection algorithm
which has rate O(2−n). Such a geometric rate of convergence is known to hold for
discretized versions (BZ algorithm) of the PBA; see [3, 4, 5]. But, to the best of our
knowledge, it is a new result for the original PBA.

Theorem 5.1. There exists a constant c(p) > 1 such that E[|X∗ − Xn|] =
o(c(p)−n), where (Xn)n is the sequence of query points generated by the PBA.

Before developing the proof of Theorem 5.1, we first discuss the constant c(p),
introduce some simplified notation, and provide a sketch of the proof.

The constant c(p) can be any fixed value in the open interval (1, C(p)), where
ln(C(p)) is the smaller solution to the quadratic equation (5.2) given in Lemma 5.2.
For the most part, it suffices to know that C(p) is a constant depending only on the
parameter p and C(p) > 1. From the rate of convergence of the noise-free bisection
algorithm we know that C(p) ≤ 2. In fact, C(p) is often much smaller than 2 and
is usually quite close to 1. This, however, does not necessary imply that the rate of
convergence of the PBA is much slower (in terms of the constant c(p)) than the rate of
convergence of the noise-free bisection algorithm since our result provides only a lower
bound on the rate of convergence; i.e., we show that limn→∞ c(p)nE[|X∗ −Xn|] = 0.
We leave for future work the problem of identifying the exact rate of convergence.

We now introduce some simplified notation. Define D(p) = 1/2(ln(2p)+ ln(2(1−
p))), which is a constant that depends only on p. Note that D(p) < 0, since p ∈
(1/2, 1). From now on we will often simply write c, C, and D when the context allows
and keep in mind that all these constants depend only on the parameter p.

Sketch of proof of Theorem 5.1. The proof of Theorem 5.1 consists of two major
steps. Each is formulated in the next subsection as a separate proposition. In Propo-
sition 5.6 we show that the stochastic process (cnEn[|X∗ −Xn|])n converges to 0 in
probability. We then show the uniform integrability of this process in Proposition 5.7,
and Theorem 5.1 follows from the fact that a sequence of uniformly integrable random
variables converges in L1 if and only if it converges in probability.

The key to proving these two propositions is to analyze the stochastic process
En[|X∗ −Xn|]. We now give an intuitive outline of why this process converges at a
geometric rate. All the arguments are made precise in the next subsection.

Using integration by parts, it holds that

En[|X∗ −Xn|] =
∫ 1

0

Pn(|X∗ −Xn| > h) dh

≤ h+ Pn(|X∗ −Xn| > h)
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for any h ∈ (0, 1). The inequality holds since Pn(|X∗−Xn| > h) ≤ 1 and is decreasing
in h. It is then enough to show that the process Pn(|X∗ −Xn| > h) converges to 0
at a geometric rate and consider the case h → 0. For now fix an h ∈ (0, 1). At time
n there exists an integer Kn such that Xn ∈ [(Kn − 1)h,Knh) and

Pn(|X∗ −Xn| > h) ≤ Pn(X
∗ ∈ [0, (Kn − 1)h)) + Pn(X

∗ ∈ [Knh, 1]).

We then focus on the process (An)n, where An := Pn(X
∗ ∈ [0, (Kn − 1)h)) (the

analysis of the process Pn(X
∗ ∈ [Knh, 1]) follows analogously). After querying the

oracle at Xn, the quantity An is multiplied by either 2p or 2(1 − p). Also, since Xn

is the median of fn, either multiplication happens with probability 1/2. If we (for
now) ignore the fact that Kn depends on n, then An behaves like a geometric random
walk with drift eD and hence converges to 0 at a geometric rate. This is the basic
argument of why the geometric rate of convergence holds. Most of the proof is then
devoted to the fact that Kn depends on n and is a stochastic process itself. It turns
out that An is not a true geometric random walk (which can already be seen since
An is always smaller than 1/2), but that An can be dominated by a collection of
dependent geometric random walks, and each of these random walks has drift eD.
Using this dominating argument and results from random walk theory, we can then
show that the geometric rate of convergence indeed holds for P(|X∗ −Xn| > h). By
letting h → 0 this geometric rate also holds for En[|X∗ −Xn|], and for E[|X∗ −Xn|]
by applying the tower property of conditional expectations.

