Bisimulation minimisation mostly speeds up probabilistic model checking

Joost-Pieter Katoen ${ }^{1,2}$, Tim Kemna ${ }^{1}$, Ivan Zapreev ${ }^{1,2}$ and David N. Jansen ${ }^{1,2}$

University of Twente ${ }^{1}$

RWTH-Aachen ${ }^{2}$
March 28, 2007

Probabilistic model checking

(1) Enjoys a rapid increase of interest
(3) Formalisms that use probabilistic model checking - Probabilistic extension of Promela (Baier et al., 2005a) - Stochastic process algebra PEPA (Hillston, 1996) - Stochastic Petri nets (D'Aprile et al., 2004) - Statemate (Bode et al.. 2006)

Probabilistic model checking

(1) Enjoys a rapid increase of interest
(2) Case studies:

- Biological process modeling
- Communication protocols
- Randomised algorithms
- Quantum computing
- Planning and AI
- Security

Probabilistic model checking

(1) Enjoys a rapid increase of interest
(2) Case studies:

- Biological process modeling
- Communication protocols
- Randomised algorithms
- Quantum computing
- Planning and AI
- Security
(3) Formalisms that use probabilistic model checking:
- Probabilistic extension of Promela (Baier et al., 2005a)
- Stochastic process algebra PEPA (Hillston, 1996)
- Stochastic Petri nets (D'Aprile et al., 2004)
- Statemate (Bode et al., 2006)

Probabilistic model checking

(1) Enjoys a rapid increase of interest
(2) Case studies:

- Biological process modeling
- Communication protocols
- Randomised algorithms
- Quantum computing
- Planning and AI
- Security
(3) Formalisms that use probabilistic model checking:
- Probabilistic extension of Promela (Baier et al., 2005a)
- Stochastic process algebra PEPA (Hillston, 1996)
- Stochastic Petri nets (D'Aprile et al., 2004)
- Statemate (Bode et al., 2006)
(3) Model checking tools:
- LiQuor (Baier et al., 2005a)
- PRISM (Kwiatkowska et al., 2004)
- MRMC (Katoen et al., 2005)

Motivation

Probabilistic model checking

(1) State-space explosion
(2) State-space reduction techniques - Symmetry reduction (Kwiatkowska et al., 2006) - Binary decision diagrams (Kwiatkowska et al., 200 - Abstraction refinement (D'Argenio et al., 2001) - Bisimulation equivalences (Baier et al., 2005b)

[^0]
Motivation

Probabilistic model checking

(1) State-space explosion
(2) State-space reduction techniques:

- Symmetry reduction (Kwiatkowska et al., 2006)
- Binary decision diagrams (Kwiatkowska et al., 2004)
- Abstraction refinement (D'Argenio et al., 2001)
- Bisimulation equivalences (Baier et al., 2005b)

Motivation

Probabilistic model checking

(1) State-space explosion
(2) State-space reduction techniques:

- Symmetry reduction (Kwiatkowska et al., 2006)
- Binary decision diagrams (Kwiatkowska et al., 2004)
- Abstraction refinement (D'Argenio et al., 2001)
- Bisimulation equivalences (Baier et al., 2005b)

Bisimulation minimization

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Motivation

Probabilistic model checking

(1) State-space explosion
(2) State-space reduction techniques:

- Symmetry reduction (Kwiatkowska et al., 2006)
- Binary decision diagrams (Kwiatkowska et al., 2004)
- Abstraction refinement (D'Argenio et al., 2001)
- Bisimulation equivalences (Baier et al., 2005b)

Bisimulation minimization

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Motivation

Probabilistic model checking

(1) State-space explosion
(2) State-space reduction techniques:

- Symmetry reduction (Kwiatkowska et al., 2006)
- Binary decision diagrams (Kwiatkowska et al., 2004)
- Abstraction refinement (D'Argenio et al., 2001)
- Bisimulation equivalences (Baier et al., 2005b)

Bisimulation minimization

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Motivation

Probabilistic model checking

(1) State-space explosion
(2) State-space reduction techniques:

- Symmetry reduction (Kwiatkowska et al., 2006)
- Binary decision diagrams (Kwiatkowska et al., 2004)
- Abstraction refinement (D'Argenio et al., 2001)
- Bisimulation equivalences (Baier et al., 2005b)

Bisimulation minimization

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking
(Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

What is our contribution?

An empirical study

We did an empirical study on the effect of bisimulation minimization on probabilistic model checking.

