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Abstract. Lossy channel systems are systems of finite state automata
that communicate via unreliable unbounded fifo channels. Today the
main open question in the theory of lossy channel systems is whether
bisimulation is decidable.

We show that bisimulation, simulation, and in fact all relations between
bisimulation and trace inclusion are undecidable for lossy channel sys-
tems (and for lossy vector addition systems).

1 Introduction

Channel Systems, also called Finite State Communicating Machines, are systems
of finite state automata that communicate via asynchronous unbounded fifo
channels. Fig. 1 displays an example. Channel systems are a natural model for
asynchronous communication protocols and constitute the semantical basis for
ISO protocol specification languages such as SDL and Estelle.
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Fig. 1. A channel system with two automata and two channels
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Automated wverification of channel systems. Formal verification methods for
channel systems are important since even the simplest communication proto-
cols can have tricky behaviors and hard-to-find bugs. But channel systems are
Turing powerful, and no verification method for them can be general and fully
algorithmic. For example, existing methods only check sufficient but not nec-
essary conditions for correctness (e.g. [JJ93]), or only terminate in some cases
(e.g. [PP91]), or only deal with channel systems of a certain type (e.g. [CF97]).



Lossy channels. A few years ago, Finkel, Abdulla and Jonsson independently
identified lossy channel systems as a very promising class of channel systems.
With lossy systems, one assumes that messages can be lost while they are
in transit, without any notification. Protocol designers know that unreliable
channels are very real but, because they know how to cope with unreliability
(e.g. with the alternating bit protocol), the classical model assumed perfect
channels [Boc78,BZ81]. Therefore it is really ironic, and somewhat paradoxical,
that lossy channels are “easier to analyze than perfect ones!”, quoting [CFP95].

Finkel showed that termination is decidable for lossy systems [Fin94]. Abdulla
and Jonsson showed the decidability of reachability, safety properties over traces,
and eventuality properties over states [AJ96b]. These are fundamental results,
with many practical applications in automated protocol verification.

One should not believe that lossy channel systems are trivial models where
everything is decidable. First the main decidable problems do not have primitive
recursive complexity [Sch01], and secondly many problems are undecidable: Ab-
dulla and Jonsson proved that recurrent reachability properties are undecidable,
so that model-checking problems for (branching-time or linear-time) temporal
logic is undecidable for lossy channel systems [AJ96a], and Mayr showed that
boundedness is undecidable [May00]. Also, systems where the channels are unre-
liable but fair (do not lose all messages all the time) cannot be analyzed [AJ96a],
and one cannot say whether systems are correct with probability 1 when mes-
sages are lost with low (less than 1) probability [ABPJ00]. Hence lossy channel
systems are an example of a partially analyzable infinite-state system model
(along with Petri nets, pushdown systems, ...) that has important practical
applications [AKP97,ABJ98,AAB99].

Equivalence checking. Behavioral equivalences are a special class of verification
problems where one asks whether a system S is “equivalent” to another system
S’ (or if two configurations of a single system are equivalent), that is whether
they have the “same behavior”. For such questions the first system, .5, is usually
a model of an implementation, while S’ is a specification or a more abstract
model of the same implementation. There exist several behavioral equivalences
(and, more generally, implementation preorders), and one uses this or that notion
depending on the situation at hand and the semantic properties of the chosen
equivalence (e.g. the equivalence is a congruence). It is widely admitted that
all interesting behavioral equivalences sit in van Glabbeek’s branching time —
linear time spectrum [Gla01], with bisimulation as the strongest equivalence, and
trace equivalence as the weakest. For partially analyzable infinite-state systems,
bisimulation is sometimes decidable [HJ99,Jan00] and sometimes not [Jan95],
and other equivalences are usually at least as hard as bisimulation. Surveys can
be found in [Mol96,JM99,BCMS01].

Bisimulation between lossy channel systems. Today, the main open question
in the theory of lossy channel systems is the decidability of bisimulation, and



other equivalences. In this direction, almost nothing is known'. Abdulla and
Kindahl [AK95] studied equivalence problems between a lossy channel system
and a finite state system, but such problems are less general than checking
equivalence between two infinite systems [JKMO1] and the decidability results
of [AK95] cannot be used for the general case.

