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Abstract. A bisector of two sets is the set of points equidistant from them. Bisectors 
arise naturally in several areas of computational geometry. We show that bisectors of 
weakly linearly separable sets in E d have many properties of interest. Among these, the 
bisector of a restricted class of linearly separated sets is a homeomorphic image of the 
linear separator. We also give necessary and sufficient conditions for the existence of a 
particular continuous map from (a portion of) any linear separator to the bisector. 

1. Introduction 

Bisectors, which are defined as the set of points equidistant from two given sets, 
arise naturally in computing the symmetric axis transform [1] and in computing 
Voronoi diagrams [5-9]. For example, a common means of computing the 
Voronoi diagram is the following recursive approach: compute separately the 
Voronoi diagrams of two subproblems and then merge them together; during this 
merge, the bisector of the two subproblems is used to " t r im" the Voronoi diagrams 
of the subproblems. Certain properties of the bisector are the key to an efficient 
merge. For example, one algorithm for computing the Voronoi diagram of point 
sites in E 2 using a divide-and-conquer strategy [8] partitions the points into two 
almost equal-sized sets separated by a line. The bisector between these two sets is 
connected and is a single-valued map  of the dividing line. In the case of computing 
the Voronoi diagram of multiply connected polygonal domains [9], certain 
bisectors are simple, closed curves. In each of these two examples, properties of the 
bisector allow a linear-time merge. Moreover, knowing the topology of the bisector 
helps in choosing an appropriate data structure for the bisector. For  example, if the 
bisector of two sets in E 3 is known to be a 2-manifold, then the QuadEdge data 
structure [2] can be used to represent and manipulate it. 

In this paper we show that bisectors of linearly separable sets have many 
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properties of interest. The results presented here are for general sets in E d. There are 
several reasons for this. First, many of the results and proofs are simpler when the 
details of a particular class of sets do not intrude. More importantly, we want to 
broaden the study of bisectors beyond their use in algorithms for computing the 
Voronoi diagram of point sites in E 2 because we believe that proximity properties 
of more general geometric elements in higher dimensions have important applica- 
tions. 

2. Linearly Separable Sets 

We denote the closure of a set S by cl S, the interior by int S, the boundary by OS, 
and the closure of the convex hull of S by CH(S). Boldface lowercase characters 
denote points in E n and Pi denotes the ith coordinate of a point p. 

The (Euclidean) distance between two points p and q is denoted by d(p, q). The 
distance between a point p and a nonempty set S is d(p, S) = glb{d(p, q): q e S}. The 
nearness of $1 and $2 is n(SI,S2)= glb{d(p ,q) :peS  1, q e S 2 } .  Let Sl(Tzl,~z2) 

denote the open slab between the two distinct parallel hyperplanes nl and n2. $1 
and S 2 are separated by a slab SI(zt~, n2) if S~ and $2 lie in different components of 
E d - Sl(n~, ~z2). S 1 and S 2 are strongly linearly separable if there exists an open slab 
that separates cl S~ and cl $2. A hyperplane contained in such an open slab is called 
a strong linear separator. S 1 and S 2 are linearly separable if there exists a hyperplane 
n, called a linear separator, such that cl S 1 and cl S 2 are in different components of 
E d -  n. Similarly, $1 and $2 are weakly linearly separable if there exists a 

(G) 

(b) 

(c) 
Fig. 1. Three types of linear separability. (a) $I and $2 are strongly linearly separable since they are 
separated by the cross-hatched slab. (b) $1: x~ = x~ t, $2: x2 = - x ~  1, xl  > 0, are linearly separable 
(but not strongly linearly separable) and x 2 = 0 is the linear separator. (c) $1 and $2 are weakly linearly 
separable (but not linearly separable) and it w is the weak linear separator. 
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hyperplane nw called a weak linear separator, such that cl S~ and cl $2 lie in the 
closures of different components of E e - n. Figure 1 shows some examples in E 2 of 
separable sets and separators. 

