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Abstract

We introduce a new notion of bisimulation, called event bisimulation on labelled Markov processes and
compare it with the, now standard, notion of probabilistic bisimulation, originally due to Larsen and Skou.
Event bisimulation uses a sub �-algebra as the basic carrier of information rather than an equivalence rela-
tion. The resulting notion is thus based on measurable subsets rather than on points: hence the name. Event
bisimulation applies smoothly for general measure spaces; bisimulation, on the other hand, is known only
to work satisfactorily for analytic spaces. We prove the logical characterization theorem for event bisimu-
lation without having to invoke any of the subtle aspects of analytic spaces that feature prominently in the
corresponding proof for ordinary bisimulation. These complexities only arise when we show that on analytic
spaces the two concepts coincide.We show that the concept of event bisimulation arises naturally from taking
the cocongruence point of view for probabilistic systems. We show that the theory can be given a pleasing
categorical treatment in line with general coalgebraic principles. As an easy application of these ideas we
develop a notion of “almost sure” bisimulation; the theory comes almost “for free” once we modify Giry’s
monad appropriately.
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1. Introduction

Markov processes with continuous-state spaces or continuous time evolution (or both) arise
naturally in several fields of physics, biology, economics, and computer science. Examples of such
systems are brownian motion, gas diffusion, population growth models, noisy control systems, and
communications systems.

LabelledMarkov processes (LMPs) were formulated [2,7] to study such general interacting Mar-
kov processes. In an LMP, instead of one transition probability function (or Markov kernel) there
are several, each associated with a distinct label. We do not consider internal non-determinism in
the present paper. Each such transition probability function represents the (stochastic) response
of the system to an external stimulus represented by the label. In our work, we do not associate
probabilities with these external stimuli; in other words, we do not intend to quantify the behaviour
of the environment. Thus, for those familiar with process algebra terminology, an LMP is a labelled
transition system with probabilistic transitions. The interaction is captured by synchronizing on
labels in the manner familiar from process algebra.

The following example, taken from [11], illustrates these ideas.

Example 1.1.Consider the flight management system of an aircraft. It is responsible for monitoring
the state of the aircraft—the altitude, windspeed, direction, roll, yaw etc.—periodically (usually
several times a second), it also monitors navigational data from satellites and makes corrections, as
needed, by issuing commands to the engines and the wing flaps. The physical system is a complex
continuous real-time stochastic system; stochastic because the response of the physical system to
commands cannot be completely deterministic and also because of unexpected situations like turbu-
lence. From the point of view of the flight management system, however, the system is discrete-time
and has continuous space. The time unit is the sampling rate. The entire system consists of many
interacting concurrent components and programming it correctly—letting alone verifying that the
system works—is very challenging. A formal model of this type of software brings us into the realm
of process algebra, because of the concurrent interacting components, stochastic processes and
real-time systems, the last because the responses have hard deadlines.

This study was initiated by Larsen and Skou [18] for discrete processes in a style similar to the
queueing theory notion of “lumpability” invented in the late 1950s [17]. In a series of previous papers
[2,6,7], such Markov processes with continuous-state spaces and independently acting components
were studied, and the phrase “labelled Markov processes” appeared in print explicitly referring
to the continuous-state space case. Of course, closely related concepts were already around: for
example, Markov decision processes [20]. The papers by Desharnais, Edalat, and Panangaden gave
a definition of bisimulation between LMPs, and gave a logical characterization of this bisimulation.
Subsequently, an approximation theory was developed [9,11,3] and metrics were defined [8,12,22,21].

Before we begin the present paper we will briefly review the prior results. The notion of proba-
bilistic bisimulation—henceforth just “bisimulation”—was based on the idea that if two states are
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bisimilar then their transition probabilities to bisimulation equivalence classes should match. This
notion works well for the discrete case, but has to be generalized appropriately to the continuous
case. One idea was to mimic this definition exactly with a few measure-theoretic conditions im-
posed to deal with the fact that not all sets need be measurable. This was the approach followed in
[9,11]. However, in an earlier approach [2,6,7] the authors had defined a bisimulation—they called
it a “zig-zag”—morphism and then defined a bisimulation relation as a span of such morphisms.
This also generalizes the discrete case but it turned out to be very painful to prove that one gets
a transitive relation and one had to restrict to Polish or analytic spaces. For such cases (analytic
subsumes Polish), the two notions coincide.

One of the nice things about the theory was the logical characterization of bisimulation. There
was already such a theorem for the discrete case in the paper of Larsen and Skou [18] but it was not
clear that such a theorem would work in the continuous-state case. Not only did such a theorem
exist but logical characterization worked with a much more parsimonious logic than one was led
to expect from the discrete case. There turned out to be a very spartan logic:

� ::== �|�1 ∧ �2|〈a〉q�,
which characterizes bisimulation for both continuous and discrete systems. There are two striking
things about this logic: there is no negative construct at all and one only needs binary conjunction
even though the branching may be uncountable. The proof heavily uses special properties of analytic
spaces that a priori have nothing to do with anything logical.

This is an irritating fact: one has to restrict to state-spaces that were analytic. In one sense this
is not very restrictive: almost every process that one can imagine has an analytic state space. In
particularRn with the usual Borel sets is analytic, indeed any manifold is analytic. In another sense,
it is conceptually unsatisfying that these notions specific to measure theory on metric spaces should
turn out to be so crucial. Why does not the theory work for general measure spaces? Certainly the
statement of the logical characterization theorem does not suggest anything about analytic spaces.

2. The road to event bisimulation

The first attempt to define LMPs for continuous systems [2] did not have any assumptions about
the �-algebra on the state space. LMPs were organized in a category and bisimulation was defined
in terms of spans of particular morphisms of this category, called zig-zag morphisms. However,
buried in the proofs was an alternative view of bisimulation as a cospan: in fact this is the germ of
the cocongruence idea that we develop in the present paper. With this definition, one could prove
that the logic L0 characterizes bisimulation. This was, however, viewed as an intermediate step at
the time: first, it was a compromise to use cospans instead of spans of morphisms as is usually done
when one wants to define a relation between objects of a category. Spans could not be used because
one could not show that bisimulation was transitive; indeed, this is equivalent to constructing a
span given a cospan, and to this day, only analytic spaces have been proven to satisfy this property
[15,14]. Second, the definition of bisimulation was not given on the state-space of a process but,
rather, through morphisms in the category: this is not what one was used to working with in the
finite case or in the non-probabilistic case. Consequently, a new relational definition of bisimula-
tion (called state bisimulation in this paper) was formulated that looked like a nice generalization
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of non-probabilistic bisimulation as well as of finite probabilistic bisimulation. However, for this
definition as well, characterization of bisimulation by the logic was only proven for analytic spaces.