What is our contribution?

An empirical study

We did an empirical study on the effect of bisimulation minimization on probabilistic model checking.

Our main result

Bisimulation minimization often pays off.

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

What is our contribution?

Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

Focus on

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption
(2) Preliminaries
(3) Bisimulation minimization

4 Experimental results
(5) Conclusions and future works

The considered models

Definition (Discrete time Markov chain)

A (labelled) DTMC is a tuple $(S, \mathcal{P}, A P, L)$:

- S - a finite set of states,
- AP - a finite set of atomic propositions,
- $L: S \rightarrow 2^{A P}$ - a labelling function,
- $\mathcal{P}: S \times S \rightarrow[0,1]$ - a probability matrix,

$$
\sum_{s^{\prime} \in S} \mathcal{P}\left(s, s^{\prime}\right)=1 \text { for all } s \in S
$$

[^1]
The considered models

Definition (Discrete time Markov chain)
A (labelled) DTMC is a tuple $(S, \mathcal{P}, A P, L)$:

- S - a finite set of states,
- AP - a finite set of atomic propositions,
- $L: S \rightarrow 2^{A P}$ - a labelling function,
- $\mathcal{P}: S \times S \rightarrow[0,1]$ - a probability matrix,

$$
\sum_{s^{\prime} \in S} \mathcal{P}\left(s, s^{\prime}\right)=1 \text { for all } s \in S
$$

Plus

- Continuous time Markov chains
- Reward extentions of both

Probabilistic time-bounded reachability

Example

Determine states from which win states may be reached with a probability at least 0.9, within 10 time steps.

$$
\mathcal{P}_{\geq 0.9}\left(\diamond^{\leq 10} \text { win }\right)
$$

Probabilistic time-bounded reachability

Example

Determine states from which win states may be reached with a probability at least 0.9, within 10 time steps.

$$
\mathcal{P}_{\geq 0.9}\left(\diamond^{\leq 10} \text { win }\right)
$$

Probabilistic time-bounded reachability

Example

Determine states from which win states may be reached with a probability at least 0.9, within 10 time steps.

$$
\mathcal{P}_{\geq 0.9}\left(\diamond^{\leq 10} \text { win }\right)
$$

Probabilistic time-bounded reachability

Example

Determine states from which win states may be reached with a probability at least 0.9, within 10 time steps.

$$
\mathcal{P}_{\geq 0.9}\left(\diamond^{\leq 10} \text { win }\right)
$$

Probabilistic time-bounded reachability

Example

Determine states from which win states may be reached with a probability at least 0.9, within 10 time steps.

$$
\mathcal{P}_{\geq 0.9}\left(\diamond^{\leq 10} \text { win }\right)
$$

Model	Example
DTMC	$\mathcal{P}_{\geq 0.9}(\diamond \leq 10$ win $)$
CTMC	$\mathcal{P}_{\geq 0.9}(\triangle \leq 3.5$ win $)$
Rewards	$\mathcal{P}_{\geq 0.9}\left(\diamond_{\leq 13.7}^{\leq 15}\right.$ win $)$

Probabilistic time-bounded reachability

Example

Determine states from which win states may be reached with a probability at least 0.9 , within 10 time steps.

$$
\mathcal{P}_{\geq 0.9}(\diamond \leq 10 \text { win })
$$

Model	Logic
DTMC	PCTL
	(Hansson and Jonsson, 1994)
CTMC	CSL
Rewards	PRCTL/CSRL
	(Andova et al., 2003; Baier et al., 2000)

(1) Outline

(2) Preliminaries

(3) Bisimulation minimization

4 Experimental results
(5) Conclusions and future works

Bisimulation minimization

Definition (Strong bisimulation
(Buchholz, 1994; Hillston, 1996))

- Let $D=(S, \mathcal{P}, A P, L)$ be a DTMC.
- Δ an equivalence relation on S.
- S / Δ is the quotient of S under Δ.
- Δ is a strong bisimulation, if $s_{1} \Delta s_{2} \Rightarrow$

$$
\begin{array}{r}
L\left(s_{1}\right)=L\left(s_{2}\right) \\
\forall B \in S / \Delta: \mathcal{P}\left(s_{1}, B\right)=\mathcal{P}\left(s_{2}, B\right)
\end{array}
$$

Bisimulation minimization

Definition (Strong bisimulation (Buchholz, 1994; Hillston, 1996))

