
Discrete Event Dynamic Systems: Theory and Applications, 8, 377–429 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Bisimulation, the Supervisory Control Problem and
Strong Model Matching for Finite State Machines

GEORGE BARRETT grbarret@eecs.umich.edu
Department of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Avenue,
Ann Arbor, MI 48109–2122

STÉPHANE LAFORTUNE stephane@eecs.umich.edu
Department of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Avenue,
Ann Arbor, MI 48109–2122

Abstract. A fundamental relationship between the controllability of a language with respect to another language
and a set of uncontrollable events in the Supervisory Control Theory initiated by (Ramadge and Wonham, 1989)
and bisimulation of automata models is derived. The theoretical results relating bisimulation to controllability
support an efficient solution to the Basic Supervisory Control Problem. Using (Fernandez, 1990) generalization of
the partition refinement algorithm of (Paige and Tarjan, 1987), it is possible to find a partition which represents the
supremal controllable sublanguage of an automaton with respect to the language of another automaton and a set
of events in a worst-case running time of O(m log(n)), wherem is the number of transitions andn is the number of
states. Utilizing the bisimulation property of language controllability and derived relationships between automata
languages and input/output finite-state machine behaviors, a precise relationship is formally derived between
Supervisory Control Theory and the system-theoretic problem posed by (DiBenedettoet al., 1994) called Strong
Input/Output FSM Model Matching. Specifically, it is proven that in deterministic settings instances of each
problem can be mapped to the other framework and solved.

Keywords: supervisory control, bisimulation, model matching, controllability

1. Introduction

This paper presents the results of an investigation of the relationship between supervisory
control of discrete-event systems (DES) (Ramadge and Wonham, 1989), bisimulation re-
lations (Arnold, 1994, Baeten and Weijland, 1990), and strong input/output finite-state
machine model matching (DiBenedettoet al., 1994, 1995, 1996). The approach taken
throughout this text is from the point of view of automata as DES models (Cassandraset
al., 1995). A basic understanding of DES supervisory control is assumed, for the introduc-
tory material given here is brief. One of the main focal points of this paper is the exploitation
of the level of information contained in a finite-state automaton model when solving the
supervisory control problem.

Of particular interest is the fact that an automaton model contains not only the language
information about a DES but also the branching structure of allowable sequences of events.
This level of detail of information allows the supervisory control problem to be generalized
to several process-theoretic semantics. A semantics used in computer science which has not
previously been applied to the supervisory control problem is the bisimulation semantics.
A discussion of bisimulation is given and results are presented for its application to the
supervisory control problem.

378 BARRETT AND LAFORTUNE

Supervisory control is not the only system-theoretic problem for which bisimulations can
apply. One other such class of problems is strong input/output (I/O) finite-state machine
(FSM) model matching introduced in (DiBenedettoet al., 1994). This model matching
problem is closely related to supervisory control, hence bisimulation is also related to I/O
FSM model matching. The other key focus of this paper is to demonstrate how bisimulation
can be used to solve both supervisory control problems and model matching problems; thus,
an underlying similarity of the two types of problems is exposed.

The contributions of this work are:

1. Theoretical results relating bisimulation and controllability are presented in Section 3
which support an efficient algorithm for solving the “Basic Supervisory Control Prob-
lem.” The algorithm, presented in Section 4, is based on a partition refinement algorithm
which finds the coarsest relation partition with complexityO(m log(n)) wherem is the
number of related pairs in the relation andn is the number of elements in the partition.
Understanding how bisimulation, as the descriptive semantics, relates to supervisory
control lends insight toward utilizing weaker semantics, e.g., trajectory model (Hey-
mann and Meyer, 1991), failure, failure trace, ready, ready trace, and trace (language)
(Baeten and Weijland, 1990).

2. Section 5 reviews I/O FSM model matching as presented in (DiBenedettoet al., 1994,
1995, 1996). In addition, we present a precise relationship between “behavioral equiv-
alence” of FSMs in the I/O FSM model matching framework and bisimulation between
two FSMs.

3. Thebehaviorof I/O FSMs is related to the language properties of associated Moore
automata in section 7.1. It is shown that, in deterministic settings, the notion ofbehav-
ioral inclusionof I/O FSMs presented by (DiBenedettoet al., 1995, 1996) is equivalent
to the inclusion of families of marked languages represented by Moore automata.

4. It is also shown in Section 7 that, in deterministic settings, I/O FSM behaviors that
are achievable in the presence of measurable disturbances are precisely those whose
associated set of marked languages is controllable.

5. In Section 7.2 a method is presented for solving the “Basic Supervisory Control Prob-
lem” by mapping it to an instance of the “Strong I/O FSM Model Matching with Measur-
able Disturbances to A Maximal Set of Reference Behaviors Problem.” (DiBenedetto
et al., 1996) give examples of solving the BSCP in their I/O FSM framework; how-
ever, they do not present a formal proof that the supremal controllable sublanguage is
obtained. We establish, through formal proof, an exact relationship between the two
paradigms.