5.1. Proof of the main result. We start with a lemma which is an application
of random walk theory. This lemma defines the constant C and will also be useful for
later proofs.

Lemma 5.2. Let (Rn)n be a random walk with starting point R0 ≤ ln(1/2) and
iid increments (ψn)n, i.e., Rn = R0 +

∑n
j=1 ψj, and let P(ψj = ln(2p)) = P(ψj =

ln(2(1− p))) = 1/2. Then

(5.1) P
(
eRn > C−n/2

) ≤ C−2n

for all n ∈ N. Here, C = eũ, where ũ is the smaller solution to

(5.2)

(
u+D

ln(2p)− ln(2(1− p))

)2

− u = 0.

Furthermore, ũ > 0.
Equation (5.2) is a quadratic equation, and it is possible to write down an explicit

formula for C. However, the explicit form of C is cumbersome and not informative
and hence is omitted. The proof of Lemma 5.2 is given in the appendix.

The next result, which studies the stochastic process An := Pn(X
∗ ∈ [0, a)) for

some a ∈ [0, 1], is a first key ingredient in showing the geometric rate of convergence.
Define a ∧ b = min{a, b}.

Proposition 5.3. Let C be the constant defined in Lemma 5.2. For a ∈ [0, 1]
define An := Pn(X

∗ ∈ [0, a)) =
∫ a

0 fn(y)dy. Then

P(An ∧ (1−An) > C−n/2) ≤ C−2n

for all n ∈ N.
Proof. The claim holds trivially for a = 0 or a = 1 since for all n ∈ N the

probability measure Pn(·) has a density.
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Now fix an arbitrary a ∈ (0, 1) and consider the stochastic process (An)n. If
An ≤ 1/2, then Xn ≥ a, and An will be multiplied by either 2p or 2(1 − p) in the
next iteration, behaving like an iteration of a geometric random walk. If, on the other
hand, An > 1/2, then Xn ∈ [0, a) and An does not behave like an iteration of a
geometric random walk anymore, but (1 − An) does. We next make this argument
precise. To simplify notation we take logarithms and consider the process (ln(An))n.
The stochastic driver of this process is the sequence of responses from the oracle
(Zn(Xn))n. If we condition on the available information up to time n − 1, then,
by Lemma 3.1, γ(Xn) = P(Zn(Xn) = +1|Fn−1) = 1/2 for the PBA. Moreover, the
only random source that drives the stochastic process (Zn(Xn)|Fn)n is the sequence
(Qn)n, a sequence of iid Bernoulli(p) random variables that is used by the oracle to
provide noisy responses, and hence the sequence (Zn(Xn)|Fn−1)n is itself a sequence
of independent random variables. At time n, the random variable ln(An+1)|Fn can
be constructed as follows: if ln(An) ≤ ln(1/2), then

ln(An+1)|Fn = ln(An) +

{
ln(2(1− p)) if Zn(Xn) = +1,
ln(2p) if Zn(Xn) = −1,

and if ln(An) > ln(1/2), then

ln(1−An+1)|Fn = ln(1−An) +

{
ln(2p) if Zn(Xn) = +1,
ln(2(1− p)) if Zn(Xn) = −1.

Now consider the processMn := ln(An)∧ln(1−An). The only times the dynamics
of (Mn)n are different from a random walk are when the process (Mn)n crosses the
boundary ln(1/2), i.e., at times when there is a switch from the process (ln(An))n
to the process (ln(1 − An))n in the definition of (Mn)n. To overcome this difficulty
we construct a true random walk (Sn)n that is coupled with (Mn)n and dominates
(Mn)n.

We first define the coupling sequence

Wn =

{
Zn(Xn) if ln(An) > ln(1/2),
−Zn(Xn) if ln(An) ≤ ln(1/2)

and then the process

Sn+1 = Sn +

{
ln(2p) if Wn = +1,
ln(2(1 − p)) if Wn = −1

for n ∈ N and starting point S0 = M0. The process (Sn)n is a random walk with iid
increments (ξn)n and P(ξn = ln(2p)) = P(ξn = ln(2(1− p))) = 1/2.