- Let $D=(S, \mathcal{P}, A P, L)$ be a DTMC.
- Δ an equivalence relation on S.
- S / Δ is the quotient of S under Δ.
- Δ is a strong bisimulation, if $s_{1} \Delta s_{2} \Rightarrow$

$$
\begin{array}{r}
L\left(s_{1}\right)=L\left(s_{2}\right) \\
\forall B \in S / \Delta: \mathcal{P}\left(s_{1}, B\right)=\mathcal{P}\left(s_{2}, B\right)
\end{array}
$$

Preservation results

Theorem (1, (Aziz et al., 1995))

Let D be a DTMC, Δ a bisimulation and $s \in S$. Then $\forall \Phi \in P C T L^{*}$

$$
s \models_{D} \Phi \Longleftrightarrow[s]_{\Delta} \models_{D / \Delta} \Phi
$$

Preservation results

Theorem (1, (Aziz et al., 1995))

Let D be a DTMC, Δ a bisimulation and $s \in S$. Then $\forall \Phi \in P C T L^{*}$

$$
s \models_{D} \Phi \Longleftrightarrow[s]_{\Delta} \models_{D / \Delta} \Phi
$$

Note

- Probabilistic bisimulation is the coarsest relation for Theor. 1.
- Since $s \sim[s]_{\Delta}$, verify properties on a bisimulation quotient.

Preservation results

Theorem (1, (Aziz et al., 1995))

Let D be a DTMC, Δ a bisimulation and $s \in S$. Then $\forall \Phi \in P C T L^{*}$

$$
s \models_{D} \Phi \Longleftrightarrow[s]_{\Delta} \models_{D / \Delta} \Phi
$$

Note

- Probabilistic bisimulation is the coarsest relation for Theor. 1.
- Since $s \sim[s]_{\Delta}$, verify properties on a bisimulation quotient.

Preservation results

Theorem (1, (Aziz et al., 1995))

Let D be a DTMC, Δ a bisimulation and $s \in S$. Then $\forall \Phi \in P C T L^{*}$

$$
s \models_{D} \Phi \Longleftrightarrow[s]_{\Delta} \models_{D / \Delta} \Phi
$$

Note

- Probabilistic bisimulation is the coarsest relation for Theor. 1.
- Since $s \sim[s]_{\Delta}$, verify properties on a bisimulation quotient.

Measure-driven bisimulation

Definition (F-bisimulation (Baier et al., 2000))

- Let $D=(S, \mathcal{P}, A P, L)$ be a DTMC.
- F is a subset of PCTL formulas.
- Δ an equivalence relation on S.
- S / Δ is the quotient of S under Δ.
- Δ is an F-bisimulation on S, if $s_{1} \Delta s_{2}$:

$$
\begin{array}{r}
\forall \Phi \in F: s_{1} \models \Phi \Longleftrightarrow s_{2} \models \Phi \\
\forall B \in S / \Delta: \mathcal{P}\left(s_{1}, B\right)=\mathcal{P}\left(s_{2}, B\right)
\end{array}
$$

Measure-driven bisimulation

Definition (F-bisimulation (Baier et al., 2000))

- Let $D=(S, \mathcal{P}, A P, L)$ be a DTMC.
- F is a subset of PCTL formulas.
- Δ an equivalence relation on S.
- S / Δ is the quotient of S under Δ.
- Δ is an F-bisimulation on S, if $s_{1} \Delta s_{2}$:

$$
\begin{array}{r}
\forall \Phi \in F: s_{1} \models \Phi \Longleftrightarrow s_{2} \models \Phi \\
\forall B \in S / \Delta: \mathcal{P}\left(s_{1}, B\right)=\mathcal{P}\left(s_{2}, B\right)
\end{array}
$$

Example (F-bisimulation)

Let us take $F=\{$ win $\}$.

Measure-driven bisimulation

Definition (F-bisimulation (Baier et al., 2000))

- Let $D=(S, \mathcal{P}, A P, L)$ be a DTMC.
- F is a subset of PCTL formulas.
- Δ an equivalence relation on S.
- S / Δ is the quotient of S under Δ.
- Δ is an F-bisimulation on S, if $s_{1} \Delta s_{2}$:

$$
\begin{array}{r}
\forall \Phi \in F: s_{1} \models \Phi \Longleftrightarrow s_{2} \models \Phi \\
\forall B \in S / \Delta: \mathcal{P}\left(s_{1}, B\right)=\mathcal{P}\left(s_{2}, B\right)
\end{array}
$$

Example (F-bisimulation)

Let us take $F=\{$ win $\}$.