In this paper, we give a new definition of bisimulation, called event bisimulation, that is equiv-
alent to the cospan definition and hence is characterized by the logic. This is proved without any
analyticity assumption: it works for arbitrary measure spaces. Moreover, it has the nice property
that the logic yields the biggest possible event bisimulation on any process.

We also compare this definition with the state bisimulation mentioned above, and show that the
two notions are exactly the same for countable processes and, more generally, for processes defined
on analytic spaces. More precisely, the largest state bisimulation is an event bisimulation on these
spaces. However, viewed as relations we show that roughly speaking, the former is finer than the
latter, and hence equates fewer states than the latter in general (in both analytic and non-analytic
spaces). The following simple example is very useful for intuition.

Example 2.1. Consider a set of states equipped with a �-algebra that does not separate points. For
example, one can take {1, 2, 3, 4} with the �-algebra, {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}. No matter what the
transition function is, the identity relation is a state bisimulation, but it is not an event bisimula-
tion. The reason is that the identity relation distinguishes states that are indistinguishable by the
�-algebra: for example, states 1 and 2 are not related according to the identity function whereas no
probability function could distinguish them because the probability function has to be measurable
with respect to the �-algebra in an LMP. Since event bisimulation is based on the �-algebra, it
cannot be finer. This example should be kept in mind for the remainder of the paper.

We believe that event bisimulation is the correct generalization of state bisimulation to the cate-
gory of all LMPs defined for arbitrary measure spaces. This is justified by three arguments: the two
notions agree on analytic spaces, event bisimulation is shown to be characterized by the logic for
any measurable space (analytic and non-analytic spaces) and finally because transitivity of event
bisimulation can be proven categorically without the analyticity assumption.

This new definition also has the advantage to reconcile the two fields of theory of processes and
probability theory; it allows one to use the �-algebra as a vector of information to define event
bisimulation between processes.

3. Background on LMPs

LabelledMarkov processes are probabilistic versions of labelled transition systems. Correspond-
ing to each label aMarkov process is defined. The transition probability is given by aMarkov kernel.
In brief, a labelled Markov process can be described as follows. There is a set of states and a set of
labels. The system is in a state at each point in time. The environment selects an action, and the sys-
tem reacts by moving to another state. The transition to another state is governed by a probabilistic
law. For each label there is a transition probability distribution which gives the probability distri-
bution of the possible final states given the initial state. For discrete state spaces, this is essentially
the model developed by Larsen and Skou [18].

We extended this to continuous-state systems, thus forcing our formalism to be couched in
measure-theoretic terms. For instance, we cannot ask for the transition probability to any set of
states—we need to restrict ourselves to measurable sets. The classical theory ofMarkov processes is
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typically carried out in the setting of Polish spaces rather than on abstract measure spaces. In pre-
vious papers, analytic spaces—which generalize Polish spaces—were used. However, in this paper
we eliminate the need for analytic spaces.

A key ingredient in the theory is the Markov kernel, which we sometime call transition kernel.

Definition 3.1. A Markov kernel on a measurable space (S ,�) is a function 
 : S ×�→ [0, 1] such
that for each fixed s ∈ S , the set function 
(s, ·) is a (sub-) probability measure, and for each fixed
X ∈ � the function 
(·,X) is a measurable function.

One interprets 
(s,X) as the probability of the process starting in state s making a transition into
one of the states in X . The Markov kernel is really a conditional probability: it gives the probability
of the process being in one of the states of the set X after the transition, given that it was in the state
s before the transition.

We will work with transition kernels where 
(s, S) � 1 rather than 
(s, S) = 1. The mathematical
results go through in this extended case. We view processes where the transition kernels are only
sub-probabilities as being partially defined.

Definition 3.2.A labelled Markov process (LMP) S with label setA is a structure (S ,�, {
a|a ∈ A}),
where S is the set of states,� is a �-algebra on S , and for all a ∈ A 
a : S ×� −→ [0, 1] is a Markov
kernel.

We will fix the label set to be A once and for all. We will use the following notational convention:
we write S = (S ,�, 
), using the calligraphic font to stand for the LMP and the ordinary capital
for the state space. We often drop the subscript of 
 when convenient since it does not restrict the
results.

The all important notion is that of a zig-zag morphism.

Definition 3.3. A zig-zag morphism f from S to S ′ is a surjective measurable function f : S → S ′
satisfying

∀a ∈ A, s ∈ S ,B ∈ �′.
a(s, f−1(B)) = 
′a(f(s),B).
We originally defined a bisimulation in terms of spans of zig-zags. In order to show transitivity, we
had to use a subtle construction due to Edalat [15]. Later, we gave the following direct relational
definition and finessed the use of that lemma. If R is a binary relation on a set S , we say that A ⊆ S
is R-closed if {s ∈ S : ∃a ∈ A.aRs} ⊆ A. We denote by �(R) the set of R-closed sets in �.

Definition 3.4.Given an LMP S , a (state) bisimulation relation R is a binary relation on S such that
whenever sRt and C ∈ �(R), then for all labels a, 
a(s,C) = 
a(t,C). We say that s and t are bisimilar
if there is any bisimulation R such that sRt.

One can define a simple modal logic and prove that two states are bisimilar if and only if they
satisfy exactly the same formulas. Indeed for finite-state processes one can decide whether two states
are bisimilar and effectively construct a distinguishing formula in case they are not [10].

As before we assume that there is a fixed set of “actions” A. The logic is called L and has the
following syntax:

T | �1 ∧ �2 | 〈a〉q�,
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where a is an action and q is a rational number between 0 and 1. This is the basic logic with which
one can establish the logical characterization. The last formula is interpreted as follows. We say
s |= 〈a〉q� if s canmake an a-transitionwith probability greater than or equal to the rational number
q and end up in a state satisfying �.

In the analysis of simulation one needs a logic with disjunction, L∨:

L | �1 ∨ �2.
The logical characterization theorem uses a remarkably parsimonious logic: no negation, no infini-
tary constructs. It works only when the state space is an analytic space. In the present paper, we will
show that the new notion of bisimulation leads to the logical characterization theorem for LMPs
defined on arbitrary measure spaces.