6. A method is presented in Section 7.3 for solving the “Strong I/O FSM Model Matching
with Measurable Disturbances to A Maximal Set of Reference Behaviors Problem”
of (DiBenedettoet al., 1995 and 1996) in deterministic settings by mapping it to an
instance of the “Basic Supervisory Control Problem”.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 379

This paper is organized as follows. Section 2 gives a brief introduction to results from for-
mal language theory, DES, the Basic Supervisory Control Problem, and bisimulation. An
efficient algorithm for finding bisimulation relations is also discussed. Section 3 discusses
the relationship between controllability in the supervisory control problem and bisimula-
tion. Section 4 discusses using bisimulation to solve the Basic Supervisory Control Problem
with both off-line and on-line strategies. Section 5 discusses I/O finite-state machine model
matching, its operators and some of its associated problems. The relationship between I/O
FSM model matching and supervisory control is discussed in Sections 6 and 7. Section 6
presents methods of discrete-event model conversion so the two paradigms may be com-
pared, and Section 7 formally establishes a link between Strong I/O FSM Model Matching
and Supervisory Control Theory. The paper concludes with Section 8 where the basic ideas
are summarized. Parts of this paper, in its preliminary form, have appeared in (Barrett and
Lafortune, 1996, 1997).1

2. Preliminaries

2.1. Automata and Languages

For the investigation and discussion of discrete-event systems at a logical level of abstraction,
the automaton will be used as the primary descriptive model.

DEFINITION 2.1 (Cassandrasetal., 1995)2 Adeterministic finite-stateautomaton (DFSA),
denoted G, is a six-tuple

G = (XG, 6G, δG,actG, xG0, XGm)

that generates the languageL(G) and marks the languageLm(G) where

XG = finite set of states of G

6G = set of events associated with the transitions in G

δG = partial transition function of G,δG : XG ×6G → XG

actG(x) = active event set of G at state x∈ XG, i.e., subset of6G

for whichδG(x, ·) is defined

xG0 = initial state of G

XGm = a subset of XG which representmarkedstates.

The transition functionδG is not necessarily total as in the “standard” definition of automa-
ton, and all automata in this paper are assumed to be accessible, i.e., all unreachable states
have been deleted from the model. IfXGm is omitted, then it is understood thatXGm = XG.
Furthermore, it is common to define the empty traceε to be the trace containing no events.
The transition function,δG, is often extended from events to traces recursively:

δG(xG, ε) = xG,

380 BARRETT AND LAFORTUNE

and fort ∈ 6∗G, σ ∈ 6G:

δG(xG, tσ) = δG(δG(xG, t), σ).

If G is a nondeterministic finite-state automaton, thenδG(xG, t) is a set. The notion of
language mentioned above is now formally defined.

DEFINITION 2.2 (Cassandras et al., 1995) The languagegeneratedby G is:

L(G) = {t ∈ 6∗G : δG(xG0, t) is defined}.

Likewise, the special subset ofL(G) that represents themarked language of G is defined
as:

Lm(G) = {t ∈ L(G) : δG(xG0, t) ∈ XGm}.

The notion of a set of marked states can be generalized to several sets of marked states
{Xm,1, . . . , Xm,k}. This generalization is discussed asparameterized statesin (Arnold,
1994); thus, a single automaton can be viewed as marking several languages. This idea of
multiple marking sets is useful when states are considered to have associated “outputs” as
is the case of Moore type automata; in this case, it is possible to associate an output value
with a set of specifically marked states. Such a generalization was first used in the context
of supervisory control in (Thistleet al., 1995).

Two common operations on automata are the product, denoted×, and the parallel compo-
sition, denoted||. These two operations are designed to describe the interactions between
discrete-event systems modeled as automata.

DEFINITION 2.3 (Cassandras et al., 1995) Theproduct of two automata G1 and G2 where:

G1 = (XG1, 6G1, δG1,actG1, xG01, XGm1)

G2 = (XG2, 6G2, δG2,actG2, xG02, XGm2)

is

G1× G2 = (XG1 × XG2, 6G1 ∩6G2, δ,actG1×2
, (xG01, xG02), XGm1 × XGm2)

where

δ((xG1, xG2), σ) =
{
(δG1(xG1, σ), δG2(xG2, σ)) if σ ∈ actG1(xG1) ∩ actG2(xG2)

undefined otherwise

and

actG1×2
(xG1, xG2) = actG1(xG1) ∩ actG2(xG2).

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 381

A resulting composite state is considered to be marked if and only if both constituent
states are marked. Intuitively, the product machine represents the set of possible actions
that are common to both machinesG1 andG2, henceL(G1× G2) = L(G1) ∩ L(G2) and
Lm(G1× G2) = Lm(G1) ∩ Lm(G2).