Preservation results

Theorem ((Baier et al., 2003))

Let D be a DTMC, Δ an F-bisimulation and $s \in S$. Then $\forall \Phi \in P C T L_{F}$

$$
s \models_{D} \Phi \Longleftrightarrow[s]_{\Delta} \models_{D / \Delta} \Phi
$$

Preservation results

Theorem ((Baier et al., 2003))

Let D be a DTMC, Δ an F-bisimulation and $s \in S$. Then $\forall \Phi \in P C T L_{F}$

$$
s \models_{D} \Phi \Longleftrightarrow[s]_{\Delta} \models_{D / \Delta} \Phi
$$

Strong bisimulation vs. F-bisimulation

- Strong bisimilarity is F-bisimilarity for $F=A P$
- F-bisimulation is coarser than strong bisimulation
- Verify properties on F-bisimulation quotient

Obtaining bisimulation quotient

Strong bisimulation (Derisavi et al., 2003)

- Partition refinement algorithm
- The worst-time complexity is $O(|P| \log |S|)$

Obtaining bisimulation quotient

Strong bisimulation (Derisavi et al., 2003)

- Partition refinement algorithm
- The worst-time complexity is $O(|P| \log |S|)$

F-bisimulation

- A slight modification of the partition refinement algorithm.

Initial partitioning for $\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$ and $\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$

Note

- Strong bisimulation: Atomic propositions
- F - bisimulation:

Formulas Φ, Ψ

Initial partitioning for $\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$ and $\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$

Note

- Strong bisimulation: Atomic propositions
- F - bisimulation:

Formulas Φ, Ψ

Initial partitioning for $\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$ and $\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$

Note

- Strong bisimulation: Atomic propositions
- F - bisimulation:

Formulas Φ, Ψ
$\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$

- Define $U_{0}=\operatorname{Sat}\left(\mathcal{P}_{\leq 0}(\Phi \mathrm{U} \Psi)\right)$.
- Define $U_{1}=\operatorname{Sat}\left(\mathcal{P}_{\geq 1}(\Phi \mathrm{U} \Psi)\right)$.
- Choose $F=\left\{U_{0}, U_{1}, S \backslash\left(U_{0} \cup U_{1}\right)\right\}$.
- Apply F-bisimulation.

Initial partitioning for $\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$ and $\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$

Note

- Strong bisimulation:

Atomic propositions

- F-bisimulation:

Formulas Φ, Ψ
$\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$

- Define $U_{0}=\operatorname{Sat}\left(\mathcal{P}_{\leq 0}(\Phi U \Psi)\right)$.
- Define $U_{1}=\operatorname{Sat}\left(\mathcal{P}_{\geq 1}(\Phi \mathrm{U} \Psi)\right)$.
- Choose $F=\left\{U_{0}, U_{1}, S \backslash\left(U_{0} \cup U_{1}\right)\right\}$.
- Apply F-bisimulation.

$\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$

- Define $U_{0}=\operatorname{Sat}\left(\mathcal{P}_{\leq 0}(\Phi \mathrm{U} \Psi)\right)$.
- Define $S_{1}=\operatorname{Sat}(\Psi)$.
- Choose $F=\left\{U_{0}, S_{1}, S \backslash\left(U_{0} \cup S_{1}\right)\right\}$.
- Apply F-bisimulation.

Initial partitioning for $\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$ and $\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$

Note

- Strong bisimulation:

Atomic propositions

- F-bisimulation:

Formulas Φ, Ψ

S_{1} vs. U_{1}

A finer initial partitioning
$\mathcal{P}_{\unlhd p}(\Phi \mathrm{U} \Psi)$

- Define $U_{0}=\operatorname{Sat}\left(\mathcal{P}_{\leq 0}(\Phi \mathrm{U} \Psi)\right)$.
- Define $U_{1}=\operatorname{Sat}\left(\mathcal{P}_{\geq 1}(\Phi \mathrm{U} \Psi)\right)$.
- Choose $F=\left\{U_{0}, U_{1}, S \backslash\left(U_{0} \cup U_{1}\right)\right\}$.
- Apply F-bisimulation.
$\mathcal{P}_{\unlhd p}\left(\Phi \mathrm{U}^{[0, t]} \Psi\right)$
- Define $U_{0}=\operatorname{Sat}\left(\mathcal{P}_{\leq 0}(\Phi \mathrm{U} \Psi)\right)$.
- Define $S_{1}=\operatorname{Sat}(\Psi)$.
- Choose $F=\left\{U_{0}, S_{1}, S \backslash\left(U_{0} \cup S_{1}\right)\right\}$.
- Apply F-bisimulation.
(2) Preliminaries
(3) Bisimulation minimization