Note that strongly linearly separable sets arc also linearly separable and linearly 
separable sets are also weakly linearly separable. Likewise, a strong linear 
separator is also a linear separator and a linear separator is also a weak linear 
separator. Most results presented in this paper are formulated in terms of weakly 
linearly separable sets and weak linear separators. 

A practically useful characterization of strong linear separability is given by: 

Theorem 1. I f  at least one of S 1 and Sz is bounded, then S t and S 2 are strongly 
linearly separable if and only if CH(S1) c~ CH(S2) = ~ .  

Proof Since at least one of S 1 and $2 is bounded, CH(SI) c~ CH(S2)  = ~ implies 
that n(CH(S~), CH(S2)  ) > 0 (Corollary 7.2, Section 1.8, of [4]). Since the nearness 
is positive, there exists a slab that separates CH(S 0 and CH(S2) (Theorem 4, 
Section 6.2, of [4]). S~ and $2 are therefore strongly linearly separable. The 
converse is trivial. [] 

3. Bisectors 

In this section we investigate properties of the bisector of two weakly linearly 
separable sets S 1 and S 2. These are of use in Section 4 in studying the topology of 
the bisector. Hereafter, we assume that St and S 2 are nonempty sets in E e such that 
c l S l c ~ c l S  2 = ~ .  

The bisector B(S1, $2) of two sets S 1 and S 2 is the set of points equidistant from 
$1 and S 2, i.e., B(S~, $2)=  {p~Ed:d(p,  $1)=  d(p, S2) }. Let q be a point on 
B(S1, $2) and define the maximal ball ~ to be the open ball centered at q with 
radius r = d(q, $1) = d(q, $2). Also define the maximal sphere 5" = t?~. Observe 
that, by definition, :~ does not contain points of S~ or $2 and that 5 r contains at 
least one point p~ from cl $1 and at least one point 02 from cl S 2. The points 01 and 
P2 are called touching points of ~ on S~ and $2, respectively, and 5~ is said to touch 
S 1 and S 2. Notice that p~ ~ P2 as cl $1 c~ el S 2 = ~ .  One maximal ball cannot 
contain another because the included maximal sphere would lack touching points. 

Without loss of generality, we assume that a weak linear separator nw is the 
hyperplane Xd = 0, that S~ is contained in the closure of the open half-space 

1 .  2 .  nw. xa > 0, and that $2 is contained in the closure of the open half-space n,,. xa < O. 
The mapping we consider takes a point on a weak linear separator vertically up or 
down to a point in the bisector. We first show in Section 3.1 that if a line 
perpendicular to nw intersects B(S~, $2), then the intersection is connected. Then, in 
Section 3.2, we establish the necessary and sufficient conditions under which all 
lines perpendicular to nw intersect B(SI, $2). Finally, in Section 3.3, we give the 
necessary and sufficient conditions for a specific line perpendicular to nw to 
intersect B(S~, $2). 
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3.1. Connectedness o f  Intersection with a Perpendicular 

T h e o r e m  2. I f  a line l perpendicular to a weak linear separator n w of S 1 and $2 
intersects B(St,  $2), then it does so in a connected subset ofl. Moreover, if a point q is 
in the relative interior of  I c~ B(St ,  Sz), then all the touching points of the maximal 
sphere centered at q are in nw. 

Proof To show that the intersection is connected, assume that there are two 
distinct points qa and qb in l c~ B(St,  $2). Let ~ , ,  6~a, ~b, and 5e b be the 
corresponding maximal balls and spheres. Since qa and qb are distinct, ~ ,  ~- ~b. 
Since one maximal ball cannot be contained in another, there are three remaining 
cases: 

Case 1: 6~ and 6P b are disjoint. Since q~ and qb are in l, there exists a hyperplane 2 
perpendicular to l that is a strong linear separator of 5eo and 6e b. See Fig. 2(a). Since 
2 is parallel to rrw, bP, cannot touch S z and/or 6e b cannot touch S t - - a  contradiction. 

