
Bisimulation Equivalence for First-Order Grammars
Petr Jančar

Techn. Univ. Ostrava, Czech Republic; url: http://www.cs.vsb.cz/jancar/

14 Feb 2012

Abstract—A self-contained proof of the decidability of bisim-
ulation equivalence for first-order grammars is given. This
provides an alternative for Śenizergues’ decidability proof (1998,
2005) for nondeterministic pushdown automata with determin-
istic popping ε-steps, which generalized his decidability proof
for the famous problem of language equivalence of deterministic
pushdown automata (1997, 2001). One crucial novelty of the
proof presented here is the framework of first-order terms. This
framework seems to be more natural for the problem, allowinga
presentation which should be transparent for general computer
science audience. Though it seems that both the original proof
and the proof presented here use the same ideas on an abstract
level, the presented (substantially shorter) proof has notarisen
as a translation of the original proof, and a detailed comparison
would require an enormous technical work.
For the deterministic (sub)case, a primitive recursive complexity
upper bound was derived by Stirling (2002). Here we also suggest
a simple way of presenting the ideas behind Stirling’s proofin
the framework of terms. The complexity result is also analyzed
in more detail, which shows that the length of the shortest words
witnessing nonequivalence is bounded bytetr(2, g(n)) where
tetr is the (nonelementary) operator of iterated exponentiation
(tetration) and g is an elementary function of the input size.

I. I NTRODUCTION

Language equivalence of deterministic pushdown automata
(dpda), which lie at the heart of syntactic analysis of program-
ming languages, is a famous problem in language theory. The
decidability question for this problem was posed in the 1960s
[8] (when language inclusion was easily seen as undecidable);
then a series of works solving various subcases followed, until
the question was finally answered positively by Sénizergues in
1997, with the full journal version [15]. G. Sénizergues was
awarded Gödel prize in 2002 for this significant achievement.

Later Stirling [19] and subsequently also Sénizergues [16]
provided technically simpler proofs than the original proof.
A modified version, which showed a primitive recursive
complexity upper bound, appeared as a conference paper
by Stirling in 2002 [20]. Sénizergues also generalised the
decidability result to bisimulation equivalence over the class
of (nondeterministic) pushdown automata with only determin-
istic and poppingε-transitions [17]. Recall that bisimulation
equivalence has been recognized as a fundamental behavioural
equivalence in theory of concurrency and communication [13].

Both Sénizergues and Stirling followed their predecessors
in presenting the topic in the framework of strict deterministic
grammars, but even the above mentioned simplified proofs
look rather long and technical; they do not seem to be broadly
understood in the computer science community. It seems hard
to get further insight, e.g. for trying to derive more results

about the complexity (there is no known nontrivial lower
bound for dpda-equivalence while the general bisimilarity
problem is known to be exptime-hard [11]).

In this paper we choose the framework of first-order gram-
mars, i.e. systems of (classical) first-order terms with finitely
many root-rewriting rules, and reprove the above mentioned
decidability results, adding a more detailed complexity anal-
ysis. It is not surprising that proofs about (d)pda can be
done in this framework, since close relations between the
frameworks of (d)pda, strict deterministic grammars and first-
order schemes were recognized long ago, (cf., e.g., references
in [6]) but the proofs here have not arisen as translations of
the previous proofs, though they are surely inspired by them.
More comments are added in the concluding section.

The related research is rich and active. There are compre-
hensive references in Sénizergues’ and Stirling’s papersto
the prior research; for recent research on related complexity
questions and on higher-order schemes, we can refer, e.g., to
[3], [4], [7], [10], [12], [14] and the references therein.

To facilitate readability, the author’s intention has beento
use figures, examples and explanations of the ideas rather than
excessive formalities, without compromising the rigour. The
structure of the paper is almost clear from the subsection titles;
we just add a few remarks. Section II sets “the stage”. It recalls
the notion of first-order terms and substitutions, considering
regular terms(possibly infinite terms with only finitely many
different subterms). The terms are then viewed as states of
labelled transition systems, where transitions are generated by
a first-order grammar, i.e. by a finite set of term root-rewriting
rules. Dpda language equivalence naturally reduces to trace
equivalence (i.e. a variant of language equivalence) for deter-
ministic first-order grammars, and the semi-decidability of the
negative case is immediate. Section III explains an algorithm
(semi)deciding the positive case, based on a Prover-Refuter
game for which soundness is clear from simple properties of
trace equivalence∼ and its “strata”∼0, ∼1, Section IV
explains a strategy of Prover which is shown to be complete
and thus guarantees the termination of the algorithm. By a
more closer look at the strategy, we derive an upper complexity
bound in Section V. Section VI then explains the modifications
needed to extend the decidability to bisimulation equivalence
for general (nondetermininistic) first-order grammars; itis a
generalization since bisimulation equivalence coincideswith
trace equivalence in deterministic labelled transition systems.
(The above complexity argument does not apply in this general
case.)

1

Fig. 1. Graph presentations of terms

II. BASIC NOTIONS AND SIMPLE OBSERVATIONS

N denotes the set{0, 1, 2, . . .} of natural numbers. For a set
A, by CARD(A) we denote its cardinality (i.e. the number
of elements whenA is finite). A∗ denotes the set of finite
sequences of elements ofA, also calledwords (over A). By
|w| we denote thelength of w ∈ A∗. If w = uv thenu is a
prefix of w. The empty sequenceis denotedε (thus |ε| = 0).

First-order regular terms; substitutions

We recall the standard notion offirst-order termsby examples,
assuming a fixed countable set VAR = {x1, x2, x3, . . . } of
variables. Given a setF = {f1, f2, . . . , fk} of function
symbolswhere eachf ∈ F hasarity(f) ∈ N, an example
of a term overF is E1 = f2(f1, f3(x5, x1), x5), whenk ≥ 3
and arity(f1) = 0, arity(f2) = 3, arity(f3) = 2. We can
recognize the syntactic tree ofE1 in Fig.1.

The figure suggests to define agraph presentationGP (of
some terms) as afinite graphwhose nodes are labelled with
elements ofF ∪ VAR. Each node labelled withf has m

outgoing arcs labelled with1, 2, . . . , m wherem = arity(f)
(now ignore the dotted arc leading tox7); the nodes labelled
with variablesxi have no outgoing arcs (as well as the nodes
labelled with nullary function symbols). A termE is presented
by a graphGP when a noden is specified as theroot of E;
we refer to such a graph as toGPE . A term can have more
than one presentation; e.g.,E1, E2 represented in Fig.1 are
obviously the same terms.

Formally we viewterms asthe partial mappings

E : N
∗ → F ∪ VAR

where γ i (γ ∈ N
∗, i ∈ N) belongs toDOM(E) iff γ ∈

DOM(E) and1 ≤ i ≤ arity(E(γ)); we stipulatearity(xj) =
0 for all xj ∈ VAR. The expressions likef2(f1, f3(x5, x1), x5)
or x17 are thus viewed as representing partial mappings
N

∗ → F ∪ VAR (e.g.,E1(ε) = f2, E1(〈2, 1〉) = x5).
Given a termE and γ ∈ DOM(E), the term Eγ where

DOM(Eγ) = {δ | γδ ∈ DOM(E)} and Eγ(δ) = E(γδ) is a
subtermof E, occurring in E at γ, in depth|γ|.

A term E is finite if DOM(E) is finite. A term is regular
if it has only finitely many subterms; in other words, it has a
finite graph presentation (possibly with cycles).E3 in Fig.1 is
an infinite regular term (e.g.,E3(〈2, 2, 2, 2, 2, 2, 1〉) = x1).

Convention.By “terms” we further mean “regular terms”.
We do not consider the empty term with the empty domain;
we might use a special nullary (function) symbol⊥ instead.

Fig. 2. CreatingGPEσ from GPE and GPσ

We note that the equality of two (regular) terms can be
efficiently checked, given their graph presentations: Given GP,
for each noden of GP we consider the (sub)term rooted in
n. We first partition all these terms according to the root-
labels, and then we are refining the partition according to the
(current) partition-classes of root-successors, until the stable
partition (the fixpoint) is found.

By TERMSF we denote the set of all (regular) terms over
F . A substitutionσ is a mappingσ : VAR → TERMSF whose
support SUPP(σ) = {xi | σ(xi) 6= xi} is finite. Our finite-
support restriction allows to present any substitutionσ by a
finite graphGP where eachxi ∈ SUPP(σ) has an associated
node inGP, namely the root ofσ(xi); we refer toGPσ then.
For a termE and a substitutionσ, we defineEσ (the term
resulting fromE by applyingσ) as expected:γ ∈ DOM(Eσ)
iff either γ ∈ DOM(E) and E(γ) 6∈ VAR, in which case
(Eσ)(γ) = E(γ), or γ = γ1γ2, γ1 ∈ DOM(E), E(γ1) = xj ,
γ2 ∈ DOM(σ(xj)), in which case(Eσ)(γ) = (σ(xj))(γ2).

Fig.2 illustrates how to get a presentation ofEσ from
presentationsGPE , GPσ of E and σ, respectively: each arc
leading to (a node labelled with)xi ∈ SUPP(σ) in GPE is
redirected to the node associated withxi in GPσ. Note that if
E = xi thenEσ = xiσ = σ(xi).

By Eσ1σ2 we mean (Eσ1)σ2, but we also define the
composition of substitutionsσ1 o σ2, denoted justσ1σ2: for
σ = σ1σ2 andxi ∈ VAR we haveσ(xi) = (σ1(xi))σ2; thus
SUPP(σ1σ2) ⊆ SUPP(σ1) ∪ SUPP(σ2). We can easily check
Eσ1σ2 = (Eσ1)σ2 = Eσ whereσ = σ1σ2; more generally,
the compositionis associative, i.e., (σ1σ2)σ3 = σ1(σ2σ3).

Finally we note thatE3 in Fig.1 can be viewed as arising
from (a finite term)E = f2(x1, f3(x5, x7), x1) (represented
like E3 but using the dotted arcin Fig.1) by applying the
substitutionσ′ = {(x7, E)}, i.e. σ′ whereSUPP(σ′) = {x7}
andσ′(x7) = E, repeatedly forever; henceE3 = Eσ′σ′σ′
(To getGPE3 from GPE , each arc leading tox7 is redirected to
the root.) Note that the auxiliary variablex7 could be replaced
with any xi not occuring inE3.

Later we also refer to thepresentation sizePRESSIZE(E),
by which we mean thesizeof thesmallest graph presentation
of E; similarly for PRESSIZE(σ). We can use any natural
notion of size which takes also the indices of variables into
account; e.g., we can take the number of nodes and arcs
plus the bit-size of all labels. We thus have only finitely
many termsE with PRESSIZE(E) ≤ b, for any given
boundb ∈ N. Another natural property which we assume is
PRESSIZE(Eσ) ≤ PRESSIZE(E) + PRESSIZE(σ).

2

Fig. 3. A (finite) deterministic labelled transition system

(Deterministic) labelled transition systems; trace equivalence

A labelled transition system, anLTS for short, is a tupleL =
(S,A, (

a
−→)a∈A) whereS is the set ofstates, A the set of

actionsand
a

−→⊆ S×S is the set oftransitions labelled with
a ∈ A, calleda-transitions. Fig.3 shows a finite LTS (in fact,
a det-LTS as defined later). The relations

w
−→⊆ S × S for

w ∈ A∗ are defined as expected:s
ε

−→ s ; if s
a

−→ s′ and
s′

u
−→ s′′ thens

au
−→ s′′. In Fig. 3 we have, e.g.,s1

bab
−→ s3.

By writing s
w

−→ we mean thats enables(a trace)w ∈ A∗,
i.e., s

w
−→ s′ for somes′. Trace equivalence∼ on S and its

“strata” ∼0, ∼1, ∼2, . . . are defined as follows:

s ∼ t if ∀w ∈ A∗ : s
w

−→⇔ t
w

−→ ,
and fork ∈ N: s ∼k t if ∀w ∈ A≤k : s

w
−→⇔ t

w
−→ ,

whereA≤k = {w ∈ A∗ | |w| ≤ k}.

Proposition 1. (1) ∼ and all ∼k are equivalence relations.
(2) ∼0= S × S. (3) ∼0⊇∼1⊇∼2⊇ · · · . (4) ∩k∈N ∼k=∼.

This (trivial) proposition suggests to define theequivalence-
level (eq-level) for each pair of states:

EQLV(s, t) = k (k ∈ N) if s ∼k t ands 6∼k+1 t ;
EQLV(s, t) = ω if s ∼ t, also written ass ∼ω t.

In Fig.3 we have, e.g., EQLV(s1, s2) = 0, EQLV(s1, s5) = 2,
EQLV(s1, s4) = ω. We takeω as an infinite number satisfying
n < ω andω − n = ω + n = ω for any n ∈ N.

The next fact (fork ∈ N) will be particularly useful.

Proposition 2. If EQLV(s, t)=k and EQLV(s, s′)≥k+1 then
EQLV(s′, t) = k (sinces′ ∼k s ∼k t and s′ ∼k+1 s 6∼k+1 t).

Of special interest for us aredeterministicLTSs,det-LTSsfor
short:L = (S,A, (

a
−→)a∈A) is deterministic if for eachs ∈ S

and eacha ∈ A there is at most ones′ such thats
a

−→ s′.
(Fig.3 depicts a finite det-LTS.)

Proposition 3. In any det-LTS,s
w

−→ entails a uniquepath
s

a1−→ s1
a2−→ · · ·

ak−→ sk wherew = a1a2 . . . ak.

For det-LTSs we easily observe that by performing the same
actiona ∈ A from s, t the eq-level can drop by at most one,
and it does drop for some action whenω > EQLV(s, t) > 0:

Proposition 4. Given adeterministicLTS:
(1) If s

w
−→ s′, t

w
−→ t′ thenEQLV(s′, t′) ≥ EQLV(s, t)−|w|.

(2) If EQLV(s, t) = k ∈ N then there isw = a1a2 . . . ak such
that s

a1−→ s1
a2−→ s2

a3−→ · · ·
ak−→ sk andt

a1−→ t1
a2−→ t2

a3−→
· · ·

ak−→ tk whereEQLV(sj , tj) = k − j for j = 1, 2, . . . , k.

In Point (2) we havesk 6∼1 tk, hence there isa ∈ A such
that sk

a
−→, ¬(tk

a
−→) or vice versa; the wordwa is then a

shortest nonequivalence-witness wordfor the pairs, t.

Fig. 4. Term representations of configurations and rules of (d)pda

(D)pda from a first-order term perspective

In the next subsection we formally introduce LTSs whose
statesare not “black dots” as in Fig.3 but(regular) terms
E. TransitionsE1

a
−→ E2 will be determined by a finite set

of (term root-rewriting) rules, i.e. by a (deterministic) first-
order grammar. We will be interested in thetrace equivalence
problem asking if E1 ∼ E2. Before precise definitions, we
give a flavour of reasoning which shows that considering
the classicaldpda language equivalence problemfrom a
“first-order term perspective” naturally leads to the notion of
first-order grammars andeasily reduces to the above trace
equivalence problem.