4 Experimental results
(5) Conclusions and future works

Cyclic polling server (Ibe and Trivedi, 1990)

State-space reductions for $\mathcal{P}_{\leq q}\left(\neg\right.$ serve $_{1} \mathrm{U}^{[0,1010]}$ serve $\left._{1}\right)$ and

$$
\mathcal{P}_{\leq q}\left(\neg \text { serve }_{1} \mathrm{U} \text { serve }_{1}\right)
$$

Bisimulation minimisation mostly speeds up probabilistic model checking
Experimental results

Cyclic polling server (Ibe and Trivedi, 1990)

Original $\Phi \mathrm{U}^{[0, t]} \Psi$
Original $\Phi \mathrm{U} \Psi$
$\Phi \mathrm{U}^{[0, t]} \psi$
$\phi U \Psi$

Run times for $\mathcal{P}_{\leq q}\left(\neg\right.$ serve $_{1} \mathrm{U}^{[0,1010]}$ serve $\left._{1}\right)$ and $\mathcal{P}_{\leq q}\left(\neg\right.$ serve $_{1} \mathrm{U}$ serve $\left.{ }_{1}\right)$

Crowds protocol (Reiter and Rubin, 1998)

State-space reductions for eventually observing the real sender more than once

Crowds protocol (Reiter and Rubin, 1998)

verification (+ lumping) time (in ms)

Run times for eventually observing the real sender more than once

Simple P2P protocol (Kwiatkowska et al., 2006)

			symmetry reduction (Kwiatkowska et al., 2006)				
original CTMC			reduced CTMC			red. factor	
N	states	ver. time	states	red. time	ver. time	states	time
2	1024	5.6	528	12	2.9	1.93	0.38
3	32768	410	5984	100	59	5.48	2.58
4	1048576	22000	52360	360	820	20.0	18.3

		bisimulation minimisation					
original CTMC		lumped CTMC			red. factor		
N	states	ver. time	blocks	lump time	ver. time	states	time
2	1024	5.6	56	1.4	0.3	18.3	3.3
3	32768	410	252	170	1.3	130	2.4
4	1048576	22000	792	10200	4.8	1324	2.2

Simple P2P protocol (Kwiatkowska et al., 2006)

			symmetry reduction (Kwiatkowska et al., 2006)				
original CTMC			reduced CTMC			red. factor	
N	states	ver. time	states	red. time	ver. time	states	time
2	1024	5.6	528	12	2.9	1.93	0.38
3	32768	410	5984	100	59	5.48	2.58
4	1048576	22000	52360	360	820	20.0	18.3

		bisimulation minimisation					
original CTMC		lumped CTMC			red. factor		
N	states	ver. time	blocks	lump time	ver. time	states	time
2	1024	5.6	56	1.4	0.3	18.3	3.3
3	32768	410	252	170	1.3	130	2.4
4	1048576	22000	792	10200	4.8	1324	2.2

Simple P2P protocol (Kwiatkowska et al., 2006)

			symmetry reduction (Kwiatkowska et al., 2006)				
original CTMC			reduced CTMC			red. factor	
N	states	ver. time	states	red. time	ver. time	states	time
2	1024	5.6	528	12	2.9	1.93	0.38
3	32768	410	5984	100	59	5.48	2.58
4	1048576	22000	52360	360	820	20.0	18.3

		bisimulation minimisation					
original CTMC		lumped CTMC			red. factor		
N	states	ver. time	blocks	lump time	ver. time	states	time
2	1024	5.6	56	1.4	0.3	18.3	3.3
3	32768	410	252	170	1.3	130	2.4
4	1048576	22000	792	10200	4.8	1324	2.2

Simple P2P protocol (Kwiatkowska et al., 2006)

		symmetry reduction (Kwiatkowska et al., 2006)					
original CTMC		reduced CTMC			red. factor		
N	states	ver. time	states	red. time	ver. time	states	time
2	1024	5.6	528	12	2.9	1.93	0.38
3	32768	410	5984	100	59	5.48	2.58
4	1048576	22000	52360	360	820	20.0	18.3

		bisimulation minimisation					
original CTMC		lumped CTMC			red. factor		
N	states	ver. time	blocks	lump time	ver. time	states	time
2	1024	5.6	56	1.4	0.3	18.3	3.3
3	32768	410	252	170	1.3	130	2.4
4	1048576	22000	792	10200	4.8	1324	2.2