Our contribution. In this paper we show that all equivalences in the branching
time — linear time spectrum are undecidable between two lossy channel systems.
Our construction is inspired by Jancar’s breakthrough result? and extends it. The
same undecidability proof applies to bisimulation, simulation, trace inclusion, all
the standard equivalences (like ready-simulation and failure equivalence), all the
exotic equivalences (like 2-nested simulation and possible futures equivalences),
and any equivalence or preorder (in fact, any relation) not yet invented as long
as it is more discriminating than trace inclusion and less than bisimulation.
The proof even shows undecidability for lossy vector addition systems, a weaker
model that one uses when channels are not fifo [BM99].

Plan of the paper. Section 2 recalls basic notions (words, transition systems,
behavioral equivalences). We define channel systems (extended, standard, and
lossy) in section 3. The main results, given in section 4, are stated in terms
of so called “front-lossy” systems, and section 5 considers the situation with
“classic-lossy” systems.

2 Basic notions

2.1 Words and the subword relation

Given a finite alphabet X' = {a,b,...}, we let X* = {u,v,...} denote the set of
all finite words over X. For u,v € X*, we write u.v (also uv) for the concatenation
of u and v. We write ¢ for the empty word and X+ for X* \ {e}. The length of
u € X* is denoted |u|.

The subword relation, denoted u C v, relates any two words u and v s.t. u can
be obtained by erasing some (possibly zero) letters from v, i.e. when v is some
ai...ay,, vis some by ...b,, and there are indexes 1 < k1 < ks <--- <k, <m
s.t.a; = by, foralli =1,...,n. For example abba C abracadabra, as we explain
by underlining the by, s. The subword relation is a partial ordering, with ¢ as least
element, and compatible with concatenation: © = v and «’' C v’ entail uu’ C vv’.
We write u C v when u C v and v IZ u, that is when v C v and |u| < |v].

When C is a finite index set, X*¢ = {U, V, ...} is the set of mappings from C
to X*, i.e. the set of C-indexed tuples of words. Subword ordering, concatenation

! Note that undecidability of trace equivalence can be derived easily from the undecid-
ability of boundedness, but we are not aware of any paper making this observation.

2 The proof that all behavioral equivalences are undecidable for P/T nets [Jan95].
Proving undecidability of (bi)simulation can be difficult, and all the non-trivial cases
we know of are inspired by Jancar’s method.



and size extend to tuples from X* in the obvious way:

vev ¥oveeo v cve, oV € U@V forany cec,
vev ¥ vevadvizy, Ul LS (e,

ceC

We abuse notation and write € for any tuple of empty words.
For finite sets X (like X' and C) we write | X| to denote the cardinal of X.

2.2 Labeled transition systems and behavioral equivalences

A labeled transition system (a LTS) is a triple (Conf, I, —) where Conf =
{s,t,...} is a set of configurations (or states), I' = {«,3,...} is a set of la-
bels and —C Conf x I' x Conf is a set of labeled transitions. LTSs are used as
models for the behavior of systems and usually Conf (and sometimes I') are
infinite.

We write s = s’ for (s,a,s') €—. As is usual with LTSs, we rely on a lot of
special notations for sequences of transitions:

g . .
—Foroerl™, s— s iff c =cand s =5 or 0 = ac’ and there is a s” s.t.
’
[e3 o
s— 8" =4 dof
* + €. o
— s — & (resp. —) & s — s’ for some o € I'* (resp. 0 € I'").
We write s — when s — s’ for some s’ and say o is a trace (sometimes called
“prefix trace” to distinguish from maximal traces) of s.

For our purpose we only need define bisimulation and trace equivalence (and
inclusion). We refer to [Gla01] for more definitions and motivations of the be-
havioral equivalences.

Trace equivalence: We write s Ct, t when all traces of s are traces of ¢, i.e.
when s < implies ¢ Z for all o € I'*. We write s =, ¢t when s Cy t Cpy S
and say s and t are trace-equivalent.

Bisimulation: A relation R C Conf x Conf between the configurations of some
LTS is a simulation if it has the transfer property, i.e. if for any pair (s,t) € R
and any step s = s, there is a t = ¢/ s.t. (s',#') € R. R is a bisimulation
if it has the transfer property both ways, i.e. if R and R~! are simulations.
Two configurations s and t are bisimilar, written s ~ t, if (s,t) € R for some
bisimulation R.