A pushdown automaton(pda) can be viewed as a tuple
M = (Q,A, Γ, ∆) of finite sets of control states, ac-
tions (also calledinput letters), stack-symbols, and (rewriting)
rules, respectively. On the left in Fig.4 we can see aterm-
representation ofthe configurationq2ABA ∈ Q × Γ∗, as-
sumingQ = {q1, q2, q3}. So Q × Γ is the set of “function
symbols”, called nownonterminals, all with arity CARD(Q).
⊥ can be here viewed as a special “stack-bottom” nullary
nonterminal. On the right we can see (the term representations
of) two rules, onepushing(q2A

a
−→ q1BC) and onepopping

(q2A
b

−→ q2). (Ignore the dotted arc now.) For configurations
C1, C2 (viewed as terms) we haveC1

a
−→ C2 iff there is a rule

E1
a

−→ E2 (in ∆) and a substitutionσ such thatC1 = E1σ

and C2 = E2σ. (We can check by term-representations that
q2ABA

a
−→ q1BCBA, q2ABA

b
−→ q2BA.)

For a deterministic pushdown automaton(dpda) we thus
get a det-LTS (with configurations as states) if we can get
rid of ε-steps, i.e. of the rules likeq2C

ε
−→ q3, written

[q2C](x1, x2, x3)
ε

−→ x3 in our term-representation. Note
that a rule [q2C](x1, x2, x3)

ε
−→ .. excludes the existence

of another rule[q2C](x1, x2, x3) −→ .., and it is standard
to assume (i.e. safely transform the dpda so) that theε-rules
are only popping. The dotted arc in Fig.4 illustrates that we
can get rid of all “unstable” nonterminals like[q2C], thus
“swallowing” all potentialε-transitions in advance.

It is a routine to reduce thedpda language equivalence prob-
lem to the above mentioned trace equivalence problem, later
formalized as TRACE-EQ-DET-G. We can use the following
version: givenM and configurationsC, C′, areC, C′ language
equivalent in the empty-stack acceptance sense? We do the
above term-transformation ofM, also removing all unstable
nonterminals like[q2C]. Then for any pair[qA], a (a ∈ A)

3

r1 : Ax1
a

−→ ABx1 r2 : Ax1
b

−→ x1

r3 : Bx1
a

−→ BAx1 r4 : Bx1
b

−→ x1

Fig. 5. A det-first-order grammarG = ({A, B}, {a, b}, {r1, r2, r3, r4})

Fig. 6. Applying rulesY x1x2x3
a

−→ x1 andY x1x2x3
b

−→ E to GPF

for which there is no rule[qA](x1, . . . , xCARD(Q))
a

−→ .. we
add the rule[qA](x1, . . . , xCARD(Q))

a
−→ [Loop] where[Loop]

is an added nullary nonterminal with rules[Loop]
b

−→ [Loop]
for all b ∈ A. ⊥ is unreachable after an added rule is used.
(More details are in Appendix.)

(Det-) first-order grammars as generators of (det-)LTSs

Definition 5. A first-order grammaris a tupleG = (N ,A,R)
whereN is a finite set of rankednonterminals, i.e. (function)
symbols with arities,A is a finite set ofactions(or terminals),
andR is a finite set of(root rewriting) rulesr of the form

r : Y x1x2 . . . xm
a

−→ E (1)

where Y ∈ N , arity(Y) = m, a ∈ A, and E is a finite
term overN in which each occurring variable is from the set
{x1, x2, . . . , xm}. (E = xi, where1 ≤ i ≤ m, is an example.)
We putACT(r) = a, thus defining the mappingACT : R → A.
G = (N ,A,R) is deterministic, a det-first-order grammar, if
there is at most one rule (1) for each pairY ∈ N , a ∈ A.

Remark on notation.In the previous (classical term) notation,
the rules would be writtenr : f(x1, x2, . . . , xm)

a
−→ E.

Now N plays the role of formerF ; we useY to range
over N , and we omit parentheses. We might also useA, B

for nonterminals, butE, F, G, H and T, U, V, W will always
range over TERMSN (using our fixed VAR = {x1, x2, . . . }).
Y G1G2 . . .Gm, (Ax1x2x3)σ = Aσ(x1)σ(x2)σ(x3), F ′σ1σ2

are examples of notation which we use for terms (where
σ’s are substitutions). We consider⊥ as a special nullary
nonterminal, with no rules; we use it in the example in Fig.9.

Fig.5 shows an example of a det-first-order grammarG. This
G is, in fact, very simple, we havearity(Y) = 1 for all Y ∈ N
and the rules are thus of the formY x1

a
−→ Y1Y2 . . . Yℓ x1.

(A more general example was given in Fig.4.) Our example
grammar is thus, in fact, a context-free grammar in Greibach
normal form, with no special starting symbol and with only
leftmost derivations allowed, as the next definition shows (by

Fig. 7. A path inLA
G

using rules asroot-rewriting). In fact, the definition takes all
(regular) terms as states, though we allowed onlyfinite right-
hand sides(rhs) E in rules (1) for technical convenience.

Definition 6. A grammarG = (N ,A,R) generates (therule
based) LTS LR

G = (TERMSN ,R, (
r

−→)r∈R): for each rule
r : Y x1x2 . . . xm

a
−→ E (recall (1)) we have

F
r

−→ H if there is a substitutionσ such that
F = (Y x1 . . . xm)σ and H = Eσ.

(Note thatσ with SUPP(σ) = ∅ yieldsY x1 . . . xm
r

−→ E.)
For (the action-based) LTSLA

G = (TERMSN ,A′, (
a

−→)a∈A′)
we defineA′ = A ∪ {axi

| xi ∈ VAR} whereaxi
is a unique

(fresh) action attached toxi. For a ∈ A′ we haveF
a

−→ H if
F

r
−→ H for somer ∈ R with ACT(r) = a or if F = H = xi

and a = axi
.

Remark and convention.In LR
G the variablesxi are examples

of dead terms(not enabling any transition), like the term⊥.
In LA

G we havexi

axi−→ xi but we never use these special
transitions in our reasoning; we only use the consequence that
xi 6∼1 H if H 6= xi (in particular if H = xj for j 6= i).

Proposition 7. LR
G is a det-LTS for anyG.

LA
G is a det-LTS iffG is deterministic.

Fig.6 shows a way how to apply the rules (of some gram-
mar) to graph presentations. To applyr : Y x1x2x3

b
−→ E

to GPF , we first check if the root ofF is (labelled with)Y .
If yes then we addGPE (the rhs ofr) to GPF (we “stack
GPE on top of GPF ”), the root of E becomes the new root,
and every arc leading toxi in GPE is redirected to thei-th
successor of the (old) root ofF . In the case of asink rule
like Y x1x2x3

a
−→ xj (“popping” in pda terminology) we do,

in fact, the same; the result is that thej-th successor of the
(old) root in GPF becomes the new root (it can be the old
root in case of a loop). Fig.7 depicts a path inLTSA

G. We
note that even if we successively “stack” many (finite) rhs
E1, E2, . . . of used rules (or rather subterms of rhs), there
can be always root-successors lying “deeply down”, even in
the initial (regular) termF . The figure also highlights that the
current root is always connected to any future root which lies
in the current graph.

The next fact holds in bothLR
G andLA

G . (Recall Fig.2).

Proposition 8. If E
w

−→ F thenEσ
w

−→ Fσ; hence ifE
w

−→
xi thenEσ

w
−→ σ(xi). If Eσ

w
−→ but¬(E

w
−→) thenw = uv

whereE
u

−→ xi for somexi ∈ VAR and Eσ
u

−→ σ(xi)
v

−→.

Convention.We further refer toLA
G , if not said otherwise.

Hence by writingE
w

−→ F we meanw ∈ A∗.

4

Fig. 8. Hσ andH′σ[−xi]
= (H{(xi, H)}{(xi, H)}{(xi, H)} · · ·)σ

Semidecidability of trace non-equivalence

Given G and a pairE 6∼ F , we can find a shortest word
witnessing non-equivalence ofE, F by systematic search.
Hence the next lemma is obvious even in the general case,
though we now concentrate on the deterministic case.

Problem TRACE-EQ-DET-G:

Input: a det-first-order grammarG = (N ,A,R), and
(graph presentations of) two input termsTin, Uin.

Question: is Tin ∼ Uin in LA
G?

Lemma 9. There is an algorithm with the following property:
it (halts and) computesEQLV(Tin, Uin) for an instance
G, Tin, Uin of TRACE-EQ-DET-G iff Tin 6∼ Uin in LA

G .
Thus the complement ofTRACE-EQ-DET-G is semidecidable.

For later use we classify nonequivalent pairsE, F into two
disjoint cases (recall Proposition 4(2)).

Proposition 10. Assume a det-first-order grammarG.
If EQLV(E, F) = k ∈ N then we have either
CASE 1: there isw, |w| = k, such thatE

w
−→ E′, F

w
−→ F ′

and the roots ofE′, F ′ are nonterminals enabling different
sets of actions (thus causingE′σ 6∼1 F ′σ for any σ), or
CASE 2: there is no word required in CASE 1 but there is
w, |w| = k, such thatE

w
−→ xi, F

w
−→ H or E

w
−→ H ,

F
w

−→ xi whereH 6= xi. (Recall thatxi 6∼1 H then.)

III. A N ALGORITHM DECIDING TRACE-EQ-DET-G

We aim to show the semidecidability of TRACE-EQ-DET-G,
which will yield the decidability by Lemma 9. III-A shows
some simple facts about the equivalences∼k and ∼, and
III-B introduces further technical prerequisites for the Prover-
Refuter game (played for an instanceG, Tin, Uin) described
in III-C; we also give a simple example of a play. In III-D
we will easily observe thesoundnessof the P-R game, which
means that Prover has no winning strategy ifTin 6∼ Uin. It
will be also obvious that there is an algorithm which halts for
G, Tin, Uin iff Prover has a finite winning strategy. Hence the
decidability of TRACE-EQ-DET-G will be established once we
show thecompleteness, i.e. the existence of a finite winning
strategy of Prover for everyTin ∼ Uin; this is done in Sec.IV.

Convention.If not said otherwise, we assume a given det-first-
order grammarG = (N ,A,R) and refer to the det-LTSLA

G .
(Recall that Prop.3 applies here.) By referring to apathG

w
−→

(or G
w

−→ G′) we mean thatw is enabled byG but we also
refer to the unique sequenceG

a1−→ G1
a2−→ G2

a2−→ · · ·
ak−→

Gk (Gk = G′) wherew = a1a2 . . . ak.

A. Some properties of∼k and∼ (in the det-LTSLA
G)

For two substitutionsσ, σ′ : VAR → TERMSN we define

σ ∼k σ′ if σ(xi) ∼k σ′(xi) for all xi ∈ VAR.

The followingcongruence propertiesare obvious, by recalling
Prop.8 (and Fig.2, 6, 7), and noting that ifE ∼k F , E

u
−→ xi,

|u| < k thenF
u

−→ xi.

Proposition 11. (1) If E ∼k F thenEσ ∼k Fσ.
HenceEQLV(E, F) ≤ EQLV(Eσ, Fσ).
(2) If σ ∼k σ′ thenEσ ∼k Eσ′.
HenceEQLV(σ, σ′) ≤ EQLV(Eσ, Eσ′).

We now look more closely at Point (1).

Proposition 12. If EQLV(E, F) = k < ℓ = EQLV(Eσ, Fσ)
(whereℓ ∈ N∪{ω}) then there are somexi ∈ SUPP(σ), H 6=
xi, and a wordw, |w| = k, such thatE

w
−→ xi, F

w
−→ H or

E
w

−→ H , F
w

−→ xi; moreover,σ(xi) ∼ℓ−k Hσ.

Proof: If (E, F) belongs to CASE 1 of Proposition 10
then EQLV(Eσ, Fσ) = EQLV(E, F) = k. Hence any(E, F)
satisfying the assumption belongs to CASE 2, so let us
take xi, H which are guaranteed there; ifH 6∈ VAR then
xi ∈ SUPP(σ), and if H = xj then at least one ofxi, xj be-
longs toSUPP(σ) (otherwise EQLV(Eσ, Fσ) = k). The claim
σ(xi) ∼ℓ−k Hσ follows from Prop.4(1) (sinceE

w
−→ xi,

F
w

−→ H implies Eσ
w

−→ σ(xi), Fσ
w

−→ Hσ).

The next proposition (sketched in Fig.8) is later useful forde-
creasing the support of a substitution in an inductive argument
(in Fig.13). We defineσ[−xi] as the substitution arising from
σ by removingxi from the support(if it is there):

σ[−xi](xi) = xi andσ[−xi](xj) = σ(xj) for all j 6= i.

Recall E3 = Eσ′σ′σ′ . . . in Fig.1 whereσ′ = {(x7, E)}. If
σ(x7) ∼k Eσ (in someLA

G), whenceσ ∼k {(x7, E)} σ =
σ′σ, then Proposition 11(2) entailsσ(x7) ∼k Eσ ∼k

Eσ′σ ∼k Eσ′σ′σ ∼k (Eσ′σ′ · · ·)σ = E3σ. Note that
E3σ = E3σ[−x7] sincex7 does not occur inE3. We formalize
this as follows (see Fig.8).

Proposition 13. AssumeH 6= xi and H ′ = Hσ′σ′ · · · where
σ′ = {(xi, H)}. (GPH′ arises fromGPH by redirecting all
incoming arcs ofxi to the root ofH ; henceH ′ = H if xi

does not occur inH , in particular if H = xj , j 6= i.)
If σ(xi) ∼k Hσ thenσ(xi) ∼k H ′σ[−xi] and thus
σ ∼k {(xi, H

′)} σ[−xi].

Proof: H ′σ = H ′σ[−xi] sincexi does not occur inH ′. If
Hσ ∼ H ′σ then the claim is trivial. Otherwise (H ′ 6= H

and) EQLV(Hσ, H ′σ) > EQLV(σ(xi), H
′σ) (since anyw

witnessing Hσ 6∼ H ′σ must have a nonempty prefixu
such thatH

u
−→ xi and H ′ u

−→ H ′; see Fig.8). Hence
EQLV(σ(xi), Hσ) = EQLV(σ(xi), H

′σ) (by Prop.2).

B. k-distance regions (for decidingT ∼k U)

We have implicitly noted (around Lemma 9) that we can
decide whetherT ∼k U (for k ∈ N); a natural way is to
construct thek-distance region for(T, U):

5

Fig. 9. The2-distance region REG(T, U, 2) for (T, U) = (AB⊥, BA⊥)

Fig. 10. Case1 of left-balancing

REG(T, U, k) = { (T ′, U ′) | T
w

−→ T ′, U
w

−→ U ′

for somew, |w| ≤ k }.

Fig.9 shows the2-distance region for(T, U) = (AB⊥, BA⊥),
assuming our example grammar in Fig.5.