The processes (Mn)n and (Sn)n have the same starting point and are driven by
the same sequence of random variables (Wn)n. Assume that M0 = ln(1 − A0), and
define τ := inf {n|1−An ≥ 1/2} (if M0 = ln(A0), then the definition of τ and the
following arguments can be adapted accordingly). For n < τ it holds that Mn = Sn.
At time τ the processes ln(1−An)n and (Sn)n increase by ln(2p). On the other hand,
the process (Mn)n switches from being defined by ln(1 − An) to being defined by
ln(An) and may increase or decrease, i.e.,

Mτ −Mτ−1 = ln(Aτ )−Mτ−1 ≤ ln(1−Aτ )−Mτ−1 = Sτ − Sτ−1,

and hence Mτ ≤ Sτ . (See Figure 5.1.) After time τ this argument carries over in
the following sense: each time (Sn)n decreases by ln(2(1 − p)), (Sn)n also decreases
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ln(1/2)

n

M0 = S0

τ1 2

Sτ

Mτ Sn

Mn

· · · · · ·

Fig. 5.1. The process (Sn)n (circles) dominates the process (Mn)n (squares) for all n ∈ N.
The process (Sn)n is a random walk with negative drift, so by the law of large numbers Sn → −∞
almost surely as n → ∞, as indicated by the arrow on the right side of the figure. (Both processes
are defined in discrete time. We draw a dashed line between time steps for better visibility.)

by ln(2(1− p)). However, when (Sn)n increases by ln(2p), then (Mn)n increases by a
quantity less than or equal to ln(2p) (the increase might also be negative). It follows
that Mn ≤ Sn, and hence An ∧ (1−An) ≤ eSn for all n ∈ N. Then

P(An ∧ (1−An) > C−n/2) ≤ P(eSn > C−n/2)

≤ C−2n,

where the last inequality follows from Lemma 5.2 since (Sn)n is a random walk as
considered in that lemma.

We can now use the previous result to bound the probability of observing a large
posterior probability mass outside a small neighborhood of the current best estimate
Xn.

Proposition 5.4. Let C be the constant defined in Lemma 5.2. Then

P(Pn(|X∗ −Xn| > h) > C−n) ≤ h−1C−2n

for all h ∈ (0, 1) and n ∈ N.
Proof. Fix an arbitrary h ∈ (0, 1) and denote K̄ = �h−1	. Define intervals

I(k) := [(k − 1)h, kh) for k = 1, . . . , K̄ and I(K̄ + 1) := [K̄h, 1]. These K̄ + 1
intervals are pairwise disjoint and cover the domain [0, 1]. Further define the stochastic
processes

An(k) := Pn

⎛
⎝X∗ ∈

k⋃
j=1

I(j)

⎞
⎠

for k = 1, . . . , K̄ + 1 and the trivial process An(0) = 0 for all n ∈ N.
At time n ∈ N let Kn be the index such that Xn ∈ I(Kn). Then

Pn(|X∗ −Xn| > h) ≤ Pn(X
∗ ∈ [0, (Kn − 1)h)) + Pn(X

∗ ∈ [Knh, 1])

= An(Kn − 1) + (1 −An(Kn))

= [An(Kn − 1) ∧ (1 −An(Kn − 1))]

+ [An(Kn) ∧ (1 −An(Kn))] ,
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where the last equation holds since Xn ∈ I(Kn) implies An(Kn − 1) ≤ 1/2 and
1−An(Kn) ≤ 1/2. The index Kn is a random variable taking values in {1, . . . , K̄+1},
and hence

Pn(|X∗ −Xn| > h) ≤ max
k∈{1,...,K̄+1}

([An(k − 1) ∧ (1−An(k − 1))]

+ [An(k) ∧ (1−An(k))])