Case 2: 6e and 6P b intersect at one point p. Let 2 be the hyperplane perpendicular to l 
through p. See Fig. 2(b). ~a and ~b can touch both St and S 2 only if 
p ~ cl S t c~ cl S 2, which violates the assumption that cl S t c~ cl S 2 = JZ. 

Case 3: 6P, and ~.~b intersect in a nondegenerate lower-dimensional sphere. Let 2 be the 
hyperplane through the sphere of intersection. Note that 2 is parallel to rrw. If 
2 r n,,, the sets of touching points of S~ a and of 6e b lie in opposite closed half-spaces 
bounded by 2. See Fig. 2(c). Therefore, since 2 is parallel to 7r w 6~, cannot touch $2 
and/or 6e b cannot touch St, which is a contradiction. Thus 2 = row. b~a and 6e b can 
each touch points in both S t and S 2 only if one of the touching points on S 1 and 
one of the touching points on $2 are both on rrw. These touching points are 
contained in ha, n 6ab. Let q be strictly between q, and qb, and let 6~q be the sphere 
centered at q and passing through 6e a c~ 6e b. See Fig. 2(d). Clearly the open ball ~q 
defined by 6aq is contained in :~, u ~b and hence is free of points of $1 u S 2 . Thus 
S~q is a maximal sphere touching both S~ and Sz in rtw, and q ~ B(St,  $2). 

The theorem follows directly. 

(a (b) 

X 
- -  rr~ ) , = r r  

(c) (d) 
Fig. 2. illustration of various cases for proof of Theorem 2. 

[] 
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3.2. Intersection with Every Perpendicular 

In Section 3.1 we proved that  if the intersection between the bisector and a line 
perpendicular  to a weak linear separa tor  exists, then it is connected;  in this section 
we give necessary and sufficient condit ions for every line perpendicular  to the weak 
linear separa tor  to intersect the bisector. 

Let I = { x ~ E d - X ; 0 q < x i < f l i ,  i = 1 , 2  . . . . .  d -  1}, for real numbers  c q <  
fli, i = 1, 2 . . . . .  d - 1, be a closed (d - 1)-cell in nw. 

Theorem 3. Every line perpendicular to nw intersects B(Sx, $ 2 ) / f  and only if 

(1) S I ,  S 2 Q~ 7~w, or  
(2) S 2 c rtw and cl $1 n n,~ = ~ ,  or vice versa. 

Moreover, if every line perpendicular to nw intersects B(Sx, $2), then, for any 
(d - 1)-cell I in nw, B(Sx, $2) (~ (I x R) is bounded. [] 

We prove Theorem 3 by showing the sufficient condit ions in Lemmas  1 and 2 
and the necessary condit ion in L e m m a  3. 

Lemma 1. I f  Sa, S 2 ~ ~w, then every line perpendicular to 7t w intersects B(S~, $2). 
Moreover, B(S1, $2) c~ (I x R) is bounded. 

Proof. Let q be a point  on the line l = {x: xi = q~, i = 1 . . . . .  d - 1} perpendicular  
to nw. Define f ( q )  = d2(q, $1) - d2(q, $2), and observe that  q ~ B(S1, $2) if and 
only if f (q)  = 0. First assume that  q~ > 0. Let p e S 1, Pd > 0; such a point  must  
exist since $1 r nw. See Fig. 3. Since d2(q, $1) < d2(q, p) = ~d= 1 (Pi -- qi) 2 and 
d2(q, $2 ) > d2(q, nw ) = q2, f ( q )  < Zi4=1 ( P i  - -  q i )  2 - -  q 2  = ~,~S_~ ( p ,  - -  ql) 2 + p2 __ 

2pdqd. For  sufficiently large qa, f ( q )  < 0. By a symmetr ic  argument ,  for sufficiently 
small qa < 0, f ( q )  > 0. But d(p, S~) is a cont inuous  function of p (Theorem 3, 

71" w - 

L 

Fig. 3. Selecting points P and q for the proof of Lemma 1. 
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Section 1.8, of [4]). Therefore,  since f changes sign, it must  have at least one zero, 
which implies that  the line I intersects B(S 1 , $2). 

