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Abstract. A Banach space operator T ∈ B(X ) is hereditarily polaroid, T ∈ (HP),

if the isolated points of the spectrum of every part Tp of the operator are poles of

the resolvent of Tp; T is hereditarly normaloid, T ∈ (HN ), if every part Tp of T is

normaloid. Let (HNP) denote the class of operators T ∈ B(X ) such that T ∈ (HP)∩
(HN ). (HNP) operators such that the Berberian–Quigley extension T◦ of T is also in

(HNP) satisfy Bishop’s property (β). Given Hilbert space operators A, B∗ ∈ B(H),

let dAB ∈ B(B(H)) stands for either of the elementary operators δAB(X) = AX−XB

and 4AB(X) = AXB−X. If A, B∗ ∈ (HP) satisfy property (β), and the eigenspaces

corresponding to distinct eigenvalues of A (resp., B∗) are orthogonal, then f(dAB)

satisfies Weyl’s theorem and f(dAB)∗ satisfies a-Weyl’s theorem for every function f

which is analytic on a neighbourhood of σ(dAB). Finally, we characterize perturbations

of dAB by quasinilpotent and algebraic operators A, B ∈ B(H).

Key words: Hilbert space, elementary operator, polaroid operator, SVEP, property

(β), Browder’s theorem, Weyl’s theorem, perturbation

1. Introduction

Let X (or H) be a complex Banach (Hilbert, respectively) space and
B(X ) (or B(H)) be the set of all bounded linear operators on X (H, re-
spectively). A Banach space operator T ∈ B(X ) is said to have SVEP, the
single–valued extension property, at a point λ of the complex plane C if,
for every neighbourhood Oλ of λ, the only analytic function f : Oλ −→ X
satisfying (T − µ)f(µ) = 0 for all µ ∈ Oλ is the function f ≡ 0; we say
that T has SVEP if it has SVEP at every λ ∈ C. The ascent asc(T )
(resp., descent dsc(T )) of T is the least non–negative integer n such that
T−n(0) = T−(n+1)(0) (resp., TnX = Tn+1X ); if no such integer exists, then
asc(T ) = ∞ (resp., dsc(T ) = ∞). A point λ ∈ isoσ(T ) is a pole of the resol-
vent of T if asc(T −λ) = dsc(T −λ) < ∞. We say that T is polaroid if every
λ ∈ isoσ(T ) is a pole of the resolvent of T ; T is hereditarily polaroid, denoted
T ∈ (HP), if every part of T (i.e., its restriction to an invariant subspace) is
polaroid. The class of (HP)-operators is large; see [10] for examples of (HP)
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operators. We say that T ∈ B(X ) is hereditarily normaloid, T ∈ (HN ) if
every part Tp of T is normaloid (i.e., ‖Tp‖ equals the spectral radius of Tp);
let (HNP) denote those T ∈ B(X ) for which T ∈ (HP) ∩ (HN ).

Let T ◦ denote the Berberian–Quigley extension of T ∈ B(X ), and let
(HNP)◦ denote the space of T ∈ (HNP) ∩ B(X ) such that T ◦ ∈ (HNP).
(Examples of operators T ∈ (HNP)◦ occur naturally, as we shall see in the
sequel.) We prove that operators T ∈ (HNP)◦ satisfy Bishop’s property
(β). Let LA and RB denote, respectively, the operators of left multiplication
by A and right multiplication by B. For A,B ∈ B(X ), let dAB ∈ B(B(X ))
denote either of the operators δAB = LA − RB and 4AB = LARB − 1.
Choosing the entries A,B∗ ∈ B(H), H an infinite dimensional complex
Hilbert space, to be such that A,B∗ ∈ (HP) satisfy property (β) and the
eigenspaces corresponding to their distinct eigenvalues are orthogonal, we
prove that f(dAB) satisfies Weyl’s theorem and f(d∗AB) satisfies a-Weyl’s
theorem for every function f which is analytic on a neighbourhood of the
spectrum σ(dAB) of dAB . Here, in keeping with current terminology, we
say that a Banach space operator T ∈ B(X ) satisfies Weyl’s theorem, Wt

for short, if the complement of the Weyl spectrum σw(T ) = {λ ∈ σ(T ) :
either T − λ is not Fredholm or ind(T − λ) 6= 0} of T in σ(T ) is the set
π00(T ) = {λ ∈ isoσ(T ) : 0 < dim(T − λ)−1(0) < ∞}; T satisfies a-Weyl’s
theorem, or a −Wt, if the complement of the a-Weyl spectrum σaw(T ) =
{λ ∈ σa(T ) : either T − λ is not left Fredholm or ind(T − λ) 6≤ 0} of T

in the approximate point spectrum σa(T ) of T is the set πa
00(T ) = {λ ∈

isoσa(T ) : 0 < dim(T − λ)−1(0) < ∞}. Similar results, but (mostly) for
operators A,B∗ ∈ (HNP) ∩B(H) satisfying the Putnam-Fuglede property
d−1

AB(0) ⊆ d−1
A∗B∗(0), have earlier been considered in [7], [11]. Observe that

if d−1
AB(0) ⊆ d−1

A∗B∗(0) for some operators A,B ∈ B(H), then 0 is a normal
eigenvalue of A and B. Since, in general, 0 is not a normal eigenvalue of
operators in (HNP) (for example, A−1(0) ⊆ A∗−1(0) fails for paranormal
operators), (HNP)∩B(H) operators do not in general satisfy the Putnam-
Fuglede property.