3 Channel systems

A channel system combines several finite automata but here we restrict to one
single automaton®. However, we introduce extended channel systems, which are

3 This is no loss of generality since one can always safely replace several automata
by a single product automaton, perhaps at the cost of an exponential blowup but



channel systems extended with the possibility of testing a channel for emptiness
(a test standard channel systems cannot do).

Definition 3.1 (Extended channel system). An extended channel system
is a tuple S = (Q, X, C, I, A, ©) where

-Q =1{q,p,...} is a finite set of control states,

- Y ={a,b,...} is a finite alphabet of messages,

-C ={c1,...,cm} is a finite set of channels,

-I'={a,p,...} is a finite alphabet of labels,

~AC QXX x T xQ x X*C is a finite set of standard rules, and
—OCRxCxI xQ is a finite set of extended rules.

A configuration of S is a pair (¢, W) € Q x X*C where ¢ is the current control
state of the system, and W is the current content of the channels: W(c) = u
means that ¢ contains u.

A standard rule of the form (q, U, o, ¢’, V'), written {(q, U, o, ¢’, V') for clarity,
means that S can move from ¢ to ¢’ by reading U from the front of its channels,
and then writing V' to their tails. For a rule (g, ?U, o, ¢’, V'), we may omit writing
?U (resp. V) when U = ¢ (resp. V =¢).

An extended rule of the form (g, ¢, o, ¢'), written {g,c = €7, «, ¢’) for clarity,
means that S can move from ¢ to ¢’ if ¢ is empty.

The corresponding steps give rise to visible label «. This is formalized by
associating a labeled transition system with S:

Definition 3.2 (Behavior of channel systems). For a channel system S =
(Q,X,C,I'A,0), the labeled transition system Sg = (Confg, ', —) associated
with S is defined by

- Confg=Q x X*¢, and

~(q, W) 2 (¢/,W') iff (1) there exists a standard rule (q,?U, o, q','\V) € A and
some W' € X*C st. W = UW" and W = W".V, or (2) W = W and there
exists an extended rule (q,c =€?,a,q') € O s.t. W(c) =e¢.

3.1 Standard channel systems and other restrictions

We say S is a standard channel system when © is empty (no emptiness tests)
and then simply write S = (Q, X, C, I, A).

We say S is a counter machine (also a Minsky machine) when X contains
one single message (say, ¥ = {1}). Then the channels are called counters since
they behave like registers containing numbers. For a counter machine, we may
replace words u,v € {1}* by numbers and write e.g. W(c) = 3 and ¢ = 07 for
W(c) =13 and ¢ = 7.

We say S is a vector addition systems with states (a VASS) when it is both a
counter machine and a standard channel system, i.e. a counter machine without

this paper is only concerned with (un)decidability issues. Replacing several commu-
nicating automata with one single global automaton also has the consequence that
the global automaton ends up sending messages to itself, in which case it is more
natural to think in term of fifo buffers rather than channels.



zero-test. VASSes (and counter machines) can be used to model channel systems
where the channels are not fifo, i.e. where messages can be read in any order.

We say S is an m-channel(s) system if C' has m elements. For a 1-channel
system, we may omit the name of the single channel and write standard rules
as {(q,?u, «, ¢’,v) (where u,v € X*). Note that a 0-channel system S is just a
classical FSA, and is its own Sg!

We say S is unlabeled when |I'| = 1. For an unlabeled S, we sometimes omit
writing I" in S and « in the rules.

3.2 Undecidability of reachability

Extended channel systems have undecidable reachability problems for two rea-
sons: (1) standard rules can be used to simulate the tape of a Turing machine
on a single fifo channel as soon as |X| > 2 [BZ81, p. 31], and (2) extended rules
allow one to simulate a Turing machine on a 2-counters machine [SS63].

For our purposes we introduce the following problem, a variant of the halting
problem that makes the reduction in section 4 smoother:
Non-empty Reachability.
Instance: An extended channel system S with two designated states ¢,q" € Q,
Question: Is there some W € £*C such that W # ¢ and (q,¢) = (¢/, W)?

Theorem 3.3 ([BZ81,SS63]). Non-empty reachability is undecidable even if
we restrict to one of the following two cases:

1. S is a standard 1-channel system,
2. S is a 2-counters machine.

3.3 Lossy channel systems

We now define the behavior of lossy channel systems. Note that only standard
channel systems are considered under a lossy point of view. One could inves-
tigate lossy extended channel systems, for which reachability can be proven
decidable along the lines of [May98,BM99,May00], but this is not our purpose
here.