≤ max
k∈{1,...,K̄}

2 [An(k) ∧ (1−An(k))] ,

since An(0) = 0 and An(K̄ + 1) = 1 for all n ∈ N. Then

P(Pn (|X∗− Xn| > h) > C−n)

≤ P

(
max

k∈{1,...,K̄}
2 [An(k) ∧ (1−An(k))] > C−n

)

≤ P

(
max

k∈{1,...,K̄}
[An(k) ∧ (1 −An(k))] > C−n/2

)

= P

⎛
⎝ K̄⋃

k=1

{
[An(k) ∧ (1−An(k))] > C−n/2

}⎞⎠

≤
K̄∑

k=1

P
(
[An(k) ∧ (1−An(k))] > C−n/2

)
≤ K̄C−2n.

The last inequality follows by Proposition 5.3 since the processes (An(k))n are exactly
of the form required for that proposition. Note that K̄ = �h−1	 ≤ h−1, and the claim
follows.

The next proposition provides an upper bound on P(cnEn[|X∗ − Xn|] > ε) for
ε > 0 and large n. This result is the last step before we can prove convergence in
probability and uniform integrability of the stochastic process (cnEn[|X∗ − Xn|])n,
and is also interesting by itself. It provides a large deviation result for the stochas-
tic process cnEn[|X∗ − Xn|]. In contrast to Theorem 5.1, it provides a finite time
guarantee for large n ∈ N, instead of an asymptotic convergence guarantee.

Proposition 5.5. Let C be the constant defined in Lemma 5.2, let c ∈ (1, C),
and let ε > 0. Then

P(cnEn[|X∗ −Xn|] > ε) ≤ C−n for n ≥ max
(
0, Ñ(ε, c, C)

)
,

where

(5.3) Ñ(ε, c, C) =
ln(2/ε)

ln(C/c)
.

Proof. Fix n ≥ max(0, Ñ(ε, c, C)). Consider

cnEn[|X∗ −Xn|] = cn
∫ 1

0

Pn(|X∗ −Xn| > h) dh,

which follows from integration by parts of the right-hand side. The random function
Pn(|X∗−Xn| > h) is nonincreasing in h and Pn(|X∗−Xn| > h) ≤ 1 for all h ∈ (0, 1).
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Then for any h ∈ (0, 1),

cnEn[|X∗ −Xn|] ≤ cn (h+ (1− h)Pn(|X∗ −Xn| > h))

≤ cn (h+ Pn(|X∗ −Xn| > h)) .

So we can choose h = C−n ∈ (0, 1) and get

cnEn[|X∗ −Xn|] ≤ cn
(
C−n + Pn(|X∗ −Xn| > C−n)

)
.

Note that on the event {Pn(|X∗ −Xn| > C−n) ≤ C−n},

cnEn[|X∗ −Xn|] ≤ cn
(
2C−n

)
= 2(c/C)n

≤ ε,

where the last inequality follows since n ≥ Ñ(ε, c, C).
Then P(cnEn[|X∗ −Xn|] ≤ ε) ≥ P(Pn(|X∗ −Xn| > C−n) ≤ C−n) and

P(cnEn[|X∗ −Xn|] > ε) ≤ P(Pn(|X∗ −Xn| > C−n) > C−n)

≤ C−n,

where the last step follows by Proposition 5.4.
Now we are ready to prove convergence in probability and uniform integrability

of the process (cnE[|X∗ −Xn|])n and finally prove Theorem 5.1.
Proposition 5.6. Let C be the constant defined in Lemma 5.2. Then En[|X∗ −

Xn|] = op(c
−n) for all c ∈ (1, C).2

Proof. Choose arbitrary c ∈ (1, C), which exists since C > 1. Fix ε > 0. Then, by
Proposition 5.5, P(cnEn[|X∗ −Xn|] > ε) ≤ 2C−n for large n, i.e., for n > Ñ(ε, c, C).
Thus,

lim
n→∞P(cnEn[|X∗ −Xn|] > ε) = 0,

which holds for any chosen ε > 0, and hence (cnEn[|X∗ − Xn|])n converges to 0 in
probability.

