Bisimulation Equivalence for First-Order Grammars

Petr Jancar
Techn. Univ. Ostrava, Czech Republic; url: http://wwweb.cz/jancar/

14 Feb 2012

Abstract—A self-contained proof of the decidability of bisim- about the complexity (there is no known nontrivial lower
ulation equivalence for first-order grammars is given. This pound for dpda-equivalence while the general bisimilarity
provides an alternative for Senizergues’ decidability proof (1998, problem is known to be exptime-hard [11]).

2005) for nondeterministic pushdown automata with determn- In thi h the f K of first-ord
istic popping e-steps, which generalized his decidability proof n this paper we choose the Iramework or first-oraer gram-

for the famous problem of language equivalence of determistic Mars, i.e. systems of (classical) first-order terms withteigi
pushdown automata (1997, 2001). One crucial novelty of the many root-rewriting rules, and reprove the above mentioned

proof presented here is the framework of first-order terms. This  decidability results, adding a more detailed complexitalan
framework seems to be more natural for the problem, allowinga ysis. It is not surprising that proofs about (d)pda can be

presentation which should be transparent for general compter d in this f K si | lati bet th
science audience. Though it seems that both the original pod one In this framework, since close relauons between the

and the proof presented here use the same ideas on an abstractframeworks of (d)pda, strict deterministic grammars anst-fir
level, the presented (substantially shorter) proof has notirisen order schemes were recognized long ago, (cf., e.g., refesen
as a translation of the original proof, and a detailed compaison in [6]) but the proofs here have not arisen as translations of
would require an enormous technical work. . _ the previous proofs, though they are surely inspired by them
For the deterministic _(sub)case_, a primitive recursive comlexity More comments are added in the concluding section
upper bound was derived by Stirling (2002). Here we also sugst b . :
a simple way of presenting the ideas behind Stirling’s proofin The related research is rich and active. There are compre-
the framework of terms. The complexity result is also analyed hensive references in Sénizergues’ and Stirling’s papers
in more detail, which shows that the length of the shortest wals  the prior research; for recent research on related complexi
witnessing nonequivalence is bounded byetr(2, g(n)) where g astions and on higher-order schemes, we can refer, @.g., t
tetr is the (nonelementary) operator of iterated exponentiatia :
(tetration) and g is an elementary function of the input size. (3], [4], [7]’ [10], [12], .[?'4] and the reference.s therein.
To facilitate readability, the author’s intention has bden
|. INTRODUCTION use figures, examples and explanations of the ideas raier th
Language equivalence of deterministic pushdown automatecessive formalities, without compromising the rigouneT
(dpda), which lie at the heart of syntactic analysis of pamgr structure of the paper is almost clear from the subsectiles i
ming languages, is a famous problem in language theory. Tlve just add a few remarks. Section Il sets “the stage”. Itlleca
decidability question for this problem was posed in the X96€he notion of first-order terms and substitutions, consiger
[8] (when language inclusion was easily seen as undecifjabkegular terms(possibly infinite terms with only finitely many
then a series of works solving various subcases followetd, urdifferent subterms). The terms are then viewed as states of
the question was finally answered positively by Sénizesgne labelled transition systems, where transitions are geeetay
1997, with the full journal version [15]. G. Sénizerguesswaa first-order grammar, i.e. by a finite set of term root-rewgt
awarded Godel prize in 2002 for this significant achieveimenules. Dpda language equivalence naturally reduces te trac
Later Stirling [19] and subsequently also Sénizergue$ [1équivalence (i.e. a variant of language equivalence) feerede
provided technically simpler proofs than the original grooministic first-order grammars, and the semi-decidabilitihe
A modified version, which showed a primitive recursivenegative case is immediate. Section Il explains an algorit
complexity upper bound, appeared as a conference pafsami)deciding the positive case, based on a Prover-Refute
by Stirling in 2002 [20]. Sénizergues also generalised tlgame for which soundness is clear from simple properties of
decidability result to bisimulation equivalence over tHass trace equivalence- and its “strata’~g, ~1, .... Section IV
of (nondeterministic) pushdown automata with only determi explains a strategy of Prover which is shown to be complete
istic and popping:-transitions [17]. Recall that bisimulationand thus guarantees the termination of the algorithm. By a
equivalence has been recognized as a fundamental behaviomore closer look at the strategy, we derive an upper contglexi
equivalence in theory of concurrency and communicatiof [Ldound in Section V. Section VI then explains the modificagion
Both Sénizergues and Stirling followed their predecessareeded to extend the decidability to bisimulation equivede
in presenting the topic in the framework of strict deterrsiici for general (nondetermininistic) first-order grammarsisita
grammars, but even the above mentioned simplified proaeneralization since bisimulation equivalence coincidés
look rather long and technical; they do not seem to be broadipce equivalence in deterministic labelled transitiostsgns.
understood in the computer science community. It seems héfthe above complexity argument does not apply in this génera
to get further insight, e.g. for trying to derive more resultcase.)
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Graph presentations of terms

We note that the equality of two (regular) terms can be
Il efficiently checked, given their graph presentations: Gise,

N denotes the sef0,1,2,...} of natural numbers. For a setfor each noden of GP we consider the (sub)term rooted in

A, by cARD(A) we denote its cardinality (i.e. the numbeh, we first partition all these terms according to the root-

of elements whenA is finite). A* denotes the set of finite |abels, and then we are refining the partition according ¢o th

BASIC NOTIONS AND SIMPLE OBSERVATIONS

sequences of elements df, also calledwords (over .4). By
|lw| we denote thdengthof w € A*. If w = uwv thenu is a
prefix of w. The empty sequencie denotect (thus|e| = 0).

First-order regular terms; substitutions

We recall the standard notion fifst-order termsby examples,
assuming a fixed countable set® = {x1,z2,x3,...} Of

variables Given a setF = {fi, fe,..., fr} of function

symbolswhere eachf € F hasarity(f) € N, an example
of aterm overF is E1 = fa(f1, fa(xs,21),25), whenk > 3

and arity(f1) = 0, arity(f2) = 3, arity(f3) = 2. We can
recognize the syntactic tree @f; in Fig.1.

The figure suggests to definegaaph presentatiorcp (of
some terms) as finite graphwhose nodes are labelled with
elements of F U VAR. Each node labelled withf has m
outgoing arcs labelled with, 2, ..., m wherem = arity(f)
(now ignore the dotted arc leading 1@); the nodes labelled

with variablesz; have no outgoing arcs (as well as the node@ _

labelled with nullary function symbols). A teri is presented
by a graphcp when a noden is specified as theoot of F;
we refer to such a graph as trg. A term can have more
than one presentation; e.g%;, F> represented in Fig.1l are
obviously the same terms.

Formally we viewterms asthe partial mappings

FE :N* — FUVAR

where~i (y € N*, ¢ € N) belongs toboM(FE) iff v €
DOM(E) andl < i < arity(E(v)); we stipulatearity(z;) =

0 for all z; € VAR. The expressions liké (f1, fs(xs, z1), x5)
or z17 are thus viewed as representing partial mappin
N* — FUVAR (e.g.,El(a) = f2, E1(<2, 1>) = I5).

Given a termE and vy € DOM(E), the term E, where
DOM(E,) = {6 | v0 € DOM(E)} and E,(d) = E(vd) is a
subtermof E, occurring in E at «, in depth|~|.

A term FE is finite if DOM(E) is finite. A termis regular
if it has only finitely many subterms; in other words, it has
finite graph presentation (possibly with cycleg), in Fig.1 is
an infinite regular term (e.gE5((2,2,2,2,2,2,1)) = x1).

Convention By “terms” we further mean “regular terms”.

We do not consider the empty term with the empty domai
we might use a special nullary (function) symhblinstead.

a

(current) partition-classes of root-successors, untl stable
partition (the fixpoint) is found.

By TERMSz we denote the set of all (regular) terms over
F. A substitutions is a mappings : VAR — TERMSz whose
supportsupPHo) = {z; | o(z;) # z;} is finite. Our finite-
support restriction allows to present any substitutiofy a
finite graphGP where eachr; € SUPHo) has an associated
node inGP, namely the root ob(x;); we refer toGr, then.
For a termFE and a substitutionr, we defineFEo (the term
resulting fromE' by applyingo) as expectedy € DOM(Eo)
iff either v € bom(E) and E(y) ¢ VAR, in which case
(Eo)(v) = E(7), or v = m72, 71 € DOM(E), E(71) = z;,
~v2 € DOM(o(z5)), in which case(Eo) () = (o(x;))(72)-

Fig.2 illustrates how to get a presentation Bt from
presentationssPg, GP, of F and o, respectively: each arc
leading to (a node labelled with); € SuPHo) in GPg is
redirected to the node associated within GP,. Note that if
x; thenEo = z;0 = o(x;).

By Eoi0o we mean(Eo;)os, but we also define the
composition of substitutions; ¢ o2, denoted justr;os: for
o = o102 andz; € VAR we haveo(z;) = (o1(x;)) o2; thus
SUPHo102) C SUPHop) U SUPHo3z). We can easily check
Eci09 = (Eo1)oa = Eo whereo = o102; more generally,
the compositionis associativei.e., (0102)05 = 01(0203).

Finally we note thatF; in Fig.1 can be viewed as arising
from (a finite term)E = fo(x1, f5(zs5,27),21) (represented
like F5 but usingthe dotted arcin Fig.1) by applying the
substitutions’ = {(x7, E)}, i.e. ¢’ wheresuPHo’') = {z7}
ando’(z7) = E, repeatedly forever; hendg; = Ed’d’c’ . . ..

?‘?0 getGPg, from GpPg, each arc leading to7 is redirected to

the root.) Note that the auxiliary variahte could be replaced
with any x; not occuring inEs.

Later we also refer to thpresentation sizRESSIZE(E),
by which we mean thsizeof the smallest graph presentation
of E; similarly for PRESSIZE(c). We can use any natural
notion of sizewhich takes also the indices of variables into
account; e.g., we can take the number of nodes and arcs
plus the bit-size of all labels. We thus have only finitely
many termsE with PRESSIZE(E) < b, for any given
bpundb € N. Another natural property which we assume is
PRESSIZE(Ec) < PRESSIZE(E) 4+ PRESSIZE(0).
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(Deterministic) labelled transition systems; trace e@lénce s b

A labelled transition systepan LTS for short, is a tuplel =

(S, A, () aca) WhereS is the set ofstates A the set of

actionsand i,g S x S is the set oftransitions labelled with Fig. 4. Term representations of configurations and rulesdjyda
a € A, calleda-transitions Fig.3 shows a finite LTS (in fact,

X < (D)pda from a first-order term perspective
a det-LTS as defined later). The relatiors~C S x S for In th b ) f v i q LTS h
w e A* are defined as expected:—— s if s — s’ and n the next subsection we formally introduce s whose

' o thens <% <7 In Eig. 3 we have. e bab statesare not “black dots” as in Fig.3 butregular) terms
5 B V\fritin % wfa hean gt}ha,k enables(:al t}ggcla)w . i?{; E. TransitionsE; —— E, will be determined by a finite set
y gs ' of (term root-rewriting) rules, i.e. by a (deterministicyst-

. w / 12 - .
i.e.,s — s’ for somes’. Trace equivalence- on S and its ; . : ;
9 order grammar. We will be interested in tlrace equivalence

S2 b 53

Fig. 3. A (finite) deterministic labelled transition system

strata’” ~o, ~1, ~2, ... are defined as follows: problemasking if E; ~ E,. Before precise definitions, we
s~tif Ywe A* 1 s et 2, give a flavour of reasoning which shows that considering
and fork € N: s ~y, tif Yw € ASF 1 s et 5, the classicaldpda language equivalence problefrom a

“first-order term perspective” naturally leads to the notiaf
first-order grammars andasily reduces to the above trace
Proposition 1. (1) ~ and all ~;, are equivalence relations. equivalence problem

(2) ~0=8 x 8. (3) ~2~12~22 -+ -. (4) Npen ~r=r. A pushdown automato(pda) can be viewed as a tuple
M = (Q,AT,A) of finite sets of control states ac-
tions (also callednput letter3, stack-symbolsand (rewriting)
rules respectively. On the left in Fig.4 we can sedeam-
EQLV(s,t) =k (k€ N) if s~y t ands Ly i1 t; representation ofthe configurationg,ABA € Q x I'*, as-
EQLV(s,t) = w if s ~ ¢, also written ass ~,, t. sumingQ = {q1,¢2,q3}. S0 Q x T is the set of “function
symbols”, called nownonterminals all with arity CARD(Q).