DEFINITION 2.4 (Cassandras et al., 1995) Theparallel composition of two automata G1
and G2 is

G1||G2 = (XG1 × XG2, 6G1 ∪6G2, δ,actG1||2, (xG01, xG02), XGm1 × XGm2)

where

δ((xG1, xG2), σ) =


(δG1(xG1, σ), δG2(xG2, σ)) if σ ∈ actG1(xG1) ∩ actG2(xG2)

(δG1(xG1, σ), xG2) if σ ∈ actG1(xG1)\6G2

(xG1, δG2(xG2, σ)) if σ ∈ actG2(xG2)\6G1

undefined otherwise

and

actG1‖2(xG1, xG2) = [actG1(xG1) ∩ actG2(xG2)] ∪ [actG1(xG1)\6G2] ∪ [actG2(xG2)\6G1].

With the parallel composition, only events common to the alphabets of both automata
must be synchronized on, and as in the product a resulting composite state is considered to
be marked if and only if both constituent states are marked.

In addition to the above operations, it is convenient to define the natural projection operator
which “removes” events from a trace which do not belong to a particular event set.

DEFINITION 2.5 (Cassandras et al., 1995) Thenatural projections P6i
: (61 ∪62)

∗ −→
6∗i for i = 1,2 are

P6i
(ε) := ε

P6i
(σ) :=

{
σ if σ ∈ 6i

ε if σ 6∈ 6i

P6i
(sσ) := P6i

(s)P6i
(σ) for s∈ (61 ∪62)

∗, σ ∈ (61 ∪62),

and the corresponding inverse maps P−1
6i

: 6∗i −→ 2(61∪62)
∗

are

P−1
6i
(t) := {s ∈ (61 ∪62)

∗ : P6i
(s) = t}.

The definitions ofP(·) and P−1(·) are extended to sets in the usual manner. Given the
definition of inverse projection, the result of the parallel composition can be written as:

L(G1||G2) = P−1
61

[L(G1)] ∩ P−1
62

[L(G2)]

Lm(G1||G2) = P−1
61

[Lm(G1)] ∩ P−1
62

[Lm(G2)].

382 BARRETT AND LAFORTUNE

Figure 1. Feedback loop of supervisory control.

It is also convenient to consider an automaton which represents the projected language of
G1. This “projected” automaton,P(G1), is denoted here using the same notation used
for language projection, i.e., for some set of events6arb, L(P6arb(G1)) = P6arb(L(G1)).
Because the projected automaton, as it is used here, only needs to capture the projected lan-
guage aspects ofG1, it will be assumed thatP6arb(G1) is a DFSA. If uniqueness ofP6arb(G1)

is required, then it can be assumed thatP6arb(G1) is its minimum-state representation.3 The
inverse projection of an automaton can be defined in a similar manner.

Finally, when considering multiple automata, it is common that not every event is defined
in every automaton model. For this reason, the symbol6 (with no subscripts) is used to
denote the universe of events for all automata of interest.

2.2. The Basic Supervisory Control Problem

Supervisory Control Theory (SCT) deals with the control of discrete-event systems. A
point of view is assumed that some behavior of a plant modeled as a DES isillegal and
must be disabled by a controller called asupervisor(Ramadge and Wonham, 1987, 1989).
This control scheme is depicted in Figure 1. Associated withG is a set of uncontrollable
events,6uc ⊆ 6G which cannot be directly disabled by control; hence, the supervisor is a
function

S : L(G) −→ {γ ∈ 26 : 6uc ⊆ γ }.
The set of enabled events thatG can execute after a tracet is given by

actS/G(t) = S(t) ∩ actG(δG(x0, t)). (1)

Note thatS/G does not imply quotient in this usage; rather,S/G meansG controlled byS
as described in Eqn. 1. Furthermore,L(S/G) is the generated language of the closed-loop

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 383

system under the control ofS, andLm(S/G) = L(S/G)∩Lm(G). Consider a sublanguage
K of L(G) which is the desired set of traces for the controlled discrete-event system. Let
K be represented by the automatonH = (XH , 6H , δH ,actH , xH0, XHm), i.e., K = Lm(H).
The languageK is said to becontrollable(with respect toL(G) and6uc) if 4

K6uc ∩ L(G) ⊆ K . (2)

This relationship betweenK andL(G) can be interpreted several ways. At the language
level, Eqn. 2 says that for a desired language to be controllable the execution of an uncon-
trollable event must not generate a trace that is not inK . Because it is assumed here thatK
is represented by the automatonH , controllability can also be interpreted at the state level.
Equation 2 states that forK to be controllable then for every state pair (xH , xG) in the product
automatonH ×G the conditionP6uc(actG(xG)) ⊆ P6uc(actH(xH))must be satisfied where
P6uc(·) represents the natural projection onto the set of uncontrollable events. Furthermore,
if it is given that K ⊆ L(G), then the condition becomes an equality. These conditions
indicate that controllability can be viewed as a relation on the set of states ofH ×G. This
state interpretation is explored later in Section 3.