Proposition 5.7. Let C be the constant defined in Lemma 5.2. Then the stochas-
tic process (cnEn[|X∗ −Xn|])n is uniformly integrable for all c ∈ (1, C).

Proof. By definition, a sequence of random variables (Yn)n is uniformly integrable
if supn∈N E[|Yn| {|Yn|>t}] → 0 as t→ ∞.

Choose arbitrary c ∈ (1, C) and consider Ñ(1, c, C) = (ln 2)/(ln(C/c)), which
is strictly positive (the function Ñ(ε, c, C) is defined in Proposition 5.5). Note that

Ñ(t, c, C) ≤ Ñ(1, c, C) for t ≥ 1. Define T (c, C) := cÑ(1,c,C) > 1 and consider
arbitrary t ≥ T (c, C) > 1. It follows that P(cnEn[|X∗ − Xn|] > t) = 0 for n ≤
Ñ(1, c, C), since En[|X∗−Xn|] ≤ 1 and cn ≤ t for n ≤ Ñ(1, c, C). By Proposition 5.5,
P(cnEn[|X∗ −Xn|] > t) ≤ C−n for n ≥ Ñ(1, c, C) ≥ Ñ(t, c, C). Hence P(cnEn[|X∗ −
Xn|] > t) ≤ C−n for all n ∈ N and all t > T (c, C). Using En[|X∗ −Xn|] ≤ 1 shows

2f(x) = op (g(x)) means f(x)/g(x) → 0 in probability as x → ∞.
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that for all n ∈ N,

E
[
cnEn[|X∗ −Xn|] {cnEn[|X∗−Xn|]>t}

] ≤ cnE[ {cnEn[|X∗−Xn|]>t}]
= cnE[ {cn>t} {cnEn[|X∗−Xn|]>t}]
= cn {cn>t}P(cnEn[|X∗ −Xn|] > t)

≤ cn {cn>t}C−n

= (c/C)n {n>logc t}.

Now we take on both sides the supremum over n ∈ N:

sup
n∈N

E
[
cnEn[|X∗ −Xn|] {cnEn[|X∗−Xn|]>t}

] ≤ sup
n∈N

(c/C)
n

{n>logc t}

= (c/C)logc t,

and uniform integrability follows by letting t go to +∞.
Proof of Theorem 5.1. By Propositions 5.6 and 5.7 we can choose an arbitrary

constant c ∈ (1, C) such that the sequence (cnEn[|X∗ − Xn|])n converges to 0 in
probability and is uniformly integrable. Then

E [cnEn[|X∗ −Xn|]] → 0 as n→ ∞,

since convergence in probability and uniform integrability is a necessary and sufficient
condition for convergence in L1; see, for example, [7, Theorem 4.5.2]. Finally, by the
tower property of conditional expectation, cnE[|X∗ −Xn|] = E[cnEn[|X∗ −Xn|]] and
hence E[|X∗ −Xn|] = o(c−n).

5.2. Consistency and robustness. Almost immediate consequences of the
preceding analysis are that the posterior absolute residuals converge to 0 almost surely
and that the posterior density fn converges to a point mass at X∗. Hence the PBA
is a consistent method for locating X∗, a property that is in general not satisfied by
discretized versions of the PBA.

Theorem 5.8. En[|X∗ −Xn|] → 0 almost surely as n→ ∞.
Corollary 5.9. With probability 1 the posterior distribution Fn converges

weakly to a point mass at X∗, i.e., limn→∞ Fn(x) = {x ≥ X∗} for all x 
= X∗

almost surely.
Corollary 5.10. The sequence of medians (Xn)n generated by the PBA con-

verges to X∗ almost surely, i.e., P(limn→∞Xn = X∗) = 1.
The proof of Theorem 5.8 is given in the appendix.
As a final remark, we show that in some cases the geometric rate still holds even

if the density of the average-case performance measure is different from the density
used in the updating process of the PBA. Suppose that the random variable X∗ has
a density g0 on [0, 1], and let (Xn)n be the sequence of medians generated by the
PBA using some other initial prior density f0 (f0 has to be positive on [0, 1]). Then
a sufficient condition for the geometric rate of convergence of the expected absolute
residuals to still hold is that the likelihood ratio between g0 and f0 is bounded; that
is, there exists a constant L ∈ R such that g0(x)/f0(x) ≤ L for all x ∈ [0, 1]. In this
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case,