1 can be here viewed as a special “stack-bottom” nullary
nonterminal. On the right we can see (the term representatio
of) two rules, onepushing(g24 - ¢; BC) and onepopping

. (2 A LN g2)- (Ignore the dotted arc now.) For configurations
Proposition 2. If EQLV(S, t)=k and EQLV (s, s")>k+1 then C1, C» (viewed as terms) we ha@ - C, iff there is a rule
EQLV(s',t) = k (sinces’ ~p s ~p tands’ ~ppr s obpa f). g 9, g (in A) and a substitution such thatC; = E,o

Of special interest for us ameterministicLTSs, det-LTSSor andCs = Exo. (We can check by term-representations that
short:£ = (S, A, (—%+)ac.4) is deterministic if for each € S ¢2ABA —% y BCBA, (2ABA % ¢, BA))

and eachu € A there is at most one’ such thats — ', For a deterministic pushdown automatddpdg we thus
(Fig.3 depicts a finite det-LTS.) get a det-LTS (with configurations as states) if we can get
rid of e-steps, i.e. of the rules likg.C —— g3, written
[¢2C](21, 2, 23) — a3 in our term-representation. Note
that a rule [q2C](x1, 20, 23) — .. excludes the existence
For det-LTSs we easily observe that by performing the saroé another rule[g2C)(z1, z2,23) — .., and it is standard
actiona € A from s, t the eg-level can drop by at most oneto assume (i.e. safely transform the dpda so) that=thées
and it does drop for some action whern> EQLV(s,t) > 0: areonly popping The dotted arc in Fig.4 illustrates that we
can get rid of all “unstable” nonterminals likg2C|], thus
“swallowing” all potentiale-transitions in advance.

Itis a routine to reduce thdpda language equivalence prob-
lem to the above mentioned trace equivalence problem, later
formalized as RACE-EQ-DET-G. We can use the following
version: givenM and configurationg,C’, areC,C’ language
In Point (2) we haves; 71 tr, hence there is € A such equivalent in the empty-stack acceptance sense? We do the
that s, —, —(tk ) or vice versa; the wordva is then a above term-transformation of1, also removing all unstable
shortest nonequivalence-witness wdod the pairs, t. nonterminals like[¢g2C]. Then for any pair[gA],a (a € A)

where ASF = {w € A* | |w| < k}.

This (trivial) proposition suggests to define tequivalence-
level (eg-leve) for each pair of states:

In Fig.3 we have, e.g., &V (s1,s2) =0, EQLV(s1, s5) = 2,
EQLV(s1, s4) = w. We takew as an infinite number satisfying
n<wandw—n=w+n=w foranyn € N.

The next fact (fork € N) will be particularly useful.

Proposition 3. In any det-LTS;s — entails a uniquepath
s g 220 2E g wherew = ajas. . . ag.

Proposition 4. Given adeterministicLTS:

(D) Ifs 5 s, t % ¢/ thenEQLV(s', ') > EQLV(s, t) —|w|.
(2) If EQLV(s,t) = k € N then there isw = ajas . .. ax such
thatSle &82&"'&8;@&”(“&151 itgﬂ

- 2%, t,, whereEQLV (s, t;) =k —j for j =1,2,... k.
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old root
new root Fig. 7. A path inl¢
a
GPp - using rules asoot-rewriting). In fact, the definition takes all
(regular) terms as stateshough we allowed onl§inite right-
hand sideqrhs) E in rules (1) for technical convenience.
old root £ (new root) Definition 6. A grammarg = (N, A, R) generates (theule
basedl LTS L& = (TERMSy, R, (—).cr): for each rule
GPp r:Yzizs ...z, — F (recall (1)) we have

F -2 H if there is a substitutiow such that
F= z...2zpn)0c and H = Eo.

(Note thato with SUPRo) = () yieldsYz; ...z, — FE.)
for which there is no ruldgAj(x1,. .., Zcaro(Q)) -, .. we For (the action-basefLTS £& = (TERMSy, A, (—=)aca’)
add the rulggA](z1, . .., Tcaro(Q)) . [Loop] where[Loop] We defineA’ = AU/{ay, | z; € VAR} wherea,, is aauniql_Je
is an added nullary nonterminal with ruli&oop] — [Loop] (fresh) action attached ta;. For a € A’ we haver” — H if
for all b € A. L is unreachable after an added rule is used, ——  for somer € R with ACT(r) = a orif F' = H = ;
(More details are in Appendix.) anda = ag, .

Fig. 6. Applying rulesY zizozs —— 21 and Yz zez3 —— E t0 GPp

Remark and conventiomn ﬁg the variablesr; are examples
of dead termgnot enabling any transition), like the term.

ag,; .
Definition 5. A first-order grammais a tupleG = (M, 4, R) In L5 we haver; — x; but we never use these special
where ' is a finite set of rankedonterminalsi.e. (function) {ransitions in our reasoning; we only use the consequerate th
symbols with aritiesA is a finite set ofactions(or terminals), i 71 H if H # z; (in particular if H = z; for j # i).

and R is a finite set of(root rewriting) rulesr of the form Proposition 7. £& is a det-LTS for ang.

(Det-) first-order grammars as generators of (det-)LTSs

r:Yaeizy.. 2y - E (1) ¢ is a det-LTS iffG is deterministic.

whereY € N, arity(Y) = m, a € A, and E is a finite Fig.6 shows a way how to apply the rules (of some gram-

. b
term overA in which each occurring variable is from the sethar) to graph presentations. To appi_y. Yayrgry — E
{21, 22, ..., xm}. (E = z;, wherel < i < m, is an example.) 10 GPr, we first check if the root of” is (labelled with)Y".
We putacT(r) = a, thus defining the mappingcT : R — A. If yes then we addspg (the rhs ofr) to GPr (we “stack
G = (N, A, R) is deterministic a det-first-order grammaif GPz On top of GP"), the root of E becomes the new root,

there is at most one rule (1) for each pair € NV, a € A. and every arc leading t@; in GPg is redirected to thé-th
successor of the (old) root of'. In the case of aink rule

Remark on notationin the previous (classical term) anotation“ke Yz zoxs —— x; (“popping” in pda terminology) we do,
the rules would be written : f(z1,22,...,2m) — E. n fact, the same; the result is that tligh successor of the
Now A plays the role of former7; we useY to range (o|d) root in GPr becomes the new root (it can be the old
over \/, and we omit parentheses. We might also Us&3  root in case of a loop). Fig.7 depicts a path if'S5. We

for nonterminals, but, F, G, H and T, U, V, W will always note that even if we successively “stack” many (finite) rhs
range over ERMSy (using our fixed MR = {x1,25,...}). E, F, ... of used rules (or rather subterms of rhs), there
YG1Gy ... G, (Axlffﬂ_?»)a = 40(551)0(@)0(353)1 F'o102  can be always root-successors lying “deeply down”, even in
are examples of notation which we use for terms (whefge initial (regular) term. The figure also highlights that the

o's are substitutions). We consider as a special nullary cyrent root is always connected to any future root which lie
nonterminal, with no rules; we use it in the example in Fig.$4 the current graph.

Fig.5 shows an example of a det-first-order gramghaFhis 1" next fact holds in botifg and £g. (Recall Fig.2).

G is, in fact, very simple, we haverity(Y) o Lforally e N Proposition 8. If E - F thenEoc —- Fo; hence ifE —-
and the rules are thus of the forbtiz; — Y1Y5... Y, 2. ¢, thenEo —% (). If Eo — but—(E —) thenw = uv

. . . 3
(A more general _example was given in Fig.4.) Ogr exampWhereE . 2, for somez; € VAR and Eo —% o (x;) —*.
grammar is thus, in fact, a context-free grammar in Greibach

normal form, with no special starting symbol and with onlfconvention.We further refer toLj;, if not said otherwise.
leftmost derivations allowed, as the next definition sholys ( Hence by writingE — F we meanw € A*.

4



A. Some properties of; and ~ (in the det-LTSLE)
For two substitutionsr, 0’ : VAR — TERMSy we define

o~y o if o(x;) ~ o' (x;) for all z; € VAR.

The followingcongruence propertiegre obvious, by recalling
Prop.8 (and Fig.2, 6, 7), and noting thaffif~, F, F — z;,
Semidecidability of trace non-equivalence lu| <k thenF — ;.

Given G and a pairE + F, we can find a shortest word Proposition 11. (1) If E~; F thenEg ~, Fo.

witnessing non-equivalence af, ' by systematic search, HeNCeEQLV(E, F) < EQLV(E0, Fo).

Hence the next lemma is obvious even in the general cad, If o ~x o’ the/n Eo ~y Eo’. )
though we now concentrate on the deterministic case. HenceEQLV(0,0") < EQLV(E0, Ed’).

We now look more closely at Point (1).
Proposition 12. If EQLV(E, F) = k < { = EQLV(Eo, Fo)

Fig. 8. Ho andH'o_y,) = (H{(zi, H)H{(zi, H)H{(zi, H)} - -+ )o

Problem TRACE-EQ-DET-G:

Input a det-first-order grammaj = (N, A, R), and (where/ € NU {w}) then there are some; € SUPHo), H #
(graph presentations of) two input terfs,, Uin. | 2, and a wordw, |w| = k, such that? - x;, F —~ H or
Question is Tj, ~ Uy, in LE? E % H, F - z;; moreover,o(xz;) ~;_ i Ho.

Lemma 9. There is an algorithm with the following property: Proof: If (E, F) belongs to CASE 1 of Proposition 10
it (halts and) computesEQLV(T;,,U;,) for an instance then EQLV(Eo, Fo) = EQLV(E, F) = k. Hence any(E, F')

G, Tin, Ui, of TRACE-EQ-DET-G iff Tiy, o4 Uiy in L. satisfying the assumption belongs to CASE 2, so let us
Thus the complement GIRACE-EQ-DET-G is semidecidable. take z;, H which are guaranteed there; H ¢ VAR then

x; € SUPHo), and if H = z; then at least one aof;, z; be-
longs tosuPH o) (otherwise B)LV(Eo, Fo) = k). The claim
o(z;) ~¢_x Ho follows from Prop.4(1) (sincel - z;,
Proposition 10. Assume a det-first-order grammei F — H implies Ec — o(z;), Fo — Ho). u

If EQLV(E, F') = k € N then we have either The next proposition (sketched in Fig.8) is later usefulder

w

CASE 1: there isv, [w| = k, such thatE — E', F — F'  creasing the support of a substitution in an inductive argum
and the roots ofE’, I are nonterminals enabling different(in Fig.13). We definer;_,,| as the substitution arising from

For later use we classify nonequivalent palfsF’ into two
disjoint cases (recall Proposition 4(2)).

sets of actions (thus causing'c £, F’o for any o), or o by removingz; from the suppord(if it is there):
CASE 2: there is no word required in CASE 1 but there is o
w, |w| = k, such thatF - =x;, F —~ H or E —> H, Of—a)(2i) = 2; Aoy (2;) = o(a;) for all j # i.
F -5 z; where H # z;. (Recall thatz; 41 H then.) Recall E3 = Eo’c’c’... in Fig.1 whereo’ = {(z7, E)}. If
o(x7) ~, Eo (in someL}), whenceo ~ {(z7,E)}o =
[1l. AN ALGORITHM DECIDING TRACE-EQ-DET-G o'c, then Proposition 11(2) entails(z7) ~i Eo ~y

_ S Eo'c ~ FEo'c'c ~y (Eo'o’---)o = Eso. Note that
We aim to show the SemldeCIdablhty OfR-ACE'EQ'DET'G, Ego' — E3U[—m7] SinceI,Y does not occur ”E3 We formalize

which will yield the decidability by Lemma 9. Ill-A shows thjs as follows (see Fig.8).

some simple facts about the equivalenees and ~, and N , L

III-B introduces further technical prerequisites for thewer- Proposition 13. AssumeH # z; and H' = Ho'o' - -- where
Refuter game (played for an instan@e T}, Us,) described @ = {(zi, H)}. (GPg arises fromGpy by redirecting all
in 11I-C; we also give a simple example of a play. In IlI-DIncoming arcs ofz; to the root of H; hence H’ = H if z;
we will easily observe theoundnessf the P-R game, which d0€s not occur int, in particular if # = x;, j # i.)

means that Prover has no winning strategylif % Us,. It ' o(zi) ~x Ho theno(z;) ~ H'oj_,,; and thus

will be also obvious that there is an algorithm which halts fd” ~% {(zs, H')} 00 -

G, Tin, Uiy iff Prover has a finite winning strategy. Hence the  proof: H'c = H'o|_,,| sincex; does not occur irff’. If
decidability of TRACE-EQ-DET-G will be established once we {5 ~ H’c then the claim is trivial. OtherwiseH’ # H
show thecompletenessi.e. the existence of a finite winningand) ELv(Ho, H'0) > EQLV(o(x;), H'o) (since anyw
strategy of Prover for every;,, ~ U;,; this is done in Sec.IV. witnessing Ho « H’c must have a nonempty prefix
Conventionlf not said otherwise, we assume a given det-firs%ucl_hv (th?tf’;{ HL; —:CiEaE?/ (H(/ .ﬁ{/lf)’;(bsegr(ljigg). Hen.ce
order grammag = (N, A, R) and refer to the det-LTZ},. QLViolr:), Ho) = EQLVIa(®:), He) (DY Frop.2).
(Recall that Prop.3 applies here.) By referring toaahG -~  B. k-distance regions (for deciding ~;. U)