It  remains to show that  B(S 1, $ 2 ) n  (I  x R) is bounded.  Observe  that  for 

qa > (~a~=~ (p, - q,)2 + p~)/2pa, f ( q )  < O. Thus the intersection of B(S~, S2) with 

I is bounded  in the positive xa-direction by a cont inuous function of q~ . . . . .  qd- 1. It  
is similarly bounded  in the negative xa-direction. In particular,  as I is compact ,  
B(SI ,  S2) n (I  x ~) is bounded.  [ ]  

L e m m a  2. I f  S 2 c n w and cl $1 n nw = ~ ,  then every line perpendicular to nw 
intersects B(S1, $2). Moreover, B(SI ,  $2) n (I x R) is hounded. 

Proof. Again, let q be a point  on a line I perpendicular  to nw and vary qa so that  q 
moves  along I. By the a rguments  in the proof  of  L e m m a  1, f ( q )  = d2(q, $1) - 
d2(q, $2) < 0 for sufficiently large qa > O. 

We now show that  there exists a qa < 0 such tha t  f (q )  > O. Let u = I n nw and p 
be a point  of cl S 2 closest to u. If p = u, then d2(q, $2) = q2. Therefore, since 
d2(q, $1) > d2(q, 7zw) = q~ for all qd <-- O, f ( q )  > 0 for all qa ~< 0. 

If p :~ u, then consider an open ball B,  of radius d(u, p) centered at u. If  
cl $1 n cl B,  = ~ ,  then d2(u, $1) > d2(u, $2), which leads to f (u )  > 0. Otherwise,  
since cl S~ n cl B ,  is compact ,  there exists a point  t e cl S~ n cl B~ with smallest 
xa-coordinate.  Moreover ,  td > 0 because cl S~ c~ nw = ~ .  See Fig. 4. Fo r  qa < 0, 

- -  d - -  d2(q, $1) > (td qa) 2. Therefore,  since d2(q, $2) = ~i=1 (Pi qi) 2, f (q )  > tJ - 
2tdqa -- Y~ia-= 11 (Pl - q i )  2 if qa <- O. For  sufficiently small qd <-- 0 ,  f (q )  > 0. Thus f ( q )  
has a zero and the intersection result follows. Boundedness  is guaranteed,  since t is 
confined to a bounded  set as long as u ~ I. [ ]  

To  complete  the p roof  of  Theorem 3, it remains to prove the necessary 
condition. 

Fig. 4. Construction for proof of Lemma 2. 
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zr~ 

Fig. 5. Construction for proof of Lemma 3. 

L e m m a  3. I f  S 2 c n w and cl S 1 n nw ~ ~ ,  then there exist lines perpendicular to 
n w that do not intersect B(Sx, $2). 

Proof. C o n s i d e r  the l ine I p e r p e n d i c u l a r  to  n w t h r o u g h  a p o i n t  p e c l  $1 n nw. See 
Fig.  5. F o r  any  q e l ,  d2(q, S l ) < d 2 ( q , p ) = q 2 .  Since p ~ c l S 2  a n d  S 2 C n w ,  
d2(q, $2 ) > q2. The re fo re  d2(q, $1) < d2(q, $2), Vq ~ l, so l c a n n o t  in te rsec t  

B(S 1 , $2). [ ]  

F i g u r e  6 shows  t w o  e x a m p l e s  as an i l l u s t r a t i on  o f  L e m m a  3. F r o m  T h e o r e m s  2 
a n d  3 we have :  

1 then C o r o l l a r y  1. I f  S~ and $2 are weakly linearly separated by nw and cl $1 c nw, 
every line perpendicular to nw intersects B(S1, $2) in a single point. [] 

Z 

(a) 

(b) 