DEFINITION 2.6 Basic Supervisory Control Problem (BSCP)(Ramadge and Wonham,
1987) Given a DES modeled by DFSA G,6uc ⊆ 6G, and desired legal language, K=
K ⊆ L(G), build supervisor S such that:

1. L(S/G) ⊆ K

2. For any other S′ such thatL(S′/G) ⊆ K, L(S′/G) ⊆ L(S/G), i.e.,L(S/G) is as
large as possible.

The solution to the BSCP is called theminimally restrictive solution(MRS):L(S/G) =
K ↑, whereK ↑ is the supremal controllable sublanguage ofK with respect toL(G) and
6uc (Wonham and Ramadge, 1987).

A common solution technique, the “standard” algorithm (Wonham and Ramadge, 1987),
for the BSCP is to form the automaton productH ×G and iteratively remove states which
violate the controllability condition or are not reachable. IfnH andnG are the number of
states inH andG respectively, then the worst-case running time of this type of algorithm
is O(|6|nH nG) using the technique in (Kumaret al., 1991) for cleverly pruning the state
space or using the constructive approach in (Hadj-Alouaneet al., 1994).5 More “efficient”6

algorithms exist which are based on an interesting relation between controllability and
bisimulation.

Because the blocking behavior of a system is of interest, we define anonblocking super-
visor as one which allows the closed loop system to complete any trace in its generated
language to a marked trace.

DEFINITION 2.7 Nonblocking Version of BSCP (BSCP–NB)(Ramadge and Wonham,
1987) Given DES G,6uc ⊆ 6G, and desired legal marked language, K⊆ Lm(G), with K

384 BARRETT AND LAFORTUNE

assumed to beLm(G)-closed, buildnonblockingsupervisor S such that:

1. Lm(S/G) ⊆ K

2. For any other nonblocking S′ such thatLm(S′/G) ⊆ K, L(S′/G) ⊆ L(S/G), i.e.,
Lm(S/G) is as large as possible.

The solution to the BSCP–NB is called theminimally restrictive nonblocking solution
(MRNBS):L(S/G) = K ↑ andLm(S/G) = K ↑.

The standard method for calculatingK ↑ is by an iterative algorithm that starts with an
automatonH that marksK . The product automaton,H ×G, is formed as in the BSCP, and
the resulting automaton is pruned in an iterative manner until convergence. The iterative
procedure consists of (i) deleting states that violate the controllability condition, and (ii)
deleting states that are not accessible or coaccessible, i.e., “trimming”. Because trimming
does not perserve controllability, removing states which violate controllability must be
performed following each trim operation. The complexity of trimming isO(nH nG); hence
if K is not prefix-closed, the worst-case running time of this algorithm isO(|6|(nH nG)

2).

2.3. Bisimulation Relations, Partitions and the Bisimulation Semantics

In what follows,x
σ−→ x′ denotes that there exists a transition with the labelσ from state

x to statex′.

DEFINITION 2.8 Let H and G be as in Subsection 2.2. Abisimulation relation of H and
G with respect to6B ⊆ 6H ∪ 6G is a binary relationψ ⊆ XH × XG satisfying (Arnold,
1994, Baeten and Weijland, 1990):

1. If ψ(xH , xG), σ ∈ 6B and xH

σ−→ x′H , then there is a x′G such that xG
σ−→ x′G and

ψ(x′H , x′G).

2. If ψ(xH , xG), σ ∈ 6B and xG

σ−→ x′G, then there is a x′H such that xH
σ−→ x′H and

ψ(x′H , x′G).

3. (Bisimulation with marking)ψ(xH , xG) implies xH ∈ XHm iff xG ∈ XGm.

For fixed parameter6B, bisimulation relations are closed under arbitrary unions (Arnold,
1994, Baeten and Weijland, 1990), so there exists agreatestbisimulation relation.7 Au-
tomataH and G are bisimilar with respect to6B, denotedH↔6B G, if there exists a
bisimulation relation ofH andG with respect to6B such that each state ofH and each
state ofG appears in the relation and(xH0, xG0) is in the relation.

For example, it is easily verified thatF1 and F2 of Figure 2 are bisimilar with respect
to the event “a”. The greatest bisimulation relation ofF1 and F2 with respect to “a”,
8a ⊆ XF1 × XF2, is easily verified to be:

8a = {(A,1), (B,2), (B,3), (B,4), (C,2), (C,3), (C,4), (D,2), (D,3), (D,4),
(E,2), (E,3), (E,4)}.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 385

Figure 2. Example of simulation relation.