(or G % G') we mean thatw is enabled byG but we also We have implicitly noted (around Lemma 9) that we can
refer to the unique sequence 5 G 2 Gy 22 ... 25 decide whethefl' ~; U (for k € N); a natural way is to
G (G, = G') wherew = ajas . .. ay. construct thek-distance region for(T, U):
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Fig. 11. Case of left-balancing
Fig. 10. Casel of left-balancing PROVER-REFUTER GAME (P-R GAME)
REG(T, U, k) = { (T",U") | T - T',U 5 U’ 1) A det-first-order grammag = (N, A, R) is given.
for somew, |w| < k }. 2) Prover produces (by “guessing”, say) a finite seisB

of pairs of (graph presentations of regular) terms.
Fig.9 shows the-distance region fofT, U) = (ABL, BAL),  3) An input pair(Tin, Us) is given.

assuming our example grammar in Fig.5. 4) Refuter chooses
Note thatT £ U iff there is (T",U’) € REG(T, U, k—1) (To,Up) € STARTSET = { (T}, Uin)} U BASIS,
such thatT” 4 U’. We define thdeast eq-levefor a set of and claims BLV(Tp, Up) = MINEL(STARTSET) < w.
pairs of terms (for a region &5(7, U, k) in particular): 5) Fori =0,1,2,..., Phase is performed, i.e.:
for R C TERMSy x TERMSy, R # 0, we define a) Prover choosek > 0, and ReG(T;,U;, k) is con-
MINEL(R) = min { EQLV(T",U") | (I",U") € R }. structed; ifT; £, U; then Prover loses (the play ends).
b) Refuter chooses(T},U/) € ReG(T;,U;,k) ~
The next proposition tells us that any least eg-level pair in REG(T}, Us, k—1) andw;, |w;| = k, such thatl; %
REG(T, U, k) must be in the bottom row in the figures like T!, U; 5 U/; if there is no suchl?, U/, w; (due
Fig.9 or Fig.10, ifT" « U. It follows trivially from Prop.4. to dead terms, henc® ~ U;), Prover wins. Refuter
Proposition 14. claims that BLv(T/,U!) = MINEL(REG(T;, U;, k)).
(1) If T ~ U thenT’ ~ U’ for all (T",U") € REG(T, U, k). (Recall Prop.14.)

()T £ U, T ~, U and (T",U") € REG(T, U, k) satisfies c¢) Prover producel’;;1,U;11) from (77, U!) as follows:
EQLV(T",U’) = MINEL(REG(T,U,k)) then (T',U’) € either she put§; ;1 = T}, Ui+1 = U] (no-changg

ReG(T,U, k) ~ REG(T, U, k—1). « or she balances (recall Prop.15 and Fig.11):
. _ » if she finds 0,0’ such that (o(z;),0'(z;)) €

By Prop.14, 11(2) and 2we easﬂy dgnve the next proposition REG(T, U, k—1) for all z; € SUPKo) = SUPR0"),

!t is l_JsefuI to look at Fig.11 (which is fully used later), and and she presentg! asGo then she can (do Eft-

imagineo = {(z1, V1), (x2,V2)}, o' = {(z1, V/), (2, V2)}. balancing namely) putT;.; = Go’, andU;; =

Proposition 15. Suppose thal” ~; U and for o, s’ we have U{?_ symmetrically, if U; is Go’ then she can (do

SUPKo) = SUPR¢’) and (o(z;), o' (2;)) € REG(T, U, k—1) a right-balancing namely) putT;y; = 77, and

for eachz; € SUPHo). Uiy1 = Go.

If EQLV(T",U’) = MINEL(REG(T, U, k)) andT’ = Go then (Thus BQLV(Ti41,Uit1) = EQLV(TY, U/) if Refuter’s

EQLV(Go',U") = EQLV(T",U"). claimin 5.b is true. We havé;,; ~ U;1 If T; ~ U;.)

d) Provereither contradicts Refuter’s clainsy present-
ing a proof, i.e. a finite algorithmically verifiable
sequence of deductions based on Propositions 2, 4, 11,
12, 13, in which case Prover winsy lets the play
proceedwith Phasei+1.

We now describe the rules of the game between Prover (skfejve switch Points2) and 3) then we get theveaker form
and Refuter (he). of the gameit is then clear that a play starts with a given

Note that the case depicted in Fig.10 is a special ddse:z1,
0'(1‘1) = T/, O'I(,Tl) =V.

C. Prover-Refuter game



Fig. 12. A left balancing phasefollowed by a no-change phase-1

5d. Prover does not continue with Phakéut she derives
a contradiction by assuming Refuter’s claims are true as
follows, denoting BLv (71, U:) = EQLV(T{, Uj) = ¢:
since the eg-levels of

(AL,B1), (ABL,BAl), (ABB1,BAAL)

are greater thad, the eg-level of each of the following
pairs (arising from(Ty,U;) by successive subterm re-
placements) must bé
(ABABL,BAAAL) (we replacedBAL in T3),
(ABAB1,BAABL), (ABAB1,BABAL),
(ABAB1,BABBL), (ABAB1,BBAAL),
(ABAB1,BBABL). But the last pair is an instance of
the pair(Ax1, Bz1) € BASIS, a contradiction.

D. Soundness of the Prover-Refuter game

If {(Tn, Uin) }UBASIS contains a pair of non-equivalent terms
then Refuter can be choosing so that his “least eq-levehelai
(in 4. and 5.b) are true; thus the sequence (2) is eq-level

instanceg, T}y, U;n Of TRACE-EQ-DET-G. We use the above decreasing and Prover loses eventually. This also appiies t
(stronger) form to stress thatABIs is determined by the the weaker form of the P-R game (Points 2 and 3 switched).
grammarg (and is independent of;,,,U;,). We note that  Since Bisis is finite and Refuter always has finitely many
performing Point5 in a play gives rise to a (finite or infinite) choices when there is his turn, there is an obvious algoiithm
sequence of pairs aspect which we also capture in the next (soundness) lemma.

(Th,U1), (T, Us), (T3, Us), . .. (2) Lemma 16. There is an algorithm with the following property:
which is eq-level decreasing (see Def.18(1)) if Refutelagms  9'VEN @ det-first order.gramma@ and Tiy,, Uin, it hglts and
are true; we havé; ~ U; for all j if Ty ~ Up. An example produces soméasis iff Prover can force her win forg,
of phases andi+1 is depicted in Fig.12 (fully used later). _Ti"’ Um by usingBAsis (in the weaker form of the game, say);

We can see that &is plays no role until possibly used" this casel’ ~ U for all (T, U) & {(Tin, Uin)} U BASIS.
in the final proof contradicting Refuter's claims. E.g., iBy combining with Lemma 9 we get an algorithm which
(T;,U;) for @ > 0 is shown to be abasis-instancei.e. decides RACE-EQ-DET-G, on condition that for each det-
(T;,U;) = (Eo,Fo) for some (E, F) € BAsis and some first-order grammag there exists a basis which is sufficient
substitutions, then this is a contradiction, since by Refuter'sor forcing Prover’s win for anyl},, ~ U;,,. This completeness

claims EQLv(T;, U;) < MINEL(STARTSET) (for ¢ > 0) while
EQLV(Fo, Fo) > EQLV(E,F) > MINEL(STARTSET) (by
using Prop.11(1)). Another simple proof of contradictisrai
repeat i.e. getting(7;,U;) = (T3, U;) for j > .

Remark.We could surely make the game more flexible fo

Prover, adding her other sound possibilities but the abowma f
is technically sufficient.

Example of a play of the Prover-Refuter game
We just show a simple play (not claiming anything particular

1. G from Fig.5 is given.

2. Prover puts (guessespBIs = {(z1,z1), (Az1, Bxy)}.

3. (Tin,Uin) = (ABL,BAL) is given.

4. Refuter choose€ly, Uy) = (Tin, Uin) = (ABL,BAL).
5a. Prover chooses = 2 and constructs RG(Ty, Uy, k) as
in Fig.9, demonstrating thaty ~; Uy.

Refuter choosefl|), U}) = (ABBBL1, BAAAL), with
wo = aa. (Ty —> T}, Up —> U}.)

Prover performs a left-balancing: she sh@dws , A1)
REG(TQ,Uo,k—l), puts o {(I5,BJ_)}, o’
{(z5,AL)}, presentsT] (ABBuz5)o, and puts
Ty (ABBzs)o’; she thus defines(Ty,U;)
(ABBA1 ,BAAAL).

5b.

5c.

is shown in Section IV, which will finish a proof of the next
theorem.

Theorem 17. Trace equivalence for det-first-order grammars
g’.e., the problemlRACE-EQ-DET-G) is decidable.

IV. COMPLETENESS OF THEPROVER-REFUTER GAME

IV-A shows that we get the completeness if therevig N,

g : N — N for any G such that Prover has a so-calléd g)-
strategy for eaclTy ~ Uy (guaranteeindn, g)-subsequences
of sequences (2), as depicted on the left in Fig.13). IV-Bithe
shows a “balancing strategy” for Prover which is @n g)-
strategy.

A. “Stair-base” (n, g)-sequences are sufficient

We still assume a fixed det-first-order grammgr
(N, A, R) if not said otherwise.

We recall RESSIZE(F) (of a regular termE over V), and
put PRESSIZE(F, F') = PRESSIZE(E) + PRESSIZE(F), say.

Definition 18.

1) A sequence(Ty,Ur), (T, Us),...,(Te,Uy) is eqg-level
decreasingf w > EQLv(Ty,U;) > EQLV(T,Us) >
s > EQLV(T@7 Ug).



2) A (finite or infinite) sequence (“head-pairs”, or “heads”) En 1y

(E1, F1), (E2, F3), (Es, F3) ...

and a substitutiom (“tails”) where CARD(SUPRo)) <n
constitute an n-tail presentation of the sequence  E:
(Elcr, Fla), (EQO', FQO’), (EgO', FgO’), e

3) Forn € N and a nondecreasing functign: N — N, o
(Th,Uy), (Ta,Us), (T5,Us), ... is an (n, g)-sequence
if it has ann-tail presentation given by tails and heads
(E1, F1), (F2, F3), (Es, F3), ...
where PRESSIZE(E;, F;) < g(j) for j =1,2,3,....
(Hence(T;,U;) = (Ejo, Fjo) for j =1,2,3,....)

4) Prover has ann, g)-strategyfor G if she can force that
the sequencéTy,Uy), (T2, Us), (T5,Us), ... arising in
the phase9),1,2,... (recall (2)) has an infiniteg(n, g)-
subsequence in each play wheffg ~ Uy and the play g 13 ang
does not finish with Prover’s win in Point 5b or with a
repeat. (The basis is irrelevant.) Prover can demonstrate,;c — o(z;) and Fio —— Ho

5) Stipulatingmax () = 0, we define the following finite num-(or vice versa) forz; € SUPHo), H # x; and |w| = k
ber (Maximal Finite Equivalence Level) for aye N:  (see Fig.13). Moreover, she deriveQQIE/ (o(x;), Ho) >
MAXFEL, = max{EQLV(E,F) | E # F and EQLV(E;10,Fsy10) > EQLV(FE4i20, Fsi90) > --- for
PRESSIZE(E,F) <b}. (the shift)s = 1 + MAXFEL ().

The essence of the next lemma is the fact that the length of‘ész'ng (deductloc;] rulestb?s?g f).n)thProp;;)}smo; 13]; 11(2)
eq-level decreasingn, g)-sequences is bounded by a numbéf@ < Frovercan demonstrate that in the paitsr, o), for

T !/
d ding iust dind dent of). 7 = s+1,s+2,_..., she can replage Wlth {(:ci,H )}cr[__wi]
epending just o, n, g (and independent of) whereGPy: arises fromcPy by redirecting each incoming arc

Lemma 19. If Prover has an(n, g)-strategy for a det-first- of z; to the root (see Fig.13without affecting the eg-levels
order grammarg then there is som&Asis for G which is of these pairs if Refuter’s claims are true.

sufficient for Prover to force her win for all};,, ~ U;,. Note that RESSIZE(H) is surely bounded byg(1) +

Proof: Suppose a fixed;, and n, g guaranteed by the MAXFELy(1) - STEPINC, where SEPINC can be taken as
assumption. Consider a play of the P-R game in which the size of the Ia}rgest rhs in the rules. of |t. bounds the
is given (in Point 1). Suppose Prover (in Point 2) IorOducé;1§>33|bl_eone—step m_creasef the presentation size when a rule
BAsIs = {(E, F) | E ~ F, PRESSIZE(E, F) < B} for some IS applied (recall Fig.6).