Note thatT 6∼k U iff there is (T ′, U ′) ∈ REG(T, U, k−1)
such thatT ′ 6∼1 U ′. We define theleast eq-levelfor a set of
pairs of terms (for a region REG(T, U, k) in particular):

for R ⊆ TERMSN × TERMSN , R 6= ∅, we define
M INEL(R) = min { EQLV(T ′, U ′) | (T ′, U ′) ∈ R}.

The next proposition tells us that any least eq-level pair in
REG(T, U, k) must be in the bottom row in the figures like
Fig.9 or Fig.10, ifT 6∼ U . It follows trivially from Prop.4.

Proposition 14.
(1.) If T ∼ U thenT ′ ∼ U ′ for all (T ′, U ′) ∈ REG(T, U, k).
(2.) If T 6∼ U , T ∼k U and (T ′, U ′) ∈ REG(T, U, k) satisfies
EQLV(T ′, U ′) = M INEL(REG(T, U, k)) then (T ′, U ′) ∈
REG(T, U, k) r REG(T, U, k−1).

By Prop.14, 11(2) and 2 we easily derive the next proposition.
It is useful to look at Fig.11 (which is fully used later), and
imagineσ = {(x1, V1), (x2, V2)}, σ′ = {(x1, V

′
1), (x2, V

′
2)}.

Proposition 15. Suppose thatT ∼k U and for σ, σ′ we have
SUPP(σ) = SUPP(σ′) and (σ(xi), σ

′(xi)) ∈ REG(T, U, k−1)
for eachxi ∈ SUPP(σ).
If EQLV(T ′, U ′) = M INEL(REG(T, U, k)) andT ′ = Gσ then
EQLV(Gσ′, U ′) = EQLV(T ′, U ′).

Note that the case depicted in Fig.10 is a special case:G = x1,
σ(x1) = T ′, σ′(x1) = V .

C. Prover-Refuter game

We now describe the rules of the game between Prover (she)
and Refuter (he).

Fig. 11. Case2 of left-balancing

PROVER-REFUTER GAME (P-R GAME)

1) A det-first-order grammarG = (N ,A,R) is given.
2) Prover produces (by “guessing”, say) a finite set BASIS

of pairs of (graph presentations of regular) terms.
3) An input pair(Tin, Uin) is given.
4) Refuter chooses

(T0, U0) ∈ STARTSET = {(Tin, Uin)} ∪ BASIS,
and claims EQLV(T0, U0) = M INEL(STARTSET) < ω.

5) For i = 0, 1, 2, . . . , Phasei is performed, i.e.:

a) Prover choosesk > 0, and REG(Ti, Ui, k) is con-
structed; ifTi 6∼k Ui then Prover loses (the play ends).

b) Refuter chooses(T ′
i , U

′
i) ∈ REG(Ti, Ui, k) r

REG(Ti, Ui, k−1) andwi, |wi| = k, such thatTi
wi−→

T ′
i , Ui

wi−→ U ′
i ; if there is no suchT ′

i , U
′
i , wi (due

to dead terms, henceTi ∼ Ui), Prover wins. Refuter
claims that EQLV(T ′

i , U
′
i) = M INEL(REG(Ti, Ui, k)).

(Recall Prop.14.)
c) Prover produces(Ti+1, Ui+1) from (T ′

i , U
′
i) as follows:

• either she putsTi+1 = T ′
i , Ui+1 = U ′

i (no-change),
• or she balances (recall Prop.15 and Fig.11):

if she finds σ, σ′ such that (σ(xi), σ
′(xi)) ∈

REG(T, U, k−1) for all xi ∈ SUPP(σ) = SUPP(σ′),
and she presentsT ′

i asGσ then she can (do aleft-
balancing, namely) putTi+1 = Gσ′, and Ui+1 =
U ′

i ; symmetrically, if U ′
i is Gσ′ then she can (do

a right-balancing, namely) putTi+1 = T ′
i , and

Ui+1 = Gσ.

(Thus EQLV(Ti+1, Ui+1) = EQLV(T ′
i , U

′
i) if Refuter’s

claim in 5.b is true. We haveTi+1 ∼ Ui+1 if Ti ∼ Ui.)
d) Provereither contradicts Refuter’s claimsby present-

ing a proof, i.e. a finite algorithmically verifiable
sequence of deductions based on Propositions 2, 4, 11,
12, 13, in which case Prover wins,or lets the play
proceedwith Phasei+1.

If we switch Points2) and 3) then we get theweaker form
of the game; it is then clear that a play starts with a given

6

Fig. 12. A left balancing phasei followed by a no-change phasei+1

instanceG, Tin, Uin of TRACE-EQ-DET-G. We use the above
(stronger) form to stress that BASIS is determined by the
grammarG (and is independent ofTin, Uin). We note that
performing Point5 in a play gives rise to a (finite or infinite)
sequence of pairs

(T1, U1), (T2, U2), (T3, U3), . . . (2)

which is eq-level decreasing (see Def.18(1)) if Refuter’s claims
are true; we haveTj ∼ Uj for all j if T0 ∼ U0. An example
of phasesi and i+1 is depicted in Fig.12 (fully used later).

We can see that BASIS plays no role until possibly used
in the final proof contradicting Refuter’s claims. E.g., if
(Ti, Ui) for i > 0 is shown to be abasis-instance, i.e.
(Ti, Ui) = (Eσ, Fσ) for some (E, F) ∈ BASIS and some
substitutionσ, then this is a contradiction, since by Refuter’s
claims EQLV(Ti, Ui) < M INEL(STARTSET) (for i > 0) while
EQLV(Eσ, Fσ) ≥ EQLV(E, F) ≥ M INEL(STARTSET) (by
using Prop.11(1)). Another simple proof of contradiction is a
repeat, i.e. getting(Tj , Uj) = (Ti, Ui) for j > i.

Remark.We could surely make the game more flexible for
Prover, adding her other sound possibilities but the above form
is technically sufficient.

Example of a play of the Prover-Refuter game

We just show a simple play (not claiming anything particular).
1. G from Fig.5 is given.
2. Prover puts (guesses) BASIS = {(x1, x1), (Ax1, Bx1)}.
3. (Tin, Uin) = (AB⊥, BA⊥) is given.
4. Refuter chooses(T0, U0) = (Tin, Uin) = (AB⊥, BA⊥).

5a. Prover choosesk = 2 and constructs REG(T0, U0, k) as
in Fig.9, demonstrating thatT0 ∼k U0.

5b. Refuter chooses(T ′
0, U

′
0) = (ABBB⊥, BAAA⊥), with

w0 = aa. (T0
w0−→ T ′

0, U0
w0−→ U ′

0.)
5c. Prover performs a left-balancing: she shows(B⊥, A⊥) ∈

REG(T0, U0, k−1), puts σ = {(x5, B⊥)}, σ′ =
{(x5, A⊥)}, presentsT ′

0 = (ABBx5)σ, and puts
T1 = (ABBx5)σ

′; she thus defines(T1, U1) =
(ABBA⊥, BAAA⊥).

5d. Prover does not continue with Phase1 but she derives
a contradiction by assuming Refuter’s claims are true as
follows, denoting EQLV(T1, U1) = EQLV(T ′

0, U
′
0) = ℓ:

since the eq-levels of

(A⊥, B⊥), (AB⊥, BA⊥), (ABB⊥, BAA⊥)

are greater thanℓ, the eq-level of each of the following
pairs (arising from(T1, U1) by successive subterm re-
placements) must beℓ:
(ABAB⊥, BAAA⊥) (we replacedBA⊥ in T1),
(ABAB⊥, BAAB⊥), (ABAB⊥, BABA⊥),
(ABAB⊥, BABB⊥), (ABAB⊥, BBAA⊥),
(ABAB⊥, BBAB⊥). But the last pair is an instance of
the pair(Ax1, Bx1) ∈ BASIS, a contradiction.

D. Soundness of the Prover-Refuter game

If {(Tin, Uin)}∪BASIS contains a pair of non-equivalent terms
then Refuter can be choosing so that his “least eq-level claims”
(in 4. and 5.b) are true; thus the sequence (2) is eq-level
decreasing and Prover loses eventually. This also applies to
the weaker form of the P-R game (Points 2 and 3 switched).

Since BASIS is finite and Refuter always has finitely many
choices when there is his turn, there is an obvious algorithmic
aspect which we also capture in the next (soundness) lemma.

Lemma 16. There is an algorithm with the following property:
given a det-first order grammarG and Tin, Uin, it halts and
produces someBASIS iff Prover can force her win forG,
Tin, Uin by usingBASIS (in the weaker form of the game, say);
in this caseT ∼ U for all (T, U) ∈ {(Tin, Uin)} ∪ BASIS.

By combining with Lemma 9 we get an algorithm which
decides TRACE-EQ-DET-G, on condition that for each det-
first-order grammarG there exists a basis which is sufficient
for forcing Prover’s win for anyTin ∼ Uin. This completeness
is shown in Section IV, which will finish a proof of the next
theorem.

Theorem 17. Trace equivalence for det-first-order grammars
(i.e., the problemTRACE-EQ-DET-G) is decidable.

IV. COMPLETENESS OF THEPROVER-REFUTER GAME

IV-A shows that we get the completeness if there isn ∈ N,
g : N → N for anyG such that Prover has a so-called(n, g)-
strategy for eachT0 ∼ U0 (guaranteeing(n, g)-subsequences
of sequences (2), as depicted on the left in Fig.13). IV-B then
shows a “balancing strategy” for Prover which is an(n, g)-
strategy.

A. “Stair-base” (n, g)-sequences are sufficient

We still assume a fixed det-first-order grammarG =
(N ,A,R) if not said otherwise.
We recall PRESSIZE(E) (of a regular termE over N), and
put PRESSIZE(E, F) = PRESSIZE(E) + PRESSIZE(F), say.

Definition 18.
1) A sequence(T1, U1), (T2, U2), . . . , (Tℓ, Uℓ) is eq-level

decreasingif ω > EQLV(T1, U1) > EQLV(T2, U2) >

· · · > EQLV(Tℓ, Uℓ).

7

2) A (finite or infinite) sequence (“head-pairs”, or “heads”)
(E1, F1), (E2, F2), (E3, F3) . . .

and a substitutionσ (“tails”) where CARD(SUPP(σ)) ≤ n

constitute an n-tail presentation of the sequence
(E1σ, F1σ), (E2σ, F2σ), (E3σ, F3σ),

3) For n ∈ N and a nondecreasing functiong : N → N,
(T1, U1), (T2, U2), (T3, U3), . . . is an (n, g)-sequence
if it has ann-tail presentation given by tailsσ and heads
(E1, F1), (E2, F2), (E3, F3), . . .
wherePRESSIZE(Ej , Fj) ≤ g(j) for j = 1, 2, 3,
(Hence(Tj , Uj) = (Ejσ, Fjσ) for j = 1, 2, 3,)

4) Prover has an(n, g)-strategyfor G if she can force that
the sequence(T1, U1), (T2, U2), (T3, U3), . . . arising in
the phases0, 1, 2, . . . (recall (2)) has an infinite(n, g)-
subsequence in each play whereT0 ∼ U0 and the play
does not finish with Prover’s win in Point 5b or with a
repeat. (The basis is irrelevant.)

5) Stipulatingmax ∅ = 0, we define the following finite num-
ber (Maximal Finite Equivalence Level) for anyb ∈ N:
MAX FELb = max { EQLV(E, F) | E 6∼ F and
PRESSIZE(E, F) ≤ b }.

The essence of the next lemma is the fact that the length of
eq-level decreasing(n, g)-sequences is bounded by a number
depending just onG, n, g (and independent ofσ).

Lemma 19. If Prover has an(n, g)-strategy for a det-first-
order grammarG then there is someBASIS for G which is
sufficient for Prover to force her win for allTin ∼ Uin.

Proof: Suppose a fixedG, and n, g guaranteed by the
assumption. Consider a play of the P-R game in whichG
is given (in Point 1). Suppose Prover (in Point 2) produces
BASIS = {(E, F) | E ∼ F, PRESSIZE(E, F) ≤ B} for some
(large) boundB ∈ N. We can imagine that Prover has an
unlimited computational power and “computes” (guesses)B
and BASIS when knowingG, n, g. Our reasoning below will
put some conditions onB which Prover can “foresee” and
which will guarantee that BASIS “handles” allTin ∼ Uin.

So assume that someTin ∼ Uin is given in Point 3. (This
could not be foreseen by Prover.) Refuter then necessarily
choosesT0 ∼ U0 in Point 4 (though claimingT0 6∼ U0). Let
Prover use her assumed(n, g)-strategy, and consider a moment
(after a number of phases) when the so far constructed se-
quence(T1, U1), (T2, U2), . . . has a “long” (n, g)-subsequence
(Ti1 , Ui1) = (E1σ, F1σ), (Ti2 , Ui2) = (E2σ, F2σ), . . . ,
(Tiℓ

, Uiℓ
) = (Eℓσ, Fℓσ); we write ℓ asℓ(n,g) for later use.

Prover can derive from Refuter’s claims that

(E1σ, F1σ), (E2σ, F2σ), . . . , (Eℓ(n,g)
σ, Fℓ(n,g)

σ) (3)

is eq-level decreasing (though in realityEiσ ∼ Fiσ for all i).
If E1 ∼ F1 (which must be the case whenn = 0, so

when SUPP(σ) = ∅) then Prover can claim her win if she has
chosenB ≥ g(1) (so we have a first condition onB, which
Prover could “foreseee” in Point 2): in this case(Ti1 , Ui1) =
(E1σ, F1σ) is a basis-instance (and Prover can claim her win).

Assume now EQLV(E1, F1) = k ∈ N; note thatk ≤
MAX FELg(1). SinceE1σ ∼ F1σ, by Prop.12 we know that

Fig. 13. An(n, g)-(sub)sequence (left); decreasingSUPP(σ) by {(xi, H
′)}

Prover can demonstrateE1σ
w

−→ σ(xi) and F1σ
w

−→ Hσ

(or vice versa) forxi ∈ SUPP(σ), H 6= xi and |w| = k

(see Fig.13). Moreover, she derives EQLV(σ(xi), Hσ) >

EQLV(Es+1σ, Fs+1σ) > EQLV(Es+2σ, Fs+2σ) > · · · for
(the shift)s = 1 + MAX FELg(1).

Using (deduction rules based on) Proposition 13, 11(2)
and 2, Prover can demonstrate that in the pairs(Ejσ, Fjσ), for
j = s+1, s+2, . . . , she can replaceσ with {(xi, H

′)}σ[−xi]

whereGPH′ arises fromGPH by redirecting each incoming arc
of xi to the root (see Fig.13),without affecting the eq-levels
of these pairs if Refuter’s claims are true.

Note that PRESSIZE(H) is surely bounded byg(1) +
MAX FELg(1) · STEPINC, where STEPINC can be taken as
the size of the largest rhs in the rules ofG; it bounds the
possibleone-step increaseof the presentation size when a rule
is applied (recall Fig.6).