On the other hand,F1 and F2 are not bisimiliar with respect to the total event set6 =
{a,b, c}; for instance, after “a” occursF1 can be at a state where “c” can never occur, but
“c” can always occur following “a” in F2; hence,F1 6↔6F2.

DEFINITION 2.9 Let H and G be as in Subsection 2.2. Asimulation relation of H and G
with respect to6S ⊆ 6H is a binary relationψ ⊆ XH × XG satisfying (Arnold, 1994):

1. If ψ(xH , xG), σ ∈ 6S and xH

σ−→ x′H , then there is a x′G such that xG
σ−→ x′G and

ψ(x′H , x′G).

2. (Simulation with marking)ψ(xH , xG) implies xH ∈ XHm iff xG ∈ XGm.

If ψ is a simulation relation andψ(xH , xG) then xG simulates xH . AutomatonH is
simulatedby automatonG with respect to6S, denotedHv6SG, if there exists a simulation
relation betweenH andG with respect to6S such that every state ofH appears in the
relation and(xH0, xG0) is in the relation (if6S = 6H then we will drop the subscript on
v.) Clearly, if H andG are deterministic, thenHvG iff L(H) ⊆ L(G) andLm(H) ⊆
Lm(G).

As an example of simulation relation, consider again Figure 2 with6 = {a,b, c}. Au-
tomatonF1 is simulated by automatonF2 with respect to6; however,F2 is not simulated
by F1 with respect to6 (by the same argument given above forF1 6↔6F2). Notice that
L(F1) = L(F2). This example also shows the inability of language to capture nondeter-
ministic behavior described by the branching structure of finite-state automata.

It is often convenient to consider a bisimulation relation between an automaton and itself.
The greatest bisimulation relation of an automaton with itself (with respect to some event
set6A) is called the automaton’sgreatest autobisimulation(Baeten and Weijland, 1990)
(with respect to6A). Observe that the greatest autobisimulation relation of an automaton
is an equivalence relation on the states of the automaton.

DEFINITION 2.10 Let G be a finite-state automaton (not necessarily deterministic) with
greatest autobisimulation relation8 (with respect to6G.) Denote byC the set of equivalence

386 BARRETT AND LAFORTUNE

classes induced by8. Thenormal form of G, denoted by N(G), is the automaton generated
by using the equivalence classes of8as the states of N(G) (Baeten and Weijland, 1990). The
states of N(G) inherit marking information and all incoming and outgoing event transitions
from the previous states of G. N(G) can be called the minimum state realization of G.

In the trace or language semantics, two discrete-event systems modeled by DFSAA1 and
A2, are considered equivalent if they have equivalent trace sets, i.e.,L(A1) = L(A2) and
Lm(A1) = Lm(A2). The bisimulation semantics, however, has a more detailed requirement
for DES equivalence. Within the bisimulation semantics two DES modeled by automata
A1 and A2, are equivalent if theirnormal formsare equal (isomorphic), i.e.,N(A1) =
N(A2) (Baeten and Weijland, 1990). Figure 2 shows a case where two automata are
equivalent in the trace semantics but not equivalent in the bisimulation semantics. IfA1

and A2 are both deterministic, thenN(A1) = N(A2) iff L(A1) = L(A2) andLm(A1) =
Lm(A2).

Bisimulation is a more detailed semantics than the trajectory model semantics in (Hey-
mann and Meyer, 1991) and ready (accepting trace (Arnold, 1994)), ready trace, failure
(refusing trace (Arnold, 1994)), failure trace, and trace semantics in (Baeten and Weijland,
1990), that is, bisimulation equivalence implies equivalence in all of the above listed se-
mantics. Indeed, bisimulation istoodetailed (Bloomet al., 1988) for many purposes, i.e., it
distinguishes DES that are indistinguishable given the observation of a sequence of events.
Referring to Figure 2 again, upon observing the events “ab” a supervisor could not distin-
guishF1 from F2 without receivingmenus8 of possible events from the DES at each state
along the pathab. Despite bisimulation being finer than trace equivalence, algorithms exist
for bisimulation equivalence that are more efficient than analogous algorithms for regular
languages. If the automata being processed by these algorithms are deterministic, then the
bisimulation results are equivalent to trace results.

2.4. Using Partition Refinement to Find Bisimulation Relations

As previously stated in Section 2.3, the greatest autobisimulation relation of an automaton
(with respect to6A) is an equivalence relation making it representable as a partition of
the states of the automaton. Furthermore, it has been shown that the problem of finding
the greatest autobisimulation relation of an automaton with respect to an event set6A is
equivalent to thecoarsest relational partitionproblem (Fernandez, 1990, Paige and Tarjan,
1987).