Modeling lossy channels can be done in several ways. The early way was to
model a non-ideal channel by inserting an additional automaton that corrupts
messages passing through it [ZWRT80]. This led Finkel to his definition of com-
pletely specified protocols, where lossiness is modeled by adding to A all rules of
the form (g, c?a, q) for all ¢ € Q, ¢ € C and a € X [Fin94].

Following Abdulla and Jonsson [AJ96b,AJ96a], we prefer to see lossy systems
as systems with an altered semantics (rather than altering A). It turns out there
are several natural possibilities:

Classic Lossiness: one assumes that any number of messages from anywhere
in the channels can be lost at any time.



Front Lossiness: one assumes that messages are lost at the front of the chan-
nels (or, equivalently, while the system attempts to read them).

These are the two main proposals one finds in the literature (but each of them
comes in several variants). The relative merits of these several semantics have
never been discussed in the literature (even in [CFP95] where both Front Lossi-
ness and Classic Lossiness are considered). It is not clear which proposal better
fits the real world. Certainly, the Classic Lossiness semantics is mathematically
more elegant, and the Front Lossiness semantics mimics Finkel’s completely
specified protocols.

In fact, for all practical purposes, these semantics and their variants are
equivalent in the sense that a lossy channel system terminates (or is bounded,
or has a given trace set, or recurrently visits a given control state) under one
semantics iff it does under the other. Informally, the reason is that if a message
is lost and you cannot help it, nor know it, then when and where that happens
makes no difference.

Unfortunately, this sensible line of reasoning does not extend to branching-
time notions of behavior, where the timing of non-deterministic choices is im-
portant. The consequence is that two configurations can be bisimilar under one
lossy semantics and not under the other [GV93]. Because of this, we consider
both semantics and prove undecidability of bisimulation under each one.

Definition 3.4 (Two Lossy Semantics). With a channel system S =
(@, X,C, I, Ay we associate two labeled transition systems Lg = (Conf g, I', —1)
(Classic Lossy), FLs = (Conf g, ', —¢) (Front Lossy) that only differ from Sg
by the labeled transitions:

~(q, W) &1 (¢/,W') iff there are some V,V' € 5*C st. VCW, W C V', and
(¢, V)% (¢/, V') is a step in Ss.

~ (¢, W) St (¢, W') iff there exists a rule (q,?U,a,q','V) € A and some
UW'e X C st UCU, W =UW" and W' = W".V.

Observe that — C —¢ C — and that the inclusions are strict in general.

4 Reducing from perfect to lossy systems

Our undecidability proof reduces the non-empty reachability problem for an
extended channel system S to the behavioral equivalence of twin configurations
in some standard channel system S’ obtained from S.

Let S = (Q,X,C,A,0,qf) be an arbitrary unlabeled extended channel
system with a designated state gy € @. From S we build a standard system
S =(Q,X,C, I, A") where

— @' contains two copies of the states in Q. Formally Q’ def Q x {+,—}. Given
x € {+, —}, we shortly write ¢® for (q,z), Q" for Q x {z}. For ¢* € Q)', the
value of z is called the polarity of ¢°.

- I def AU O U {#} has one label for every rule in S, plus an extra label #.
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Fig. 2. Lossy system S’ associated with perfect system S

There remains to define A’, the rules of S’. These rules are all rules of one of
the following type:

type 0: For any U s.t. |U| =1, A’ has a rule (q;ﬁ',?U,#,q}", le).

type la: If » = (q,?U,p,!'V) € A and = € {+,—}, then A’ has a rule
(q*, U0, r,p", V).

type 1b: If r = (gq,c = €?,p) € © and = € {+,—}, then A’ has a rule
(g%, ?e,r,p", le).

type 2a: Ifr = (¢,?U,p,'V) € A, xz,y € {+,—} and U’ is any vector s.t. U C U’
and |U'| = |U| 4+ 1, then A’ has a rule (¢*, ?U’, r, p¥, V).

type 2b: If r = (q,c = €?,p) € O, z,y € {+,—} and U’ is any vector s.t.
|U'| =1, then A’ has a rule (¢*,?U’,r,p?, le).

type 3: If r = (q,c=¢7,p) € O, z,y € {+,—}, and a € X, then A’ has a rule
(¢, c?a,r,pY, cla).