(large) boundB € N. We can imagine that Prover has an Prover thus demonstrates &m—1, g')-sequence

unlimited computational power and “computes” (guesdes) / / / /

and Basis when knowingG, n, g. Our reasoning below will (Br01-0.) F101-2), (B201-ai)s Fo0z) oo (4)

put some conditions o8 which Prover can “foresee” andof length ¢(,_1 4y = £(n,g — (1 + MAXFELy)) Where

which will guarantee that Bsis “handles” allT;,, ~ Us,. E; = E.j{(x;,H)} and Fj = F,;{(x;, H')}; we note
So assume that soni€,, ~ Ui, is given in Point 3. (This that PRESSIZE(E), F) is surely bounded (by(s+j) + 2 -

could not be foreseen by Prover.) Refuter then necessamiigesSize(H) and thus) by

choosesly ~ Uy in Point 4 (though claimingy # Uy). Let

Prover use her assuméd, ¢)-strategy, and consider a moment g'(j) defined as (5)

(after a number of phases) when the so far constructed s

quencegTy,U;), (Ts,Us), ... has afong’ (n, g)-subsequence g

PRESSIZE(E;, F}) < g(j)
P CARD(SUPP(0)) <mn

Fy

n, g)-(sub)sequence (left); decreasiagPHo) by {(z;, H')}

{1+ MAXFELy (1) +5)+2-(g9(1)+ MAXFELy () - STEPINC).

(T3,,Ui) = (Ero,Fio), (T;,,Ui,) = (Ez0,F20), ..., We can now reason for the sequence (4) as we did for
(T3, Ui,) = (Eyo, Fyo); we write £ ast(, 4 for later use.  the sequence (3): 2} ~ F| then Prover can claim her
Prover can derive from Refuter’s claims that win if she has chose > ¢/(1) (“computing” ¢’ from G

(E10, Fi0), (E20, F30), ..., (B, , 0. Fi o) (3) and g). Otherwise Prover creates &n—2,¢”)-sequence of

_ _ _ + lengthl, 5 gy = £—1,9y) — (1 + MAXFELg(q)), etc. The

is eq-level decreasing (though in realiyo ~ F;o forall i). jteration can happen at mosttimes. Sincen is known in
If Ey ~ Fy (which must be the case when = 0, SO pgint 2 Prover could choog® sufficiently large to force her

whensuPRo) = () then Prover can claim her win if she hagyin 4y creating a basis-instance with the eqg-level less tha
chosenB > ¢(1) (so we have a first condition o8, which MINEL (STARTSET) according to Refuter). -
Prover could “foreseee” in Point 2): in this caSE,,U;,) =

(E10, Fyo) is a basis-instance (and Prover can claim her winfRemarkWe note a “side-effect” of the above proof; though not
Assume now BLV(E;,F1) = k € N; note thatk < important now, it will be used in the analogue of Lemma 19 for
MAXFELg). Since Eyo ~ Fio, by Prop.12 we know that the general bisimilarity problem. Let us consider the failog

8



recursive definition oiﬁ(
G is assumed):

ng) (forallneN, g:N— Nwhen

if n=20 thenﬁ(n,g) = g(O,g) =1+ MAXFELq(l)
otherwisel(,, ) = £(n—1,9) + (1 + MAXFELy(1))
whereg’ is defined as in (5).

Using the reasoning in the proof of Lemma 19, by induction

on n we can easily verify that(, , provides an upper
bound on the length of eq-level decreasing g)-sequences.

Computability of¢(,, 4 is another matter to which we return

in the general bisimilarity case.

B. Balancing yielding ar(n, g)-strategy

We first introduce some notions and make some observati

which are used in describing a particular balancing styatég
Prover; then we show that this strategy is @n g)-strategy
(for the assumed)).

(Shortest) sink words; root-performability

In the general (nondeterministic) case, the following o
make better sense in the det-LTS; (recall Def.6), but we
can stick to our assumed det-LTS, here.

Definition 20.

1) w e A*is a (Y, j)-sink-word 1 < j < m = arity(Y),
if Yoy ...2, — x; (henceY Fy ... F,, — F}).

2) A path F - (of length|u|) is root-performablef the
rootof FisY e N andYxy ... Zapriy(y) —%5: hence no
proper prefix ofu is a (Y, j)-sink word then; if, moreover,
u itself is not a(Y, j)-sink word thenF" — is strongly
root-performable

3) ApathG - sinks into depth: in boM(G) (recall G :
N* — A UVAR) if it sinks alongsomey = iyiy.. .0 €
DOM(G), i.e. if w = wyws ---wy, and for each?, 1 <
¢ < k, we have:wy is a (Y, i,)-sink word whereY” =
G(irig...i¢—1). (HenceG — sinks into depth).)

In Fig.6, a is a (Y, 1)-sink-word of lengthl. In Fig.7, if
root(F) = A and the arc depicted iGPr is labelled 2
thena, azasasasag is an (A, 2)-sink word. F “225% is root-
performable for allj,0 < j < 6, but it is not strongly root-
performable forj = 6.

It is useful to realize the next trivial fact (recall agaigH).

Proposition 21. If w is a (Y, j)-sink-word thenw = av for
aruler: Yz, ...z, — E whereE - sinks along some
v € DOM(E) where E(y) = z; (SOE —— z;). (E =z is a
particular case.)

It is thus clear that we can efficiently (by standard dywise we hadus

namic programming techniques) fixshortestY’, j)-sink word
sswY, j) for each pairY,j, YeN, 1<j<arity(Y) (in our

Mj-sinking paths (no lengtid{, subpath is root-performable)

Definition 22. We putDEPTH(E) = max{|y| | v € DOM(E)}
for finite terms E, and we define thenaximal one-step depth-
increase

STEPDEPTHINC =
max{DEPTH(E)—1 | E is the rhs of a rule inG}.

A pathT % T’ is d-sinking d > 0, if there is no root-
performable subpath of lengthin T T”, i.e., we cannot
write w = ujvug, |v| = d, so thatT 5 (Az; ... xp,)0 ——
G'o 22 T where Az ... xm — G.

uLvU
1 2T/

In fact, we only useM,-sinking paths. The patii’

(?rrl'%:ig.ll is notM,-sinking.

The next fact is trivial; if we have a lond§/,-sinking path
T - then its prefix sinks deeply inom(T)) (increasing the
sink-depth within eveni/, steps), which is possibly followed
by a “growing end” shorter than/y:

Proposition 23. If a pathT — T’ is My-sinking then we
can write w = vyjv; whereT 25 Ty 25 TV, |vo| < My,

T 2% T, sinks into depth at least = |w|div My in

pom(T), andT’ can be writtenF'o for a finite termF where
DEPTH(F') < 1+ (Mp—1) - STEPDEPTHINC and eacho(z;)

(for x; € SUPHo)) is a subterm ofl}; and thus ofT".

(If v = ¢ then we takeF = x; ando(z,) = Th = T".
OtherwiseT} = (Azy ...z )0, hence allo(z;), 1 < j <m,
are subterms of}, and we havedz; ...z, —2 F.)

Figures 10 and 11 help to observe the next fact (saying that

we can bound BPTH(G) in Fig.11).

Proposition 24. Consider a regionReG(T, U, k), T ~y, U,
and 7",U",w, |w| = Fk, such thatT - T, U %
U’. Suppose there is n¢7’,V) € ReG(T,U,k-1) and
T - T is not My-sinking. Take the last root-performable
(sub)path of length\/y in T —- T7, i.e., take the longest
u; such thatT % (Azy...zp)0 — Glo 2 T
where Az, ...z, — G’ and [v] = My. Then there is
(o(z4),V]) € REG(T, U, k—1) for eachj,1 < j < m, and
G' 2 @ (henceT’ = Go) where

DEPTH(G) <1+ (2Mp—1) - STEPDEPTHINC.

A
Proof: For eachy, 1<j<m, we haveAz; ...z, sSWA7)

zj, and |[sSSWA, j)| < My |v|; hence there is a pair
(o(x5), V) in/ ReEG(T,U, k—1) (sinceT ~y U). We cannot
have G'c —— o(z;) for a prefix ' of uy since other-
= u'”, o(z;) *— T’ and thus we
had (T",V) € ReG(T,U,k—1) (see Fig.11). We thus have
G = @; moreover,G' =% G is My-sinking (since we

assumedd) for which there is such a word. If there is notook the last root-performable path of lengff,). Since

(Y, j)-sink word (so thej-th successor o¥ is nonexposable
and thus irrelevant), we can safely decreaséty(Y) and

make the obvious corresponding modifications in the rules of

G. Hence we further assunssw(Y, j) for eachY’ j, and put
My =1+ max{|ssWY,j)| | YeN,1<j<arity(Y)}. (6)

DEPTH(G') < 1+ M, - STEPDEPTHINC, with Prop.23 we
easily verify the claim. ]

Recall Fig.12 and suppose thdt,, i Ti,, is M-
sinking. We then need that the “rest-hea@” is “erased”

which is guaranteed when we have &R -distance region for



M, > My - (1 + DEPTH(G)). Therefore we put
M, = My - (2 + (2My—1) - STEPDEPTHINC).  (7) T[] T

(Restricted) left and right balancing steps

From now on we assume that Prover always choésesM;
in Point 5a of the P-R game. We now alsstrict the allowed
way of balancing

Imagine the game is in 5c in Phagewe haveT; LN T/, < oM e m—
Wi rry : W > 1 VvV M <M
U, — U]. If Prover wants to perform &ft balancing step
she does the following (recall Fig.10 and Fig.11): Fig. 14. (A prefix of) the path from a pivdt/ to the next pivot

1) If there is somgT/,V) in REG(T;, U;, M1—1), Prover
(chooses one such pair and) plits, =V, U;41 = U].
2) Otherwise if there is a root-performable (sub)path of it the balancing result i§7;,1,Uir1) = (V, Ul) asin1
length M, in T; % T/, she takes the last one, getting(See Fig.10) thelil’ — U; —> V "} T, ,, where|u| < M,
S v ’ 2 ;o : : i i+2s .
I — (Avy...om)o — Glo — I = Goasin = o, assumgT;.1,Uis1) = (Go’,U!) (Fig.11) where for

Prop.24 (. vus = w;). She defines’(z;) = Vj’ for each ’ S
eachz; € sup there isu/, |u/, My, such thatiW =
J,1 < j <m,where(o(z;),V]) € REG(T, U, k—1), and - © Ro’) uje |l < M

putsT;i1 = Go', U;y1 = U]. U; 4, o’ (x;); recall also that
3) If none of 1, 2 applies, hencE = T/ is My-sinking, DEPTH(G) < 1+ (2My—1) - STEPDEPTHINC (by Prop.24).
then no left-balancing is possible. We have chosed/; large enough so th&; ; = Go’ -

In the cases 1 and 2J; is called thebalancing pivotand for the above mentioned prefix of w;. sinks into greater
(Ti41,Uit1) the balancing result(or the bal-resul) of this depth than BEPTH(G); hence there is a prefin’ 0f Wit1,
balancing step. Theight balancing stepsare defined sym- we putw;,; = w'w”, such thatGo’ = o' (2;) = Tiio.

metrically (7; s then the pivot). HencelV = U -2 o/(z;) 25 Thas (juju”| < 20y). m
- ? J ? J :

Balancing strategy for Prover . . _
We further assume that Prover behaves as follows in Phase F|g.1A_, shows a path from a pivét’ to the next_plv_ot. It
arts with a (sub)path of length 21/, correspondingither

She balances, i.e. performs a left balancing or a rigﬁE . . . L .
balancing step (as in 1 or 2 above), if possible but she canﬁ%t(l,,) N Prop.25, in Wh'Ch_ case the_ length of th|_s starting
do a left (right) balancing if a right (left) balancing wasrdo path Is M, and_ the Path f'n'She.S with _the next P'\./m’ to .
in Phasei—1; if balancing is (thus) not possible, Prover doe ) in Prop.25, in which case th'? st.artlng pafch fm'SheS. with
no-change, i.e. putd},; = T/, Uy.1 = U!. (Prover thus ', € {Ti2, U2}, for the appropriate, depending on which
cannot switch balancing sides in two consecutive phases; s&'.de (left or right) .the next plvpt IS- (m Fig. 14 th.e §tag|path :
a switch needs a separating no-change phase.) gives an impression of term-increasing but this is not true i

RemarkWe use a liberal notion of a strategy since it mighge_neral.) In the above case (2), the starting path, finishifg
leave some free choice to the player adhering to the strate jght be follqwed by_a sequence of *follow-up” paths (where
e last one finishes in the next pivot); each of these follqw-

Pivots of a play are on a special pivot-path if; paths has lengtfd/; and is My-sinking. (Fig.14 depicts just
Proposition 25. (1.) If Prover balances in Phaseand Phase ©N€ follow-up path.) Here our choice dif; guarantees (by
i+1, then we havél’ % W', |w;| = M,, for the respective Prop.23) that we have term-sinking”, in partlcular_ anyr_pat
pivots. (V = U; % Us., = W in the case of left balancing, (of IengthMl)_ in this follow-up sequence necessanly_ visits a
and W = T; “ Ty, — W' in the case of right balancing). subterm ofV (in the ever greater depth mom(V)). (In Fig.14

(2.) If Prover balances in Phase with pivot W (W = U, we assume BPDEPTHINC = 1.) We have thus shown:

or W = T;), and does no-change in Phase 1, then there are proposition 26. The pivots of the balancing steps used in a
words v’,v” of length at mos2M/; such thati —— T;,,, play of P-R game (where Prover uses the above balancing

W 2 Uiy (i.e., after Phase + 1 the terms on both sides Strategy) are on a (finite or infinite) path

are “shortly” reachable from the last pivot).
, o Wy 5 Wy 25 Wy =2 ... 8
Proof: The first part is trivial. For the second part L ®

assume that left-balancing was done in Phiaased no change v _ o

in Phasei + 1 (as in Fig.12); hencdV = U;, and we Where each (subjpath’; — W, can be writtenWV; —

have W “““4* U, (where|w;w;.1| = 2M;). Moreover, V —— Wiy so that|v'| < 2M; and V == W;y, is a
Tiv1 =2 T, is My-sinking, hencew; ., has a prefixw Sequence of “follow-up” (sub)paths of length/;; each of
such thatT;,; — sinks into depth at least/; div M, = these follow-up paths (of lengthl,) is My-sinking, and thus
2 + (2My—1) - STEPDEPTHINC in DOM(Tj41). visits a subterm of/.
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Fig. 16. First steps in path (8), the second term happens t“b&ir-base”

(recall Fig.10 and 11); we would have a repeat.