The algorithm of (Paige and Tarjan, 1987) for solving the coarsest relational partition
problem considers the case of a single relation, i.e.,|6A| = 1. (Fernandez, 1990) generalizes
the algorithm of Paige and Tarjan to handle the case when|6A| ≥ 1. When applied to an
automaton,A, the algorithm of Fernandez runs in time bounded by9 O(m log(n)) and space
bounded by O(m+ n) wherem is the number of transitions inA, andn is the number of
states inA.

The greatest bisimulation relation of two automataH andG with respect to6A, denoted
86A, can be found by first forming the autobisimulation (with respect to6A) of the union
of H andG and then considering only the ordered state-pairs of the form(xH , xG). As

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 387

Figure 3. Example automata.

mentioned above, the greatest autobisimulation can be found by solving the coarsest re-
lational partition problem; hence, it is in this manner that the coarsest relational partition
induces the greatest bisimulation relation86A. To illustrate this fact, the following sub-
section presents an example. The computation of5 has worst-case time complexity of
O(|6A|(nH + nG) log(nH + nG)) wherenH andnG are the number of states inH and G
respectively.

2.4.1. Example of Finding Coarsest Stable Relational Partition

The details of the efficient algorithm can be found in (Fernandez, 1990). Here, a simple
example of a “na¨ıve” implementation of the algorithm in tabular form is presented.

Consider the problem of finding a bisimulation relation between the two automata,A1 and
A2, shown in Figure 3. States are shown in capital letters or numbers, while transitions are
shown by lower case letters. Blocks in a partitioned set are denoted by Roman numerals.

Begin by forming a block, I, of all of the states ofA1 and A2, and put this block into a
set,50:

50 = {I} = {{A, B,C,1,2,3,4}}

The basic iteration on5i involves choosing a block,j , in the partition and determining its
preimage set

E−1
[σ](j) = {x|∃x′ ∈ j such thatx

σ→ x′}.

Each block of the partition is examined andsplit using preimage sets. The algorithm termi-
nates when5i = 5i−1. For example, the transition relation of Figure 3 can be expressed

388 BARRETT AND LAFORTUNE

in tabular form showing from each state which block is reachable for a given event label:

a b c
A I I ∅
B I I I
C I I ∅
1 I I ∅
2 I I I
3 I I ∅
4 I I ∅

This tabular form allows the preimage sets to be determined by inspection: group all
states with identical transitions. Notice that the block I is not stable with respect to itself,
so it splits. The refined partition is (here, block names are being reused):

51 = {I,II } = {{A,C,1,3,4}, {B,2}}.
Repeating this process yields the tabular transition relation:

a b c
A II I ∅
C I I ∅
1 II I ∅
3 II I ∅
4 I I ∅
B II I I
2 I II I

In the terminology of (Paige and Tarjan, 1987) block II is asplitter of blocks I and II. In
this case, block I is also a splitter. (Splitters are common to both the na¨ıve algorithm shown
here and the efficient algorithms in (Fernandez, 1990, Paige and Tarjan, 1987). The key to
the efficiency of the improved algorithms is the intelligent chosing of splitters.) Because
the partition contains blocks that can be split by the splitters, the partition is notstablewith
respect to the splitters. Forming groups with similar transitions yields the partition:

52 = {I,II,III,IV } = {{A,1,3}, {C,4}, {B}, {2}}.
Notice, blocks III and IV are singletons, so they cannot be split; thus, they need not be
examined in the tabular transition relation:

a b c
A III I ∅
1 IV I ∅
3 IV I ∅
C II II ∅
4 II II ∅

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 389

Examining this table yields:

53 = {I,II,III,IV,V } = {{A}, {1,3}, {C,4}, {B}, {2}},

where only one block has elements fromA1 andA2, namely (C,4). Looking at the transition
behavior of these two states yields:

a b c
C III III ∅
4 III III ∅

Hence53 is the coarsest partition ofXA1 ∪ XA2 that is stable with respect to{a,b, c}
transitions. This partition is equivalent to the greatest autobisimulation relation onXA1∪XA2,
namely the greatest bisimulation relation,Bauto, on [XA1 ∪ XA2] × [XA1 ∪ XA2], or

Bauto= {(A, A), (1,1), (1,3), (3,1), (3,3), (C,C), (C,4), (4,C), (4,4), (B, B), (2,2)}.

The greatest bisimulation relation ofA1 and A2, 853, can be taken as the subset ofBauto

that is inXA1 × XA2, specifically:

853 = {(C,4)}.

The greatest bisimulation relation,853, found in this subsection does not contain all
states ofA1 andA2 (or even the initial states) so it can be concluded thatA1 andA2 are not
bisimilar.

3. Controllability and Bisimulation

This section presents the main theoretical results of this paper that relate controllability
with bisimulation. These results support efficient algorithms that will be discussed later for
solving supervisory control and related problems.