4. Event and state bisimulation

In defining a notion of probabilistic bisimulation one is forced to add transition probabilities.
It makes no sense to compare labels and transition probabilities between individual transitions. If
one were to do so then obvious examples would fail to be bisimilar. Consider a three-state system
with a-transitions from state 1 to states 2 and 3, each with a probability 1

2 , and compare it with a
two-state system with a probability 1 a-transition from state 1 to state 2. The question is how should
one aggregate the states?

Equivalence relations are the first thing that leaps to mind and this leads to state bisimulation
[11]. One can think of relations as spans of appropriate functions; in this case, we have the zig-zags
[7] described in the last section. On the other hand, there is a natural family of subsets at hand:
the measurable sets. One can think of the �-algebra and sub-�-algebras as defining families of
interesting sets of states. It is curious that measurability does not crop up as a restriction on the
possible bisimulation relations. To be sure, one has to look at R-closed measurable sets but there is
no restriction such as that R should be an equivalence relation with measurable equivalence classes
(it would be hard to prove transitivity if measurability was imposed on R). The notion of event
bisimulation puts measurability front and centre.

It will be helpful to reformulate state bisimulation in order to facilitate the switch to the new pro-
posed definition.Wewrite�(R) for the�-algebra ofR-closed�-measurable sets; it is a sub-�-algebra
of �.

Lemma 4.1. R is a state bisimulation iff (S ,�(R), 
) is an LMP.

Proof. (S ,�(R), 
) is an LMP iff ∀A ∈ �(R), 
(·,A) is �(R)-measurable. By definition, R is a state
bisimulation iff ∀A ∈ �(R), 
(·,A) is constant on R-classes. We show that this is equivalent to say-
ing that 
(·,A) is �(R)-measurable, which will imply the result. Let A ∈ �(R). If 
(·,A) is constant
on R-classes, {s|
(s,A) � r} ∈ � because 
(·,A) is measurable. Also {s|
(s,A) � r} is R-closed be-
cause 
(·,A) is constant. For the converse, if 
(·,A) is �(R)-measurable, then for every r ∈ [0, 1],
{s|
(s,A) � r} is R-closed: this implies that 
(·,A) is constant on R-classes. �

This shows that one can work with a smaller �-algebra closely connected with bisimulation
equivalence, but note that different state bisimulations can yield the same �-algebra. In fact one
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has a new LMP with the same kernel and state space but with a reduced �-algebra. Note that if R
is the identity relation, then �(R) = �. It is easy to see that

Lemma 4.2. R is a state bisimulation iff the identity map i : (S ,�, 
)→ (S ,�(R), 
) is a zig-zag.

Ideally one would like it to be the case that any zig-zag induces a state bisimulation on its domain.
However, this is false. Given a zig-zag f : (S ,�, 
)→ (S ′,�′, 
′) and R the relation induced on S by
f we can conclude that if f(s1) = f(s2) then 
(s1,A) = 
(s2,A) for every A in f−1(�′) ⊆ �(R) and
not for every A in�(R). Thus, the equivalence induced by a zig-zag is too fine in general. The crucial
point is that we are making the equivalence relation primary and the �-algebra secondary. Instead
we should work with the structure naturally associated with a �-algebra: in other words, we should
look for a sub-�-algebra.

Definition 4.3.An event bisimulation on anLMP (S ,�, 
) is a sub-�-algebra� of� such that (S ,�, 
)
is an LMP.

We will refer to both � and its associated equivalence �(�) as event bisimulation. If � ⊆ � is
a sub-�-algebra of � we define �(�) an equivalence relation on S by (s, t) ∈ �(�) if and only if
∀A ∈ �.s ∈ A⇔ t ∈ A.

The phrase “event bisimulation” ismeant to suggest that the focus of interest has shifted from the
individual points of S to themeasurable sets, or—to emphasize the probabilistic interpretation—the
events. What has happened here is that the notion of bisimulation qua relation has been replaced
by an arbitrary sub-�-algebra rather than �(R), the sub-�-algebra generated by a relation R. The
key point is that the transition kernels have to have the appropriate measurability properties with
respect to �. We can more sensibly say that �, rather than �(�), is an event bisimulation.

The similarity with state bisimulation can be made quite striking.

Lemma 4.4. If � is an event bisimulation, then the identity function on S defines a zig-zag morphism
from (S ,�, 
) to (S ,�, 
).

If we compare this result to Lemma 4.2, we can see that it fits more nicely in the category of LMPs
in that it does not talk about relations. Moreover, we get a perfect correspondence with zig-zags.

Lemma 4.5. If f : (S ,�, 
)→ (S ′,�′, 
′) is a zig-zag morphism, then f−1(�′) is an event bisimulation
on S.

In order to facilitate the study of the relation between state and event bisimulation, we need some
elementary mathematical observations connecting �-algebras and binary relations. Let R be a rela-
tion on S , which is a set equipped with a �-algebra �. We write ϒ(R) for the R-closed subsets of S .
Then �(R) = � ∩ ϒ(R). Since ϒ(R) is clearly a �-algebra, �(R) is therefore a sub-�-algebra of �.

We have twomaps back and forth between sub-�-algebras and equivalence relations:� �→ �(�)
and R �→ �(R).

Lemma 4.6. Let (S ,�) be a measurable space, R a relation on S and � ⊆ � a sub-�-algebra. Then

(i) � ⊆ �(�(�)).
(ii) R ⊆ �(�(R)).
(iii) If R-equivalence classes are in �, then R = �(�(R)).
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Proof. (i) First let A be in�, then A ∈ �; also A is�(�)-closed. Thus A ∈ � ∩ ϒ(�(�)) = �(�(�)).
(ii) Next, we have [s]�(�(R)) = ∩A � s with A ∈ � and R-closed; and [s]R = ∩B � s with B R-closed;
so ⊆ follows. Now for ⊇ in (iii), if [s]� itself is in � then it qualifies as an A in the big intersection
above and the result follows. �
Proposition 4.7. Let (S ,�) be a measurable space and � ⊆ � a sub-�-algebra. Then

(i)�(�) = �(ϒ(�(�))).
(ii) If � ⊆ � then �(�) = �(�(�(�))).