Hence there is a visit of a terid = (Y1 ...2,,)0’" in (8)
(a “stair-base”, depicted as the second term in Fig.16) such
that no subterm ofi is visited later (so the rest of (8) is
strongly root-performable); we can thus write (8) as

U u’ Vg1 Vg 42
Wi, — (Yay...2m)0" — Hyo! — Hyo! — ---

Fig. 15. A termV (with dotted root) presented QQ'OPX)U

where (Y, ...zm) 5 Hy "5 Hy ™2 .. and H;o' =
Balancing strategy is afin, g)-strategy Wit; (G =1,2,...) are the pivots afteV’. We can check (by

o Fig.14) that DEPTH(H,) < 1+ j - 2M; - STEPDEPTHINC.

In the proof of the next lemma (which finishes the proof Recall that the balancing result with pivelto’ is composed
of Theorem 17) we also use the following notion which Weom terms (ikeV/, V!, U’ in Fig.10, 11) reachable from the
highlight for repeated trivigl use: withid steps fromV we pivot by at mostM, moves, possibly using a bounded “rest-
can sink at most to depiti in DOM(V). head”G. Recalling Def.27 (and Fig.15), we write

Defi‘rlition 27. For a (regular_) termV” and c{/e N we define V=(Yai...0m)0" = (TOPY, Jo = (Yar ...2m)0" )0
Topr; as the finite term withDEPTH(TOP;) < d which !
coincides with” on all v € bom(V), |v| < d, but ToPY (y) where ToPy; = (Ya1...zn)0” ando’ = o”o. Moreover,
for |v| = d is a (fresh) variabler; unique toy. (We assume We havesuPRo) C {z1,22,...,z,} Where
a natural order onD = {y € pom(V) | |y| = d} and we o _ .
always use the smallest available index for) n = for e =max {arity(Y) | Y € N'}. ©)
By puttingsuPRo) = {z;, | v € D} ando(x;,) =V, (the HenceW,,; = H;o"o, and the balancing result withi/; | ;
subterm ofV occurring at~), we get thetop-d presentation can be written(E;0, Fjo), whereE;, F; are finite terms with
of V, namelyV = (TorY )o. DEPTH(E,), DEPTH(F;) bounded by BPTH(H; )+ M+ M-
STEPDEPTHINC + (1 + (2Mp—1) - STEPDEPTHINC) (recall
Fig.10 and 11, and BPTH(G) in Prop.24).
This obviously gives somg : N — N (determined byg)
such that RESSIZE(E;, F;) < g(j). The bal-results related

Fig.15 shows a top-presentation of som&. Note that we
cannot use the variables {1/ (v) | |v| < d} as the variables
in SUPH o), but we can assumeUPRo) C {x1,22,..., T}
wherec = max { arity(Y) | Y e N }.

to pivots Wii1, Wiia, Wis,... thus constitute an infi-
Lemma 28. For any det-first-order grammag, the balancing nite (n, g)-subsequence of the sequeti@g, U, ), (T2, Us), . ..
strategy is an(n, g)-strategy ¢, g are determined by;). arising in the phaseg, 1,... of our assumed play. ]
Proof: Assume an infinite play wheré, ~ U,, Prover V. AN UPPER BOUND ON COMPLEXITY

uses the balancing strategy and there is no repeat. Pr@er themark The next section VI is independent of this section.

balances inllzi‘nitely often: Otherwise for some 0 all T; — An elementary functiolN* — N arises by a finite compo-

Tis1, Tiy1 — Tiya, ... are My-sinking (corresponding to sjtion of constants, the elementary operatians-, - , div and

the follow-up paths afted” in Fig.14), and Prop.23 and ourthe exponential operatdr, wherea T n = a™ .

choice ofM; easily yield that alll; range over finitely many  ConventionIn our context, when we say thatraimberis

terms (since their presentation size is bounded). Singifarl  elementarywe mean that there is an elementary function of

Uj, so there would be a repeat. the size of the underlying det-first-order gramngawhich
The pivot path (8) of our assumed play is thus infinitegives an upper bound on the number.

Wy =5 W, =% ... If aterm V' (not only a pivot) is  E.g., the numberd/y, M; (see (6), (7)), as well as in the

visited infinitely often by (8) then we havé’;, = W;, =---  proof of Lemma 28 (see (9)) are obviously elementary.

for infinitely many i;: any particular visit ofV’’ occurs in  The first nonelementary (hyper)operatoritigrated expo-

the pathWV; = W;41 for someyj (V' is somewhere in the nentiation T, also calledtetration ¢ 1T n=a 71 (a T (a T

path in Fig.14), and RESSIZE(W, 1) can be obviously only (...a T a)...)) where] is usedn-times.

boundedly bigger thanAESSIZE(V”). It is easy to check that Our analysis will yield the following theorem, with an

the balancing results would be then infinitely often the sanmbvious algorithmic consequence.
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Theorem 29. For any tripleG, Ty, Uy with the sizd NSIZE (of A sequenc€Ty, U), (T2, Us), ..., (T, Up,) is an (n,t)-

a standard presentation) wheggis a det-first-order grammar sequencéf it has an (n, t)-presentation (with som8up).

and T, +# Uy we haveEQLv(Ty,Us) < 2 17 f(INSIZE),

where f is an elementary function independenttfTy, Us. E.g., if the supports ofr, 01,0, are subsets of & and
SCARD(SUP) < n theno (as tails) and the following pairs

Corollary 30. Trace equivalence for det-first-order grammar: . .
y d g (heads) constitute afn, 2)-presentation:

can be decided in time (and spae@j2 11 g(INSIzE)) for an

elementary fUnCth@. (El, Fl), (Elcrl, Flal), (Elo'g, F10'2), (E10'10'2, F10'10'2).

An analogous claim holds for language equivalence of deter- (11)

ministic pushdown automata, as follows from the reductidy adding4 pairs which arise by prolonging both sides in

shown in Section II. the above pairs witlrs we would get an(n, 3)-presentation.)
We now aim to prove Theorem 29. V-A shows a stronger Convention. We will implicity assume that the heads

congruence property (in our deterministic case), whictblsa (E1, I1), (B2, F2), ..., (Eat, Fr) in an (n,t)-presentation

to show that there are no eq-level decreasipmgn+1)- are, in fact, always given byE,, F1) and somery, oz, ..., 0

sequences introduced in V-B. V-C then shows that this yiel#eresupRo;) C Sup (for j = 1,2,...,1).

a proof of Theorem 29. The above inductive definition easily yields (using Prop.11
We again assume a det-first-order gram@iat (N, A, R),

and the det-LTSCA, if not said otherwise. Proposition 33. Given an (n, t)-presentation withSup, for

any head pair(E;,F;), 1 < j < 2, there is somez,
A. Stronger congruence properties SUPHT) C Sup, such that(E;, F;) = (E17, F17); hence

By Prop.11,01 ~¢.1 oy implies Eo; ~yp1 FEos. Thus EQLv(E;, Fj) = BQLV(Ey, F1).

if EQLV(E,F) = k < (¢ = EQLV(Eoy,Fo;) and Def.34 and Prop.35 serve for showing (an inductive proof of)
o1 ~ey1 02 then QLV(Eoy, Foy1) = EQLV(Eo2, Fo1) = Lemma 36. The essence is simple: in an eqg-level decreasing
EQLV(Eo9, Fog) (using Prop.2). We now observe that for(n,t+1)-sequence(E;, Fy) yields x;, H as in Prop.12, and
getting EQLV(Eo2, Foz) = EQLV(Eoy, Foy) it is sufficient  we can be replacing with {(z;, H')}o(_,,) as in Prop.13, and

to haveo; ~¢—1 02. (l.€., if we replacer; with o2 on both  more generally’c with {(z;, H')} (o' {(xs, H')})[—2:)01—2:]»
sides simultaneously then the requirement is weaker.) which in later pairs does not affect the eq-levels due to
Prop.31. This allows to create an eq-level decreagingl, ¢)-

Proposition 31. AssumeEQLV(E, F) = k < w and sequence from the original even pairs. We now formalize this

EQLV(FEo1, Fo1) = ¢ (hencel > k). If 01 ~y_k41 02 then
EQLV(FEoq, Foy) = EQLV(Eo1, Fo1) = L. Definition 34. Let P; and P be as in Def.32. (Henc® is
(n,t+1) presentation with heads (10p; is its first half.)

Proof: We recall Prop.8 and the fact that the assumptidH’
P HmpH Letz; € SUP (son > 0) and H # x;; we put

E ~y, Fimplies E = z; iff F -5 z; for anyw, |w| < k.
Hence if E - z; and F — H where H # z; then H' = H{(x;, H)}{(z;, H)} ..., and

(—|w| < b=k, o1(xj) ~p—jw Hoy (by Prop.4), and thus o =o' {(x;, H')}.

o2(x5) ~p_jw Hoa; moreover, if BLV(oi(z;), Hop) < o _

0~k then EQLV(os(z;), Hon) = EQLV(01(z;), Hoy) (by Thenthe presentation induced B andx;, H is the(n—1, t)-

Prop.2). We can thus verify that@Ev(Eos, Fog) — ¢, m Presentation withSur’ = Sup . {z;} where the tails are
) 0[_z,), the heads aré £, I)), (Ey, Fy), ..., (Ey, Fy,), and

B. Recurrent-pattern sequences, calledt)-sequences « if t = 0 then(E!, F!) = (Ey0", Fi0"), and

We introduce (n,t)-sequencesvhere t € N denotes that « if ¢ > 1 then (E},FY),...,(E}._.,F}_,) is the head
the sequence ha¥ elements=pairs. In contrast wittn, g)- sequence of thén—1,t—1)-presentation induced b®;,
sequences, the sizes play no role; we just capture a returren z;, H, and forj =1,2...,2"! we have

pattern. A crucial fact will be that there are rem-level (Bgt-1yjs Forory ) = (Ejo( . p, Flof )

decreasing(n, n+1)-sequences. (Recall novin Def.18.) Eg. for (11) we getE| — Eyoi{(xi, ')} and E, —
A 1 — (3 2

Definition 32. A presentation consisting of (tails) and Eyo1{(z;, H')}(o2{ (i, H')})[—ay-
(E1, F1) (just one head-pair) is afn, 0)-presentation with the If we make an (n,3)-presentation from (11) by using
support set 8P C VAR (presenting the one-element sequencg = o3 then in the induced sequence we would
(Ero, F10)) if CARD(SUP) < n and SUPHo) C SuP. get B3 = Eyou{(zi, H')}(03{(xi, H')})[-e,) and B} =

If P, is an (n,t)-presentation withSup, consisting of Eyoy{(xi, H')}(oo{(zi, H')}) s, (0s{(zi; H')})[a,-
o and (Ey, F1),(Fa, Fy),...,(Eq, Fy), then for anyo’,

SUPH0’) C SUP, the presentatior with tails o and heads F/0POSition 35. Assume an eg-level decreasirg, i+1)-

sequencet(> 0); thenn > 0. Let the eg-levels of the pairs
(E1,F1), ..., (B, Fy), (Ero', Fi0'), ..., (Eyd’, Fyo') in the presented sequence be> {3 > .-+ > fy41. Then
(10) there is an eq-level decreasing.—1,t)-sequence, with eqg-
is an (n,t+1) presentation with Sp. levelsly, £y, lg, . .., Lott1.

12



Proof: Consider the assumed eqg-level decreasing
(n,t+1)-sequence in presentatioR as in Def.32 and 34.
For any ¢’ where supRo’) = () we have(E o', Fio') =
(E1, F1); hence there are obviously no eg-level decreasing
(0,1)-sequences, and our assumption indeed impliesO0.