E[|X∗ −Xn|] =
∫ 1

0

g0(x)E
[|x−Xn|

∣∣ X∗ = x
]
dx

=

∫ 1

0

f0(x)
g0(x)

f0(x)
E
[|x−Xn|

∣∣ X∗ = x
]
dx

≤ L

∫ 1

0

f0(x)E
[|x−Xn|

∣∣ X∗ = x
]
dx = LE[|X∗

f −Xn|],

where X∗
f ∼ f0, and thus Theorem 5.1 implies E[|X∗ − Xn|] = o(c−n). In the case

that the performance measure has an unbounded likelihood ratio with respect to f0,
for example, when g0 is a point mass at a given point, it remains an open research
question whether or not the geometric rate of convergence still holds.

6. Summary and future research. The PBA, initially introduced in [11],
provides an efficient method for locating an unknown point X∗ ∈ [0, 1] for the noisy
bisection setting in which the only way to learn about X∗ is by querying an oracle
as to whether X∗ is to the left or to the right of a prescribed point x, and the oracle
provides the correct answer only with probability p. We have shown that the PBA
is optimal in reducing expected posterior entropy, that it is a consistent method for
locating X∗, and that the rate of convergence of the expected absolute residuals is at
least geometric. This shows that the convergence rate of the noisy bisection search
on continuous search space is comparable to the convergence rate of the noise-free
bisection search and to the convergence rate of the discretized noisy bisection search.

Important future research directions regarding the PBA include the following:
(i) Further investigation of its finite time properties. Proposition 5.5 provides

a large deviation guarantee of the absolute residuals for large n, and Theo-
rem 4.1 shows the optimality of reducing expected posterior entropy for all
sample sizes n ∈ N. Our main result, on the other hand, provides an asymp-
totic rate of convergence guarantee. It would be very informative and impor-
tant for concrete applications to better understand the finite time properties
of the PBA.

(ii) Finding a worst-case guarantee for the rate of convergence. Our main result
provides a rate of convergence guarantee for the expected absolute residuals
under a prior density f0 and thus is an average-case performance guarantee.
It would be interesting to know whether or not a similar geometric rate holds
in a worst-case scenario, that is, for any fixed X∗ ∈ [0, 1]. Since the symmetry
in the studied geometric random walks dominating (An ∧ (1−An))n (see the
proof of Proposition 5.3) no longer holds when conditioning on a fixed value
X∗ ∈ [0, 1], the proof techniques used in this paper, unfortunately, cannot
easily be extended to such a worst-case analysis.

(iii) Analyzing the PBA where p, the probability of a correct reply from the oracle,
is unknown and varies with x. References [4] and [5] study the discretized
version of the PBA in the setting where p can vary with x but a lower bound on
p is known. More specifically, they show that if |p(x) − 1/2| ≥ d|x −X∗|κ−1

for all x ∈ [0, 1], where |p(x) − 1/2| ≤ δ (κ > 1, d > 0 and δ > 0 are all
constants), then the expected residuals of the BZ algorithm converge at the
rate O((log n/n)κ/(2κ−2)). A similar rate might also hold for the original
PBA.

(iv) Extending the PBA to higher dimensions. The method of centers of gravity,
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developed independently in [14] and [16], generalizes the noise-free bisection
to higher dimensions. Reference [15] provides a discussion of complexity and
efficiency results of the method of centers of gravity and the subsequent ellip-
soid method for deterministic optimization problems. A similar multivariate
extension of the PBA seems plausible. Major challenges are the proper up-
dating and tracking of the posterior density. This multivariate extension
would be very useful for many applications, such as simulation-optimization
methods.