2. Preliminaries

In addition to the notation and terminology already introduced, we
shall use the following further notation and terminology. We remark that
even though many of our results are proved in the setting of Hilbert space
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operators, we introduce our terminology and prove some of the results in
their full generality in the setting of a Banach space. A Banach space
operator T ∈ B(X ) satisfies (Bishop’s) property (β) if, for every open subset
U of C and every sequence of analytic functions fn : U −→ X with the
property that

(T − λ)fn(λ) −→ 0 as n −→∞

uniformly on all compact subsets of U , fn(λ) −→ 0 as n −→ ∞ locally
uniformly on U . Given an open subset U of C, let H(U ,X ) denote the
Fréchet space of analytic functions from U to X . Then T ∈ B(X ) satis-
fies property (β) precisely when the operator TU : H(U ,X ) −→ H(U ,X ),
(TUf)(λ) := (T − λ)f(λ), has closed range [21, Proposition 3.3.5]. If T

satisfies property (β), then the conjugate operator T ∗ satisfies (the decom-
position) property (δ) [21, Theorem 2.5.18], and both LT and RT∗ satisfy
(Dunford’s) condition (C) [21, Corollary 3.6.11]. (We refer the reader to
[21], Definitions 1.2.18 and 1.2.28, for the definitions of condition (C) and
property (δ).)

Proposition 2.1 If A,B ∈ B(X ) and A, B∗ satisfy property (β), then
LA −RB and LARB have SVEP.

Proof. Apparently, LA and RB commute. Since both LA and RB satisfy
condition (C), LA−RB and LARB have SVEP (see [21, Theorem 3.6.3 and
Notes 3.6.19 on page 283]). ¤

The Browder spectrum (Browder essential approximate point spectrum)
of T is the set σb(T ) = {λ ∈ σ(T ) : T−λ is not Fredholm or one of asc(T−λ)
and dsc(T −λ) is not finite} (resp., σab(T ) = {λ ∈ σ(T ) : T −λ is not upper
semi–Fredholm or asc(T − λ) = ∞}). We say that an operator T ∈ B(X )
satisfies Browder’s theorem, Bt for short (resp., a-Browder’s theorem, a−Bt

for short) if σw(T ) = σb(T ) (resp., σaw(T ) = σab(T )). Observe that if we
let p0(T ) denote the set of λ ∈ isoσ(T ) which are finite rank poles of the
resolvent of T , then T satisfies Bt if and only if σ(T ) \ σw(T ) = p0(T );
similarly, if we let pa

0(T ) = {λ ∈ isoσa(T ) : asc(T − λ) < ∞, (T − λ)X is
closed and dim(T − λ)−1(0) < ∞}, then T satisfies a − Bt if and only if
σa(T ) \ σaw(T ) = pa

0(T ) (see [12, Theorems 8.3.1 and 8.3.3]). The following
implications hold:
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T satisfies a−Wt =⇒ T satisfies a−Bt =⇒ T satisfies Bt

⇐⇒ T ∗ satisfies Bt;

T satisfies a−Wt =⇒ T satisfies Wt =⇒ T satisfies Bt.

Here the forward implications can not in general be reversed.

Proposition 2.2 A necessary and sufficient condition for T ∈ B(X ) to
satisfy a−Bt is that T has SVEP at points λ /∈ σaw(T ).

Proof. See [8, Lemma 2.18]. ¤

Remark 2.3

( i ) Let σe(T ) denote the Fredholm spectrum of the operator T . It is well
known, [15], [16], that if A,B ∈ B(H), then σe(LA −RB) = {σ(A)−
σe(B)} ∪ {σe(A)− σ(B)} and σe(LARB) = σ(A)σe(B) ∪ σe(A)σ(B).
Hence if the operator A (resp., B) is a quasinilpotent, then σe(LA −
RB) = −σ(B) (resp., σe(LA − RB) = σ(A)) and σe(LARB) = {0}.
Since σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σ(T ) for every operator T , and since
σ(LA−RB) = σ(A)−σ(B) and σ(LARB) = σ(A)σ(B) [14], it follows
that if either of A or B is quasinilpotent, then LA − RB and LARB

satisfy Bt.
( ii ) Recall that SVEP for operators S and T ∈ B(X ) does not guarantee

SVEP for the operators S + T and ST , even when S and T com-
mute. Thus, in general, LS and RT satisfy Wt does not guarantee
dST satisfies Wt, even Bt.

We say that T ∈ B(X ) is polaroid (resp., left-polaroid) if every λ ∈
isoσ(T ) is a pole of the resolvent of T (resp., if, for every λ ∈ isoσa(T ),
asc(T−λ) < ∞ and (T−λ)X is closed). A necessary and sufficient condition
for λ ∈ σ(T ) to be a pole of the resolvent of T is that both asc(T ) and
dsc(T ) are finite [1, Theorem 3.81]. We say that λ ∈ σ(T ) is a simple pole
if asc(T ) = dsc(T ) = 1; T is said to be polaroid (resp., left-polaroid) on a
subset S of isoσ(T ) (resp., isoσa(T )) if every point of the subset is a pole
(resp., a left-pole) of T .

Proposition 2.4 A necessary and sufficient condition for T ∈ B(X ) to
satisfy Wt (resp., a−Wt) is that T satisfies Bt (resp., a−Bt) and is polaroid
at points in π00(T ) (resp., left-polaroid at points in πa

00(T )).
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Proof. Since T satisfies a − Wt (resp., Wt) implies σa(T ) \ σaw(T ) =
pa
0(T ) = πa

00(T ) (resp., σ(T ) \ σw(T ) = p0(T ) = π00(T )), the necessity
is evident. For the sufficiency, T satisfies a − Bt (resp., Bt) implies that
σa(T ) \ σaw(T ) = pa

0(T ) ⊆ πa
00(T ) (resp., σ(T ) \ σw(T ) = p0(T ) ⊆ π00(T )).