Proof. (i) follows from Lemma 4.6 (iii), replacing � by ϒ(R).
(ii) Since � ⊆ � ∩ ϒ(�(�)) ⊆ ϒ(�(�)) and by (i) we have �(�) ⊇ �(� ∩ ϒ(�(�)))
⊇ �(ϒ(�(�))) = �(�). �

These lemma and proposition show how to transfer results between sub-�-algebras and equiva-
lence relations.

We presented event bisimulation as a weakening of state bisimulation. Consequently, we would
like to prove that the latter is always an event bisimulation. However, this is not actually the case
in general: essentially because there is not enough measure-theoretic control on the relations used
to define state bisimulation.

We know from Lemma 4.6 that R ⊆ �(�(R)). The following lemma shows that if a state bisim-
ulation satisfies the reverse inclusion, then it is an event bisimulation.

Lemma 4.8. If relation R is a state bisimulation, then it is an event bisimulation iff R = �(�(R)).
Proof. If R is a state bisimulation and an event bisimulation, then R = �(�) for some �. We have
that � ⊆ �(R) because every A ∈ � is R-closed. Thus R = �(�) ⊇ �(�(R)). The reverse inclusion
is given by Lemma 4.6 . Conversely, if R is a state bisimulation we know that (S ,�(R), 
) is an LMP,
so R is an event bisimulation for � = �(R). �
Putting together this result and Lemma 4.6 (iii), we obtain:

Corollary 4.9. If relation R is a state bisimulation with equivalence classes in �, then R is an event
bisimulation.

This immediately implies that a state bisimulation is an event bisimulation in the countable case,
where every set is measurable.

Corollary 4.10. If S is countable and � = P(S), any state bisimulation is an event bisimulation.

The condition that� = P(S) is necessary in this corollary as one can see from Example 2.1. Note
that this is a necessary and sufficient condition for a countablemeasurable space to be analytic. This
represents the essential difference between analytic and non-analytic state spaces for discrete LMPs.

We cannot expect that every state bisimulation satisfies the equality in Lemma 4.8, as the follow-
ing example shows.

Example 4.11. There exists an equivalence relation R such that R ⊂ �(�(R)). This will be even
shown on the analytic space ([0, 1],B, 
). Let V ⊆ S be non-Lebesgue-measurable and define R by
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the two equivalence classes, V and V c: then �(R) is the trivial �-algebra {∅, [0, 1]}, so �(�(R))
equates everything and therefore is different from R.

To emphasize the condition on Lemma 4.8, we define 
 such that we do not have R = �(�) for
any other�. If we want it to be the case, then� cannot separate V and therefore� = {∅, V , V c, S}
so we can pick two s and s′ (there must be two of them in the case of [0, 1] and the Borel sets) in V
and define 
 such that 
(s, S) = 
(s′, S) = 1, but 
(s, {s}) = 1 and 
(s′, {t}) = 1 with t �∈ V (this way R
is a state bisimulation because the only non-empty measurable in�(S) is S = [0, 1]), but R is not an
event bisimulation for � because the kernel 
 is not �-measurable.

The conclusion is that, even on an analytic space, not every state bisimulation is an event bisim-
ulation. This may seem to kill any hope to show that a state bisimulation is an event bisimulation.
However, one can observe that when this is the case, the state bisimulation distinguishes too many
states, in particular it distinguishes states that are not separable by �. This is a liberty that an
event bisimulation never has. The following result shows that assuming the fact that “a bigger state
bisimulation is better,” we do have that result.

Proposition 4.12. If R is a state bisimulation, then �(�(R)) is a state bisimulation and an event bisim-
ulation.

Proof.ByLemma4.2, ifR is a state bisimulation, then the identitymorphism i :(S ,�, 
)→(S ,�(R), 
)
is a zig-zag. Since i−1(�(R)) = �(R), by Lemma 4.5 we have that �(�(R)) is an event bisimula-
tion. �

Another route to the result is without going through zig-zag morphisms.

Lemma 4.13. If R is a state bisimulation, then �(R) = �(�(�(R))).
Proof. �(R) ⊇ �(�(�(R))) because R ⊆ �(�(R)). For inclusion, let X ∈ �(R), then X is �(�(R))-
closed and in �. Thus it is in �(�(�(R))). �
Alternate proof of Proposition 4.12. An easy application of Proposition 4.7 and Lemma 4.8 gives

us that �(�(R)) is an event bisimulation. The lemma just above and Lemma 4.1 proves that it is a
state bisimulation. �

Proposition 4.12 implies that if a state bisimulation is not an event bisimulation, then it can be
expanded to one that is. One example is the identity relation, which is not an event bisimulation
when � does not separate points, but it is a state bisimulation. This is an example of a relation that
sees more differences than � can see.

Lemma 4.14. The identity relation I is a state bisimulation; it is an event bisimulation iff � separates
points.

Proof. �(I) = � and Lemma 4.1 proves the first point. For the second one, suppose I = �(�) for
some � ⊆ �; then � separates points in S , so � also does; in fact I = �(�) in this case.

Conversely if � separates points, then I = �(�) and obviously (S ,�, 
) is an LMP, so I is an
event bisimulation. �
One interpretation of this is that the correct “identity relation” in measure spaces is the one gener-
ated by the �-algebra rather than the usual one defined on the points.
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An important remark has to bemade.We know fromProposition 4.12 that the largest state bisim-
ulation is an event bisimulation. We will see in the next section that the largest event bisimulation is
also a state bisimulation for analytic spaces.We do not know if it is the case for non-analytic spaces.
The question is equivalent to asking if state bisimulation is characterized by the logic in any LMP.
Indeed, we know from previous work [6,7] that state bisimulation is characterized by the logic for
analytic spaces, and we will prove in Section 5 that event bisimulation is also for any LMP.

4.1. Analytic spaces

Wehave already shown that for countable spaces with complete �-algebras the two notions, state
and event bisimulation coincide. In fact they coincide for the vastly larger class of analytic spaces.
Indeed, the proofs of logical characterization of bisimulation given in previous papers essentially
establish this fact though it is hidden in the proofs. They hinge on the special properties of countably
generated �-algebras. The following lemma from [13] uses the unique structure theorem of analytic
spaces. If C ⊆ �, we write �(C) for the smallest �-algebra containing C.
Lemma 4.15 ([13]). Let (S ,�) be an analytic space. Let C ⊆ � be countable and assume S ∈ C. Then
�(�(C)) = �(C).
Lemma 4.16 (Bridge lemma). If � is analytic and � an event bisimulation such that � = �(C) for
some countable C ⊆ �, then �(�) is a state bisimulation.