Appendix. Additional proofs.
Proof of Lemma 3.1. Conditional on X∗ and Fn−1, the random variable Zn(x)

assumes the value +1 with the following probabilities:

P(Zn(x) = +1|X∗ ≥ x,Fn−1) = p,
P(Zn(x) = +1|X∗ < x,Fn−1) = 1− p.

The conditional distribution of the event {Zn(x) = +1} given Fn−1 is then computed
as

P(Zn(x) = +1|Fn−1)

= P(X∗ ≥ x|Fn−1)P(Zn(x) = +1|X∗ ≥ x,Fn−1)

+ P(X∗ < x|Fn−1)P(Zn(x) = +1|X∗ < x,Fn−1)

= (1− Fn(x))p + Fn(x)(1 − p) = γ(x),(A.1)

where the first equation follows from the law of total probability. The result now
follows from Bayes’ rule. That is, on the event {Zn(x) = +1} we have

fn+1(y) =
P(Zn(x) = +1|Fn−1, X

∗ = y)fn(y)

P(Zn(x) = +1|Fn−1)

=

{
γ(x)−1pfn(y) if y ≥ x,

γ(x)−1(1− p)fn(y) if y < x.

The expression (3.2) for fn+1(x) on the event {Zn(x) = −1} is derived similarly.
Proof of Proposition 4.2. The definition of entropy and the tower property of

conditional expectation imply

E[H(fN )|XN−1 = x, fN−1] = E[− log2 fN (X∗)|XN−1 = x, fN−1].

Using the updating equations described in Lemma 3.1 for the query XN−1 = x, we
can decompose the random variable − log2 fN (X∗)|XN−1 = x, fN−1 into a sum of
three terms for both possible responses of the oracle:

If ZN−1(XN−1) = +1, then

− log2 fN (X∗)|XN−1 = x, fN−1

= − log2 fN−1(X
∗)− log2 γ(x)

−1 −
{

log2 p if X∗ ≥ x,
log2(1− p) if X∗ < x;

if ZN−1(XN−1) = −1, then

− log2 fN (X∗)|XN−1 = x, fN−1

= − log2 fN−1(X
∗)− log2(1− γ(x))−1 −

{
log2(1− p) if X∗ ≥ x,
log2 p if X∗ < x.
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By the linearity of the expectation operator we can calculate the expected value
of each of the three terms separately. The first term is independent of the oracle’s
response and simply recovers the entropy at time N − 1,

E[− log2 fN−1(X
∗)|XN−1 = x, fN−1] = H(fN−1).

To evaluate the second term we use the fact that P(ZN−1(x) = +1|fN−1) =
(1− FN−1(x))p + FN−1(x)(1 − p) = γ(x) as was shown in (A.1). The expectation of
the second term is

E[ {ZN−1(x) = +1} log2 γ(x) + {ZN−1(x) = −1} log2(1− γ(x))|fN−1]

= γ(x) log2 γ(x) + (1− γ(x)) log2(1− γ(x)).

The third term is equal to log2 p when the oracle answers the query correctly and
to log2(1− p) otherwise. This is independent of the measurement point x. Hence the
expectation of the third term equals −p log2 p− (1− p) log2(1− p). Combining these
three terms together and noting that the first and third terms do not depend on the
measurement location x yields

inf
x∈[0,1]

E[H(fN )|XN−1 = x, fN−1] = H(fN−1)− p log2 p− (1 − p) log2(1− p)

+ inf
x∈[0,1]

[γ(x) log2 γ(x) + (1− γ(x)) log2(1 − γ(x))] .

The inner expression over which we take the infimum depends on x only through
γ(x), the probability of observing ZN−1(x) = +1, which can take values in [0, 1].
Consider the function g(γ) = γ log2 γ+(1−γ) log(1−γ), which is strictly convex and
has a global minimum at γ = 1/2. Further, γ(x) = 1/2 when FN−1(x) = 1/2, which
shows that the optimal choice of x is the median of the pdf fN−1. Finally, combining
all three terms yields

E[H(fN )|FN−1(XN−1) = 1/2, fN−1]

= H(fN−1)− p log2 p− (1− p) log2(1 − p)− 1,

and this finishes the proof.
Proof of Theorem 4.1. We show for each n = 0, 1, . . . , N that the value function is

as claimed in (4.3), and that the median achieves the minimum in Bellman’s recursion
(4.2). This is sufficient to show the claim.