Hence, if πa
00(T ) ⊆ pa

0(T ) (resp., p0(T ) ⊆ π00(T )), then pa
0(T ) = πa

00(T )
(resp., p0(T ) = π00(T )). ¤

Operators T ∈ B(X ) with property (β) have SVEP. Hence they sat-
isfy a − Bt (so also Bt). Indeed, if T ∈ B(X ) has SVEP, then T ∗ also
satisfies a − Bt. To see this, start by observing that if T has SVEP, then
σ(T ) = σ(T ∗) = σa(T ∗). Furthermore, (σw(T ) =)σw(T ∗) = σaw(T ∗), as
the following argument shows. Recall that σaw(S) ⊆ σw(S) for every S ∈
B(X ). If λ /∈ σaw(T ∗), then T ∗ − λI∗ is upper semi–Fredholm and
ind(T ∗−λI∗) ≤ 0. Since T has SVEP at λ, we also have that ind(T ∗−λI∗) ≥
0. Hence T ∗ − λI∗ is Fredholm and ind(T ∗ − λI∗) = 0, i.e., λ /∈ σw(T ∗).
Hence σw(T ∗) ⊆ σaw(T ∗), which implies the claimed equality. Apparently,
λ is a pole of the resolvent of T implies λ is a pole of the resolvent of
T ∗; hence p0(T ) = p0(T ∗). Notice that if λ ∈ pa

0(T ∗), then T ∗ − λI∗

is upper semi-Fredholm of finite ascent; if also T has SVEP at λ, then
dsc(T ∗ − λI∗) < ∞ =⇒ λ ∈ p0(T ∗). Thus p0(T ) = pa

0(T ∗). Putting it
all together, σ(T ) \ σw(T ) = p0(T ) = pa

0(T ∗) = σa(T ∗) \ σaw(T ∗), i.e., T ∗

satisfies a−Bt.
The following proposition is well known, see [24], [25].

Proposition 2.5 If T ∈ B(X ) has SVEP, T satisfies Wt and T ∗ satisfies
a − Wt, then f(T ) satisfies Wt and f(T ∗) = f(T )∗ satisfies a − Wt for
every f analytic on an open neighbourhood of σ(T ).

(T HN )-operators. An operator T ∈ B is normaloid if its norm
equals its spectral radius r(T ). An important subclass of the class of
(HNP)-operators is the class (T HN ) of totally hereditarily normaloid op-
erators, where (for an operator T ∈ B(X )) we say that T ∈ (T HN ) if every
part, and also the inverse of every invertible part, of T is normaloid. Recall
from [8, Proposition 2.1] that (T HN )-operators are simply polaroid (i.e.,
isolated points of the spectrum are order one poles of the resolvent of the
operator). Evidently, (T HN ) ⊂ (HNP).

A subspace M of the Banach space X is said to be orthogonal to a
subspace N of X (in the Birkhoff–James sense, [13, p. 93]), denoted M ⊥ N ,
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if ‖x‖ ≤ ‖x + y‖ for all x ∈ M and y ∈ N . This asymmetric definition of
orthogonality coincides with the usual definition of orthogonality in the case
in which X = H is a Hilbert space.

Proposition 2.6 If N and M are eigenspaces corresponding to distinct
eigenvalues µ and ν, |µ| ≤ |ν|, of an operator T ∈ (T HN ), then M ⊥ N if
µ = 0 and M, N are mutually orthogonal if µ 6= 0.

Proof. The proof of the proposition is similar to that of [8, Proposition
2.5]. Let L denote the subspace generated by M and N . Then the operator
T1 = T |L ∈ (T HN ) (being simply polaroid) is normaloid and meromorphic.
Apply [17, Proposition 54.4]. ¤

Translated to Hilbert space operators T , Proposition 2.6 implies the
following.

Corollary 2.7 Eigenspaces corresponding to distinct eigenvalues of T ∈
(T HN ) ∩B(H) are mutually orthogonal.

For an operator T ∈ B(X ), the quasinilpotent part H0(T − λ) and the
analytic core K(T − λ) of (T − λ) are defined by

H0(T − λ) =
{

x ∈ X : lim
n−→∞

‖(T − λ)nx‖ 1
n = 0

}

and

K(T − λ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for
which x = x0, (T − λ)(xn+1) = xn and ‖xn‖ ≤ δn‖x‖
for all n = 1, 2, . . . }.

We note that H0(T − λ) and K(T − λ) are (generally) non-closed hyperin-
variant subspaces of (T − λ) such that (T − λ)−q(0) ⊆ H0(T − λ) for all
q = 0, 1, 2, . . . and (T − λ)K(T − λ) = K(T − λ) [22].

3. Operators T ∈ (HNP) ∩ B(X ) and property (β)

In this section we prove that operators T ∈ (HNP)◦ satisfy property
(β). We start by proving that operators T ∈ (HNP) have SVEP.