THEOREM3.1 Given twodeterministic finite-stateautomata A1 = (XA1, 6A1, δA1,actA1, xA1,0)

and A2 = (XA2, 6A2, δA2,actA2, xA2,0)whereL(A1) ⊆ L(A2), letψ ⊆ XA1×XA2 be the set of
state pairs that are reachable by traces inL(A1). Let6uc ⊆ 6A2 be the set of uncontrollable
events.
ThenL(A1) is controllable with respect toL(A2) and6uc if and only ifψ is a bisimulation
relation of A1 and A2 with respect to6uc.

Proof 3.1: For deterministic automata, bisimulation is simply two-way simulation; hence
we need only showL(A1)6uc ∩ L(A2) ⊆ L(A1) iff A1 is simulated byA2 with respect to
6uc, andA2 is simulated byA1 with respect to6uc. The language inclusion assumption gives
half of this requirement because for deterministic automataL(A1) ⊆ L(A2) iff A1 v A2;
henceA1 is simulated byA2 with respect to6uc.

390 BARRETT AND LAFORTUNE

The burden of the proof rests upon showing that givenL(A1) ⊆ L(A2)we haveL(A1)6uc

∩ L(A2) ⊆ L(A1) iff A2 is simulated byA1 with respect to6uc.
Using contraposition for showing simulation ofA2 by A1 with respect to the uncontrollable

events yields:

givenL(A1) ⊆ L(A2), then

L(A1)6uc ∩ L(A2) 6⊆ L(A1) ⇔ ∃t ∈ L(A1), ∃σuc ∈ 6uc such thattσuc 6∈ L(A1)∧tσuc ∈
L(A2).

⇔ ∃xA1 = δA1(xA1,0, t), ∃xA2 = δA2(xA2,0, t), ∃σuc ∈ 6uc

such thatσuc 6∈ actA1(xA1) andσuc ∈ actA2(xA2).

⇔ ∃xA1 = δA1(xA1,0, t), ∃xA2 = δA2(xA2,0, t) such that6uc ∩
actA2(xA2) 6⊆ 6uc ∩ actA1(xA1).

⇔ ∃xA1 = δA1(xA1,0, t), ∃xA2 = δA2(xA2,0, t) such thatxA2 is
not simulated byxA1 with respect to6uc.

⇔ A2 is not simulated byA1 with respect to6uc.

The greatest bisimulation relation,8uc, between two automata with respect to the set
of uncontrollable events may betoo large, that is, it may contain unreachable state-pairs.
The importance ofψ is derived from the need to be able to determine if the bisimulation
is violated by reachable state pairs or if the bisimulation is violated by unreachable state
pairs. In the latter case, the violation is not of consequence.

Theorem 3.1 requires both automata to be deterministic. Generally, for nondeterministic
automata, bisimulation is much too strong a requirement for language controllability. That
is, bisimulation with respect to the set of uncontrollable events is, in general, sufficient for
language controllability, but it is not necessary.

DEFINITION 3.1 Let a DES be modeled by the DFSA G= (XG, 6G, δG,actG, xG0), and
let a desired behavior be modeled by the DFSA H= (XH , 6H , δH ,actH , xH0). Denote by
[H × G]↑ the automaton formed using the standard algorithm (Wonham and Ramadge,
1987) for computing the supremal controllable sublanguage ofL(H) with respect toL(G)
and6uc, i.e., forming the product H× G and iteratively pruning states which 1) violate
the controllability condition or 2) are unreachable; hence,L([H × G]↑) = L(H × G)↑.

Theorem 3.1 implies that for two automataH andG as in Definition 3.1 whereL(H) ⊆
L(G), L(H) is controllable with respect toL(G) and6uc if and only if the set of all
reachable state- pairs ofH × G is a bisimulation relation ofH andG with respect to6uc.
The following theorem characterizes the supremal controllable sublanguage ofL(H) with
respect toL(G) and6uc.

THEOREM3.2 Let G and H be as in Definition 3.1 such thatL(H) ⊆ L(G) andL(H)↑ =
L([H × G]↑). Denote the (accessible) state space of[H × G]↑ by S↑. Let the set of

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 391

uncontrollable events be6uc, and let8uc be the greatest bisimulation relation between H
and G with respect to6uc. Then

1. (xH0, xG0) ∈ S↑ iff 8uc(xH0, xG0), and

2. (xH , xG) ∈ S↑ iff 8uc(xH , xG) and(xH , xG) is reachable from(xH0, xG0) by a sequence of
state transitions that never leave8uc.

Proof 3.2. Implications 1 and 2 are proved seperately.

1. Follows directly from Theorem 3.1. The existence of a nonempty controllable sublan-
guage mandates the existence of a bisimulation relation with respect to6uc that contains
(xH0, xG0) and vice-versa.