Fig. 6. Sets illustrating the condition of Lemma 3. Let S1 = {pl, P2, P3} and $2 = {p+, Ps}. (a) Both S~ 
and $2 are completely contained in their weak linear separator n+. B(S~, $2) consists of just four lines 
(shown dashed), all of which are perpendicular to n,,. (b) $1 is only partially contained in n,,. In both 
cases, there exist lines perpendicular to n,, that do not intersect B(S~, $2). 
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As a special case we also have: 

Corollary 2. I f  a hyperplane n is a linear separator of  S t and $2, then every line 
perpendicular to n intersects B(S1, $2) in a single point. [] 

3.3. Intersection with a Specific Perpendicular 

Theorem 3 gave the necessary and sufficient conditions under which every line 
perpendicular to nw intersects B(S~, S:). Even if such global conditions do not hold, 
it is still possible to obtain local results. This section gives necessary and suffi- 
cient conditions under which any specific line perpendicular to n w intersects 
B(S1, $2) .  

L e m m a  4. Let $1, $2 c n w and let u be a point in nw. A line l perpendicular to nw 
and passing through u intersects B(S1, $2) if and only if d(u, $1)= d(u, Sz). 
Moreover, if l intersects B(S1, $2) , then l ~ B(S1, $2). 

Proof  Let q � 9  I. Then d2(q,S~)= d2(u, Si)+ q2a, for i =  1,2. Therefore, if 
d(u, $1) = d(u, $2), then d(q, $1) = d(q, $2), which implies that I c B(S1; $2). 
Conversely, if q �9 B(S1, $2), then d2(q, $1) = d2(q, $2) and hence d(u, $1) = 
d(u, S2). [] 

Lemma 5. Let $2 c nw, $1 r nw, cl $1 n n w :/: ~ ,  and u �9 nw such that d(u, $2) :/: 
d(u, cl S 1 ca nw). A line l perpendicular to nw and passing through u intersects 
B(S1 ,Sz )  if and only if d(u, S2)< d(u, clS 1 n nw). Moreover, if l intersects 
B(SI,  $2), then it does so in a single point. 

Proof. Let q be a point in 1. See Fig. 7. Sufficiency follows from arguments similar 
to those of the proof of Lemma 2. To show necessity, assume that q ~ B(S 1 ~ $2). 
Since d2(q, S1 ) = d2(q, $2), d2(q, $2 ) = d2(u, $2 ) + q2, d2(q, cl $1 n nw) = 
d2(u, cl $1 n nw) + q2, and d2(q, $1) < d2(q, cl $1 ca nw), we have d2(u, $2) + qJ < 
d2(u, clS1 n z w ) + q  2. Necessity follows since, by hypothesis, d(u, S2)r  
d(u, cl S 1 ca nw). 

L s~ 

It, 

Fig. 7. Construction for proof of Lemma 5. 
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To see that the intersection is a single point, assume the contrary. Then, by 
Theorem 2, there exists q E int[l n B(S1, $2)] such that the touching points of the 
maximal sphere centered at q are contained in nw. This implies that the touching 
points in S~ are in cl S~ n nw and that d2(q, $2) = d2(q, cl S~ n nw) - -  a contradic- 
tion. [] 

Let B be an open ( d -  1)-dimensional ball and let v be a point on a line 
perpendicular to the hyperplane that contains B, and passing through the center of 
B. The truncated semicone C(v, B) is defined to be int CH(v u B). 

Lemma 6. Let  S 2 c nw,  S 1 • 7~w, cl S 1 n nw :/: ~ ,  and u ~ n w such that d(u, $2) = 
d(u, cl S 1 n nw). Let  B c n w be the ( d -  1)-dimensional ball o f  radius d(u, $2) 
centered at u. A line I perpendicular to n W and passing through u intersects B(S1, $2) i f  

1 such that C(q, B) n $1 ~ .  Furthermore, and only i f  there exists  a point q ~ I n n w = 

i f  l intersects B(S1, $2) , then a half-line o f  l is contained in B(S1, $2). 