Prover thus demonstrates an(n−1, g′)-sequence

(E′
1σ[−xi], F

′
1σ[−xi]), (E

′
2σ[−xi], F

′
2σ[−xi]), . . . (4)

of length ℓ(n−1,g′) = ℓ(n,g) − (1 + MAX FELg(1)) where
E′

j = Es+j{(xi, H
′)} and F ′

j = Fs+j{(xi, H
′)}; we note

that PRESSIZE(E′
j , F

′
j) is surely bounded (byg(s+j) + 2 ·

PRESSIZE(H) and thus) by

g′(j) defined as (5)

g(1+MAX FELg(1)+j)+2 ·(g(1)+MAX FELg(1) ·STEPINC).

We can now reason for the sequence (4) as we did for
the sequence (3): ifE′

1 ∼ F ′
1 then Prover can claim her

win if she has chosenB ≥ g′(1) (“computing” g′ from G
and g). Otherwise Prover creates an(n−2, g′′)-sequence of
length ℓ(n−2,g′′) = ℓ(n−1,g′) − (1 + MAX FELg′(1)), etc. The
iteration can happen at mostn-times. Sincen is known in
Point 2, Prover could chooseB sufficiently large to force her
win (by creating a basis-instance with the eq-level less than
M INEL(STARTSET) according to Refuter).

Remark.We note a “side-effect” of the above proof; though not
important now, it will be used in the analogue of Lemma 19 for
the general bisimilarity problem. Let us consider the following

8

recursive definition ofℓ(n,g) (for all n ∈ N, g : N → N when
G is assumed):

if n = 0 thenℓ(n,g) = ℓ(0,g) = 1 + MAX FELg(1)

otherwiseℓ(n,g) = ℓ(n−1,g′) + (1 + MAX FELg(1))
whereg′ is defined as in (5).

Using the reasoning in the proof of Lemma 19, by induction
on n we can easily verify thatℓ(n,g) provides an upper
bound on the length of eq-level decreasing(n, g)-sequences.
Computability ofℓ(n,g) is another matter to which we return
in the general bisimilarity case.

B. Balancing yielding an(n, g)-strategy

We first introduce some notions and make some observations
which are used in describing a particular balancing strategy of
Prover; then we show that this strategy is an(n, g)-strategy
(for the assumedG).

(Shortest) sink words; root-performability

In the general (nondeterministic) case, the following notions
make better sense in the det-LTSLR

G (recall Def.6), but we
can stick to our assumed det-LTSLA

G here.

Definition 20.
1) w ∈ A∗ is a (Y, j)-sink-word, 1 ≤ j ≤ m = arity(Y),

if Y x1 . . . xm
w

−→ xj (henceY F1 . . . Fm
w

−→ Fj).
2) A path F

u
−→ (of length |u|) is root-performableif the

root of F is Y ∈ N andY x1 . . . xarity(Y)
u

−→; hence no
proper prefix ofu is a (Y, j)-sink word then; if, moreover,
u itself is not a(Y, j)-sink word thenF

u
−→ is strongly

root-performable.
3) A pathG

w
−→ sinks into depthk in DOM(G) (recall G :

N
∗ → N ∪ VAR) if it sinks alongsomeγ = i1i2 . . . ik ∈

DOM(G), i.e. if w = w1w2 · · ·wk and for eachℓ, 1 ≤
ℓ ≤ k, we have:wℓ is a (Y, iℓ)-sink word whereY =
G(i1i2 . . . iℓ−1). (HenceG

ε
−→ sinks into depth0.)

In Fig.6, a is a (Y, 1)-sink-word of length1. In Fig.7, if
root(F) = A and the arc depicted inGPF is labelled 2

thena1a2a3a4a5a6 is an(A, 2)-sink word.F
a1a2...aj

−→ is root-
performable for allj, 0 ≤ j ≤ 6, but it is not strongly root-
performable forj = 6.

It is useful to realize the next trivial fact (recall again Fig.6).

Proposition 21. If w is a (Y, j)-sink-word thenw = av for
a rule r : Y x1 . . . xm

a
−→ E whereE

v
−→ sinks along some

γ ∈ DOM(E) whereE(γ) = xj (so E
v

−→ xj). (E = xj is a
particular case.)

It is thus clear that we can efficiently (by standard dy-
namic programming techniques) fix ashortest(Y, j)-sink word
SSW(Y, j) for each pairY, j, Y ∈N , 1≤j≤arity(Y) (in our
assumedG) for which there is such a word. If there is no
(Y, j)-sink word (so thej-th successor ofY is nonexposable
and thus irrelevant), we can safely decreasearity(Y) and
make the obvious corresponding modifications in the rules of
G. Hence we further assumeSSW(Y, j) for eachY, j, and put

M0 = 1+max{ |SSW(Y, j)| | Y ∈N , 1≤j≤arity(Y)}. (6)

M0-sinking paths (no length-M0 subpath is root-performable)

Definition 22. We putDEPTH(E) = max{|γ| | γ ∈ DOM(E)}
for finite termsE, and we define themaximal one-step depth-
increase:

STEPDEPTHINC =
max{DEPTH(E)−1 | E is the rhs of a rule inG}.

A path T
w

−→ T ′ is d-sinking, d > 0, if there is no root-
performable subpath of lengthd in T

w
−→ T ′, i.e., we cannot

write w = u1vu2, |v| = d, so thatT
u1−→ (Ax1 . . . xm)σ

v
−→

G′σ
u2−→ T ′ whereAx1 . . . xm

v
−→ G′.

In fact, we only useM0-sinking paths. The pathT
u1vu2−→ T ′

in Fig.11 is notM0-sinking.
The next fact is trivial; if we have a longM0-sinking path

T
w

−→ then its prefix sinks deeply inDOM(T) (increasing the
sink-depth within everyM0 steps), which is possibly followed
by a “growing end” shorter thanM0:

Proposition 23. If a path T
w

−→ T ′ is M0-sinking, then we
can write w = v1v2 where T

v1−→ T1
v2−→ T ′, |v2| < M0,

T
v1−→ T1 sinks into depth at leastd = |w| div M0 in

DOM(T), andT ′ can be writtenFσ for a finite termF where
DEPTH(F) ≤ 1 + (M0−1) · STEPDEPTHINC and eachσ(xj)
(for xj ∈ SUPP(σ)) is a subterm ofT1 and thus ofT .

(If v2 = ε then we takeF = x1 and σ(x1) = T1 = T ′.
OtherwiseT1 = (Ax1 . . . xm)σ, hence allσ(xj), 1 ≤ j ≤ m,
are subterms ofT1, and we haveAx1 . . . xm

v2−→ F .)
Figures 10 and 11 help to observe the next fact (saying that

we can bound DEPTH(G) in Fig.11).

Proposition 24. Consider a regionREG(T, U, k), T ∼k U ,
and T ′, U ′, w, |w| = k, such that T

w
−→ T ′, U

w
−→

U ′. Suppose there is no(T ′, V) ∈ REG(T, U, k−1) and
T

w
−→ T ′ is not M0-sinking. Take the last root-performable

(sub)path of lengthM0 in T
w

−→ T ′, i.e., take the longest
u1 such that T

u1−→ (Ax1 . . . xm)σ
v

−→ G′σ
u2−→ T ′

where Ax1 . . . xm
v

−→ G′ and |v| = M0. Then there is
(σ(xj), V

′
j) ∈ REG(T, U, k−1) for eachj, 1 ≤ j ≤ m, and

G′ u2−→ G (henceT ′ = Gσ) where
DEPTH(G) ≤ 1 + (2M0−1) · STEPDEPTHINC.

Proof: For eachj, 1≤j≤m, we haveAx1 . . . xm
SSW(A,j)
−→

xj , and |SSW(A, j)| < M0 = |v|; hence there is a pair
(σ(xj), V

′
j) in REG(T, U, k−1) (sinceT ∼k U). We cannot

have G′σ
u′

−→ σ(xj) for a prefix u′ of u2 since other-

wise we hadu2 = u′u′′, σ(xj)
u′′

−→ T ′ and thus we
had (T ′, V) ∈ REG(T, U, k−1) (see Fig.11). We thus have
G′ u2−→ G; moreover,G′ u2−→ G is M0-sinking (since we
took the last root-performable path of lengthM0). Since
DEPTH(G′) ≤ 1 + M0 · STEPDEPTHINC, with Prop.23 we
easily verify the claim.

Recall Fig.12 and suppose thatTi+1
wi+1
−→ T ′

i+1 is M0-
sinking. We then need that the “rest-head”G is “erased”
which is guaranteed when we have anM1-distance region for

9

M1 ≥ M0 · (1 + DEPTH(G)). Therefore we put

M1 = M0 · (2 + (2M0−1) · STEPDEPTHINC). (7)

(Restricted) left and right balancing steps

From now on we assume that Prover always choosesk = M1

in Point 5a of the P-R game. We now alsorestrict the allowed
way of balancing.

Imagine the game is in 5c in Phasei; we haveTi
wi−→ T ′

i ,
Ui

wi−→ U ′
i . If Prover wants to perform aleft balancing step,

she does the following (recall Fig.10 and Fig.11):

1) If there is some(T ′
i , V) in REG(Ti, Ui, M1−1), Prover

(chooses one such pair and) putsTi+1 = V , Ui+1 = U ′
i .

2) Otherwise if there is a root-performable (sub)path of
length M0 in Ti

wi−→ T ′
i , she takes the last one, getting

Ti
u1−→ (Ax1 . . . xm)σ

v
−→ G′σ

u2−→ T ′
i = Gσ as in

Prop.24 (u1vu2 = wi). She definesσ′(xj) = V ′
j for each

j, 1 ≤ j ≤ m, where(σ(xj), V
′
j) ∈ REG(T, U, k−1), and

putsTi+1 = Gσ′, Ui+1 = U ′
i .

3) If none of 1, 2 applies, henceTi
wi−→ T ′

i is M0-sinking,
then no left-balancing is possible.

In the cases 1 and 2,Ui is called thebalancing pivotand
(Ti+1, Ui+1) the balancing result(or the bal-result) of this
balancing step. Theright balancing stepsare defined sym-
metrically (Ti is then the pivot).

Balancing strategy for Prover

We further assume that Prover behaves as follows in Phasei:
She balances, i.e. performs a left balancing or a right

balancing step (as in 1 or 2 above), if possible but she cannot
do a left (right) balancing if a right (left) balancing was done
in Phasei−1; if balancing is (thus) not possible, Prover does
no-change, i.e. putsTi+1 = T ′

i , Ui+1 = U ′
i . (Prover thus

cannot switch balancing sides in two consecutive phases; such
a switch needs a separating no-change phase.)

Remark.We use a liberal notion of a strategy since it might
leave some free choice to the player adhering to the strategy.

Pivots of a play are on a special pivot-path inLA
G

Proposition 25. (1.) If Prover balances in Phasei and Phase
i+1, then we haveW

wi−→ W ′, |wi| = M1, for the respective
pivots. (W = Ui

wi−→ Ui+1 = W ′ in the case of left balancing,
and W = Ti

wi−→ Ti+1 = W ′ in the case of right balancing).
(2.) If Prover balances in Phasei, with pivotW (W = Ui

or W = Ti), and does no-change in Phasei+1, then there are

words v′, v′′ of length at most2M1 such thatW
v′

−→ Ti+2,

W
v′′

−→ Ui+2 (i.e., after Phasei + 1 the terms on both sides
are “shortly” reachable from the last pivot).

Proof: The first part is trivial. For the second part
assume that left-balancing was done in Phasei and no change
in Phasei + 1 (as in Fig.12); henceW = Ui, and we
have W

wiwi+1
−→ Ui+2 (where |wiwi+1| = 2M1). Moreover,

Ti+1
wi+1
−→ Ti+2 is M0-sinking, hencewi+1 has a prefixw

such thatTi+1
w

−→ sinks into depth at leastM1 div M0 =
2 + (2M0−1) · STEPDEPTHINC in DOM(Ti+1).

Fig. 14. (A prefix of) the path from a pivotW to the next pivot

If the balancing result is(Ti+1, Ui+1) = (V, U ′
i) as in 1

(see Fig.10) thenW = Ui
u

−→ V
wi+1
−→ Ti+2, where|u| < M1.

Now assume(Ti+1, Ui+1) = (Gσ′, U ′
i) (Fig.11) where for

eachxj ∈ SUPP(σ′) there isu′
j, |u′

j | < M1, such thatW =

Ui

u′

j

−→ σ′(xj); recall also that
DEPTH(G) ≤ 1 + (2M0−1) · STEPDEPTHINC (by Prop.24).

We have chosenM1 large enough so thatTi+1 = Gσ′ w
−→

for the above mentioned prefixw of wi+1 sinks into greater
depth than DEPTH(G); hence there is a prefixw′ of wi+1,

we put wi+1 = w′w′′, such thatGσ′ w′

−→ σ′(xj)
w′′

−→ Ti+2.

HenceW = Ui

u′

j

−→ σ′(xj)
w′′

−→ Ti+2 (|ujw
′′| < 2M1).

Fig.14 shows a path from a pivotW to the next pivot. It
starts with a (sub)path of length≤ 2M1, correspondingeither
to (1) in Prop.25, in which case the length of this “starting
path” is M1 and the path finishes with the next pivot,or to
(2) in Prop.25, in which case this starting path finishes with
V ∈ {Ti+2, Ui+2}, for the appropriatei, depending on which
side (left or right) the next pivot is. (In Fig.14 the starting path
gives an impression of term-increasing but this is not true in
general.) In the above case (2), the starting path, finishingin V ,
might be followed by a sequence of “follow-up” paths (where
the last one finishes in the next pivot); each of these follow-up
paths has lengthM1 and isM0-sinking. (Fig.14 depicts just
one follow-up path.) Here our choice ofM1 guarantees (by
Prop.23) that we have “term-sinking”, in particular any path
(of lengthM1) in this follow-up sequence necessarily visits a
subterm ofV (in the ever greater depth inDOM(V)). (In Fig.14
we assume STEPDEPTHINC = 1.) We have thus shown:

Proposition 26. The pivots of the balancing steps used in a
play of P-R game (where Prover uses the above balancing
strategy) are on a (finite or infinite) path

W1
v1−→ W2

v2−→ W3
v3−→ · · · (8)

where each (sub)pathWj

vj

−→ Wj+1 can be writtenWj
v′

−→

V
v′′

−→ Wj+1 so that |v′| ≤ 2M1 and V
v′′

−→ Wj+1 is a
sequence of “follow-up” (sub)paths of lengthM1; each of
these follow-up paths (of lengthM1) is M0-sinking, and thus
visits a subterm ofV .

10

Fig. 15. A termV (with dotted root) presented as(TOPV

3)σ

Balancing strategy is an(n, g)-strategy

In the proof of the next lemma (which finishes the proof
of Theorem 17) we also use the following notion which we
highlight for repeated trivial use: withind steps fromV we
can sink at most to depthd in DOM(V).

Definition 27. For a (regular) termV and d ∈ N we define
TOPV

d as the finite term withDEPTH(TOPV
d) ≤ d which

coincides withV on all γ ∈ DOM(V), |γ| < d, but TOPV
d (γ)

for |γ| = d is a (fresh) variablexiγ
unique toγ. (We assume

a natural order onD = {γ ∈ DOM(V) | |γ| = d} and we
always use the smallest available index foriγ .)