Since(FEs, Fy) = (E101, Fio1) (for someoy, SUPHoq) C
Sup) and ¢y > ¢, = EQLV(FEs0, Foo) > EQLV(Es, F5) >
EQLV(F4, Fy) (recall Prop.11), we havely > k =
EQLV(E4, Fy1). By Prop.12 and 13 we can fix some, H
such that H # x;, ©; € SUPHo) C Sup and
O~k {(xi,H')}a = {(xi,H')}a[,zi] (Where H =
H{(zs, H)H{(w, H)}..).

We now show, by induction or, that the (n—1,1)- s g derive a bound (a function of the size @fand Ty, Uy)
presentation induced by and z;, H presents arin—1,1)-  on EoLv(T,, Up), a bound in the form in Theorem 29, called
sequence which we search. a tetration boundfor short.

First note that_for anyj > 2 we haveo ~y 41 We note easily that it suffices to derive a tetration bound on
{(zs, H')}or) (sincely > £;). By Prop.33 and 31, We can ppessize(7;, U;) for the pairs(Ty, Us), (Ts, Us), . .. of the
replace the tailsr with {(z;, H')}o(_, in all pairs but the o jeve| decreasing sequence (2) arising in the phases. ..
first one, in particular in all second-half paivéithout affecting  gjce we have no repeat, a bound GrEBSIZE(T}, U;) yields
the eg-levelglor 1 > loryn > -+ > f2t+1)- ) _ an elementarily bigger bound onQEV (Tp, Up).

If t/: 0 th?n the secontlj pa(rEl/O' 0, F10’0) thus yields If there is no balancing (since all relevant paths
(Ero'{(@i, H')}o[_s,), F1o {(FviaH)}U[fmi]); are Mjy-sinking) then RESSIZE(T;,U;) is bounded by
We are done when recalling that the inducéd-1,0)- PRESSIZE (T}, Uy) increased with some elementary number.
presentation is given by tailsy . and the head-pair (Recall our convention that elementary numbers are bounded
(Ex, F7) = (Evo'{(z;, H')}, Fro'{(zi, H')}). by elementary functions of the size 6f)

If ¢ > 1 then we first use the indu_ction. hypothesis for“\we now supposé > 1 balancing steps and write the finite
the first half, i.e. for the(n, t)-presentatioriP;; we get that pivot path (8)W; % Wy 2, ..

wh Vi Wa=Va Wi

Fig. 17. (1,2,3) and(1,4) are examples of stair sequences

. as
the (n—1,¢—1)-presentation induced 6%y, z;, H, i.e. 0|, )

and(E{, FY),..., (B, ., Fl, ), presents a sequence with eq-W; 25 V; 22 Wy 25 Vo P2 W 24 oy, S8,
|eV€|S£27 by, lg,. .. Lot (12)

Then we use the induction hypothesis for the modifiegherev;; is the longest prefix of; such thativ; —2 sinks
second half, namely for then, t)-presentation with the same(into some depth imom(W;)). We can have cases; = ¢
heads as inPy, i.e. (E1, I1),...,(Eyx, Fa), but with tails  as well as cases;; = v;. We also putiy = W, andugy = e.
o'{(zi,H')}o(_5, (which replaced the originat’oc without Fig.17 stresses that —= W, is strongly root-performable.

affecting the eq-leveldy 1, loi1,. .., {2+1). The induced Recall also that/; is somewhere in the path depicted in Fig.14
(n—1,t—1)-presentation has the same heads as in the first-hglft 7/ there served for different aims.

case, namely(E1, FY),...,(Ej_., Fy,_.), but the tails are " v
(0 {(i, H)} 0w o] = (0 {(2i, H')}) (0O NOW Proposition 37. If V; = (Top,; ) o then the bal-result related

Uot o, lot g, bot v, - . ., Laee1 are the eq-levels of the presented® the pivotV;., can be written(Eo, Fo) where 7, F' are
sequence. finite terms with depth bounded by+ M; + (3M7 + 2Mp) -
Since the two(n—1,¢—1)-presentations, arising above by>TEPDEPTHINC. Moreover, SUPRo) C {1, 22,..., s}
using the induction hypothesis twice, yield together th&heren is (the elementary number) defined by (9).
(n—1,t)-presentation induced bf, z;, H, we are done. B Proof: SinceV; LN W41 is strongly root-performable,
Prop.35 implies (by induction on): we haveV; = (Yzizo...zm)o’, Wiy = Ho' where

Yaixy.. . %m —> H and DEPTHH) < 1 + 2M; -
STEPDEPTHINC (recall Fig.14). The rest can be checked by
recalling the balancing results (Fig.10 and 11) and Def 7.

C. Bounding shortest nonequivalence witnesses It is easy to check that for getting a tetration bound on tke si
Let us consider a play of a simplified version of the Proveof T;,U; it suffices to get a tetration bound onEBPTH(G)
Refuter game. We assume that a det-first-order granghaend in strongly root-performable subpaths of (12) in the form
a pairTy + Uy are given, and the play starts from 5a (there i€z ... z)0 2 Go where (Y1 ... 2m) 2, G. We now
no basis since this is irrelevant now). We suppose that Refuformalize that a large BPTH(G) can be only achieved by
always chooses a least eq-level pair (so that his claims in Bing “stair-sequences” of sonig’s, created from elementarily
are true) and Prover follows the balancing strategy; Priues bounded “stairs”; if these stair-sequences were longer tha
loses in the phasewherei = EQLV(Ty, Uy) div M;. Our aim  tetration bound then we would contradict Lemma 36.

Lemma 36. There are no eg-level decreasirig,n+1) se-
guences (for any).
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Definition 38. A pair (i,7), where0 < i < j < k—1 (k Lemma 41. There are elementary numbersq € N (given by
taken from (12)), isa stairif V; 2225245 ... Z3 %L v elementary functions ofize(G)) with the following property:

is strongly root-performable. Atair (4, j) is simpleif there is  For any simple stair-sequencgé, , i, . . ., i,-) in (12), of length
noj’, i < j' < j, such that both(4, ) and (j/,j) are stairs. r = h(t) where the (nonelementary) functiénis defined by

A subsequence, is, .. .,4,, 0f 0,1,2,...,k—1 is a (sim- the following recursive definition
ple) stair sequencé (i;,4,41) is a (simple) stair for each ) _ _
jefL,2,... r—1}. h(1) = q+1andh(j +1) = h(j) - (1+¢"D),
In Fig.17, examples of stairs af@,2), (1,3), (1,4), where the sequence of the balancing results related to pivots
(1,2) and(1, 4) are simple stairs butl, 3) is not simple1,2,3 Wi, y1, Wi,41,..., Wi, 11, contains an(n, t)-subsequence.

and1,4 are examples of simple stair-sequences.

The next proposition captures the fact that a simple staird Ir’rtooft:) L?E” be d(;ﬁnedf by (g?blln the_pg;oc:f;f I7emrr:1a 28,
represents just an “elementarily bounded increase”. and letq be the number of possible pait&o’, Fo') where

A substitutiono is finite if o(x;) is finite for all x; € VAR; (£, F) are finite terms arising as in Prop.37 and is a

S I , -

DEPTH(0) is thenmax{DEPTH(o(z:) | z; € VAR}. flmte substitution,surPKo’) C {xl,xQ,_...,xn}, arising as
- _ _ _ in Prop.39. These numbers ¢ are obviously elementary.

Proposition 39. If (i,j) is a simple stair andV; = For a simple stair-sequen¢a,, is, . . . ,i,) we present/;, =

Vi o Vi is fini . . .
(Tory;, )o thenV; = (Topy; )o’c where o’ is finite and (TOPXE)C’* Vi, = (TOPX}?)O'la', Vi, = (TOPX}?)JQUla', :

DEPTH(0’) < 2M; - STEPDEPTHINC. Moreover,SurPRo’) C Vi -
(21,2 2}, n defined by (9); we can hawPRo’) — V. = (TOPMI)Urflch,Q...crlcr, where o; are finite and
1252y s S g : " bounded ag’ in Prop.39. Moreover, the supports@fanda,
Proof: Suppose(i,j) is a simple stair and we have(j =1,2,...,7—1) are subsets of & = {z1,x2,..., 2, }.
V; = (Yo1...xp)0"c where (Yay...z,)0"” = TOPy; . The balancing results correspondinglt, Vi,, ..., V;, as

Then (i,i+() is a simple stair for any,1 < ¢ < j—i, in Prop.37 can be written as follows:

and we have(Yzi...xn,) iz Ty L ) Giv¢e (Fio,Fi0), (F2010,Fy010), (E3os010,F302010), ...,
where ViHU‘iwC_iietE]U”U- UFP]"U %ny 6,1 < 0 < j—i, the (E,0,_10,_2...010,F.0,_10,_2...010).
pathGir, — — --- === G; is not strongly root-  \We now establish the claim by induction a@n using the

performable (since(i,j) is a simple stair), which by our pigeonhole principle. Ift = 1 thenr = ¢ + 1 and we
definitions means that there &, ¢ < ¢’ < j—i such that necessarily getF;, F;) = (E;, F;) for somei < j; hence
Gt is a (proper) subterm af; .. Repeating this reasoningthe i-th pair and thej-th pair constitute ar(n, 1)-sequence:
for ¢, etc., we deduce that; is a subterm ofs; 1, and thus the tails ares = 0;_10;_5 ...o10 and the heads ares;, F;),

DEPTH(G;) < Dl_EPTH(GiH). (Eio',Fio') whereo' = o0;j_10j_5...0;.
We can easily check BPTH(Giy1) s 1+ 2My - As the induction hypothesis we take that for= h(t) we
STEPDEPTHINC, hence in V; = Gjo"c we have zre guaranteed that among the above bal-results ther® are

DEPTH(GJ'C’”)/IS My + 2M1H' STEPDEPTHINC and for any pairs, with indicesj; < jo < --- < jor, Which constitute an
7 € DOM(Gja") where(G0")(7) = z; € SUPRo) we have (;, 4)_presentation with tail§ = o;,_10j, 2 ...010. When

V, . .« u

vl > M. HenceV; = (Tory; ) o’c whereo’ is finite and  considering: = h(t+ 1), we partition(i1, iz, . . . ,ir), and the
DEPTH(0') < 2M; - STEPDEPTHINC. B coresponding bal-results, intb 4+ ¢"*) segments of length
Proposition 40. Assume(Yz; ...zm) —= G & VAR and 1(t). The i-th segment induces the sequendg ., Fi+1),
(Yzy...2,)0 —— Go is a (strongly root-performable) (Es+20541, Fig20s41), (ES+305+2,F5+305+2),
subpath of (12). Then this subpath contais, Vi,, ..., Vi, (Bsth®)Tstn(t)—1: Fsin)0stn(e—1) Wheres = (i—1)-h(t);

for a simple stair-sequenceir,is, ..., i, with r = the number of possible induced sequences is surely bounded
(DEPTH(G) div STEP) — 1 where STEP = (2M; + M) - bBY ¢"®. Hence there aré < j such that thei-th segment
STEPDEPTHINC. and the j-th segment induce the same sequence. By the

induction hypothesis, theth segment gives rise to dm, t)-

Proof: For anyV; inside by which we mean inside the presentation with some tails, and thej-th segment gives
path (Y, ...zmn)o — Go, there isG; such thatV; = Gio  rise to an(n, t)-presentation with the same heads but with
and (Yz1...2,) — G; — G whereu/v” = u. If there tails o'z (for someos’). We thus get arfn, t+1)-presentation
is no V; inside then obviously BPTH(G) < STEP (recall with tails 7. [ |
Fig.14). Leti' be such thatV; is inside and BPTH(G; )
is minimal; surely EPTH(G;) < STEP. Let i” be the Itis aroutine to verify thak(t) can be bounded wit@ 11 ¢(t)
largest index such thaV;. is inside; surely BPTH(G) < for an elementary functio. Henceh(n+1) (n being the
DEPTH(G;~) + STEP. There must be a simple stair-sequencelementary number (9)) yields a tetration bound on the kengt

i1,42,...,1, such that, = i’ andi, = i” (since eithei’ ="/, of (simple) stair sequences in (12). We thus have a tetra-

in which caser = 1, or (¢/,¢") is a stair). tion bound on EPTH(G) in Prop.40; this yields a tetration
Recalling Prop.39, we get E&PTH(G;,) < DEPTH(G;,) + bound on RESSIZE(T},U,), and thus a tetration bound on

(r—1) - STEP, and thus BPTH(G) < (r+1) - STEP. B EQLv(Ty,Up). We have finished a proof of Theorem 29.
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V1. BISIMILARITY FOR FIRST-ORDER GRAMMARS

[¢2C](z1, 2, z3) — ... (As shown in [9], with popping but

Trace equivalence coincides with bisimulation equiV(,jmn(pondeterministicz—steps bisimilarity becomes undecidable.)