1 such that Proof  To show sufficiency, let there be a point ql ~ l n n w  
C(ql ,B)  n $1 = ~ .  See Fig. 8. Now, consider the one-parameter family of 
d-dimensional balls (and the associated boundary spheres) the intersect nw in B and 

1 within whose centers lie on I. Some of these boundary spheres must intersect nw 
C(ql, B). Since B intersects neither cl Sx nor cl $2, but the boundary of B touches 
both cl $1 and cl SE, such spheres must be maximal spheres. Furthermore, any 
member of the family whose center has smaller xa-coordinate must also be 
maximal. Thus, a half-line of I is contained in B(S 1 , SE). 

To show necessity, consider a maximal sphere 5 '~ (and the associated ball 9~) 
centered at q E I n B(S1, $2). Note that u r cl ($1 u $2) because d(u, $2) = 

1 d(u, cl $1 ~ nw) and cl S~ n cl $2 = ~ .  Therefore, :tq2 E ~w ~ l ('~ ~,(,(~. See Fig. 8. 
Since C(q2, B) c ~ ,  C(q2, B) c~ S 1 = ~ .  [] 

An example where the conditions of Lemma 6 do not hold is shown in Fig. 9. 

7 r  

Fig. 8. Construction for proof of Lemma 6. 
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/ 

~q.s 7. 7r~ 

Fig. 9. An example where the conditions of Lemma 6 do not hold. S~ is an arc of a circle, $2 c nw and 
d(u, $2) = d(u, cl $1 c~ ~,). The line l will not intersect B(S1, $2). 

Necessary and sufficient conditions for any specific line perpendicular to rtw to 
intersect B(SI,  $2) follow directly from Theorem 3 and Lemmas  4-6. 

Theorem 4. Let u ~ 7r w and let I be the line perpendicular to rr w passing through u. 

The line l intersects B(Sx, $ 2 ) / f  and only i f  (up to a switch of  S 1 and $2) 

1. $1 r nw and $2 r nw, or 
2. $2 c nw, and cl S x n nw = ~Z~, or 

3. S 1 ~ nw, $2 c nw and d(u, Sa) = d(u, $2), or 

4. $2 c nw, $1 r nw, cl $1 c~ n ,  r ~ ,  and d(u, $2) < d(u, cl $1 c~ nw), or 
5. S 2 c n w, $1 r nw, cl Sx n nw :~ ~ ,  d(u, $2) = d(n, cl S1 ~ nw), and there ex- 

such that C(q, B) n S 1 ~ ,  where B c nw is the open ists a point q e I c~ nw = 
(d - 1)-dimension ball o f  radius d(u, $2) centered at u. 

4. Continuous Mapping from Linear Separator to Bisector 

We have thus far shown exactly when a line perpendicular to nw intersects B(S 1 , $ 2 )  

at a single point. This defines a mapping  which lifts points of the separator  up to 
the bisector. We now show that wherever such a mapping  exists, it is continuous.  
Notice that this map will automatical ly be a homeomorpbism,  as its inverse is the 
or thogonal  projection onto  the s e p a r a t o r -  certainly a well-defined cont inuous 
map. 

Theorem 5. Let the hyperplane ~Zw: xd = 0 be a weak linear separator o f  S 1 and $2 
and let M be a relatively open subset of  ~z w such that Vp ~ M, the line through p 

perpendicular to ~z w intersects B(S1, $2) in a single point. Then the mapping 

b: M ~ ~ such that (x 1 . . . . .  xn-1,  b(xl  . . . . .  xa-1)) ~ B(S1, $2) is continuous. 

To prove this we use the following lemma. Let E and F be topological spaces. A 
function g: E ~ F is said to have a closed graph if its graph {(x, y): y = g(x), x ~ E} 

in the product  space E • F is a closed set. 
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Lemma 7 (Theorem 3, Chapter VII of [3]). Let E, F be topological spaces and let 
g: E -~ F be a function. I f  g has a closed graph and F is compact, then g is continuous. 