A type 1 rule is type 1+ (resp. 1-) if z = + (resp. z = —).
The construction is illustrated on Fig. 2. The intuition behind the rules of S’
is the following: the behavior of S from some (g, W) can be imitated perfectly



by S’ from (¢7, W) and from (¢q—, W) with the type 1 rules. Note that S’ does
not have extended rules, but this does not forbid imitating S.

Imitating from (¢™, W) only uses control states from Q*, and imitating from
(¢~, W) only uses Q. States from QT and @~ can be distinguished in ¢y where
type 0 rules exist for q;{ only : these rules consume from the channels, emitting
one # per message, and allow to count how many messages were in the channels.

It is possible to “cross” (to move from QT to Q~, or the other way around)
by a type 2 rule or a type 3 rule, but these crossing moves do not imitate moves
of S. Indeed, using a type 2 rule consumes one more message from the channel
(compared to the corresponding type 1 rule) and using a type 3 rule assumes ¢
is not empty when S tests ¢ for emptiness.

Some behavioral properties of S, seen as an error-free channel system, can
be expressed as properties of S’, seen as a lossy system: say that a configuration
(g, W) is bad if it allows reaching ¢s on non-empty channels, i.e. if (¢, W) 5
(gf, W') in Sg for some W' # . We say (¢, W) is good when it is not bad.
The predecessors of a bad configuration are bad, so the successors of a good
configuration are good.

The next two lemmas say that bad configurations in Sg give rise in FLgs to
twin configurations with different traces, while good configurations give rise to
bisimilar twin configurations.

Lemma 4.1. If (g, W) is bad in Sg, then (¢*, W) Z1 (¢, W) in FLg.

Proof. We just sketch the idea and refer to appendix A.1 for the detailed proof.
If S has a run (¢, W) = (gy, W’) where |[W’| = k > 0 and the run uses rules
r1...T, in that order, then FLg has a run of the form:

(g5, Wo) === (q7 , W) & (g7 ,€) (1)

Now (¢—, W) can only display the same trace by crossing at some time (only q}*‘
can issue #) and this requires consuming one more message than in (1). Thus
(¢, W) lm (q}",W”) implies |W”| < k and ry...7,#" is not a trace of
(=, W). O

Lemma 4.2. Assume S is a standard channel system, or a counter machine. Let
R={(¢g",W),(¢~,W) | (¢, W) good in Ss}. Then RUId cons is a bisimulation
for FLg.

Proof. We just sketch the idea and refer to appendix A.2 for the detailed proof.

When the attacker plays in FLg a move (¢F, W) = (¢&, Ws) that exists
in Sg, the defender plays the corresponding move from (g; *, W7) and is safe
since the game remains in good configurations where one cannot use the type 0
rule. If the attacker plays a move that does not exist in Sg (e.g. because some
messages are lost, or because a type 2 or 3 rule is used) then the defender can
cross and reach the attacker’s configuration (perhaps using a different rule and
losing messages). O



Corollary 4.3. When S is a standard channel system or a counter machine,
For any configuration (q, W), the following are equivalent:

1. (¢, W) is a good configuration of Ss,
2. (¢T,W) and (g—,W) are bisimilar configurations of FLg,
3. (q+,W) Cry (q_,W) mn FLg.

Proof. (3.) implies (1.) (Lemma 4.1) and (1.) implies (2.) (Lemma 4.2). (2.)
implies (3.) since bisimilarity entails trace equivalence. a

Let now p be any relation between configurations of labeled transition sys-
tems, that sits between bisimulation and trace inclusion. Corollary 4.3 yields:

Lemma 4.4. Let S be a standard channel system or a counter machine with a
designated gy, let (g, W) be any configuration of S. Then (¢, W) is good in Sg
Zﬁ (q+> W)p(q77 W) n f'CS’

We can now state our main result with the following two theorems:

Theorem 4.5 (Undecidability for front-lossy systems). Any relation p in
the branching time — linear time spectrum is undecidable between configurations
of front-lossy channel systems, even if we restrict to 1-channel systems, or to

VASSes.
Proof. Combine Theorem 3.3 and Lemma 4.4. ad

Theorem 4.6 (Undecidability for classic-lossy systems). Any relation p
in the branching time — linear time spectrum is undecidable between configura-
tions of classic-lossy channel systems, even if we restrict to VASSes.