Proof. By Lemma 4.15, we have �(�(�)) = �(�) = �. Since � is an event bisimulation (S ,�, 
) is
an LMP. Consequently, (S ,�(�(�)), 
) is an LMP and hence �(�) is a state bisimulation. �
This implies that in analytic spaces, themaximal state bisimulation and event bisimulation are equal.

Corollary 4.17. In the countable case, state bisimulation is exactly event bisimulation whenever the
sigma-algebra considered is the powerset.

5. Logical characterization

The logical characterization of probabilistic bisimulation [6,7] as it was originally proved worked
with what we are now calling state bisimulation and was established for analytic spaces. In the pres-
ent section,we establish the logical characterizationof bisimulation for event bisimulation forLMPs
defined on general measure spaces. In conjunction with the results of the previous section—that the
two notions are essentially the same on analytic spaces—it implies the earlier logical characteriza-
tion of bisimulation result. Moreover, it shows that the role of analytic spaces can be confined to
a single lemma, namely Lemma 4.15. At the end of the section we explicate the measure-theoretic
significance of the particular logic L0 that we used.

We recall the logic

T | �1 ∧ �2 | 〈a〉q�.
Given a formula � we write [[�]] for the set of states satisfying the formula �. It is easy to see that
these are all measurable sets. We write [[L0]] for the collection of sets of the form [[�]]. We write
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�(L0) for the �-algebra generated by [[L0]]: we call this the �-algebra generated by the logic. The
key point that we shall establish is that the �-algebra generated by the logic is an event bisimula-
tion; moreover, it is the maximal event bisimulation. From this the logical characterization of event
bisimulation is immediate.

The proofs depend on properties of �-systems and d-systems.We recall the basic definitions from
the literature [23].

Definition 5.1. Let S be a set: (1) a �-system on S is a subset of P(S) closed under intersections and
containing S , (2) a d-system D on S is a subset of P(S) containing S , closed under increasing unions
and relative complements (i.e., if A,B ∈ D and A ⊆ B, then B \ A ∈ D).

The point of �-systems is that one can often work with them instead of the �-algebras that they
generate; usually the sets of a �-system are much simpler than the sets in the generated �-algebra.

Another key concept, and the one that brings out the special role of the logic L0, is stability.

Definition 5.2. Let (S ,�, 
) be an LMP and � ⊆ �, we say that � is stable with respect to (S ,�, 
)
if for all A ∈ �, r ∈ [0, 1], a ∈ A,

{s : 
a(s,A) > r} ∈ �.
Note that� is an event bisimulation if and only if it is stable and that the condition of measurability
of a kernel 
(·,A) is exactly that � be stable. We will use the following notation in the rest of the
paper. We write 〈a〉qA where A is a (measurable) set to mean {s : 
a(s,A) > q} and also {a}qA to
mean {s : 
a(s,A) � q}. Clearly, both these sets are measurable if A is and 
 is a Markov kernel. We
also write An ↑ A to mean that the family of sets An is nested increasing and that ∪nAn = A.
Proposition 5.3. [[L0]] is the smallest stable �-system of (S ,�, 
).

Proof. By construction, [[L0]] contains S=[[�]]. It is a �-system because ∧ ∈ L0. It is stable because
〈a〉r� ∈ L0 whenever � ∈ L0. It is the smallest because if C is another stable �-system:

(i) [[�]] = S ∈ C;
(ii) if [[�]], [[�′]] ∈ C, then [[� ∧ �′]] = [[�]] ∩ [[�′]] ∈ C, since C is closed under intersection;
(iii) if [[�]] ∈ C, then [[〈a〉q�]] = 〈a〉q([[�]]) ∈ C, since C is stable. Thus, inductively, we have that

[[L0]] ⊆ C. �

Lemma 5.4. If C is a stable �-system of (S ,�, 
), then �(C) is also stable.

Proof.We show that D = {A ∈ � : ∀a∀q 〈a〉q(A) ∈ �(C)} is a d-system. (i) S ∈ D because S ∈ C and
C is stable;
(ii) if A, B ∈ D and A ⊂ B, then

〈a〉q(B \ A) = [∪r�q({a}r(B) ∩ (〈a〉r−q(A)))]c,
because 
a(s,B \ A) � q iff ∃r � q (
a(s,B) � r ∧ 
a(s,A) � r − q), where r can always be chosen
rational, so we have a countable union of measurable sets and hence 〈a〉q(B \ A) ∈ �(C), implying
that B \ A ∈ D;
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(iii) if An ∈ D and An ↑ A, then 〈a〉r(∪nAn) = ∩n〈a〉r(An), because 
a(s,A) = lim ↑ 
a(s,An), by the
standard continuity property of measures, and hence A ∈ D. This shows that D is a d-system.

Moreover, C ⊂ D, because C is stable, and by a well-known theorem in measure theory known
as the monotone class theorem [23], we have that �(C) ⊂ D. In other words, �(C) is stable. �

This gives us characterization of event bisimulation by the logic L0.

Proposition 5.5. �([[L0]]) is the smallest stable �-algebra included in �.

Proof. Let �m be the smallest stable �-algebra included in �.
By Lemma 5.3, [[L0]] ⊂ �m, because �m is a stable �-system, and hence �([[L0]]) ⊂ �m.
Conversely, [[L0]] is a stable �-system by Lemma 5.3, and hence, by Lemma 5.4, �([[L0]]) is stable
and hence contains �m. �
Corollary 5.6. The logic L0 characterizes event bisimulation.

Proof. From Proposition 5.5, stability tells us that �([[L0]]) is an event bisimulation and the fact
that it is the smallest implies that any event bisimulation preserves L0 formulas. �

Moreover, Proposition 5.5 yields an interesting definition of L0 on a pure measurability basis.
Finally, we also know that we cannot do better since �([[L0]]) is the smallest stable sub-�-algebra.

6. Event bisimulation as probabilistic cocongruence

In this section, we give the categorical—more precisely, coalgebraic - description of event bisim-
ulation. We recall the categorical treatment of LMPs [16,19] first. For simplicity we will elide labels.
In talking about bisimulation categorically it makes more sense to think of it as a relation between
different LMPs rather than as a relation on the state space of a single LMP. This is a very slight shift
in point of view. At the beginning, we will mention the connection but as the discussion proceeds
we will just talk about state and event bisimulation between different LMPs.