Lemma 3.1 Operators in (HNP) ∩B(X ) have SVEP.
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Proof. Suppose to the contrary that T does not have SVEP at a point
λ ∈ σ(T ). Then λ is necessarily an eigenvalue of T , and there exists a disc
Dλ centered at λ and a non-trivial analytic function f : Dλ → X such that
f(µ) ∈ (T − µ)−1(0) for all µ ∈ Dλ. Let β ∈ Dλ, and let {αn} ⊂ Dλ

be a sequence of complex numbers such that |β| ≥ |αn| for all n and αn

converges to β. Then f(αn), f(β) are non-zero and f(αn) converges to
f(β). Let X0 be the subspace generated by (T −β)−1(0) and (T −αn)−1(0)
(n = 1, 2, 3, . . . ). Then T0 = T |X0 is a meromorphic normaloid operator.
Hence the spectral projection Pβ corresponding to the pole β of T0 has
norm 1, and ‖x‖ ≤ ‖x − y‖ for every x ∈ PβX0 and y ∈ P−1

β (0) [17,
Proposition 54.4]. Let ‖f(β)‖ = 1, and choose an n0 large enough so that
‖f(β) − f(αn0)‖ < ε for some ε (0 < ε < 1). Then, with x = f(β) and
y = f(αn0), we have 1 = ‖f(β)‖ ≤ ‖f(β)−f(αn0)‖ < ε < 1, a contradiction.

¤

Let `∞(X ) denote the space of all bounded sequences of elements of X ,
and let c0(X ) denote the space of all null sequences of X . Endowed with the
canonical norm, the quotient space K = `∞(X )/c0(X ) is a Banach space into
which X may be isometrically embedded. The Berberian–Quigley extension
theorem, [21, p. 255], says that given an operator T ∈ B(X ) there exists an
isometric algebra isomorphism T −→ T ◦ ∈ B(K) preserving order such that
σ(T ) = σ(T ◦) and σa(T ) = σa(T ◦) = σp(T ◦). Let (HNP)◦ denote the class
of T ∈ (HNP) such that T ◦ ∈ (HNP).

Theorem 3.2 Operators T ∈ (HNP)◦ ∩B(X ) satisfy property (β).

Proof. Let T ∈ (HNP)◦ ∩ B(X ). Let U be an open subset of C, and let
H(U ,X ) denote the Fréchet space of analytic functions from U to X . If

(T − λ)fn(λ) −→ 0 on H(U ,X ),

then, upon letting [fn(λ)] denote the equivalence class of the sequence
{fn(λ)} in K,

(T ◦ − λ)[fn(λ)] = 0,

for every λ ∈ U . Since T ◦ has SVEP, it follows [fn(λ)] ≡ 0 on U . We
claim that fn(λ) −→ 0 on H(U ,X ). Observe that if D(λ; r) = {µ ∈ C :
|λ− µ| < r} is such that D(λ; r) ⊂ U , then the analytic sequence {fn(λ)} is
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uniformly bounded on D(λ; r); also, for every ε > 0, there exists a natural
number N and 0 < ρ < r such that

‖fn(µ)‖ <
ε

2
and ‖fn(λ)− fn(µ)‖ <

ε

2

for all n > N and µ ∈ D(λ; ρ). Indeed, if need be, considering fn

1+‖fn‖ instead
of fn we may assume that supn‖fn‖D(λ;r)

= M < ∞. Since the function fn

is analytic, it has a Taylor series fn(µ)− fn(λ) =
∑∞

m=1 anm(µ− λ)m. Con-
sequently, ‖fn(λ)− fn(µ)‖ ≤ Mρ

r−ρ for all µ ∈ D(λ; ρ) such that 0 < ρ < r.
Now choose N and ρ such that |fn(λ)| < ε

4 (recall that the sequence
{fn(λ)} ∈ c0) and Mρ

r−ρ < ε
4 . Then

‖fn(µ)‖ ≤ ‖fn(λ)‖+ ‖fn(λ)− fn(µ)‖ <
ε

2

for all n > N and µ ∈ D(λ; ρ), and hence that fn(λ) → 0 in H(U,H), i.e.,
T satisfies property (β). ¤

Remark 3.3 For a Banach space operator T ∈ B(X ), T is called para-
normal if ‖Tx‖2 ≤ ‖T 2x‖ · ‖x‖ for all x ∈ X . Evidently, if T is paranormal,
then so is its Berberian–Quigley extension T ◦. Since paranormal operators
are (HNP) operators [10], paranormal operators are (HNP)◦ operators,
and so enjoy property (β) (thereby answering a question of Laursen [20]).
Tanahashi and Uchiyama [26] have recently proved the following:

Theorem 3.4 Let T ∈ B(H), and let µ, ν be (any) two distinct ap-
proximate eigenvectors of T . If limn→∞(xn, yn) = 0 for all bounded se-
quences of vectors {xn} and {yn} ⊂ H such that limn→∞ ‖(T − µ)xn‖ =
limn→∞ ‖(T − ν)yn‖ = 0, then T satisfies property (β).

Theorem 3.4 implies that paranormal Hilbert space operators satisfy
property (β): Theorem 3.2 generalizes this result to Banach space paranor-
mal operators.

Theorem 3.2 has a number of consequences: we list below but only a
few of them. If T ∈ (HNP)◦ and Q ∈ B(X ) is a quasinilpotent operator
which commutes with T , then T and T + Q are quasinilpotent equivalent;
hence T + Q satisfies property (β) [21, Proposition 3.4.11]. The following
corollary says (in particular) that the direct sum of an operator satisfying
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property (β) with a quasinilpotent satisfies property (β).

Corollary 3.5 Let T ∈ B(X ). If T ∈ (HNP)◦ and Q ∈ B(X0) is a
quasinilpotent operator, then the operator A ∈ B(X ⊕ X0), A =

(
T X
0 Q

)
,

satisfies property (β).