(bisimilarity) in deterministic LTSs. For (general) firstder

An analogue of Lemma 9 for BiM-EQ-G holds as well; this

grammars trace equivalence is undecidable (like langua@fiows from the (inductive) observation that, is decidable,
equivalence for nondeterministic pushdown automata) bk anyk € N. (Recall thatC? is image finite andd is finite.)

bisimilarity is still decidable. This can be shown in priplg

We now introduce a notion of-distance coverselated to

in the way we used for det-first order grammars, with SOnReG(T', U, k) from Subsec.llI-B, in the setting of a given LTS
modifications. Below we define bisimilarity and then discusg — (S, A, (—%),c.4). We say thatB is a minimal cover of
the respective modifications of Sections I, IIl, IV. We a'SCB’ if B coversB’ but no proper subset B coversB’.

note why the way of deriving the complexity bound in A mapping

Section V does not apply in the general case.

Bisimulation equivalence (bisimilarity)

We recall a variant of the standard definition of bisimulatio

equivalence, denoted, and of its stratavy, k£ € N.

Given an LTSL = (S, A, (—5)aca), We say thatB C
S x S covers(s,t) € S x S if for any s — s’ there is
t —% ¢’ such that(s’,¢') € B, and for anyt % t' there is
s —= s' such that(s’,t') € B. B coversB' C S x S if B
covers each(s,t) € B’. B is abisimulationif B coversB.
Statess, t are bisimilar, s ~ t, if there is a bisimulationB
containing(s, t).

We put~y= S xS. Fork > 1, ~,C S x S is the set
of all pairs covered by-;_;. Note thats +¢; t iff s,¢ enable
different sets of actions iff there is n® which covergs, t). If
s,t are dead, not enabling any transition, tHeaovers(s, t).

We can easily check that if is a det-LTS thenv and ~y,

C:{0,1,...,k} — 25%S is ak-distance cover ofs, t)
if ¢(0) = {(s,#)} and

C(y) is a minimal cover oC(j—1), for j = 1,2,...,k.

Remark.A Ek-distance cover corresponds to a strategy for
Defender (which might still leave some free choice) in the
standard bisimulation game between Attacker and Defender;
this strategy guarantees that Defender will not lose within
rounds.

We easily observe the next facts:

Proposition 43. (1) If C is a k-distance cover ofs, t) then
8"~y t forall (s',) € Up<jcr1 C()-
(2) s ~ t iff there is ak-distance cover ofs, t).

Proposition 44. Assume’ is a k-distance cover ofE, F') in
L for a given first-order grammag = (V, A, R). (Recall
Def.6, Prop.7 and Prop.3.) Then we have:

coincide with the trace equivalence and its strata (defined i1) |f (£/, F') € ¢(j) then there areu, u’ € R* where|u| =

Section 1), but bisimilarity is finer than trace equivalerfor
general LTSs which we consider now.

We first note that Prop.1 holds for our new, and ~ if
we restrict ourselves timage-finite LTS$0 getNien ~r=r~;
i.e., we assume that for eache S and eacha € A there
are only finitely manys’ such thats —— s’ (in which case
Nken ~ IS @ bisimulation). Note thatf is image-finite for
any first-order grammag.

|u'| = j such thatE - E’ and F L Fin LY.

2) If (EI,FI) S C(]l) andu =riry.. Ty, € R*, j1+j2 <
k, and E' — E” then there isu’ = rirh...7} €
R* such thatacT(r;) = ACT(r}) for i = 1,2,...,ja,
F' == F", and (E", F") € C(j1 + j2). (Symmetrically

u

for I/ — F")
Though the eqg-level drop (in Prop.42(2)) can be more than

‘We define BLV (s, t) in the same way as after Prop.1 (noW gne step, we still have the following analogue of Prop.14
with respect to the new,, ~) and note that Prop.2 keeps(which follows from Prop.42 and Prop.43).
holding. Prop.4 does not hold for general LTSs, the eqg-level

can drop by more tham in one step, but we note:

Proposition 42. (1) If s ~1 t then there isB which covers - ¢ (s,t) such thats’ ~ ¢’ for all (s',t)

(s,t) and EQLV(s’,t') > EQLV(s,t) — 1 for all (s',¢') € B.
(2) If s £ t and B covers(s, t) then there igs’,t') € B such
that EQLV(s',t') < EQLV(s, ).

We now consider the problemi8m-EQ-G:

Input a first-order grammag = (N, A, R), and
(graph presentations of) two input terris,, U;,, .
Question is T;, ~ Uy, in LE? (~ denotes bisimilarity)

The bisimilarity problem in the LTSs generated by (nond

terministic) pushdown automata can be reduced teiNB-
EQ-G in the way sketched in Sec.ll on condition that

Proposition 45. :
(1) If s ~ ¢t then for eachk € N there is ak-distance cover

€ Uo<j<r CU)-
(2) If s ¢ t andC is a k-distance cover fofs, t) then any least

eq-level pair in{Jo <, C(j) is in C(k) N Up<j<i1 C()
We note that each pafs, s) has ak-distance cove€ where
C(j) ={(s',s') | s == &, |w| = j}. Considering nowc for
a first-order grammag = (N, A, R), it is straightforward to
verify Prop.11. Prop.12 is modified as follows:

Proposition 46. If EQLV(E, F) = k < { = EQLV(Eo, Fo)
é\_/vheref € NU {w}) then there arex; € SUPHo), H # z;,
and a wordw € A*, |w| < k, such thatf % z;, F - H
or E-% H, F % x;, ando(x;) ~¢_ Ho.

steps are popping and deterministic, i.e. if also here a rule Proof: We considerE, F,o in the assumption and a
[q2C] (21, 29, 23) — .. excludes the existence of another rulgk-+1)-cover C of (Eo, Fo) such thatG’ ~,_; G” for all
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(G',G") € C(4), 0 < j < k+1; its existence follows from and she presentg! as Go then she can (do keft-

Prop.42(1). If there is nqG’,G") € UUy<;<,C(j) where balancing namely) putT;,; = Go’, andU;;; =
{G',G"} = {o(x;),Ho} and x;, H satisfy the claim (for U!; symmetrically, if U] is Go’ then she can (do
somew, |w| = j < k, where(G’,G") € C,) then we can a right-balancing namely) putT;;; = 7/, and
obviously useC to construct & k+1)-cover of (E, F'), which Uiy1 = Go.

is impossible. u (Thus BQLV(T;41, Ui+1) = EQLV(T}, U!) if Refuter’s

claim in 5b is true. IfT; ~ U; and Prover has chosen
C; as in Prop.45(1) theff; 1 ~ U;41.)

d) Provereither contradicts Refuter’s clainmisy present-
ing an algorithmically verifiable proof, in which case
Prover wins,or lets the play proceedith Phasei+1.

Remark.A difference wrt the deterministic case is that for
o1 # o9 such that BLV(E,F) = k andk < ¢ =
EQLV(Eo1, Fo1), k < {3 = EQLV(Eo9, Fos) we can have
that the pairse;, H satisfying the claim foro; might differ
from those satisfying the claim fose (even if £ = £5). ) ) )
Another difference is that we might get a case H, w with Lemma 16 obviously holds in the _ge.zneral case as well; if
lw| < k for any (k+1)-cover described in the proof of W& get completengss then we will finish a proof of the next
Prop.46; that's why Prop.31 does not hold here. The mertiorfd®0rem, generalizing Theorem 17:

differences cause that the complexity argument from Secjfieorem 48. Bisimulation equivalence for first-order gram-
does not go through for the problemsBm-EQ-G. mars (i.e., the problenBisim-EQ-G) is decidable.

We can easily verify that Prop.13 keeps holding (fowe have mentioned in Subsection IV-B that the notions like
bisimilarity on general first-order grammars). Prop.15ustj (Y, j)-sink words,ssw(Y,j), etc. make better sense in the
reformulated as follows (recall also Prop.45, the analogfue det-LTS £§ when considering the general case whéfgis
Prop.14): not deterministic.

Itis a routine to go through Subsection IV-B and verify that
all reasoning holds when we refer &f; a pathT =1
(like, e.g., in Prop.23) is thus meant to be the unique path in
LE determined by andw € R*. Prop.24 is now reformulated

Proposition 47. Suppos€ is a k-distance cover of ", U) and
for 0,0’ we havesuPRo) = SUPHo’) and (o(x;),0'(z;)) €
Uo<j<r_1C(4) for eachz; € SUPHo).

If EQLV(T",U’) = MINEL(Uy< ;< C(4)) and T’ = Go then

EQLV(Go’',U") = EQLV(T",U").” as follows:
We now describe the Prover-Refuter game in the more genel:r)é?f,osmon 49. LetC be ak-distance cover ofT', U) and let

setting of bisimilarity for (general) first-order grammars £ — 1", U — U’ (v, w” € R") be as described in Point
S 5b of the P-R game (whefE = T;, w’ = w)} etc.). Suppose
PROV-ER-REFUTER GAME (for b|3|m|Iar|t.y) _ there is no(T",V) € Uogjgk—lc(j) and T 2“5 T’ is not
1) A first-order grammag = (N, A, R) is given. My-sinking. Take the last root-performable (sub)path of tang
2) Prover produces (by “guessing”, say) a finite seSB My in T ' T', i.e., take the longest; such that? %
of pairs of (graph presentations of regular) terms. (Az1...xm)0 — Glo 2 T' where Az, ...am — G
3) An input pair(T;y, Uiy ) is given. and [v| = Mj. Then there is(o(z;), V}) € Up<, < C(j)

4) FTefu[Ee; Zhg'?ASs:SET — {(Ton, Us)} U BASIS for eachj,1 < j < m, andG’ =% G (hencel” = Go) where
0, Y0 — iny YVin ’

and claims BLV(Ty, Up) = MINEL(STARTSET) < w. DEPTH(G) <1+ (2Mo—1) - STEPDEPTHINC.

5) Fori=0,1,2,..., Phase is performed, i.e.: The previous proof goes through (when recalling Prop.44).
a) Prover choosek > 0 and presents a-distance cover ~ Also the pivot path (associated to a play) can be now
C; of (Ty,U;); if she is unable, she loses. considered as a path in the det-LT3. It is a routine to verify

b) Refuter choosesT;,U/) € Ci(k) ~ Uy<j<p_1 Ci() Lemma 28 for geqeral first-order grammars if thg balancin_g
andw, = rirh...r, € R* wl! = v rl ¢ R* Strategy also requires _that Prover uses only equivalems pai
so that for eachj,1 < j < k, we haveacT(r}) = in each C; when starting frquO ~ Up; hence Prover

vl il always chooses from thé/;-distance covers guaranteed by
ACT(rf), T, — " Ty, Ui ~—" Uy where pyop 45(1). (Prover does not demonstrate that she uses such
(T35, Uij) € Ci(j); moreover,(Ti, Uir) = (T, Uj).  covers, the strategy is non-effective in this sense).
(Recall Prop.44.) If Refuter is unable to do this then |t remains to check the analogue of Lemma 19. Now the
Prover wins (we havd ~ U; due to dead terms).  reasoning becomes more sophisticated; the reason liegin th
Refuter claims that &Lv(T7,U]) = fact that Prop.46 in the general case is weaker than Prop.12
MINEL (Uo<;< Ci()). (Recall Prop.45.) in the deterministic case (where Prop.4 helped).

c) Prover produce§l’ 1, Uiy1) from (77, U;) as follows: | et us consider a play of the P-R game where a first-order
« either she put§;; = T/, U;+1 = U] (no-changg grammarG = (N, A,R) is given in Point 1. For Point 2
« or she balances (recall Prop.47 and Fig.11): we again suppose that Prover has an unlimited computational

if she finds 0,0’ such that (o(z;),0'(x;)) € power, and also knows,g for which she has ar(n, g)-

Uo<j<r_1Ci(4) for all z; € sUPHo) = SUPKo’), strategy forG (as defined by Def.18). The idea is that Prover
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demonstrates a relative bou#g, ;) on the length of eg-level EQLV(E, 0, Fio) > EQLV(Ey, F1). Hence (Ei, Fy) &
decreasingn, g)-sequences (captured by Prop.50), which SHBUESSEQ; since RRESSIZE(FE4,Fy) < gi(1) < B, we
can use to contradict Refuter’s claims. have (El,Fl) € NONEQ, and thus BLV(E;, F1) <
We imagine that Prover announcesg in Point 2. In fact, MAXFELy ). If i = 0 (so (Ejo, Fjo) = (Ej, F;)) then
we know thatg induced by the balancing strategy is comﬂecessanM < 1+ MAX FEL o(1):
putable, so Prover can provide a Turing machine computing If ; > 0 and? > 1 + MAX FEL u.(1) then by Prop.46 there
though for our aims just a finite table with sufficiently manwre x;, H such thatz; € SUPHo0), H # x;, PRESSIZE(H) <
valuesg(1), g(2), ... would suffice. PRESSIZE(E1, F1) + EQLV(E,, Fy) - STEPINC < gz(l) +
Now Prover chooses (sufficiently larg#) € N and par- Max FE'—fh(l) - STEPINC, and o(z;) ~; Ho wheret =
titions the set{(E, F) | PRESSIZE(E, F) < B} into tWo EQLv(Eyo, Fio) — MAXFEL] 4. (The difference wrt the
disjoint classes, putting deterministic casewhere we had Prop.4, is that we have no
{(E,F) | PRESSIZE(E, F) < B} = NONEQ U GUESSEQ direct means to demonstrate thatAMFEL;i(l) bounds the

eg-level drop for any particular;, H; just the existence of
where for eac{E, F') € NONEQ she demonstratels 2 F'by  suchz;, H is guaranteed

computing the finite BLV(E, F) (using the algorithm from  ysing this guaranteed;, H, we could proceed as in the

an analogue of Lemma 9). The intention is that Prover pYigoof of Lemma 19 (recall Fig.13) and create thie 1, g;_1)-
only equivalent pairs in GESSEQ but the following arguments sequence

also count with the possibility that some nonequivalentai

were included in GESEQ. For anyb < B we put (Eiff[—mpF{U[—m)v (Eéa[—mi]an/U[—zi})v “ee
MAXFEL, = max { EQLV(E, F) | (E,F) € NoNEQ and  Of length/—(1+MAXFEL, ) whereE} = Ey;{(x;, H')},
PRESSIZE(E, F) < b}. F = Fop{(z;, H)}, for s = (1 + ‘MAXFEL, (1)) and

0 = H{(z;, H)}H(xs, H)}{(z;, H)}.... This s an eq-
IeveI decreasingi—1, g;—1)-sequence with the eq-level of the
first pair surely less than MEL(GUESSEQ), and by the
induction hypothesis we can dedute (1+MAX FEL;i(l))+

(i-1,9i—1)"

We thus have MxFEL; < MAXFEL, (recall Def.18(5));
if E ~ F for each(E, F) € GUESSEQ then MAXFEL; =
MAXFEL,.