By puttingSUPP(σ) = {xiγ
| γ ∈ D} andσ(xiγ

) = Vγ (the
subterm ofV occurring at γ), we get thetop-d presentation
of V , namelyV = (TOPV

d)σ.

Fig.15 shows a top-3 presentation of someV . Note that we
cannot use the variables in{V (γ) | |γ| < d} as the variables
in SUPP(σ), but we can assumeSUPP(σ) ⊆ {x1, x2, . . . , xcd}
wherec = max { arity(Y) | Y ∈ N }.

Lemma 28. For any det-first-order grammarG, the balancing
strategy is an(n, g)-strategy (n, g are determined byG).

Proof: Assume an infinite play whereT0 ∼ U0, Prover
uses the balancing strategy and there is no repeat. Prover then
balances infinitely often: Otherwise for somei ≥ 0 all Ti

wi−→

Ti+1, Ti+1
wi+1
−→ Ti+2, . . . are M0-sinking (corresponding to

the follow-up paths afterV in Fig.14), and Prop.23 and our
choice ofM1 easily yield that allTj range over finitely many
terms (since their presentation size is bounded). Similarly for
Uj , so there would be a repeat.

The pivot path (8) of our assumed play is thus infinite,
W1

v1−→ W2
v2−→ · · · . If a term V ′ (not only a pivot) is

visited infinitely often by (8) then we haveWi1 = Wi2 = · · ·
for infinitely many ij : any particular visit ofV ′ occurs in
the pathWj

vj

−→ Wj+1 for somej (V ′ is somewhere in the
path in Fig.14), and PRESSIZE(Wj+1) can be obviously only
boundedly bigger than PRESSIZE(V ′). It is easy to check that
the balancing results would be then infinitely often the same

Fig. 16. First steps in path (8), the second term happens to bea “stair-base”

(recall Fig.10 and 11); we would have a repeat.
Hence there is a visit of a termV = (Y x1 . . . xm)σ′ in (8)

(a “stair-base”, depicted as the second term in Fig.16) such
that no subterm ofV is visited later (so the rest of (8) is
strongly root-performable); we can thus write (8) as

W1
u

−→ (Y x1 . . . xm)σ′ u′

−→ H1σ
′ vk+1
−→ H2σ

′ vk+2
−→ · · ·

where(Y x1 . . . xm)
u′

−→ H1
vk+1
−→ H2

vk+2
−→ · · · , andHjσ

′ =
Wk+j (j = 1, 2, . . .) are the pivots afterV . We can check (by
Fig.14) that DEPTH(Hj) ≤ 1 + j · 2M1 · STEPDEPTHINC.

Recall that the balancing result with pivotHjσ
′ is composed

from terms (likeV , V ′
j , U ′ in Fig.10, 11) reachable from the

pivot by at mostM1 moves, possibly using a bounded “rest-
head”G. Recalling Def.27 (and Fig.15), we write

V = (Y x1 . . . xm)σ′ = (TOPV
M1

)σ = ((Y x1 . . . xm)σ′′)σ

where TOPV
M1

= (Y x1 . . . xm)σ′′ and σ′ = σ′′σ. Moreover,
we haveSUPP(σ) ⊆ {x1, x2, . . . , xn} where

n = cM1 for c = max { arity(Y) | Y ∈ N }. (9)

HenceWk+j = Hjσ
′′σ, and the balancing result withWk+j

can be written(Ejσ, Fjσ), whereEj , Fj are finite terms with
DEPTH(Ej), DEPTH(Fj) bounded by DEPTH(Hj)+M1+M1·
STEPDEPTHINC + (1 + (2M0−1) · STEPDEPTHINC) (recall
Fig.10 and 11, and DEPTH(G) in Prop.24).

This obviously gives someg : N → N (determined byG)
such that PRESSIZE(Ej , Fj) ≤ g(j). The bal-results related
to pivots Wk+1, Wk+2, Wk+3, . . . thus constitute an infi-
nite (n, g)-subsequence of the sequence(T1, U1), (T2, U2), . . .
arising in the phases0, 1, . . . of our assumed play.

V. A N UPPER BOUND ON COMPLEXITY

Remark.The next section VI is independent of this section.
An elementary functionNk → N arises by a finite compo-

sition of constants, the elementary operations+,−, · , div and
the exponential operator↑, wherea ↑ n = an .

Convention.In our context, when we say that anumberis
elementary, we mean that there is an elementary function of
the size of the underlying det-first-order grammarG which
gives an upper bound on the number.

E.g., the numbersM0, M1 (see (6), (7)), as well asn in the
proof of Lemma 28 (see (9)) are obviously elementary.

The first nonelementary (hyper)operator isiterated expo-
nentiation↑↑, also calledtetration: a ↑↑ n = a ↑ (a ↑ (a ↑
(. . . a ↑ a) . . .)) where↑ is usedn-times.

Our analysis will yield the following theorem, with an
obvious algorithmic consequence.

11

Theorem 29. For any tripleG, T0, U0 with the sizeINSIZE (of
a standard presentation) whereG is a det-first-order grammar
and T0 6∼ U0 we haveEQLV(T0, U0) ≤ 2 ↑↑ f(INSIZE),
wheref is an elementary function independent ofG, T0, U0.

Corollary 30. Trace equivalence for det-first-order grammars
can be decided in time (and space)O(2 ↑↑ g(INSIZE)) for an
elementary functiong.

An analogous claim holds for language equivalence of deter-
ministic pushdown automata, as follows from the reduction
shown in Section II.

We now aim to prove Theorem 29. V-A shows a stronger
congruence property (in our deterministic case), which enables
to show that there are no eq-level decreasing(n, n+1)-
sequences introduced in V-B. V-C then shows that this yields
a proof of Theorem 29.

We again assume a det-first-order grammarG = (N ,A,R),
and the det-LTSLA

G , if not said otherwise.

A. Stronger congruence properties

By Prop.11,σ1 ∼ℓ+1 σ2 implies Eσ1 ∼ℓ+1 Eσ2. Thus
if EQLV(E, F) = k ≤ ℓ = EQLV(Eσ1, Fσ1) and
σ1 ∼ℓ+1 σ2 then EQLV(Eσ1, Fσ1) = EQLV(Eσ2, Fσ1) =
EQLV(Eσ2, Fσ2) (using Prop.2). We now observe that for
getting EQLV(Eσ2, Fσ2) = EQLV(Eσ1, Fσ1) it is sufficient
to haveσ1 ∼ℓ−k+1 σ2. (I.e., if we replaceσ1 with σ2 on both
sides simultaneously then the requirement is weaker.)

Proposition 31. Assume EQLV(E, F) = k < ω and
EQLV(Eσ1, Fσ1) = ℓ (henceℓ ≥ k). If σ1 ∼ℓ−k+1 σ2 then
EQLV(Eσ2, Fσ2) = EQLV(Eσ1, Fσ1) = ℓ.

Proof: We recall Prop.8 and the fact that the assumption
E ∼k F implies E

w
−→ xj iff F

w
−→ xj for any w, |w| < k.

Hence if E
w

−→ xj and F
w

−→ H where H 6= xj then
ℓ−|w| ≤ ℓ−k, σ1(xj) ∼ℓ−|w| Hσ1 (by Prop.4), and thus
σ2(xj) ∼ℓ−|w| Hσ2; moreover, if EQLV(σ1(xj), Hσ1) ≤
ℓ−k then EQLV(σ2(xj), Hσ2) = EQLV(σ1(xj), Hσ1) (by
Prop.2). We can thus verify that EQLV(Eσ2, Fσ2) = ℓ.

B. Recurrent-pattern sequences, called(n, t)-sequences

We introduce(n, t)-sequenceswhere t ∈ N denotes that
the sequence has2t elements=pairs. In contrast with(n, g)-
sequences, the sizes play no role; we just capture a recurrent
pattern. A crucial fact will be that there are noeq-level
decreasing(n, n+1)-sequences. (Recall now2 in Def.18.)

Definition 32. A presentation consisting ofσ (tails) and
(E1, F1) (just one head-pair) is an(n, 0)-presentation with the
support set SUP ⊆ VAR (presenting the one-element sequence
(E1σ, F1σ)) if CARD(SUP) ≤ n and SUPP(σ) ⊆ SUP.

If P1 is an (n, t)-presentation withSUP, consisting of
σ and (E1, F1), (E2, F2), . . . , (E2t , F2t), then for any σ′,
SUPP(σ′) ⊆ SUP, the presentationP with tails σ and heads

(E1, F1), . . . , (E2t , F2t), (E1σ
′, F1σ

′), . . . , (E2tσ′, F2tσ′)
(10)

is an (n, t+1) presentation with SUP.

A sequence(T1, U1), (T2, U2), . . . , (Tm, Um) is an (n, t)-
sequenceif it has an (n, t)-presentation (with someSUP).

E.g., if the supports ofσ, σ1, σ2 are subsets of SUP and
CARD(SUP) ≤ n then σ (as tails) and the following pairs
(heads) constitute an(n, 2)-presentation:

(E1, F1), (E1σ1, F1σ1), (E1σ2, F1σ2), (E1σ1σ2, F1σ1σ2).
(11)

(By adding4 pairs which arise by prolonging both sides in
the above pairs withσ3 we would get an(n, 3)-presentation.)

Convention. We will implicitly assume that the heads
(E1, F1), (E2, F2), . . . , (E2t , F2t) in an (n, t)-presentation
are, in fact, always given by(E1, F1) and someσ1, σ2, . . . , σt

whereSUPP(σj) ⊆ SUP (for j = 1, 2, . . . , t).
The above inductive definition easily yields (using Prop.11):

Proposition 33. Given an(n, t)-presentation withSUP, for
any head pair(Ej , Fj), 1 ≤ j ≤ 2t, there is someσ,
SUPP(σ) ⊆ SUP, such that(Ej , Fj) = (E1σ, F1σ); hence
EQLV(Ej , Fj) ≥ EQLV(E1, F1).

Def.34 and Prop.35 serve for showing (an inductive proof of)
Lemma 36. The essence is simple: in an eq-level decreasing
(n, t+1)-sequence,(E1, F1) yields xi, H as in Prop.12, and
we can be replacingσ with {(xi, H

′)}σ[−xi] as in Prop.13, and
more generallyσ′σ with {(xi, H

′)}(σ′{(xi, H
′)})[−xi]σ[−xi],

which in later pairs does not affect the eq-levels due to
Prop.31. This allows to create an eq-level decreasing(n−1, t)-
sequence from the original even pairs. We now formalize this.

Definition 34. Let P1 and P be as in Def. 32. (HenceP is
an (n, t+1) presentation with heads (10);P1 is its first half.)

Let xi ∈ SUP (so n > 0) and H 6= xi; we put

H ′ = H{(xi, H)}{(xi, H)} . . . , and
σ′′ = σ′{(xi, H

′)}.

Thenthe presentation induced byP andxi, H is the(n−1, t)-
presentation withSUP′ = SUP r {xi} where the tails are
σ[−xi], the heads are(E′

1, F
′
1), (E

′
2, F

′
2), . . . , (E

′
2t , F ′

2t), and

• if t = 0 then (E′
1, F

′
1) = (E1σ

′′, F1σ
′′), and

• if t ≥ 1 then (E′
1, F

′
1), . . . , (E

′
2t−1 , F

′
2t−1) is the head

sequence of the(n−1, t−1)-presentation induced byP1,
xi, H , and for j = 1, 2 . . . , 2t−1 we have
(E′

2t−1+j
, F ′

2t−1+j
) = (E′

jσ
′′
[−xi]

, F ′
jσ

′′
[−xi]

).

E.g., for (11) we getE′
1 = E1σ1{(xi, H

′)} and E′
2 =

E1σ1{(xi, H
′)}(σ2{(xi, H

′)})[−xi].
If we make an (n, 3)-presentation from (11) by using
σ′ = σ3 then in the induced sequence we would
get E′

3 = E1σ1{(xi, H
′)}(σ3{(xi, H

′)})[−xi] and E′
4 =

E1σ1{(xi, H
′)}(σ2{(xi, H

′)})[−xi](σ3{(xi, H
′)})[−xi].

Proposition 35. Assume an eq-level decreasing(n, t+1)-
sequence (t ≥ 0); then n > 0. Let the eq-levels of the pairs
in the presented sequence beℓ1 > ℓ2 > · · · > ℓ2t+1 . Then
there is an eq-level decreasing(n−1, t)-sequence, with eq-
levelsℓ2, ℓ4, ℓ6, . . . , ℓ2t+1 .

12

Proof: Consider the assumed eq-level decreasing
(n, t+1)-sequence in presentationP as in Def. 32 and 34.
For any σ′ where SUPP(σ′) = ∅ we have(E1σ

′, F1σ
′) =

(E1, F1); hence there are obviously no eq-level decreasing
(0, 1)-sequences, and our assumption indeed impliesn > 0.

Since(E2, F2) = (E1σ1, F1σ1) (for someσ1, SUPP(σ1) ⊆
SUP) and ℓ1 > ℓ2 = EQLV(E2σ, F2σ) ≥ EQLV(E2, F2) ≥
EQLV(E1, F1) (recall Prop.11), we haveℓ1 > k =
EQLV(E1, F1). By Prop.12 and 13 we can fix somexi, H

such that H 6= xi, xi ∈ SUPP(σ) ⊆ SUP and
σ ∼ℓ1−k {(xi, H

′)}σ = {(xi, H
′)}σ[−xi] (where H ′ =

H{(xi, H)}{(xi, H)} . . .).
We now show, by induction ont, that the (n−1, t)-

presentation induced byP and xi, H presents an(n−1, t)-
sequence which we search.

First note that for anyj ≥ 2 we have σ ∼ℓj−k+1

{(xi, H
′)}σ[−xi] (sinceℓ1 > ℓj). By Prop.33 and 31, we can

replace the tailsσ with {(xi, H
′)}σ[−xi] in all pairs but the

first one, in particular in all second-half pairs,without affecting
the eq-levels(ℓ2t+1 > ℓ2t+2 > · · · > ℓ2t+1).

If t = 0 then the second pair(E1σ
′σ, F1σ

′σ) thus yields
(E1σ

′{(xi, H
′)}σ[−xi], F1σ

′{(xi, H
′)}σ[−xi]).

We are done when recalling that the induced(n−1, 0)-
presentation is given by tailsσ[−xi] and the head-pair
(E′

1, F
′
1) = (E1σ

′{(xi, H
′)}, F1σ

′{(xi, H
′)}).