We proceed by backward induction on n. The value function clearly has the
claimed form at the final time, n = N . Now, fix any n < N and assume that the
value function is of the form claimed for n + 1. Then Bellman’s recursion and the
induction hypothesis show that

Vn(fn)

= inf
x∈[0,1]

E[Vn+1(fn+1)|Xn = x, fn]

= inf
x∈[0,1]

E[H(fn+1)− (N − n− 1)(1 + p log2 p+ (1 − p) log2(1− p))|Xn = x, fn]

= inf
x∈[0,1]

E[H(fn+1)|Xn = x, fn]− (N − n− 1)(1 + p log2 p+ (1 − p) log2(1− p)).

Finally, Proposition 4.2 shows that the infimum is achieved at the median x = inf{x :
Fn(x) ≥ 1/2}, and that the resulting value is

Vn(fn) = H(fn)− (N − n)(1 + p log2 p+ (1− p) log2(1− p)),
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as stated in the theorem.
Proof of Lemma 5.2. Let us first focus on the definition of C. The reason for

defining C in this way will become clear toward the end of the proof. Consider the
function

U(u) =

(
u+D

ln(2p)− ln(2(1− p))

)2

,

and note that
1. U is convex and nonnegative;
2. U(|D|) = 0, because D < 0.

These two properties imply that there exists a unique ũ ∈ (0, |D|) such that U(ũ) = ũ.
Then define C := eũ and consequently 1 < C < e|D|.

Now we return to the random walk (Rn)n. For any n ∈ N,

P
(
eRn > C−n/2

)
= P

(
Rn > ln(C−n/2)

)
= P

⎛
⎝R0 +

n∑
j=1

ψj > ln(2−1C−n)

⎞
⎠

≤ P

⎛
⎝ln(1/2) +

n∑
j=1

ψj > ln(1/2)− n lnC

⎞
⎠

= P

⎛
⎝ n∑

j=1

ψj > −n lnC
⎞
⎠

= P

⎛
⎝ n∑

j=1

ψj − nD > −n lnC − nD

⎞
⎠

= P
(
ψn −D > − lnC −D

)
,

where ψn := (1/n)
∑n

j=1 ψj and E[ψj ] = 1/2(ln(2p) + ln(2(1 − p))) = D. The incre-

ments ψj are iid and bounded, and C < e|D|, which implies that − lnC −D > 0, so
we can apply Hoeffding’s bound:3

P
(
eRn > C−n/2

) ≤ exp

(
−2

(
lnC +D

ln(2p)− ln(2(1− p))

)2

n

)
.

Now by definition of C,(
lnC +D

ln(2p)− ln(2(1− p))

)2

= lnC,

and hence P(eRn > C−n/2) ≤ C−2n, which holds for any chosen n ∈ N.
Proof of Theorem 5.8. Consider arbitrary ε > 0. Proposition 5.5 shows that

P (cnEn[|X∗ −Xn|] > ε) ≤ C−n for n > N̂ = max(0, Ñ(ε, c, C)), and then

∞∑
n=0

P (cnEn[|X∗ −Xn|] > ε) ≤ N̂ +
C−N̂+1

C − 1
<∞.

3Let X1, . . . ,Xn be iid bounded random variables, that is, P(Xi ∈ [a, b]) = 1. Then for the

empirical mean X = (1/n)
∑n

i=1 Xi we have the inequality P(X − E[X] ≥ t) ≤ exp(− 2t2n
(b−a)2

) for

t ≥ 0. See [10].
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By the Borel-Cantelli lemma it follows that P(cnEn[|X∗ −Xn|] > ε i.o.) = 0.4 Since
this holds for any ε > 0 it follows that cnEn[|X∗ − Xn|] → 0, and hence En[|X∗ −
Xn|] → 0, almost surely as n→ ∞.
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