The base category is the categoryMes : the objects are sets equipped with a �-algebra and the
morphisms are measurable functions. This category has pullbacks and finite products constructed
just as in Set . More importantly, it has coequalizers and finite coproducts—also constructed just
as in Set—and hence, all finite colimits; in particular, it has pushouts.

Giry [16] defined amonad onMes taking (X ,�X ) to X := {!|! : �X → [0, 1]}where the ! are
(sub)probability measures on X . One has the canonical evaluation maps ∀A ∈ �X .eA :  X → [0, 1]
given by eA(!) = !(A). The set X is equipped with the initial �-algebra making all the eA measur-
able. The arrow part of  is  (f) = ! ◦ f−1. The monad multiplication # :  2 →  is given by

#($)(A ∈ �X ) =
∫
 X

eA d$

and the unit is %X : X →  X is %(x) = 'x, the Dirac measure concentrated at x.
Labelled Markov processes are just coalgebras of  . A measurable function 
 : X →  X is—if

curried appropriately—exactly aMarkov kernel. A coalgebra homomorphism is precisely a zig-zag
morphism. Thus, the category LMP of LMPs and zig-zag morphisms is just the category of coal-
gebras of  . This coalgebraic presentation was developed by de Vink and Rutten [4,5] and noted
in passing in [2].
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Fig. 1. Bisimulation as a span in a coalgebra category.

Fig. 2. State bisimulation as a span.

Usually bisimulation is defined as a span in the coalgebra category as shown in Fig. 1. Here (
and ) define -coalgebras on X and Y , respectively; in other words, they define LMPs. The span of
zig-zags given by f and g—with f and g both surjective—define a bisimulation relation between
(X ,() and (Y ,)). State bisimulation is defined as the existence of the special span shown in Fig. 2
as one can see from Lemma 4.2. In the other direction, starting from a span bisimulation between
two LMPs S and S ′, one can define a state bisimulation on the state space of the coproduct S + S ′,
which is the disjoint union S % S ′ equipped with the evident �-algebra.

We will argue that if state bisimulation corresponds to spans, event bisimulation corresponds to
cospans of morphisms and that transitivity arises more naturally with cospans.

Let us think of bisimulation as a span between two LMPs. One needs to show that bisimulation
is transitive. That is, given spans from S1 to S2 and from S2 to S3 we would like to construct a span
from S1 to S3. Given this situation we have a cospan formed by U1, U2, S2 and the zig-zags f2 and
g1 as shown in Fig. 3.

Usually one postulates the existence of pullbacks, or at least weak pullbacks, in order to complete
the square as shown in Fig. 4.

Fig. 3. Composing spans.

Fig. 4. Composing spans given weak pullbacks.
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Fig. 5. Composing cospans.

However, these weak pullbacks need to exist in the category of coalgebras, not just in the cat-
egory Mes . In order for this to happen one needs to have that  preserves weak pullbacks. This
rarely happens. In the original de Vink and Rutten paper [4,5], the existence of weak pullbacks in
the category of coalgebras was shown in the discrete setting. Edalat [15] produced a much weaker
construction—he called it a “semi-pullback”—which allows one to complete the square, but has
no universal properties, in the category of coalgebras of over the base category of analytic spac-
es equipped with their Borel �-algebra. This was subsequently used to show that bisimulation is
transitive [2,7] given the span definition of bisimulation.

With cospans everything works much more smoothly. In fact, cospans are the natural structure
to use if one is interested in equivalence relations. To begin, we observe that if we work with cospans
then we can compose using pushouts and this does not require to preserve anything. We consider
the situation shown in Fig. 5 where we have omitted labels for some of the arrows, for example
 f :  X →  U , where they can be inferred by functoriality. The arrows f , g, h, and k are zig-zags.

One way to construct a cospan from X to Z is to construct a pushout in the coalgebra category.
InMes , we can construct a pushout for the arrows g and f to obtain the situation shown in Fig. 6.

Fig. 6. Pushouts to compose cospans.
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Here W is the object constructed as the tip of the pushout inMes . In order to have a pushout in
the category of coalgebras we need to put a coalgebra structure on W , i.e., we need to construct a
morphism 0 : W →  W , shown dotted in the diagram. Consider the following calculation:

g; 
; i
= ); g; i g is a zig-zag,
= ); (g; i) functoriality,
= ); (h; j) pushout,
= ); h; j functoriality,
= h; %; j h is a zig-zag.

Thus, the outer square formed by Y ,U , V and  W commutes and couniversality implies the
existence of the morphism 0 from W to W . It is a routine calculation that this gives a pushout in
the category of coalgebras. This does not require any special properties of  ; it holds in the most
general case, i.e., inMes .

The categorical definitions can now be given.

Definition 6.1.An event bisimulation on S = (S ,�, 
) is a surjection in the category of coalgebras of
 to some T .

Wehave alreadynoted that such arrows are zig-zags and that a zig-zag induces an event bisimulation
on its source. For the case of an event bisimulation between two different LMPs we have.

Definition 6.2. An event bisimulation between S and S ′ is a cospan of surjections in the category of
coalgebras to some object T .

This can be viewed as ordinary event bisimulation on S + S ′.
Since cospans compose, it is clear that viewed as a relation between LMPs event bisimulation

(properly called probabilistic cocongruence) is an equivalence relation. We do not quite have a cat-
egory of LMPs with cospans as the morphisms since associativity only holds up to isomorphism:
we have a bicategory.

One can define an epi-mono factorization on the category Mes that carries over to the cate-
gory of coalgebras. Here is a brief sketch of the idea. Given f : (S ,�→ (T ,�) we define a new
sigma algebra �′ := {f(S) ∩ B,∀Bin�}. Then (f(S),�′) is a measurable space, f restricts to a f ′
(which is the same on points) which is still measurable, since inverse images are unchanged; so
f = (S ,�)→f ′

(f(S),�′)→j (S ,�) is an epi-mono factorization, since it is in Set. This can be
potentially useful in talking about approximation but we have not developed this point.