If t ≥ 1 then we first use the induction hypothesis for
the first half, i.e. for the(n, t)-presentationP1; we get that
the (n−1, t−1)-presentation induced byP1, xi, H , i.e. σ[−xi]

and(E′
1, F

′
1), . . . , (E

′
2t−1 , F

′
2t−1), presents a sequence with eq-

levelsℓ2, ℓ4, ℓ6, . . . , ℓ2t .
Then we use the induction hypothesis for the modified

second half, namely for the(n, t)-presentation with the same
heads as inP1, i.e. (E1, F1), . . . , (E2t , F2t), but with tails
σ′{(xi, H

′)}σ[−xi] (which replaced the originalσ′σ without
affecting the eq-levelsℓ2t+1, ℓ2t+2, . . . , ℓ2t+1). The induced
(n−1, t−1)-presentation has the same heads as in the first-half
case, namely(E′

1, F
′
1), . . . , (E

′
2t−1 , F

′
2t−1), but the tails are

(σ′{(xi, H
′)}σ[−xi])[−xi] = (σ′{(xi, H

′)})[−xi]σ[−xi]. Now
ℓ2t+2, ℓ2t+4, ℓ2t+6, . . . , ℓ2t+1 are the eq-levels of the presented
sequence.

Since the two(n−1, t−1)-presentations, arising above by
using the induction hypothesis twice, yield together the
(n−1, t)-presentation induced byP , xi, H , we are done.

Prop.35 implies (by induction onn):

Lemma 36. There are no eq-level decreasing(n, n+1) se-
quences (for anyn).

C. Bounding shortest nonequivalence witnesses

Let us consider a play of a simplified version of the Prover-
Refuter game. We assume that a det-first-order grammarG and
a pairT0 6∼ U0 are given, and the play starts from 5a (there is
no basis since this is irrelevant now). We suppose that Refuter
always chooses a least eq-level pair (so that his claims in 5b
are true) and Prover follows the balancing strategy; Proverthus
loses in the phasei wherei = EQLV(T0, U0) div M1. Our aim

Fig. 17. (1, 2, 3) and (1, 4) are examples of stair sequences

is to derive a bound (a function of the size ofG andT0, U0)
on EQLV(T0, U0), a bound in the form in Theorem 29, called
a tetration boundfor short.

We note easily that it suffices to derive a tetration bound on
PRESSIZE(Tj , Uj) for the pairs(T1, U1), (T2, U2), . . . of the
eq-level decreasing sequence (2) arising in the phases0, 1,
Since we have no repeat, a bound on PRESSIZE(Tj , Uj) yields
an elementarily bigger bound on EQLV(T0, U0).

If there is no balancing (since all relevant paths
are M0-sinking) then PRESSIZE(Tj , Uj) is bounded by
PRESSIZE(T0, U0) increased with some elementary number.
(Recall our convention that elementary numbers are bounded
by elementary functions of the size ofG.)

We now supposek ≥ 1 balancing steps and write the finite
pivot path (8)W1

v1−→ W2
v2−→ · · · as

W1
v11−→ V1

v12−→ W2
v21−→ V2

w22−→ W3
v31−→ · · ·Vk−1

vk−1,2
−→ Wk

(12)
wherevj1 is the longest prefix ofvj such thatWj

vj1
−→ sinks

(into some depth inDOM(Wj)). We can have casesvj1 = ε

as well as casesvj1 = vj . We also putV0 = W1 andv02 = ε.
Fig.17 stresses thatVj

vj2
−→ Wj+1 is strongly root-performable.

Recall also thatVj is somewhere in the path depicted in Fig.14
but V there served for different aims.

Proposition 37. If Vj = (TOP
Vj

M1
)σ then the bal-result related

to the pivotWj+1 can be written(Eσ, Fσ) whereE, F are
finite terms with depth bounded by1 + M1 + (3M1 + 2M0) ·
STEPDEPTHINC. Moreover, SUPP(σ) ⊆ {x1, x2, . . . , xn}
wheren is (the elementary number) defined by (9).

Proof: SinceVj

vj2
−→ Wj+1 is strongly root-performable,

we have Vj = (Y x1x2 . . . xm)σ′, Wj+1 = Hσ′ where
Y x1x2 . . . xm

vj2
−→ H and DEPTH(H) ≤ 1 + 2M1 ·

STEPDEPTHINC (recall Fig.14). The rest can be checked by
recalling the balancing results (Fig.10 and 11) and Def.27.

It is easy to check that for getting a tetration bound on the size
of Tj, Uj it suffices to get a tetration bound on DEPTH(G)
in strongly root-performable subpaths of (12) in the form
(Y x1 . . . xm)σ

u
−→ Gσ where(Y x1 . . . xm)

u
−→ G. We now

formalize that a large DEPTH(G) can be only achieved by
long “stair-sequences” of someVj ’s, created from elementarily
bounded “stairs”; if these stair-sequences were longer than a
tetration bound then we would contradict Lemma 36.

13

Definition 38. A pair (i, j), where 0 ≤ i < j ≤ k−1 (k
taken from (12)), isa stair if Vi

vi2−→
vi+1
−→

vi+2
−→ · · ·

vj−1
−→

vj1
−→ Vj

is strongly root-performable. Astair (i, j) is simple if there is
no j′, i < j′ < j, such that both(i, j′) and (j′, j) are stairs.

A subsequencei1, i2, . . . , ir, of 0, 1, 2, . . . , k−1 is a (sim-
ple) stair sequenceif (ij , ij+1) is a (simple) stair for each
j ∈ {1, 2, . . . , r−1}.

In Fig.17, examples of stairs are(1, 2), (1, 3), (1, 4), where
(1, 2) and(1, 4) are simple stairs but(1, 3) is not simple.1, 2, 3
and1, 4 are examples of simple stair-sequences.

The next proposition captures the fact that a simple stair
represents just an “elementarily bounded increase”.

A substitutionσ is finite if σ(xi) is finite for all xi ∈ VAR;
DEPTH(σ) is thenmax{DEPTH(σ(xi) | xi ∈ VAR}.

Proposition 39. If (i, j) is a simple stair andVi =

(TOPVi

M1
)σ then Vj = (TOP

Vj

M1
)σ′σ where σ′ is finite and

DEPTH(σ′) ≤ 2M1 · STEPDEPTHINC. Moreover,SUPP(σ′) ⊆
{x1, x2, . . . , xn}, n defined by (9); we can haveSUPP(σ′) = ∅.

Proof: Suppose(i, j) is a simple stair and we have
Vi = (Y x1 . . . xm)σ′′σ where (Y x1 . . . xm)σ′′ = TOPVi

M1
.

Then (i, i+ℓ) is a simple stair for anyℓ, 1 ≤ ℓ ≤ j−i,
and we have(Y x1 . . . xm)

vi2−→
vi+1
−→ · · ·

vi+ℓ−1
−→

vi+ℓ,1
−→ Gi+ℓ

where Vi+ℓ = Gi+ℓσ
′′σ. For any ℓ, 1 ≤ ℓ < j−i, the

path Gi+ℓ

vi+ℓ,2
−→

vi+ℓ+1
−→ · · ·

vj−1
−→

vj,1
−→ Gj is not strongly root-

performable (since(i, j) is a simple stair), which by our
definitions means that there isℓ′, ℓ < ℓ′ ≤ j−i such that
Gi+ℓ′ is a (proper) subterm ofGi+ℓ. Repeating this reasoning
for ℓ′, etc., we deduce thatGj is a subterm ofGi+1, and thus
DEPTH(Gj) ≤ DEPTH(Gi+1).

We can easily check DEPTH(Gi+1) ≤ 1 + 2M1 ·
STEPDEPTHINC, hence in Vj = Gjσ

′′σ we have
DEPTH(Gjσ

′′) ≤ M1 + 2M1 · STEPDEPTHINC and for any
γ ∈ DOM(Gjσ

′′) where(Gjσ
′′)(γ) = xi ∈ SUPP(σ) we have

|γ| ≥ M1. HenceVj = (TOP
Vj

M1
)σ′σ whereσ′ is finite and

DEPTH(σ′) ≤ 2M1 · STEPDEPTHINC.

Proposition 40. Assume(Y x1 . . . xm)
u

−→ G 6∈ VAR and
(Y x1 . . . xm)σ

u
−→ Gσ is a (strongly root-performable)

subpath of (12). Then this subpath containsVi1 , Vi2 , . . . , Vir

for a simple stair-sequencei1, i2, . . . , ir with r =
(DEPTH(G) div STEP) − 1 where STEP = (2M1 + M0) ·
STEPDEPTHINC.

Proof: For anyVi inside, by which we mean inside the
path (Y x1 . . . xm)σ

u
−→ Gσ, there isGi such thatVi = Giσ

and (Y x1 . . . xm)
u′

−→ Gi
u′′

−→ G whereu′u′′ = u. If there
is no Vi inside then obviously DEPTH(G) < STEP (recall
Fig.14). Let i′ be such thatVi′ is inside and DEPTH(Gi′)
is minimal; surely DEPTH(Gi′) ≤ STEP. Let i′′ be the
largest index such thatVi′′ is inside; surely DEPTH(G) ≤
DEPTH(Gi′′) + STEP. There must be a simple stair-sequence
i1, i2, . . . , ir such thati1 = i′ andir = i′′ (since eitheri′ = i′′,
in which caser = 1, or (i′, i′′) is a stair).

Recalling Prop.39, we get DEPTH(Gir
) ≤ DEPTH(Gi1) +

(r−1) · STEP, and thus DEPTH(G) ≤ (r+1) · STEP.

Lemma 41. There are elementary numbersn, q ∈ N (given by
elementary functions ofsize(G)) with the following property:
For any simple stair-sequence(i1, i2, . . . , ir) in (12), of length
r = h(t) where the (nonelementary) functionh is defined by
the following recursive definition

h(1) = q + 1 and h(j + 1) = h(j) · (1 + qh(j)),

the sequence of the balancing results related to pivots
Wi1+1, Wi2+1, . . . , Wir+1, contains an(n, t)-subsequence.

Proof: Let n be defined by (9) in the proof of Lemma 28,
and letq be the number of possible pairs(Eσ′, Fσ′) where
(E, F) are finite terms arising as in Prop.37 andσ′ is a
finite substitution,SUPP(σ′) ⊆ {x1, x2, . . . , xn}, arising as
in Prop.39. These numbersn, q are obviously elementary.

For a simple stair-sequence(i1, i2, . . . , ir) we presentVi1 =

(TOP
Vi1

M1
)σ, Vi2 = (TOP

Vi2

M1
)σ1σ, Vi3 = (TOP

Vi3

M1
)σ2σ1σ, . . . ,

Vir
= (TOP

Vir

M1
)σr−1σr−2 . . . σ1σ, where σj are finite and

bounded asσ′ in Prop.39. Moreover, the supports ofσ andσj

(j = 1, 2, . . . , r−1) are subsets of SUP = {x1, x2, . . . , xn}.
The balancing results corresponding toVi1 , Vi2 , . . . , Vir

as
in Prop.37 can be written as follows:
(E1σ, F1σ), (E2σ1σ, F2σ1σ), (E3σ2σ1σ, F3σ2σ1σ), . . . ,
(Erσr−1σr−2 . . . σ1σ, Frσr−1σr−2 . . . σ1σ).

We now establish the claim by induction ont, using the
pigeonhole principle. Ift = 1 then r = q + 1 and we
necessarily get(Ei, Fi) = (Ej , Fj) for some i < j; hence
the i-th pair and thej-th pair constitute an(n, 1)-sequence:
the tails areσ = σi−1σi−2 . . . σ1σ and the heads are(Ei, Fi),
(Eiσ

′, Fiσ
′) whereσ′ = σj−1σj−2 . . . σi.

As the induction hypothesis we take that forr = h(t) we
are guaranteed that among the above bal-results there are2t

pairs, with indicesj1 < j2 < · · · < j2t , which constitute an
(n, t)-presentation with tailsσ = σj1−1σj1−2 . . . σ1σ. When
consideringr = h(t+1), we partition(i1, i2, . . . , ir), and the
coresponding bal-results, into1 + qh(t) segments of length
h(t). The i-th segment induces the sequence(Es+1, Fs+1),
(Es+2σs+1, Fs+2σs+1), (Es+3σs+2, Fs+3σs+2), . . . ,
(Es+h(t)σs+h(t)−1, Fs+h(t)σs+h(t)−1) wheres = (i−1) ·h(t);
the number of possible induced sequences is surely bounded
by qh(t). Hence there arei < j such that thei-th segment
and the j-th segment induce the same sequence. By the
induction hypothesis, thei-th segment gives rise to an(n, t)-
presentation with some tailsσ, and thej-th segment gives
rise to an(n, t)-presentation with the same heads but with
tails σ′σ (for someσ′). We thus get an(n, t+1)-presentation
with tails σ.

It is a routine to verify thath(t) can be bounded with2 ↑↑ g(t)
for an elementary functiong. Henceh(n+1) (n being the
elementary number (9)) yields a tetration bound on the length
of (simple) stair sequences in (12). We thus have a tetra-
tion bound on DEPTH(G) in Prop.40; this yields a tetration
bound on PRESSIZE(Tj , Uj), and thus a tetration bound on
EQLV(T0, U0). We have finished a proof of Theorem 29.

14

VI. B ISIMILARITY FOR FIRST-ORDER GRAMMARS

Trace equivalence coincides with bisimulation equivalence
(bisimilarity) in deterministic LTSs. For (general) first-order
grammars trace equivalence is undecidable (like language
equivalence for nondeterministic pushdown automata) but
bisimilarity is still decidable. This can be shown in principle
in the way we used for det-first order grammars, with some
modifications. Below we define bisimilarity and then discuss
the respective modifications of Sections II, III, IV. We also
note why the way of deriving the complexity bound in
Section V does not apply in the general case.

Bisimulation equivalence (bisimilarity)

We recall a variant of the standard definition of bisimulation
equivalence, denoted∼, and of its strata∼k, k ∈ N.

Given an LTSL = (S,A, (
a

−→)a∈A), we say thatB ⊆
S × S covers (s, t) ∈ S × S if for any s

a
−→ s′ there is

t
a

−→ t′ such that(s′, t′) ∈ B, and for anyt
a

−→ t′ there is
s

a
−→ s′ such that(s′, t′) ∈ B. B coversB′ ⊆ S × S if B

covers each(s, t) ∈ B′. B is a bisimulation if B coversB.
Statess, t are bisimilar, s ∼ t, if there is a bisimulationB
containing(s, t).

We put ∼0= S × S. For k ≥ 1, ∼k⊆ S × S is the set
of all pairs covered by∼k−1. Note thats 6∼1 t iff s, t enable
different sets of actions iff there is noB which covers(s, t). If
s, t are dead, not enabling any transition, then∅ covers(s, t).

We can easily check that ifL is a det-LTS then∼ and∼k

coincide with the trace equivalence and its strata (defined in
Section II), but bisimilarity is finer than trace equivalence for
general LTSs which we consider now.