Recalling the remark after the proof of Lemma 19, we no
let Prover demonstrate the computation #f ,) using the
following recursive definition Therefore the mere demonstration of amn g)-subsequence

. , of length1+-¢(,, 4 in the sequencé€ly, Uy), (12, Uz), ... can
it n =0 thent(, q) = o, ‘1) = 1+ MAXFEL,(, serve as a contradiction for Refuter’s claims, togethehn wie
otherW|se€ng) =Llin-1,9) (1+MAxFEL o(1) )

demonstrated computation based on GBESEQ which
whereg’ is defined as in (5) but MXFEL,) is replaced g putation &, ;) Qwh
9 is viewed as Bsis.
with MAXFEL ;).

We denoteg = ¢,, and note that computin@(n 9 = Lingn) VII. CONCLUSION
comprises computing,,_1 4. ), {(n—2, gn 2)r -+ L0,90) (DY It seems technically difficult to compare the proof(s) presd
recursive calls) where fore {n—1,n— O} we have here with the previous proofs in detail. The abstract idea
9:(7) = gisr (1 + MAXFELgi+1(1) +j)+ ist surely thf(_e same, and can be captureo_l als follﬁws. r:etwo
2. (gis1(1) + MAXFEL . STEPINC). s ?tes (cor1|gu_rat|ons, terms) are no.nequwa ent there tiser
gi+1(1) a “shortest” finite witness of this fact; let us think of a fanit
During that computation, also the valueSAMFEL’ .(1)» word in the deterministic case. Such a witness can be found
MAXFEL] (), ..., MAXFEL] ) are computed; th|s sup- and verified. If the states are equivalent then we aim to show
poses thayz( ) < B for all i = n n—1,...,0. Since Prover that however we start to build a supposed shortest witness
knows n, g, she could have choseﬁ sufflciently large so (of nonequivalence), we will fail (demonstrate a failure) i
that the computation is really performable and can be thfisite time. This is shown by using a measure for “equivalence
demonstrated. level” of pairs of states which must be decreasing for thespai
along a real shortest witness. We thus can use the pairs which
have bigger eg-levels, assuming we really build a shortest
W|tness for “balancing”, i.e. making the structured sate
in the considered pairs close to each other, as objects with
Proof: By induction on i we prove the claim for “bounded differing heads” but “the same (unbounded) tails”

Proposition 50. The length of any eq-level decreasifig g)-
sequence where the eg-level of the first pair is less than
MINEL(GUESSEQ) is bounded by the above computgd ).

(i,9:)-sequences and(; ,, ¢ = 0,1,...,n. We thus as- If this is done with some care, we get (a repeat of pairs or) a
sume an(i, g;)-presentation with tailsr (CARD(SUPHc)) < (sub)sequence of eg-level decreasing pairs with the sailse ta
1) and heads(Ei, F1), (E2,F»), ..., (E¢ F;) (where forwhich the heads grow in a controlled way. The last point is
PRESSIZE(E;,F;) < gi(y) for j = 1,2,...,¢) todemonstrate that if the length of such (sub)sequencege la

for which the presented sequence is eqg-level decreasangpugh then this contradicts the shortest withess assompti
and MINEL(GUESEQ) > EQLV(Eio, Fio); recall that In this paper, the idea of regular terms and of the basis Helpe
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to establish this smoothly. For the complexity bound, weehav[9] P. Jantar and J. Srba, “Undecidability of bisimilarity Defender's
not used the basis but we have looked at the structure of the forcing,” J. ACM vol. 55, no. 1, 2008.

b . heads i d il dth lvsis h bélo S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, an&arrell, “On
above growing heads in more detall, and the analysis has bee the complexity of the equivalence problem for probabiisiutomata,”

lead a bit further than Stirling’s. CORR, vol. abs/1112.4644, 2011, to appear in Proc. FoSSaCS 2012.

Hence essentially the proofs presented here are (furth@fj A. Kucera and R. Mayr, “On the complexity of checkingmssntic
equivalences between pushdown processes and finite-statespes,”

simplifications of t_he previous prpofs. It shOL_JId t_>e the exad Inf. Comput, vol. 208, no. 7, pp. 772796, 2010.
from computer science community who decide if and how fgr2] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmittn“®e expres-
this simplification is valuable. siveness and decidability of higher-order process cdlcuif. Comput,

.. vol. 209, no. 2, pp. 198-226, 2011.
Remark.Related to this is also an unclear status of pape[ﬁ_%] R. Milner, Communication and concurrencyPrentice-Hall, Inc., 1989.

by V. Yu. Meitus which were written in Russian but translatefl4] S. Salvati and I. Walukiewicz, “Krivine machines andgheér-order
to English. He claims to have given the first proof for dpda 3&“96”;22" ""Scﬁr';"e(f) 22(?1111 ser. l—g;t“lr;’SNOteS in Computer Science,
language equivalence but this has been obviously not a&ntqug,] G. éénizérgueF)s, “%(A)=L(B),’?plg.ecidabiIity .resultmfn complete formal
by the computer science community. systems, Theoretical Computer Scienceol. 251, no. 1-2, pp. 1-166,

; it ; ; 2001, (A preliminary version appeared at ICALP’97.).
e e e oty S bl ot o o
established decidability) seems new in this context; isee [17] —, “The bisimulation problem for equational graphs faiite out-
like a natural object for further exploration. In fact, itrca dfg{g?é;?'ﬁxrsigfg‘p“eté‘r’gg ;4# (;‘S-S%SF)’F’- 1025-1106, 2005, (A
be viewed as a generalization of the bisimulation base ([(iﬁ] E; Sénize)r/gues, “Thepgquivalence problen.ﬁ for t-tupdalis co-NP,” in
basis) used previously for context-free processes (gestera  ICALP 2003 ser. LNCS, vol. 2719. Springer, 2003, pp. 478-489.
by first-order grammars with arity-1 nonterminals); thiseli [1] géigggi”\%l“gzgdﬁg”i? gf DF’DlA gf“iz"g(')elncefrhe‘)feﬁca' Computer
of research started with [1] and further developments can pg — ‘%eci'ding 'DPDA e'qSi[\)/élence' is primitive recursivéin Proc.
found in [5]. ICALP’02, ser. LNCS, vol. 2380. Springer-Verlag, 2002, pp. 821-832.

The complexity is puzzling, the nonelementary upper bound .
induced by [20], which has been more specified here (inAppend'X
Theorem 29) seems unbelievably high and does not apply
bisimilarity; Sénizergues showed a more reasonable béamd ) o )
a subclass in [18]. We can also note PSPACE-completenes$i§f® we give a more formal description of the reduction
bisimilarity for =-steps free one-counter automata [2] and NLSketched in Fig.4. We first show how language equivalence for
completeness of language equivalence for their detertignigi€terministic pushdown automata can be reduced to bisimula
version [3]. tlo_n e_quwalc_ence on dete_rm|n|st|c flrst—prder grammarsi¢tvh

As already mentioned, there is no known nontrivial loweeincides with trace equivalence in this case).
bound for dpda-equivalence while the general bisimilarity A deterministic pushdown automat(@pdg is a tupleM =
problem is known to be exptime-hard [11]. A slight genel@: A, I, A) consisting of finite sete) of (control) statesA of
alization, namely allowing nondeterministic poppingsteps actions (or terminals);’ of stack symbols, and of transition

when considering bisimilarity on (nondeterministic) pdstvn  "ules. For each papd, p € @, A € T', and eactu € AU{e},

Plshdown automata via first-order grammars

automata, leads to undecidability [9]. A contains at most one rule of the typel —~ ga, where
q € Q, a € T*. Moreover, any paipA is (exclusively) either

REFERENCES stable i.e. having no rulewA —— ga, or unstable in which

case there is (one ruleA —— ga and) no rulepAd - qao
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L, -{$} = L. - {3}, for an endmarke$ ¢ X; so restricting to stable and unstable configurations, but with the following
prefix-free deterministic context-free languages, a@ubfity relaxation for stable ones: there can be more rules of the
dpda via empty stack, does not mean losing generality.  type pA - .. for a € A. The bisimilarity problem for such
Each dpda\ can be transformed by a standard polynomiakutomata (solved in [17]) can be reduced to bisimilarity for
time algorithm so that ali-transitions are popping, i.e., of the(general) first-order grammars in the way analogous to the
typepA —= ¢, while L(pAa), for stablepA, keep unchanged. proof of Prop.51.
(A principal point is that a rul@A — gBa where¢B —-
@b, ..., ¢B =5 qiBr can be replaced with rulgsA 2,
gjB;jc; unstable pairgA enabling only an infinite sequence
of e-steps are determined and removed.)
It is also harmless to assume that for each stableand
eacha € A we have one rulpA —% ga (since we can
introduce a ‘loop’ state, with rules g A — ¢ A for all
AeT,ac A, and for every ‘missing’ ruleA - .. we add
pA -2 q A). L(pa) are unchanged by this transformation.
Thenw € A* is not enabled irpa iff w = uv wherepa ——
ge (for somegq), sou € L(pa), andv # e. This reduces
language equivalence to trace equivalence:

L(pa) = L(gB) iff Yw € A*:pa 5 < ¢f .

Proposition 51. The dpda language equivalence problem
is polynomial-time reducible to the deterministic firstder
grammar bisimulation equivalence problem.

Proof: (Recall Fig.4.) Assume ar{popping) dpdaM =
(@, A, T, A) transformed as above (so trace equivalence co-
incides with language equivalence). We define the firstiorde
grammarGy = (W, A,R) where N = {pA | pA is
stablg U {L}; eachX = pA gets aritym = |Q|, and
1 is a special nullary nonterminal not enabling any action.
A dpda configuratiorpa is transformed to the terrd (pa)
defined inductively by rules 1.,2.,3. below, assumifgg=
{a1,q2, -, am}-

1) T(qe) = L.

2) If gA - ¢; (qA is unstable) therT (¢AB) = T (¢:3).

3) If ¢A is stable then7 (¢AB) = X T (1) ... 7T (gmp3)

where X = gA.

4) T(gix) = ;.
Rule 4. is introduced to enable the smooth transformation of
a dpda rulepA - ga, wherea € A, rewritten in the form
pAzr - qax, to the Gyy-rule 7 (pAz) % 7T (gax), i.e. to
Yi... 2, — T(qazx), whereY = pA. ThusR in Gy is
defined (with no=-moves). We observe easily:jifda — qa
(recall thate-steps are popping) thef (pAa) = 7 (qa); if
pAa - gBa (a € A, pA stable) ther? (pAa) % T (¢Ba).
This also implies: ifpa — ge then7 (pa) = L. Thus

L(pa) = L(gpB) iff (Vw €A pa & gf — ) iff

T (par) ~ T (ap).

We note that7 (¢qa) can have (at most) + m + m? +m? +
.- 4+ mlel subterm-occurrences, but the natural finite graph

presentation off (¢qa) has at most + m(|a| — 1) + 1 nodes
and can be obviously constructed in polynomial time. &

A nondeterministic pushdown automaton whersteps are
popping and deterministits defined as the dpda above, with
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