Proof  o f  Theorem 5. The mapping b is a function by hypothesis. We show that b is 
continuous at an arbitrary p �9 M. Let I = {x �9 E e- 1 : ~i < x~ < fib, i = 1, 2 . . . . .  d - 
1}, for real numbers ct i < fll, i = 1,2 . . . . .  d -  1, be a closed ( d - 1 ) - c e l l  in M 
containing p in its interior and let bl denote the restriction ofb to I. We claim that b~ 
has a compact graph and thus, by Lemma 7, b is continuous at p. 

The graph ofb~ is the intersection of B(S1, $2) and I x R. Referring to the proof 
of Lemma 1, B(S 1, $2) = f -  1(0). Since the inverse image of a closed set under a 
continuous map is closed (p. 35 of [4]), B(S 1, $2) is closed. Therefore, the graph of 
bt is closed. 

It remains to show that the range of b is also bounded and, hence, compact. 
Since the line perpendicular to each point in M intersects B(S1, $2), one of the five 
conditions of Theorem 4 must hold for each point in M. Furthermore, since by 
hypothesis, each such line intersects B(S 1, $2) in a single point, Lemmas 4 and 6 
imply that, up to a switch of $1 and $2, one of the following must hold: 

1. S 1 C n  w a n d S 2 r  
2. $2 c nw, and cl $1 c~ n w = ~Z~, or 
3. S 2 c 7rw, S 1 • 7~w, cl $1 c~ nw :/: ~ ,  and d(u, Sz) < d(u, cl $1 c~ nw), Vu �9 M. 

In the first two cases, Theorem 3 establishes that the graph is bounded. In the third 
case, Lemma 5 and the fact that I is compact establish that the graph is bounded. 
Therefore, the graph of b~ is compact, which implies that b is continuous at every 
point of M. [] 

When nw is a linear separator, we have: 

Corollary 3. Let the hyperplane n: xn = 0 be a linear separator o f  $1 and S 2. I f  b is 

the mapping b: n --* ~ such that (x 1 . . . . .  x e -  1, b(xl  . . . . .  x e -  1)) �9 B(S1, $2), then b is 
a continuous function. In fact ,  the perpendicular projection o f  B(S1, Sz) onto n is a 
homeomorphism. 

Corollary 3 generalizes the notion described in l-8-1 that the bisector of linearly 
separated point sites in E 2 is a monotone chain. More importantly, it shows that 
B(S1, $2) is a (d - 1)-manifold in E d. 

5. Summary 

In this paper we have presented some general properties of bisectors of sets in E e 
that are separated by hyperplanes. We have given necessary and sufficient 
conditions for the perpendicular projection of the bisector of two weakly linearly 
separated sets onto a separator to be a homeomorphism. This study needs to be 
expanded in two major directions. 

Throughout  this paper we have required that cl $1 c~ cl $2 = ~ .  When the 
closures of the sets are not disjoint, the bisector need not be a manifold, as 
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Fig. 10. A nonhomogeneously two-dimensional bisector. B(S~, $2) is the bisector between two open 
line-segments that do not intersect. However, the closures of the line-segments intersect at an endpoint. 

illustrated in Fig. 10. This issue has been addressed in the literature on Voronoi 
diagrams of point sites and open line segments in E 2 by defining the bisectors 
between individual elements ab initio so that they are always homogeneously one- 
dimensional [5]-1-7], [9]. We think that this needs further investigation. 

Another direction in which the theory could be generalized is to investigate the 
general conditions under which the bisector of two sets is a (d - 1)-manifold that 
partitions E a into two disjoint regions. In this paper we have shown that if the two 
sets are linearly separable, then their bisector has this property. Also, some 
sufficient conditions for the bisector to be a simple closed curve were given in 1-9] 
for sets in E 2 that are not even weakly linearly separable. We are not aware of any 
other result related to this problem. 
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