We first note that Prop.1 holds for our new∼k and∼ if
we restrict ourselves toimage-finite LTSsto get∩k∈N ∼k=∼;
i.e., we assume that for eachs ∈ S and eacha ∈ A there
are only finitely manys′ such thats

a
−→ s′ (in which case

∩k∈N ∼k is a bisimulation). Note thatLA
G is image-finite for

any first-order grammarG.
We define EQLV(s, t) in the same way as after Prop.1 (now

with respect to the new∼k, ∼) and note that Prop.2 keeps
holding. Prop.4 does not hold for general LTSs, the eq-level
can drop by more than1 in one step, but we note:

Proposition 42. (1) If s ∼1 t then there isB which covers
(s, t) and EQLV(s′, t′) ≥ EQLV(s, t) − 1 for all (s′, t′) ∈ B.
(2) If s 6∼ t andB covers(s, t) then there is(s′, t′) ∈ B such
that EQLV(s′, t′) < EQLV(s, t).

We now consider the problem BISIM-EQ-G:

Input: a first-order grammarG = (N ,A,R), and
(graph presentations of) two input termsTin, Uin.

Question: is Tin ∼ Uin in LA
G? (∼ denotes bisimilarity)

The bisimilarity problem in the LTSs generated by (nonde-
terministic) pushdown automata can be reduced to BISIM-
EQ-G in the way sketched in Sec.II on condition thatε-
steps are popping and deterministic, i.e. if also here a rule
[q2C](x1, x2, x3)

ε
−→ .. excludes the existence of another rule

[q2C](x1, x2, x3) −→ ... (As shown in [9], with popping but
nondeterministicε-steps bisimilarity becomes undecidable.)

An analogue of Lemma 9 for BISIM-EQ-G holds as well; this
follows from the (inductive) observation that∼k is decidable,
for anyk ∈ N. (Recall thatLA

G is image finite andA is finite.)
We now introduce a notion ofk-distance coversrelated to

REG(T, U, k) from Subsec.III-B, in the setting of a given LTS
L = (S,A, (

a
−→)a∈A). We say thatB is a minimal cover of

B′ if B coversB′ but no proper subset ofB coversB′.
A mapping

C : {0, 1, . . . , k} → 2S×S is a k-distance cover of(s, t)
if C(0) = {(s, t)} and

C(j) is a minimal cover ofC(j−1), for j = 1, 2, . . . , k.

Remark.A k-distance cover corresponds to a strategy for
Defender (which might still leave some free choice) in the
standard bisimulation game between Attacker and Defender;
this strategy guarantees that Defender will not lose withink

rounds.
We easily observe the next facts:

Proposition 43. (1) If C is a k-distance cover of(s, t) then
s′ ∼1 t′ for all (s′, t′) ∈

⋃

0≤j≤k−1 C(j).
(2) s ∼k t iff there is ak-distance cover of(s, t).

Proposition 44. AssumeC is a k-distance cover of(E, F) in
LA
G for a given first-order grammarG = (N ,A,R). (Recall

Def.6, Prop.7 and Prop.3.) Then we have:

1) If (E′, F ′) ∈ C(j) then there areu, u′ ∈ R∗ where|u| =

|u′| = j such thatE
u

−→ E′ and F
u′

−→ F ′ in LR
G .

2) If (E′, F ′) ∈ C(j1) andu = r1r2 . . . rj2 ∈ R∗, j1 + j2 ≤
k, and E′ u

−→ E′′ then there isu′ = r′1r
′
2 . . . r′j2 ∈

R∗ such thatACT(ri) = ACT(r′i) for i = 1, 2, . . . , j2,

F ′ u′

−→ F ′′, and (E′′, F ′′) ∈ C(j1 + j2). (Symmetrically
for F ′ u

−→ F ′′.)

Though the eq-level drop (in Prop.42(2)) can be more than1
in one step, we still have the following analogue of Prop.14
(which follows from Prop.42 and Prop.43).

Proposition 45. :
(1) If s ∼ t then for eachk ∈ N there is ak-distance cover
C of (s, t) such thats′ ∼ t′ for all (s′, t′) ∈

⋃

0≤j≤k C(j).
(2) If s 6∼ t andC is ak-distance cover for(s, t) then any least
eq-level pair in

⋃

0≤j≤k C(j) is in C(k) r
⋃

0≤j≤k−1 C(j).

We note that each pair(s, s) has ak-distance coverC where
C(j) = {(s′, s′) | s

w
−→ s′, |w| = j}. Considering nowLA

G for
a first-order grammarG = (N ,A,R), it is straightforward to
verify Prop.11. Prop.12 is modified as follows:

Proposition 46. If EQLV(E, F) = k < ℓ = EQLV(Eσ, Fσ)
(whereℓ ∈ N ∪ {ω}) then there arexi ∈ SUPP(σ), H 6= xi,
and a wordw ∈ A∗, |w| ≤ k, such thatE

w
−→ xi, F

w
−→ H

or E
w

−→ H , F
w

−→ xi, andσ(xi) ∼ℓ−k Hσ.

Proof: We considerE, F, σ in the assumption and a
(k+1)-cover C of (Eσ, Fσ) such thatG′ ∼ℓ−j G′′ for all

15

(G′, G′′) ∈ C(j), 0 ≤ j ≤ k+1; its existence follows from
Prop.42(1). If there is no(G′, G′′) ∈

⋃

0≤j≤k C(j) where
{G′, G′′} = {σ(xi), Hσ} and xi, H satisfy the claim (for
somew, |w| = j ≤ k, where(G′, G′′) ∈ Cj) then we can
obviously useC to construct a(k+1)-cover of(E, F), which
is impossible.

Remark.A difference wrt the deterministic case is that for
σ1 6= σ2 such that EQLV(E, F) = k and k < ℓ1 =
EQLV(Eσ1, Fσ1), k < ℓ2 = EQLV(Eσ2, Fσ2) we can have
that the pairsxi, H satisfying the claim forσ1 might differ
from those satisfying the claim forσ2 (even if ℓ1 = ℓ2).
Another difference is that we might get a casexi, H, w with
|w| < k for any (k+1)-cover described in the proof of
Prop.46; that’s why Prop.31 does not hold here. The mentioned
differences cause that the complexity argument from Sec.V
does not go through for the problem BISIM-EQ-G.

We can easily verify that Prop.13 keeps holding (for
bisimilarity on general first-order grammars). Prop.15 is just
reformulated as follows (recall also Prop.45, the analogueof
Prop.14):

Proposition 47. SupposeC is ak-distance cover of(T, U) and
for σ, σ′ we haveSUPP(σ) = SUPP(σ′) and (σ(xi), σ

′(xi)) ∈
⋃

0≤j≤k−1 C(j) for eachxi ∈ SUPP(σ).
If EQLV(T ′, U ′) = M INEL(

⋃

0≤j≤k C(j)) andT ′ = Gσ then
EQLV(Gσ′, U ′) = EQLV(T ′, U ′).

We now describe the Prover-Refuter game in the more general
setting of bisimilarity for (general) first-order grammars.

PROVER-REFUTER GAME (for bisimilarity)

1) A first-order grammarG = (N ,A,R) is given.
2) Prover produces (by “guessing”, say) a finite set BASIS

of pairs of (graph presentations of regular) terms.
3) An input pair(Tin, Uin) is given.
4) Refuter chooses

(T0, U0) ∈ STARTSET = {(Tin, Uin)} ∪ BASIS,
and claims EQLV(T0, U0) = M INEL(STARTSET) < ω.

5) For i = 0, 1, 2, . . . , Phasei is performed, i.e.:

a) Prover choosesk > 0 and presents ak-distance cover
Ci of (Ti, Ui); if she is unable, she loses.

b) Refuter chooses(T ′
i , U

′
i) ∈ Ci(k) r

⋃

0≤j≤k−1 Ci(j)
and w′

i = r′1r
′
2 . . . r′k ∈ R∗, w′′

i = r′′1 r′′2 . . . r′′k ∈ R∗

so that for eachj, 1 ≤ j ≤ k, we haveACT(r′j) =

ACT(r′′j), Ti

r′

1r′

2...r′

j

−→ Tij , Ui

r′′

1 r′′

2 ...r′′

j

−→ Uij where
(Tij , Uij) ∈ Ci(j); moreover,(Tik, Uik) = (T ′

i , U
′
i).

(Recall Prop.44.) If Refuter is unable to do this then
Prover wins (we haveTi ∼ Ui due to dead terms).
Refuter claims that EQLV(T ′

i , U
′
i) =

M INEL(
⋃

0≤j≤k Ci(j)). (Recall Prop.45.)
c) Prover produces(Ti+1, Ui+1) from (T ′

i , U
′
i) as follows:

• either she putsTi+1 = T ′
i , Ui+1 = U ′

i (no-change),
• or she balances (recall Prop.47 and Fig.11):

if she finds σ, σ′ such that (σ(xi), σ
′(xi)) ∈

⋃

0≤j≤k−1 Ci(j) for all xi ∈ SUPP(σ) = SUPP(σ′),

and she presentsT ′
i asGσ then she can (do aleft-

balancing, namely) putTi+1 = Gσ′, and Ui+1 =
U ′

i ; symmetrically, if U ′
i is Gσ′ then she can (do

a right-balancing, namely) putTi+1 = T ′
i , and

Ui+1 = Gσ.
(Thus EQLV(Ti+1, Ui+1) = EQLV(T ′

i , U
′
i) if Refuter’s

claim in 5b is true. IfTi ∼ Ui and Prover has chosen
Ci as in Prop.45(1) thenTi+1 ∼ Ui+1.)

d) Provereither contradicts Refuter’s claimsby present-
ing an algorithmically verifiable proof, in which case
Prover wins,or lets the play proceedwith Phasei+1.

Lemma 16 obviously holds in the general case as well; if
we get completeness then we will finish a proof of the next
theorem, generalizing Theorem 17:

Theorem 48. Bisimulation equivalence for first-order gram-
mars (i.e., the problemBISIM-EQ-G) is decidable.

We have mentioned in Subsection IV-B that the notions like
(Y, j)-sink words,SSW(Y, j), etc. make better sense in the
det-LTSLR

G when considering the general case whereLA
G is

not deterministic.
It is a routine to go through Subsection IV-B and verify that

all reasoning holds when we refer toLR
G ; a pathT

w
−→ T ′

(like, e.g., in Prop.23) is thus meant to be the unique path in
LR
G determined byT andw ∈ R∗. Prop.24 is now reformulated

as follows:

Proposition 49. Let C be ak-distance cover of(T, U) and let

T
w′

−→ T ′, U
w′′

−→ U ′ (w′, w′′ ∈ R∗) be as described in Point
5b of the P-R game (whereT = Ti, w′ = w′

i etc.). Suppose

there is no(T ′, V) ∈
⋃

0≤j≤k−1 C(j) and T
w′

−→ T ′ is not
M0-sinking. Take the last root-performable (sub)path of length

M0 in T
w′

−→ T ′, i.e., take the longestu1 such thatT
u1−→

(Ax1 . . . xm)σ
v

−→ G′σ
u2−→ T ′ where Ax1 . . . xm

v
−→ G′

and |v| = M0. Then there is(σ(xj), V
′
j) ∈

⋃

0≤j≤k−1 C(j)

for eachj, 1 ≤ j ≤ m, andG′ u2−→ G (henceT ′ = Gσ) where
DEPTH(G) ≤ 1 + (2M0−1) · STEPDEPTHINC.

The previous proof goes through (when recalling Prop.44).
Also the pivot path (associated to a play) can be now

considered as a path in the det-LTSLR
G . It is a routine to verify

Lemma 28 for general first-order grammars if the balancing
strategy also requires that Prover uses only equivalent pairs
in each Ci when starting fromT0 ∼ U0; hence Prover
always chooses from theM1-distance covers guaranteed by
Prop.45(1). (Prover does not demonstrate that she uses such
covers, the strategy is non-effective in this sense).

It remains to check the analogue of Lemma 19. Now the
reasoning becomes more sophisticated; the reason lies in the
fact that Prop.46 in the general case is weaker than Prop.12
in the deterministic case (where Prop.4 helped).

Let us consider a play of the P-R game where a first-order
grammarG = (N ,A,R) is given in Point 1. For Point 2
we again suppose that Prover has an unlimited computational
power, and also knowsn, g for which she has an(n, g)-
strategy forG (as defined by Def.18). The idea is that Prover

16

demonstrates a relative boundℓ(n,g) on the length of eq-level
decreasing(n, g)-sequences (captured by Prop.50), which she
can use to contradict Refuter’s claims.

We imagine that Prover announcesn, g in Point 2. In fact,
we know thatg induced by the balancing strategy is com-
putable, so Prover can provide a Turing machine computingg

though for our aims just a finite table with sufficiently many
valuesg(1), g(2), . . . would suffice.

Now Prover chooses (sufficiently large)B ∈ N and par-
titions the set{(E, F) | PRESSIZE(E, F) ≤ B} into two
disjoint classes, putting

{(E, F) | PRESSIZE(E, F) ≤ B} = NONEQ ∪ GUESSEQ

where for each(E, F) ∈ NONEQ she demonstratesE 6∼ F by
computing the finite EQLV(E, F) (using the algorithm from
an analogue of Lemma 9). The intention is that Prover puts
only equivalent pairs in GUESSEQ but the following arguments
also count with the possibility that some nonequivalent pairs
were included in GUESSEQ. For anyb ≤ B we put

MAX FEL′
b = max { EQLV(E, F) | (E, F) ∈ NONEQ and

PRESSIZE(E, F) ≤ b }.

We thus have MAX FEL′
b ≤ MAX FELb (recall Def.18(5));

if E ∼ F for each(E, F) ∈ GUESSEQ then MAX FEL′
b =

MAX FELb.
Recalling the remark after the proof of Lemma 19, we now

let Prover demonstrate the computation ofℓ(n,g) using the
following recursive definition

if n = 0 thenℓ(n,g) = ℓ(0,g) = 1 + MAX FEL′
g(1)

otherwiseℓ(n,g) = ℓ(n−1,g′) + (1 + MAX FEL′
g(1))

whereg′ is defined as in (5) but MAX FELg(1) is replaced
with MAX FEL′

g(1).

We denoteg = gn and note that computingℓ(n,g) = ℓ(n,gn)

comprises computingℓ(n−1,gn−1), ℓ(n−2,gn−2), . . . , ℓ(0,g0) (by
recursive calls) where fori ∈ {n−1, n−2, . . . , 0} we have

gi(j) = gi+1(1 + MAX FEL′
gi+1(1) + j)+

2 · (gi+1(1) + MAX FEL′
gi+1(1) · STEPINC).

During that computation, also the values MAX FEL′
gn(1),

MAX FEL′
gn−1(1)

, . . . , MAX FEL′
g0(1) are computed; this sup-

poses thatgi(1) ≤ B for all i = n, n−1, . . . , 0. Since Prover
knows n, g, she could have chosenB sufficiently large so
that the computation is really performable and can be thus
demonstrated.

Proposition 50. The length of any eq-level decreasing(n, g)-
sequence where the eq-level of the first pair is less than
M INEL(GUESSEQ) is bounded by the above computedℓ(n,g).