Proof. Let U ⊆ C be open, and let fn = f1n ⊕ f2n ∈ H(U ,X⊕ X0) be a
sequence such that (A− λ)fn(λ) −→ 0 as n −→∞ in H(U ,X⊕ X0). Then,
since Q − λ is invertible for all λ 6= 0, (Q − λ)f2n(λ) −→ 0 as n −→ ∞ in
H(U ,X0) =⇒ f2n(λ) −→ 0 as n −→ ∞ in H(U ,X0). This in turn implies
that (T −λ)f1n(λ) −→ 0 as n −→∞ in H(U ,X ). Since T satisfies property
(β), f1n(λ) −→ 0 as n −→ ∞ in H(U ,X ). Hence fn(λ) −→ 0 as n −→ ∞
in H(U ,X⊕ X0). ¤

An operator T ∈ B(H) is a quasi–class A operator, T ∈ QA, if
T ∗(|T 2|− |T |2)T ≥ 0 [18]. QA operators T have an upper triangular matrix
representation

T =
(

T1 X
0 0

)(
ran(T (H))

kerT ∗

)
,

where T1, |T1|2 ≤ |T 2
1 |, is a class A operator [18, Theorem 2.2]. It is well

known that class A operators are paranormal, hence satisfy property (β)
(see also [5, Theorem 3.1]). Corollary 3.5 implies that QA operators satisfy
property (β).

An operator T on a separable Banach space X is said to be supercyclic
if the homogeneous orbit {λTnx : λ ∈ C, n ∈ N∪ 0} is dense in X for some
x ∈ X . It is known that paranormal operators in B(H) are not supercyclic
[3]. Recall that an operator T ∈ B(X ) is normaloid if its spectral radius
r(T ) equals its norm.

Corollary 3.6 Operators T ∈ (T HN )∩B(X ) such that T ∈ (HNP)◦ are
not supercyclic.

Proof. Since T is normaloid, we may assume that r(T ) = ‖T‖ = 1. Sup-
pose that T is supercyclic. Since T satisfies property (β), |µ| = r(T ) = 1 for
every µ ∈ σ(T ) [21, Proposition 3.3.18]. Hence σ(T ) ⊆ ∂D, the boundary of
the unit disc in C. But then T is invertible and r(T−1) = ‖T−1‖ = 1, which
implies that ‖Tx‖ = ‖x‖ for all x ∈ X . Hence T is an isometry. This is
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a contradiction, since no isometry on an infinite dimensional Banach space
can be supercyclic [21, Proposition 3.3.19]. ¤

An operator A ∈ B(X ) is said to be algebraic if there exists a non–
trivial polynomial q(·) such that q(A) = 0. If an A ∈ B(X ) is algebraic,
then σ(A) = {µ1, . . . , µn} for some scalars µi, 1 ≤ i ≤ n, and A = ⊕n

i=1Ai,
where Ai = A|H0(A−µi).

Corollary 3.7 If T ∈ B(X ) is such that T ∈ (HNP)◦, and A ∈ B(X ) is
an algebraic operator which commutes with T , then T + A satisfies property
(β).

Proof. Let Ti = T |H0(A−µi), where the scalars µi are as above. The com-
mutativity of T and A then implies that Ti and Ai commute for all 1 ≤ i ≤ n.
Furthermore, T + A = ⊕n

i=1(Ti + Ai). Recall, [10, Lemma 3.2], that Ai−µi

is nilpotent (=⇒ Ai − µi satisfies property (β)) for all 1 ≤ i ≤ n. Assume
that (Ai−µi)ki = 0 for some positive integer ki. We prove that Ti +Ai−µi

satisfies property (β). Let U ⊆ C be open, and assume that

(Ti + Ai − µi − λ)fn(λ) −→ 0 in H(U ,X ).

Then
{
(Ai − µi)ki−1(Ti − λ) + (Ai − µi)ki

}
fn(λ)

= (Ti − λ)(Ai − µi)ki−1fn(λ) −→ 0 in H(U ,X ),

which (since T = ⊕n
i=1Ti satisfies property (β) implies Ti satisfies property

(β) for all 1 ≤ i ≤ n) implies that

(Ai − µi)ki−1fn(λ) −→ 0 in H(U ,X ).

Again, since

{
(Ai − µi)ki−2(Ti − λ) + (Ai − µi)ki−1

}
fn(λ) −→ 0 in H(U ,X )

implies

(Ti − λ)(Ai − µi)ki−2fn(λ) −→ 0,
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we have that

(Ai − µi)ki−2fn(λ) −→ 0 in H(U ,X ).

Repeating this argument a finite number of times, it follows that

(Ti − λ)fn(λ) −→ 0 in H(U ,X ).

Hence

fn(λ) −→ 0 in H(U ,X ),

i.e., Ti + Ai − µi satisfies property (β) for all 1 ≤ i ≤ n. Since an operator
S ∈ B(X ) satisfies property (β) if and only if S − α satisfies property (β)
for all scalars α, Ti +Ai satisfies property (β) for all 1 ≤ i ≤ n. This implies
that T + A = ⊕n

i=1(Ti + Ai) satisfies property (β). ¤

Remark 3.8 A Hilbert space operator T ∈ B(H) is hyponormal if |T ∗|2 ≤
|T |2; p-hyponormal (0 < p ≤ 1) if |T ∗|2p ≤ |T |2p; log–hyponormal if T is
invertible and log |T ∗| ≤ log |T |; w-hyponormal if |T̃ ∗| ≤ |T | ≤ |T̃ |, where for
T = U |T |, T̃ = |T | 12 U |T | 12 ; of class A if |T |2 ≤ |T 2|; paranormal if ‖Tx‖2 ≤
‖T 2x‖ for all unit vectors x ∈ H, and ∗-paranormal if ‖T ∗x‖2 ≤ ‖T 2x‖ for
all unit vectors x ∈ H. Operators T belonging to these classes are known
to satisfy the property T ∈ (HNP); furthermore, the Berberian–Quigley
extension T ◦ of an operator T in any one of these (Hilbert space) classes
is again of the same class. Hence operators in these classes of operators
satisfy property (β). M -hyponormal operators, i.e. operators T ∈ B(H)
such that ‖(T − λ)∗x‖ ≤ M · ‖(T − λ)x‖ for some M ≥ 1, all x ∈ H
and all λ ∈ C, are well known to satisfy property (β). Since a (p, k)-
quasihyponormal operator, i.e. an operator T ∈ B(H) such that T ∗k(|T |2p−
|T ∗|2p)T k ≥ 0 for some integer k ≥ 1 and 0 < p ≤ 1, has the upper triangular
representation T =