Proof (Idea). We would like to say that Lg and FLg coincide (i.e., —1=—¢)
when S is a VASS, so that Theorem 4.6 is a consequence of Theorem 4.5. But
this is not exactly true since front-lossy systems cannot lose what a rule just
wrote into the channel. So we have to show that Lemmas 4.1 and 4.2 still hold
for classic-lossy systems: the proof stays unchanged for Lemma 4.1 and only
needs minor changes for Lemma 4.2. O

5 Classic-lossy systems with one channel

Our proof does not apply to classic-lossy systems with one channel: the difficulty
is that a losing move in some (g7, W) cannot be punished by a crossing move in
the twin configuration since rules for crossing moves can only consume from the
head of the channels.

The decidability of bisimulation for these systems is the main remaining
open problem. We have no strong argument that would favor a conjecture of
decidability or of undecidability.

Of course, for equivalences that are weaker than bisimulation, undecidability
is easy to prove, and we can state the following two results:



Theorem 5.1. Any relation p between trace inclusion and simulation equiva-
lence is undecidable between configurations of classic-lossy single-channel sys-
tems.

Proof (Idea). This uses a slight modification of our construction. When a step
from (g%, W) loses message(s), the twin configuration follows by not losing (un-
less this is necessary for firing the same transition). In effect, this relies on the
idea that postponing losses allows more behaviors, and is compatible with the
simulation preorder.

Theorem 5.2. Any relation p between T-trace inclusion and T-bisimulation
(a.k.a. observational equivalence) is undecidable between configurations of
classic-lossy single-channel systems.

Proof (Idea). This uses another slight modification of our construction. Here,
when (g%, W) loses some message(s), the twin configuration can use 7-steps to
rotate the buffer, putting the lost message at the head of the buffer, then con-
suming it by a crossing rule, and rotating the buffer back in place.

6 Conclusion

We showed undecidability of all behavioral relations over lossy channel systems,
where a behavioral relation is any relation that sits between bisimulation and
trace inclusion (the two endpoints of van Glabbeek’s branching time — linear
time spectrum [Gla01]).

The proof also applies to lossy vector addition systems. It can deal with the
front-lossy semantics (as soon as we have one channel or two counters) and the
classic-lossy semantics (as soon as we have two counters). Note that with only
one counter, bisimulation is decidable even for perfect systems [Jan00].

The proof does not apply to systems with one single channel under the classic-
lossy semantics, and this is the main direction we see for future work. Another
case where the proof does not apply is when we restrict to systems where the
rules (g, ?U, ¢, V) satisfy [UV| < 1 (at most one message is consumed /produced
at a time).

A Technical appendix

A.1 Proof of Lemma 4.1

Assume (g, W) is bad, i.e. Ss has a run of the form (¢, W) = (¢, W’) where
|[W'| is some k > 0. Assume this run has length m and uses rules 71 ...7,, in
that order.

S’ can mimic this run. Formally, S” has a run (of length m+k) of the following
form:

r T Tm # #
(a5, Wo) = (¢f W) = - 5 (gh, W) 5 .0 5 (@40 0) (2)



where (qf ,Wo) = (¢", W), (¢}, W) = (q}',W’) and q;fwj = q}" for all
j=0,...,k Run (2) first uses type 1+ rules (m times), then type 0 rules (k
times). Since no message is lost, this is at the same time a run of Sgs, a run of
FLsr, and a run of Lg.

Write o for 71 ... 7,,.#%. Run (2) proves that o is a trace of (¢*, W) in FLg.
We show o is not a trace of (¢—, W): for this we assume, by way of contradiction,
that FLg has a run

r r T, # #
(po, Vo) = (p1, V1) 25+ ¢ (P> Vin) 21 (Pt 1, Ving1) - - =5 Pk, Vingr) — (3)
with (po, Vo) = (¢~, W). We derive a contradiction in a few easy lemmas.
Lemma A.1. If0 < i <m thenp, =q orp, =q; . Ifm <i<m+k then
pi =4 -
Proof. Obvious since the label (r; or #) of the step taken in (p;,V;) uniquely
determines what are the possible values for p; (here we rely on k > 0). a

One can relate the i-th step (g;" ;, Wi—1) — (¢;", W;) of run (2) and the i-th
step (pi—1, Vi_1) —¢ (ps, Vi) of run (3) by the following:

Lemma A.2. Foralll<i<mand allce C

(Wie)] = [Vi(e)l, (4)
(Wi(e)] = Wia(0)] = [Vi(e)] = [Viea(e)]. ()

Furthermore, if p; and p;_1 have different polarities, then

(Wil = [Wi—a| > [Vi| = [Vi-al. (6)

Proof. The proof is by induction over i.