7. Almost sure bisimulation

Amajor virtue of the categorical presentation of the previous section is that one can modify the
monad to deal with other, closely related situations. One does not then have to develop the theory
again from scratch; one can just use the abstract machinery with a slightly different instantiation.
In this section, we give an example of this.
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In one of the early papers on LMPs [2] the question of negligible sets was raised. Consider the
LMPs U = ([0, 1],B, 
), where B are the Borel sets and 
(x,A) = 3(A) where 3 is Lebesgue measure;
and U ′ with the same state space and �-algebra but with Markov kernel given by 
′(x,A) = 
(x,A)
if x is irrational and 
′(x,A) = 0 if x is rational. These two processes behave identically “almost
always”: except for a set of measure zero they are bisimilar. If we were to observe these systems, the
probability that we would detect the difference is zero. We would like to formalize this concept by
introducing a notion of almost sure bisimulation.

There is an obvious gap in the discussion of the last paragraph. According to what measure
should one say that the rationals have measure zero? One immediately thinks of Lebesgue measure
in this example but what of other examples? Should the state space come equipped with additional
structure—perhaps a measure—in order to define what the sets of measure zero are? We introduce
such additional structure, but one does not need to introduce a measure just to define the sets of
measure zero. Instead we introduce an axiomatically defined class of negligible sets. This can be
smoothly incorporated into Giry’s monad and then one has the notion of almost sure bisimulation
“almost free” with the discussion of the previous section.

We introduce a new category Mes ′ refining the structure of Mes . The purpose of this refine-
ment is to give a means of taking morphisms differing only on negligibly many points to be equal.
In order to express this, one needs to add to each object a notion of negligible sets N and de-
fine:

f ∼ g := ∃N ∈ N : {f /= g} ⊆ N. (1)

We write A ⊆∈ N to mean, there is an N ∈ N such that A ⊆ N . For instance, f ∼ g can be
rewritten as {f /= g} ⊆∈ N .

7.1. The categoryMes ′

An object is a triple (S ,�,N ) where:

• (S ,�) is an object inMes ,
• N ⊆ � is a distinguished set of measurable subsets of S .

An arrow (S ,�,N ) f−→ (T ,�,M) is:

• is an arrow inMes ,
• such that in addition:

∀M ∈ M ∃N ∈ N : f−1(M) ⊆ N. (2)

This additional condition is obviously stable by composition, so our data actually defines a
category; for N ′′ ∈ N ′′, (gf)−1(N ′′) = f−1(g−1(N ′′)) ⊆ f−1(N ′ ∈ N ′) ⊆ N ∈ N .

The additional component in objects, N , is to be thought of intuitively as a set of negligible sets,
and will have some closure properties to be specified later on. One can think of the properties of
N!, the set of negligible sets defined by a measure !:
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N! := {A ∈ � | !(A) = 0},
where (S ,�) is a measure space. However, for the present we assume nothing about N .

Note that one does not demand the stronger condition that f−1(M) ∈ N ; it is enough for f−1(M)

to be included in a negligible set. One could write equivalently f−1(M) ⊆∈ N .
This condition will result in a serious restriction onMes arrows. For instance, random variables

with a finite number of values, say x1, . . . , xn, from (S ,�,N ) to ([0, 1],B,N (3)), where 3 is the Lebes-
gue measure, will all violate this condition unless for all i, {X = xi} ⊆∈ N . In particular, no discrete
random variable from ([0, 1],B,N (3)) to itself is inMes ′.

One now refines Giry’s monad to take into account the collection of negligible sets. First the
object part:

one chooses the additional componentN ( (S ,�,N )) to be generated (in the sense of the closure
properties to be defined later) by the following particular subsets of measures:

∀A ∈ N .NA := {! | !(A) > 0}. (3)

Since A ∈ N ⊆ �, NA ∈ �( (S ,�)) so our collections of negligible sets are adapted to the �-algebra
structure. The intent of this definition is that we want to neglect the measures that ascribe non-zero
weight to the negligible sets. Note that if we chose to keep ameasure inMes ′ defining negligible sets,
we would have to define such a measure here, without ever using its values on non-negligible sets.

Second the arrow part:
The definition of (f) remains the same, but one has to check that condition (2) is satisfied by (f).
Suppose then f : (S ,�,N )→ (S ′,�′,N ′) and let A be in N ′:

! ∈  (f)−1(NA) ⇔  (f)(!) ∈ NA
⇔  (f)(!)(A) > 0
⇔ !(f−1(A)) > 0

so that (f)−1(NA) = {! | !(f−1(A)) > 0}. Now by (2), for some B ∈ N , f−1(A) ⊆ B, hence (f)−1

(NA) ⊆ NB, which is what we wanted to prove.
Verifying functoriality of  is as before. We now have to lift the monad to the refined setting

with the negligible sets.
We need to prove that the natural transformations also are arrows in the new sense.

Lemma 7.1. For all A ∈ � :

(i) %−1(NA) = A;
(ii) #−1(NA) = NNA.

Proof. (i) a ∈ %−1(NA)⇔ 'a(A) > 0 ⇔ a ∈ A.
(ii) P ∈ #−1(NA)⇔ #(P)(A) > 0 ⇔ ∫

eA dP > 0 ⇔ ∫
1NA dP > 0 since NA := {eA > 0}, the support

of eA (trivial integration lemma). And the last statement says precisely P(NA) > 0, i.e., P ∈ NNA . �
From this lemma one deduces readily that both % and # satisfy (2).

Wenowhave constructed a refined version ′ of . Naturality requirements andother conditions
are still valid, because they are commutative diagrams and these will continue to hold.
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The idea of the definition of N ( (S ,�,N )) is that a set of measures is considered to be negligi-
ble if all measures in it “see” a given negligible set. Why are we working with abstract negligibles,
as opposed to those given by an actual measure? Well, one does not know how to define such a
probability on  (S ,�). When is an N obtainable as an N! for some ! is not so clear. In any case,
such a ! would only intervene in the theory through sets of ! measure 0, so any two equivalent !
would define isomorphic objects.

One now defines the quotient category,Mes ′ obtained by identifying arrows that disagree only
on a negligible set. Objects are as inMes ′; arrows are ∼ equivalence classes.

Lemma 7.2. The equivalence ∼ defined in (1) is stable under composition.