(
T1 T2
0 T3

)
: T k(H)⊕T ∗−k(0) −→ T k(H)⊕T ∗−k(0), where

T1 is p-hyponormal and T3 is k-nilpotent [19], Corollary 3.5 implies that
(p, k)-quasihyponormal operators satisfy property (β). Note further that
an invertible (p, k)-quasihyponormal operator is p-hyponormal, and an M -
hyponormal operator with spectrum in ∂D is unitary. Hence, Corollary 3.6
implies that operators belonging to any one of the above classes are not
supercyclic.
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Let, for convenience, C denote the class of Hilbert space operators T ∈
B(H) which are either hyponormal, or p-hyponormal, or log–hyponormal,
or w-hyponormal, or M -hyponormal, or paranormal, or ∗-paranormal, or
(p, k)-quasihyponormal. Let ind(T ) denote the Fredholm index of T , and
let (as above) σe(T ) denote the (Fredholm) essential spectrum of T . The
following corollary has been proved for particular subclasses of the class C
by various authors. Recall that operators A and B are said to be densely
intertwined if there exist operators X and Y with dense range such that
AX = XB and BY = Y A.

Corollary 3.9 If A,B ∈ C are densely intertwined operators, all combi-
nations are allowed, then σ(A) = σ(B), σe(A) = σe(B) and ind(A − λ) =
ind(B − λ) at every Fredholm point λ of A.

Proof. Apply [21, Theorem 3.7.15]. ¤

4. Elementary operator dAB and Weyl’s theorem

Unless otherwise stated, we assume in the following that the operators
A,B∗ ∈ B(H) are (HP) operators which satisfy property (β) and for which
eigenspaces corresponding to distinct eigenvalues are orthogonal. Let, as
before, dAB ∈ B(B(H)) denote either of the operators δAB and 4AB . Since
[14]

σ(δAB) = {α− β : α ∈ σ(A), β ∈ σ(B)}

and

σ(4AB) = {αβ − 1 : α ∈ σ(A), β ∈ σ(B)},

for every λ ∈ isoσ(δAB) (resp., λ ∈ isoσ(4AB)) there exist finite sequences
{αi}n

i=1 ⊂ isoσ(A) and {βi}n
i=1 ⊂ isoσ(B) such that αi − βi = λ (resp.,

αiβi − 1 = λ) for all 1 ≤ i ≤ n. Here, the hypothesis A,B∗ ∈ (HP) implies
that the points αi and βi are eigenvalues of A and B∗, respectively. If we
let

M =
∨

1≤i≤n

(A− αi)−1(0), N =
∨

1≤i≤n

(B∗ − βi)−1(0),
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then (our hypothesis on the orthogonality of eigenspaces corresponding to
distinct eigenvalues) implies that A|M and (B∗|N )∗ are normal operators.

Let H(σ(dAB)) denote the set of functions f which are analytic on
an open neighbourhood of σ(dAB). Recall, [21], [4], that a Banach space
operator A ∈ B(X ) is generalized scalar if there exists a continuous algebra
homomorphism Φ from the space C∞(C) of infinitely differentiable complex
valued functions into B(X ), Φ : C∞(C) −→ B(X ), such that Φ(1) = I and
Φ(z) = A.

Theorem 4.1 f(dAB) satisfies Wt and f(d∗AB) satisfies a−Wt for every
f ∈ H(σ(dAB)).

Proof. Combining Propositions 2.1 and 2.2 it follows that dAB satisfies
a−Bt, hence also Bt. In particular,

σ(dAB) \ σw(dAB) = p0(dAB) ⊆ π00(dAB)

and

σa(dAB) \ σaw(dAB) = pa
0(dAB) ⊆ πa

00(dAB).

The conclusion that dAB has SVEP, Proposition 2.1, implies also that d∗AB

satisfies a−Bt, i.e.,

σa(d∗AB) \ σaw(d∗AB) = pa
0(d∗AB) = p0(d∗AB) ⊆ πa

00(d
∗
AB) = π00(d∗AB).

Observe that dAB is polaroid implies d∗AB is polaroid. Hence, in view of
Propositions 2.4 and 2.5, to prove the theorem it would suffice to prove
that dAB is polaroid. We consider the cases dAB = δAB and dAB = 4AB

separately.