We first prove (5) and (6) assuming (4) holds for ¢ — 1 (note that (4) holds
for i = 0 since Wy = W = Vj).

The i-th step of run (2) uses the type 1+ rule associated with r; € AU ©.
We have two subcases:

— If r; is a standard rule (g;—1, ?U, ¢;,!V), then |W;(c)| = |[Wi—1(c)| — |U(c)| +

[V (¢)| for any ¢ (since this run is not lossy).
Now the i-th step of run (3) may use the corresponding type la— rule, so that
in general |V;(c)| < |Vi—1(e)| — |U(c)| + |V (¢)| (since this step can be lossy)
and we get (5). This step may also use a type 2a rule where one more message
is consumed (notwithstanding possible losses), in which case we have both
(5) and (6).

— If r; is an extended rule {g;_1,c =7, ¢;), then W; = W,_; and W;_;(c) = .
We deduce V;_1(c) = € by ind. hyp., using (4), so that the i-th step of run
(3) cannot use a type 3 rule.

Thus that step uses a type 1b rule (and then we get |V;(c)| < |Vi—i(c)|
because losses are possible, so that (5) holds), or a type 2b rule, where we
further have (6) since one message must be consumed.



Note that a polarity change requires a type 2 rule, so that (6) holds in these
cases. Once (5) is proven for i, we get (4) for ¢ by adding (4) for i — 1 to (5). O

Lemma A.3. Fori=0,...,m, let n; be the number of polarity changes in the
first i steps of run (3). Then n; < |W;| — |V4].

Proof. Easy induction over 7. The base case uses Vo = W = Wy and ng = 0.
The inductive step is given by Lemma A.2. a

Now we have our contradiction : since pg = ¢~ and p,, = q;{ do not have the
same polarity, we have n,, > 0, and hence |V,,,| < |W;,| = k by Lemma A.3. But

x
if |Vin| < k, we cannot have (py,, Vin) #—>f since type 0 rules consume messages.

Thus our assumption is contradictory. There is no run of the form (3) and o
is not a trace of (¢=,W) in FLs. Q.E.D.

A.2 Proof of Lemma 4.2

We show R U Idcons has the transfer property in both directions. It is enough
to consider a pair (¢, W)R(q~, W) where (q, W) is a good configuration.

We first deal with the left-to-right transfer: Assume (¢, W) ¢ (p®, W).
We proceed by case analysis and consider what rule was used by that step:

a type O rule: This implies ¢ = q¢, W # ¢, and contradicts the assumption
that (¢, W) is good.

a type 2 or a type 3 rule: These rules allow crossing, (¢—, W) S¢ (p®, W)
is possible and we are connected in Id cons.

a type la+ rule and the step loses no message: Then = = + and
(¢, W) & (p,W’) is a step in Sg, so that (p,W’) is good. We have
(g, W) %t (p~, W) using a type la— rule, (p*, W/ )R(p~,W’) and we are
connected in R.

a type la+ rule and the step loses some message(s): Then (¢, W) S
(p*,W’) can be obtained with a type 2a rule (one picks the rule where U’
accounts for both what the type la+ rule consumes and one of the lost
messages) and we are connected in Id cony.

a type 1b+ rule and W(c) = ¢ and the step loses no message: Then
r = + and, since c is empty, (¢, W) = (p,W’) is a step in Sg, so that
(p,W') is good. We have (¢—,W) %¢ (p~,W’) using a type 1b- rule,
(pT, W) R(p~,W') and we are connected in R.

a type 1b+ rule and the step loses some message(s): Then (¢—, W) 2
(p*, W’) can be obtained with a type 2b rule.

a type 1b+ rule and W(c) # ¢ and the step loses no message: Then
(q=, W) Z¢ (p®, W) can be obtained with a type 3 rule. This rule consumes
some message a at the front of ¢ and inserts it at the back, but Lemma 4.2

only applies to counter machines or standard systems, and the use of a type
1b rule implies S’ is a VASS.

The right-to-left part of the transfer property is similar.
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