Proof. g ∼ h⇒ gf ∼ hf : one has {g /= h} ⊆ N ′ for some N ′ ∈ N ′, so:

{gf /= hf } = f−1({g /= h}) ⊆ f−1(N ′)

and for some N ∈ N , f−1(N ′) ⊆ N ∈ N , because f satisfies condition (2).
g ∼ h⇒ fg ∼ fh: again one has {g /= h} ⊆ N ′ for some N ′ ∈ N ′, so:

{fg /= fh} ⊆ {g /= h} ⊆ N ′ ∈ N ′. �

Lemma 7.3 ( respects∼). Let f , g be arrows from S = (S ,�,N ) to T = (T ,�,M), then: f ∼ g⇒
 (f) ∼  (g).
Proof. Let f , g be as above, ! be in  (S). By definition of ∼, there exists an N ∈ N (S), such that
{f /= g} ⊆ N . Then one has:

 (f)(!) /=  (g)(!) ⇔ ∃B ∈ � : !(f−1(B)) /= !(g−1(B))

⇒ ∃B ∈ � : !(f−1(B)) g−1(B)) > 0
⇒ !(N) > 0
⇔ ! ∈ {eN > 0} ∈ N ( (S))

Second step: By additivity, !(A ∪ B) = !(A)B)+ !(A ∩ B), so !(A)B) = 0 implies !(A ∪ B) =
!(A ∩ B), which implies !(A) = !(B) by sandwiching.
Third step: f−1(B)) g−1(B) ⊆ {f /= g} ⊆ N .
So { (f) /=  (g)} ⊆∈ N ( (S )), or, in other words,  (f) ∼  (g). �

As an illustration, we may compute what it means for a kernel k : (S ,�,N )→  (S ,�,N ) to be
a morphism inMes ′. It has to satisfy two conditions:

1. usual stability wrt measurables: � stable (this is the usual measurability condition);
2. stability wrt negligibles: N (sub-) stable under {a}0.

Proof. Only the second part needs a proof. By definition 
 has to satisfy the condition that for all
A ∈ N , 
(·,A)−1(NA) ⊆∈ N , which means {s | 
(s,A) > 0} = {a}0(A) ⊆∈ N . �

When negligibles are given via some measure ! defined on (S ,�), that is to say N = N!, then the
condition amounts to
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!(A) = 0 ⇒ !({a}0(A)) = 0,

which says that “negligibly many points may jump to a negligible set.”

Lemma 7.4 (domination).Suppose 
 is a kernel, and ! dominates 
 in the sense that for all s, 
(s, ·)* !,
then N! is stable under 
, that is to say: ∀B ∈ N! : {a}0(B) ∈ N!.
Proof. If !(B) = 0, then for all s, 
(s,B) = 0, so that {a}0(B) = ∅ ∈ N!. �
The second condition of “stability with respect to negligibles” is seen to be a weaker form of
“domination.”

7.2. Abstract completion

In measure theory there is a standard notion of completion of a �-algebra with respect to a mea-
sure. The point is that many �-algebras contain non-measurable subsets of sets of measure zero.
This is very annoying; one would like to say that a subset of a negligible set is also negligible, but one
cannot, in general, for silly reasons. The standard example is the Borel algebra and the Lebesgue
measure. There are subsets of sets of Lebesgue measure zero that are not Borel measurable. The
completion process adds in all these sets and yields a bigger �-algebra. Actually “completion” is a
terrible word; there is no reasonable sense in which the resulting �-algebra is complete except that
the completion process when applied again adds nothing new. We can describe this completion
process in terms of our abstract notion of negligible set: it is here that we need to impose some
axioms on N .

Definition 7.5 (�-ideal). A �-ideal N on S is a set of subsets of S which is (1) downward closed (i.e.,
N ↓= N ), and (2) closed under countable unions.

Definition 7.6 (abstract completion). Given a measurable space (S ,�), and a �-ideal N , one defines
the completion of � by N :

�N := {K | ∃A,B ∈ � : A ⊆ K ⊆ B&B \ A ∈ N }.
Lemma 7.7. �N is a �-algebra that contains �, and (� ∩ N )↓. Let ! be a subprobability defined on
(S ,�), if !(N ) = {0}, ! has a unique extension to �N .

Proof. � ⊆ �N : any A ∈ � verifies A ⊆ A ⊆ A and A \ A = ∅ ∈ N , since N is downward closed.
(� ∩ N )↓⊆ �N : anyN ∈ (� ∩ N )↓verifies∅ ⊆ N ⊆ N ′ for someN ′ ∈ � ∩ N , andN ′ \ ∅ = N ′ ∈
N .
�N closed under complements: suppose A ⊆ K ⊆ B, with A,B ∈ � and B \ A ∈ N , then B̄ ⊆ K̄ ⊆ Ā,
and Ā \ B̄ = B \ A ∈ N .
�N closed under countable unions: suppose Ai ⊆ Ki ⊆ Bi, with Ai,Bi ∈ � and Bi \ Ai ∈ N , then
∪IAi ⊆ ∪IKi ⊆ ∪IBi, and

∪IBi \ ∪IAi ⊆ ∪I (Bi \ Ai) ∈ N .

The rhs is in N because N is closed under countable unions, and therefore the left-hand side also is
in N , since N is downward closed. Note that The two hand sides are not equal in general: Bi = S ,
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then the lhs isB \ ∪IAi = ∩I Āi and the rhs is∪I Āi; e.g., I = {0, 1},B0 = B1 = {a, b},A0 = {a},A1 = {b},
lhs is ∅, while rhs is {a, b}. �
This completion can also be done when N is not downward closed, by asking that B \ A ⊆∈ N .
Then �N ↓= �N , so that the downward closure is happening during the completion.

8. Conclusions

The main point of this paper is to argue that one should work with probabilistic cocongruence
rather than with probabilistic bisimulation. The theory works smoothly for LMPs on general mea-
sure spaces: one need not work with analytic spaces. The proof of the logical characterization of
cocongruence is much simpler and more general than the proof of the logical characterization of
bisimulation. One only needs to invoke the theory of analytic spaces to show that cocongruence
and bisimulation coincide: which they indeed do on analytic spaces.

Indeed, it seems to us that bisimulation defined categorically is a historical anomaly. In the dis-
crete case, bisimulation and cocongruence coincide and one can argue that it makes no difference.
However, transition systems are coalgebras and cospans should fit the theory better than spans; as
indeed is our experience in the probabilistic case. It would be interesting to reformulate the general
theory in terms of cocongruences. Other people have also been thinking in terms of cocongruences.
An interesting paper by Bartels et al. [1] was pointed out to us recently.

In the case of probabilistic systems, it has been argued that one should use metrics rather than
equivalence relations [8,12]. In the present context, a pressing problem is to understand the metric
analogue of the theory of probabilistic cocongruence.
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