(1) dAB = δAB . For λ ∈ isoσ(δAB), define sequences {αi}1≤i≤n and
{βi}1≤i≤n, and subspaces M and N , as above. Then A and B have repre-
sentations

A =
(

A11 A12

0 A22

)( M
HªM

)
, B =

(
B11 0
B21 B22

)( N
HªN

)

where the operators A11 and B11 are normal, σ(A) = σ(A11) ∪ σ(A22),
σ(B) = σ(B11) ∪ σ(B22) and 0 /∈ σ(δAiiBjj − λ) for all 1 ≤ i, j ≤ 2 except
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i = j = 1. Consider an X ∈ H0(δAB − λ). Letting X : N ⊕ (H ª N) −→
M⊕ (HªM) have the matrix representation X = [Xij ]2i,j=1, it follows that

(δAB − λ)mX =
(∗ ∗
∗ (δA22B22 − λ)mX22

)

(for some as yet to be determined entries ∗). Since

lim
m−→∞

‖(δAB − λ)mX‖ 1
m = 0

implies

lim
m−→∞

∥∥(δA22B22 − λ)mX22

∥∥ 1
m = 0,

and since 0 /∈ σ(δA22B22 − λ), we have that X22 = 0 and

(δAB − λ)mX =
( ∗ (δA11B22 − λ)mX12

(δA22B11 − λ)mX21 0

)
.

Since

lim
m−→∞

∥∥(δAiiBjj
− λ)mXij

∥∥ 1
m = 0

for all 1 ≤ i, j ≤ 2, and since 0 /∈ σ(δA11B22 − λ) and 0 /∈ σ(δA22B11 − λ),
X12 = X21 = 0. Hence

(δAB − λ)mX = (δA11B11 − λ)mX11 ⊕ 0.

The operators A11 and B11 being normal are generalized scalar operators.
Hence δA11B11 − λ = LA11−λ − RB11 is a generalized scalar operator (see
4.3.3 Theorem, 4.4.2 Proposition and 4.4.3 Theorem of [4]). Recall that a
generalized scalar operator satisfies the property that H0(T − λ) = (T −
λ)−pλ(0) for all λ ∈ C and for some non–negative integer p dependent upon
λ [1, pages 175–176]. Hence there exists a positive integer p such that
H0(δA11B11 −λ) = (δA11B11 −λ)−p(0). (Indeed, p = 1: argue as in the proof
of [7, Proposition 2.3] to prove that asc(δA11B11 − λ) ≤ 1.) Consequently,
H0(δAB−λ) = (δAB−λ)−p(0). To complete the proof, we now observe that
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if λ ∈ isoσ(δAB), then

B(H) = H0(δAB − λ)⊕K(δAB − λ) = (δAB − λ)−p(0)⊕K(δAB − λ).

Hence

(δAB − λ)pB(H) = 0⊕ (δAB − λ)pK(δAB − λ) = K(δAB − λ),

which implies that

B(H) = (δAB − λ)−p(0)⊕ (δAB − λ)pB(H),

i.e., λ is a pole of the resolvent of dAB .

(2) dAB = 4AB . We consider the cases λ 6= −1 and λ = −1 separately.
The proof for the case λ 6= −1 is similar to the earlier case, so we shall be
economical with our argument. Defining the subspaces M and N as before,
and letting A, B, X have the representations above, it is seen that

(4AB − λ)mX =
(∗ ∗
∗ (4A22B22 − λ)mX22

)

(for some as yet to be determined entries ∗). If X ∈ H0(4AB − λ), then
0 /∈ σ(4A22B22 − λ) and limm−→∞ ‖(4A22B22 − λ)mX22‖ 1

m = 0 imply that
X22 = 0. Consequently,

(4AB − λ)mX =
( ∗ (4A11B22 − λ)mX12

(4A22B11 − λ)mX21 0

)
,

where

lim
m−→∞

∥∥4A11B22 − λ)mX12

∥∥ 1
m = lim

m−→∞
∥∥4A22B11 − λ)mX21

∥∥ 1
m = 0.

Since 0 is not in both σ(4A11B22 − λ) and σ(4A22B11 − λ), we have that
X12 = X21 = 0, and then

(4AB − λ)mX = (4A11B11 − λ)mX11 ⊕ 0.

Thus the operator 4AB − λ is a generalized scalar operator. Hence
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H0(4AB − λ) = (4AB − λ)−p(0) for some positive integer p. (Indeed,
as for the case dAB = δAB , it can be seen that p = 1.) As above, this
implies that λ is a pole of the resolvent of 4AB .

To complete the proof we now let λ = −1. Then either 0 ∈ isoσ(A) ∩
isoσ(B), or 0 ∈ isoσ(A) and 0 /∈ σ(B), or 0 /∈ σ(A) and 0 ∈ isoσ(B). If
0 ∈ isoσ(A) ∩ isoσ(B), then upon letting M = A−1(0) and N = B∗−1(0)
we have

A =
(

0 A12

0 A22

)( M
HªM

)
, B =

(
0 0

B21 B22

)( N
HªN

)
,

where the operators A22 and B22 are invertible (which implies that
4A22B22 − λ = LA22RB22 is invertible). Letting X = [Xij ]2i,j=1 as above,
it follows that X22 = 0, and hence that LARB(X) = 0 for every X ∈
H0(LARB) = H0(4AB − λ). Thus H0(4AB − λ) = (4AB − λ)−1(0). The
proof of the remaining cases is similar: we consider 0 ∈ isoσ(A) and 0 /∈
σ(B). Then X ∈ H0(LARB) =⇒ limn→∞ ‖Ln

AX‖ 1
n ≤ ‖B−1‖ limn→∞

‖(LARB)nX‖ 1
n = 0; again, if X ∈ H0(LA), then limn→∞ ‖(LARB)nX‖ 1

n ≤
‖B‖ limn→∞ ‖Ln

AX‖ 1
n = 0. Hence H0(4AB−λ) = H0(LARB) = (LA)−1(0)