Proof: By induction on i we prove the claim for
(i, gi)-sequences andℓ(i,gi), i = 0, 1, . . . , n. We thus as-
sume an(i, gi)-presentation with tailsσ (CARD(SUPP(σ)) ≤
i) and heads(E1, F1), (E2, F2), . . . , (Eℓ, Fℓ) (where
PRESSIZE(Ej , Fj) ≤ gi(j) for j = 1, 2, . . . , ℓ)
for which the presented sequence is eq-level decreasing
and MINEL(GUESSEQ) > EQLV(E1σ, F1σ); recall that

EQLV(E1σ, F1σ) ≥ EQLV(E1, F1). Hence (E1, F1) 6∈
GUESSEQ; since PRESSIZE(E1, F1) ≤ gi(1) ≤ B, we
have (E1, F1) ∈ NONEQ, and thus EQLV(E1, F1) ≤
MAX FEL′

gi(1)
. If i = 0 (so (Ejσ, Fjσ) = (Ej , Fj)) then

necessarilyℓ ≤ 1 + MAX FEL′
g0(1).

If i > 0 and ℓ > 1 + MAX FEL′
gi(1)

then by Prop.46 there
arexi, H such thatxi ∈ SUPP(σ), H 6= xi, PRESSIZE(H) ≤
PRESSIZE(E1, F1) + EQLV(E1, F1) · STEPINC ≤ gi(1) +
MAX FEL′

gi(1)
· STEPINC, and σ(xi) ∼t Hσ where t =

EQLV(E1σ, F1σ) − MAX FEL′
gi(1)

. (The difference wrt the
deterministic case, where we had Prop.4, is that we have no
direct means to demonstrate that MAX FEL′

gi(1)
bounds the

eq-level drop for any particularxi, H ; just the existence of
suchxi, H is guaranteed.)

Using this guaranteedxi, H , we could proceed as in the
proof of Lemma 19 (recall Fig.13) and create the(i−1, gi−1)-
sequence

(E′
1σ[−xi], F

′
1σ[−xi]), (E

′
2σ[−xi], F

′
2σ[−xi]), . . .

of lengthℓ−(1+MAX FEL′gi(1)
) whereE′

j = Es+j{(xi, H
′)},

F ′
j = Fs+j{(xi, H

′)}, for s = (1 + MAX FEL′
gi(1)

) and
H ′ = H{(xi, H)}{(xi, H)}{(xi, H)} This is an eq-
level decreasing(i−1, gi−1)-sequence with the eq-level of the
first pair surely less than MINEL(GUESSEQ), and by the
induction hypothesis we can deduceℓ ≤ (1+MAX FEL′

gi(1)
)+

ℓ(i−1,gi−1).

Therefore the mere demonstration of an(n, g)-subsequence
of length1+ ℓ(n,g) in the sequence(T1, U1), (T2, U2), . . . can
serve as a contradiction for Refuter’s claims, together with the
demonstrated computation ofℓ(n,g) based on GUESSEQ which
is viewed as BASIS.

VII. C ONCLUSION

It seems technically difficult to compare the proof(s) presented
here with the previous proofs in detail. The abstract idea
is surely the same, and can be captured as follows. If two
states (configurations, terms) are nonequivalent then there is
a “shortest” finite witness of this fact; let us think of a finite
word in the deterministic case. Such a witness can be found
and verified. If the states are equivalent then we aim to show
that however we start to build a supposed shortest witness
(of nonequivalence), we will fail (demonstrate a failure) in
finite time. This is shown by using a measure for “equivalence-
level” of pairs of states which must be decreasing for the pairs
along a real shortest witness. We thus can use the pairs which
have bigger eq-levels, assuming we really build a shortest
witness, for “balancing”, i.e. making the structured states
in the considered pairs close to each other, as objects with
“bounded differing heads” but “the same (unbounded) tails”.
If this is done with some care, we get (a repeat of pairs or) a
(sub)sequence of eq-level decreasing pairs with the same tails
for which the heads grow in a controlled way. The last point is
to demonstrate that if the length of such (sub)sequence is large
enough then this contradicts the shortest witness assumption.
In this paper, the idea of regular terms and of the basis helped

17

to establish this smoothly. For the complexity bound, we have
not used the basis but we have looked at the structure of the
above growing heads in more detail, and the analysis has been
lead a bit further than Stirling’s.

Hence essentially the proofs presented here are (further)
simplifications of the previous proofs. It should be the readers
from computer science community who decide if and how far
this simplification is valuable.

Remark.Related to this is also an unclear status of papers
by V. Yu. Meitus which were written in Russian but translated
to English. He claims to have given the first proof for dpda
language equivalence but this has been obviously not accepted
by the computer science community.

The notion of a finite basis determined by the grammar (a
basis is in fact, computable, but “after the fact”, by using the
established decidability) seems new in this context; it seems
like a natural object for further exploration. In fact, it can
be viewed as a generalization of the bisimulation base (or
basis) used previously for context-free processes (generated
by first-order grammars with arity-1 nonterminals); this line
of research started with [1] and further developments can be
found in [5].

The complexity is puzzling, the nonelementary upper bound
induced by [20], which has been more specified here (in
Theorem 29) seems unbelievably high and does not apply to
bisimilarity; Sénizergues showed a more reasonable boundfor
a subclass in [18]. We can also note PSPACE-completeness of
bisimilarity for ε-steps free one-counter automata [2] and NL-
completeness of language equivalence for their deterministic
version [3].

As already mentioned, there is no known nontrivial lower
bound for dpda-equivalence while the general bisimilarity
problem is known to be exptime-hard [11]. A slight gener-
alization, namely allowing nondeterministic poppingε-steps
when considering bisimilarity on (nondeterministic) pushdown
automata, leads to undecidability [9].

REFERENCES

[1] J. Baeten, J. Bergstra, and J. Klop, “Decidability of bisimulation
equivalence for processes generating context-free languages,” J.ACM,
vol. 40, no. 3, pp. 653–682, 1993.

[2] S. Böhm, S. Göller, and P. Jančar, “Bisimilarity of one-counter processes
is PSPACE-complete,” inCONCUR 2010 - Concurrency Theory, ser.
LNCS, vol. 6269. Springer-Verlag, 2010, pp. 177–191.

[3] S. Böhm and S. Göller, “Language equivalence of deterministic real-time
one-counter automata is NL-complete,” inMFCS 2011, ser. LNCS, vol.
6907. Springer-Verlag, 2011, pp. 194–205.

[4] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre, “Recursion
schemes and logical reflection,” inLICS 2010. IEEE Computer Society,
2010, pp. 120–129.

[5] O. Burkart, D. Caucal, F. Moller, and B. Steffen, “Verification on infinite
structures,” inHandbook of Process Algebra, J. Bergstra, A. Ponse, and
S. Smolka, Eds. North-Holland, 2001, pp. 545–623.

[6] B. Courcelle, “Recursive applicative program schemes,” in Handbook of
Theoretical Computer Science, vol. B, J. van Leeuwen, Ed. Elsevier,
MIT Press, 1990, pp. 459–492.

[7] W. Czerwiński and S. Lasota, “Fast equivalence-checking for normed
context-free processes,” inProc. FSTTCS’10, ser. LIPIcs, vol. 8. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[8] S. Ginsburg and S. A. Greibach, “Deterministic context free languages,”
Information and Control, vol. 9, no. 6, pp. 620–648, 1966.

[9] P. Jančar and J. Srba, “Undecidability of bisimilarityby Defender’s
forcing,” J. ACM, vol. 55, no. 1, 2008.

[10] S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell, “On
the complexity of the equivalence problem for probabilistic automata,”
CoRR,, vol. abs/1112.4644, 2011, to appear in Proc. FoSSaCS 2012.

[11] A. Kučera and R. Mayr, “On the complexity of checking semantic
equivalences between pushdown processes and finite-state processes,”
Inf. Comput., vol. 208, no. 7, pp. 772–796, 2010.

[12] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt, “On the expres-
siveness and decidability of higher-order process calculi,” Inf. Comput.,
vol. 209, no. 2, pp. 198–226, 2011.

[13] R. Milner, Communication and concurrency. Prentice-Hall, Inc., 1989.
[14] S. Salvati and I. Walukiewicz, “Krivine machines and higher-order

schemes,” inICALP(2) 2011, ser. Lecture Notes in Computer Science,
vol. 6756. Springer, 2011, pp. 162–173.

[15] G. Sénizergues, “L(A)=L(B)? Decidability results from complete formal
systems,”Theoretical Computer Science, vol. 251, no. 1–2, pp. 1–166,
2001, (A preliminary version appeared at ICALP’97.).

[16] ——, “L(A)=L(B)? a simplified decidability proof,”Theoretical Com-
puter Science, vol. 281, no. 1–2, pp. 555–608, 2002.

[17] ——, “The bisimulation problem for equational graphs offinite out-
degree,” SIAM J.Comput., vol. 34, no. 5, pp. 1025–1106, 2005, (A
preliminary version appeared at FOCS’98.).

[18] G. Sénizergues, “The equivalence problem for t-turn dpda is co-NP,” in
ICALP 2003, ser. LNCS, vol. 2719. Springer, 2003, pp. 478–489.

[19] C. Stirling, “Decidability of DPDA equivalence,”Theoretical Computer
Science, vol. 255, no. 1–2, pp. 1–31, 2001.

[20] ——, “Deciding DPDA equivalence is primitive recursive,” in Proc.
ICALP’02, ser. LNCS, vol. 2380. Springer-Verlag, 2002, pp. 821–832.

Appendix

Pushdown automata via first-order grammars

Here we give a more formal description of the reduction
sketched in Fig.4. We first show how language equivalence for
deterministic pushdown automata can be reduced to bisimula-
tion equivalence on deterministic first-order grammars (which
coincides with trace equivalence in this case).

A deterministic pushdown automaton(dpda) is a tupleM =
(Q,A, Γ, ∆) consisting of finite setsQ of (control) states,A of
actions (or terminals),Γ of stack symbols, and∆ of transition
rules. For each pairpA, p ∈ Q, A ∈ Γ, and eacha ∈ A∪{ε},
∆ contains at most one rule of the typepA

a
−→ qα, where

q ∈ Q, α ∈ Γ∗. Moreover, any pairpA is (exclusively) either
stable, i.e. having no rulepA

ε
−→ qα, or unstable, in which

case there is (one rulepA
ε

−→ qα and) no rulepA
a

−→ qα

with a ∈ A.
A dpda M generates a labelled transition system(Q ×

Γ∗,A∪{ε}, (
a

−→)a∈A∪{ε}) where the states are configurations
qα (q ∈ Q, α ∈ Γ∗). We view a rulepA

a
−→ qα as

pAx
a

−→ qαx (for a formal variablex), inducingpAβ
a

−→
qαβ for every β ∈ Γ∗. The transition relation is extended
to words w ∈ A∗ as usual; we note thatpα

w
−→ qβ can

comprise more than|w| basic steps, due to possible “silent”
ε-moves. Each configurationpα has its associatedlanguage
L(pα) = {w ∈ A∗ | pα

w
−→ qε for some q}. The dpda

language equivalence problemis: given a dpdaM and two
configurationspα, qβ, is L(pα) = L(qβ) ?

Remark.It is straightforward to observe that this setting is
equivalent to the classical problem of language equivalence
between deterministic pushdown automata with accepting
states. First, the disjoint union of two dpda’s is a dpda.
Second, for languagesL1, L2 ⊆ Σ∗ we haveL1 = L2 iff

18

L1 · {$} = L2 · {$}, for an endmarker$ 6∈ Σ; so restricting to
prefix-free deterministic context-free languages, accepted by
dpda via empty stack, does not mean losing generality.

Each dpdaM can be transformed by a standard polynomial-
time algorithm so that allε-transitions are popping, i.e., of the
typepA

ε
−→ q, while L(pAα), for stablepA, keep unchanged.

(A principal point is that a rulepA
ε

−→ qBα whereqB
a1−→

q1β1, . . . , qB
ak−→ qkβk can be replaced with rulespA

aj

−→
qjβjα; unstable pairspA enabling only an infinite sequence
of ε-steps are determined and removed.)

It is also harmless to assume that for each stablepA and
eacha ∈ A we have one rulepA

a
−→ qα (since we can

introduce a ‘loop’ stateqL with rules qLA
a

−→ qLA for all
A ∈ Γ, a ∈ A, and for every ‘missing’ rulepA

a
−→ .. we add

pA
a

−→ qLA). L(pα) are unchanged by this transformation.
Thenw ∈ A∗ is not enabled inpα iff w = uv wherepα

u
−→

qε (for some q), so u ∈ L(pα), and v 6= ε. This reduces
language equivalence to trace equivalence:

L(pα) = L(qβ) iff ∀w ∈ A∗ : pα
w

−→⇔ qβ
w

−→.

Proposition 51. The dpda language equivalence problem
is polynomial-time reducible to the deterministic first-order
grammar bisimulation equivalence problem.

Proof: (Recall Fig.4.) Assume an (ε-popping) dpdaM =
(Q,A, Γ, ∆) transformed as above (so trace equivalence co-
incides with language equivalence). We define the first-order
grammar GM = (N ,A,R) where N = {pA | pA is
stable} ∪ {⊥}; each X = pA gets arity m = |Q|, and
⊥ is a special nullary nonterminal not enabling any action.
A dpda configurationpα is transformed to the termT (pα)
defined inductively by rules 1.,2.,3. below, assumingQ =
{q1, q2, . . . , qm}.

1) T (qε) = ⊥.
2) If qA

ε
−→ qi (qA is unstable) thenT (qAβ) = T (qiβ).

3) If qA is stable thenT (qAβ) = X T (q1β) . . . T (qmβ)
whereX = qA.

4) T (qix) = xi.

Rule 4. is introduced to enable the smooth transformation of
a dpda rulepA

a
−→ qα, wherea ∈ A, rewritten in the form

pAx
a

−→ qαx, to theGM-rule T (pAx)
a

−→ T (qαx), i.e. to
Y x1 . . . xm

a
−→ T (qαx), whereY = pA. ThusR in GM is

defined (with noε-moves). We observe easily: ifpAα
ε

−→ qα

(recall thatε-steps are popping) thenT (pAα) = T (qα); if
pAα

a
−→ qβα (a ∈ A, pA stable) thenT (pAα)

a
−→ T (qβα).

This also implies: ifpα
w

−→ qε thenT (pα)
w

−→ ⊥. Thus

L(pα) = L(qβ) iff
(

∀w ∈ A∗ : pα
w

−→⇔ qβ
w

−→
)

iff
T (pα) ∼ T (qβ).

We note thatT (qα) can have (at most)1 + m + m2 + m3 +
· · · + m|α| subterm-occurrences, but the natural finite graph
presentation ofT (qα) has at most1 + m(|α| − 1) + 1 nodes
and can be obviously constructed in polynomial time.

A nondeterministic pushdown automaton whereε-steps are
popping and deterministicis defined as the dpda above, with

stable and unstable configurations, but with the following
relaxation for stable ones: there can be more rules of the
type pA

a
−→ .. for a ∈ A. The bisimilarity problem for such

automata (solved in [17]) can be reduced to bisimilarity for
(general) first-order grammars in the way analogous to the
proof of Prop.51.

19