(1) Outline

(2) Preliminaries
(3) Bisimulation minimization

4 Experimental results
(5) Conclusions and future works

The end

Concluding remarks

- Significant, up to logarithmic, state-space reduction.
- The abstraction technique is fully automated.
- Strong bisimulation:
- Sometimes, a substantial model-checking time reduction.
- Sometimes, an increase of peak memory (by 50%).
- F-bisimulation:
- Sometimes, a substantial model-checking time reduction.
- The peak memory use is typically unchanged.
- For reward case a decrease of peak memory (by 20-40\%).

Future work

- Combine symmetry reduction with bisimulation.
- Extend experiments towards MDPs and simulation preorders.

Andova, S., Hermanns, H., and Katoen, J.-P.: 2003,
in Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS, Marseille, France
Aziz, A., Sanwal, K., Singhal, V., Brayton, R. K., and Sangiovanni-Vincentelli: 1995,
in Computer Aided Verification (CAV), pp 155-165, Berlin, Germany
Baier, C., Ciesinski, F., and Gr\&\#246;\&\#223;er, M.: 2005a,
SIGMETRICS Perform. Eval. Rev. 32(4), 22
Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P.: 2003,
IEEE Trans. on Softw. Eng. 29(6), 524
Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P.: 2000, in International Colloquium on Automata, Languages and Programming (ICALP), pp 780-792, London, UK

Baier, C., Katoen, J.-P., Hermanns, H., and Wolf, V.: 2005b, Inf. Comput. 200(2), 149

Bode, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Wimmer, R., and Becker, B.: 2006,
in QEST '06: Proceedings of the Third International Conference on the Quantitative Evaluation of Systems (QEST'06), pp 167-178, IEEE Computer Society, Washington, DC, USA

Buchholz, P.: 1994,
Journal of Applied Probability 31, 59
D'Aprile, D., Donatelli, S., and Sproston, J.: 2004, in Int. Symp. on Computer and Information Sciences, Vol. 3280 of LNCS, pp 543-552

D'Argenio, P. R., Jeannet, B., Jensen, H. E., and Larsen, K. G.: 2001, in PAPM-PROBMIV '01: Proceedings of the Joint International Workshop on Process Algebra and Probabilistic Methods, Performance Modeling and Verification, pp 39-56, Springer-Verlag, London, UK

Derisavi, S., Hermanns, H., and Sanders, W. H.: 2003, Inf. Process. Lett. 87(6), 309

Fisler, K. and Vardi, M. Y.: 1998,
in FMCAD, Vol. 1522 of LNCS, pp 115-132
Fisler, K. and Vardi, M. Y.: 1999,
in CHARME, Vol. 1703 of LNCS, pp 338-342
Fisler, K. and Vardi, M. Y.: 2002,
in Formal Methods in System Design, Vol. 21, pp 39-78
Hansson, N. and Jonsson, B.: 1994,
Formal Aspects of Computing 6, 512
Hillston, J.: 1996,
A compositional approach to performance modelling,
Cambridge University Press, New York, NY, USA
Ibe, O. C. and Trivedi, K. S.: 1990,
in IEEE J. on Selected Areas in Communications, Vol. 8, pp 1649-1657
Katoen, J.-P., Khattri, M., and Zapreev, I. S.: 2005,
in Quantitative Evaluation of Systems (QEST), pp 243-244
Kwiatkowska, M., Norman, G., and Parker, D.: 2004,
International Journal on Software Tools for Technology Transfer (STTT) 6(2), 128
Kwiatkowska, M., Norman, G., and Parker, D.: 2006,
in T. Ball and R. Jones (eds.), Proc. 18th International Conference on Computer Aided Verification (CAV'06), Vol. 4114 of LNCS, pp 234-248, Springer-Verlag

Kwiatkowska, M., Norman, G., and Parker, D.: 2007,
http:www.cs.bham.ac.uk dxpprismcasestudies
Reiter, M. K. and Rubin, A.: 1998,
in ACM Transactions on Information and System Security, Vol. 1, pp 66-92

[^0]: Bisimulation minimization

 - Huge state-space reduction
 - Is fully automated
 - Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

[^1]: - Reward extentions of both