= (4AB − λ)−1(0). ¤

Remark 4.2 Recall from Remark 3.8 that class C operators satisfy prop-
erty (β). Operators T ∈ C which are either hyponormal or p-hyponormal
or log–hyponormal or w-hyponormal or paranormal or ∗-paranormal are
(T HN ) operators (see [6], [8] and [10]); hence, if T is an operator in any
one of these classes, then Corollary 2.7 implies that eigenspaces correspond-
ing to distinct eigenvalues of the operator are orthogonal. This property is
well known for the class of M -hyponormal operators (which is not a sub-
class of the class (T HN )), but fails for the class of (p, k)-quasihyponormal
operators. If, however, T ∈ B(H) is a (p, k)-quasihyponormal operator such
that T−1(0) ⊆ T ∗−1(0), then T does have this property. Thus Theorem
4.1 applies to dAB for operators A,B∗ in class C, provided one assumes
that T−1(0) ⊆ T ∗−1(0) whenever T = A or B∗ is a (p, k)-quasihyponormal
operator.

Perturbations. An operator C ∈ B(H) is a Riesz operator if σe(C) =
{0}. If C, D ∈ B(H) are commuting Riesz operators, and E ∈ B(H) is
any operator which commutes with C, then C − D, CD, CE and EC are
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Riesz operators [1, Theorem 3.112]. Observe that for operators C,D, E and
F ∈ B(X ),

δ(E+C)(F+D) = δEF + δCD

and

4(E+C)(F+D) = 4EF + LERD + LCRD + LCRF .

Hence perturbation of the operators E and F in dEF by operators C and D,
respectively, such that C commutes with E and D commutes with F results
in a perturbation of dEF by an operator which commutes with dEF .

Lemma 4.3 LC (resp., RC), C ∈ B(H), is a Riesz operator if and only
if C is quasinilpotent.

Proof. Recall, [15, Theorem 3.1], σe(δCD) = {σe(C) − σ(D)} ∪ {σ(C) −
σe(D)} for all C, D ∈ B(H). Taking D (resp., C) to be the trivial operator 0,
it follows that σe(LC) = {0} (resp., σe(RD) = {0}) if and only if σ(C) = {0}
(resp., σ(D) = {0}).
Theorem 4.4 If C,D ∈ B(H) are quasinilpotent operators such that
A commutes with C and B commutes with D, then d(A+C)(B+D) and
d∗(A+C)(B+D) satisfy a−Bt (hence also Bt).

Proof. It is known, see the proof of [9, Theorem 1.5(iii)] and [23], that if
S ∈ B(X ) is a Riesz operator which commutes with T ∈ B(X ), then σx(T +
S) = σx(T ) for σx = σb or σw or σab or σaw, and σx(T ∗ + S∗) = σx(T ∗)
for σx = σab or σaw. Thus if T and T ∗ satisfy a − Bt, then σab(T + S) =
σab(T ) = σaw(T ) = σaw(T + S) and σab(T ∗ + S∗) = σab(T ∗) = σaw(T ∗) =
σaw(T ∗ + S∗), i.e., T + S and (T + S)∗ satisfy a − Bt. Hence the proof of
the theorem follows from Theorem 4.1 and the argument above.

It is known that the null spaces of the operators LE , RF and LERF

are either trivial or infinite dimensional [2, Theorem 3.3] for all operators
E and F . If δCD and LARD + LCRD + LCRB are injective quasinilpotent
operators, then an argument from the proof of [9, Theorem 1.5(iii)], or [10,
Theorem 3.10(ii)], shows that (p0(d(A+C)(B+D)) = π00(d(A+C)(B+D)) = ∅,
and hence that) d(A+C)(B+D) satisfies Wt and d∗(A+C)(B+D) satisfies a−Wt.
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Recall from [10, Theorem 3.8] that if T ∈ B(X ) is a polaroid operator
with SVEP, and S ∈ B(X ) is an algebraic operator which commutes with
T , then f(T + S) satisfies Wt and f(T + S)∗ satisfies a − Wt for every
f ∈ H(σ(T +A)). Does a similar result hold for the operator dAB? We have
a partial result.

Theorem 4.5

( i ) If C,D ∈ B(H) are algebraic operators such that C commutes with A

and D commutes with B, then d(A+C)(B+D) and d∗(A+C)(B+D) satisfy
a−Bt.

( ii ) Let C, D ∈ B(H) be generalized scalar operators such that σ(C) and
σ(D) are finite subsets of C. If C commutes with A and D com-
mutes with B, then f(δ(A+C)(B+D)) satisfies Wt and f(δ∗(A+C)(B+D))
satisfies a−Wt for every f ∈ H(σ(δ(A+C)(B+D))).

Proof.

( i ) Recall from Corollary 3.7 that A+C and (B+D)∗ satisfy property (β).
Hence d(A+C)(B+D) has SVEP (see Proposition 2.1), which implies
that d(A+C)(B+D) and d∗(A+C)(B+D) satisfy a−Bt.

( ii ) LC and RD being generalized scalar operators with finite spectrum,
δCD is a generalized scalar operator with finite spectrum. Hence δCD

is an algebraic operator [21, Proposition 1.5.10], and δ(A+C)(B+D) =
δAB + δCD is the perturbation of δAB by an algebraic operator. Since
δAB is polaroid, see the proof of Theorem 4.1, and since δAB has
SVEP, δ(A+C)(B+D) is polaroid and has SVEP (see the proof of [10,
Theorem 3.6] or [12, Theorem 8.4.12]. Hence, by Propositions 2.4 and
2.5, f(δ(A+C)(B+D)) satisfies Wt and f(δ∗(A+C)(B+D)) satisfies a−Wt

for every f ∈ H(σ(δ(A+C)(B+D))).
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