2. Let R= (XR, 6R, δR,actR, xR0) where

XR = {xR ∈ XH × XG|xH ∈ XH , xG ∈ XG, xR = (xH , xG) ∈ 8uc}
xR0 = (xH0, xG0)

∀σ ∈ 6 :

δR((xH , xG), σ) =
{
(δH(xH , σ), δG(xG, σ)) if (δH(xH , σ), δG(xG, σ)) ∈ XR

undefined otherwise

actR((xH , xG)) = {σ ∈ 6|δR((xH , xG), σ) is defined}.
DefineX↑R to be the reachable state space ofR; hence,X↑R is the greatest bisimulation
relation betweenH andG with respect to6uc that is reachable from(xH0, xG0). For
(xH , xG) ∈ X↑R , Definition 2.8 implies:

(a) ∀σuc ∈ 6uc if xH

σuc−→ x′H , then∃x′G such thatxG

σuc−→ x′G and(x′H , x′G) ∈ X↑R

(b) ∀σuc ∈ 6uc if xG

σuc−→ x′G, then∃x′H such thatxH

σuc−→ x′H and(x′H , x′G) ∈ X↑R .

Now, let(x̃H , x̃G) ∈ S↑. By language inclusion:

∀σuc ∈ 6uc if x̃H

σuc−→ x̃′H , then∃x̃′G such that̃xG

σuc−→ x̃′G and(x̃′H , x̃′G) ∈ S↑.

By controllability:

∀σuc ∈ 6uc if x̃G

σuc−→ x̃′G, then∃x̃′H such that̃xH

σuc−→ x̃′H and(x̃′H , x̃′G) ∈ S↑.

S↑ is a bisimulation relation with respect to6uc and is as large as possible (by the
supremality ofL(H)↑), furtherS↑ only contains state pairs reachable from(xH0, xG0).
X↑R is the greatest bisimulation with respect to6uc reachable from(xH0, xG0); hence,
S↑ = X↑R , and by the construction ofX↑R , (xH , xG) state pairs can only be members of
S↑ if they are reachable from(xH0, xG0) by sequences of state transitions that remain in
8uc. As a consequence,L(H)↑ = L(R).

392 BARRETT AND LAFORTUNE

The greatest bisimulation relation betweenH andG with respect to6uc,8uc, can be found
by partition refinement in time bounded byO(|6uc|(nH + nG) log(nH + nG)) (Fernandez,
1990), wherenH andnG are the number of states inH andG respectively. Perhaps limiting
the importance of this result is that a reachability test is still required to eliminate extraneous
unreachable states, i.e., forming the greatest bisimulation relation in a running time of
O(|6uc|(nH + nG) log(nH + nG)) does not allowL(H)↑ to be determined in ‘m log(n)’,
too. This issue is currently being investigated; however, for many applications (such as
constructing on-line supervisors) it is often the case that reachability is not of concern.

4. Solution to the Supervisory Control Problem using Bisimulation

4.1. Off-Line Solution to the BSCP

Let a DES and desired behavior be modeled as in Definition 3.1 byG andH , respectively,
whereL(H) ⊆ L(G) andL(H)↑ = L([H ×G]↑). Let every state be marked inG andH ,
and let the set of uncontrollable events be6uc.

Presented here is an algorithm, BISIM-BSCP, that uses bisimulation to find a DFSA that
generatesL(H)↑.

Off-Line Algorithm: BISIM-BSCP
Step 1.Find the coarsest stable relational partition,5, of G andH with respect to the set
of uncontrollable events,6uc, using the algorithm in (Fernandez, 1990). Denote by85 the
greatest bisimulation relation ofH andG (with respect to6uc) induced by5.

Step 2. If (xH0, xG0) is not in the equivalence relation represented by5, then letR be the
empty automaton. Otherwise, letR= (XR, 6R, δR,actR, xR0) where

XR = {xR ∈ XH × XG|xH ∈ XH , xG ∈ XG, xR = (xH , xG) ∈ 85}
xR0 = (xH0, xG0)

∀σ ∈ 6 :

δR((xH , xG), σ) =
{
(δH(xH , σ), δG(xG, σ)) if (δH(xH , σ), δG(xG, σ)) ∈ XR

undefined otherwise

actR((xH , xG)) = {σ ∈ 6|δR((xH , xG), σ) is defined}.

Step 3.Let R↑ be the accessible submachine ofR.

THEOREM4.1 The automaton R↑ generated by following the algorithmBISIM-BSCPgen-
erates the supremal controllable sublanguage ofL(H) with respect toL(G) and6uc. If
(xH0, xG0) is not in the bisimulation relation induced by the partition5, then R is the empty
automaton andL(H)↑ = ∅. Otherwise,L(R↑) = L(H)↑.

Proof 4.1: Follows from the results of Section 3.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 393

4.2. Solving the Nonblocking Version of the BSCP

The non-blocking version of the Basic Supervisory Control Problem can also be solved
using bisimulation relations by iterating on Steps 1-3 of the above algorithm. More specif-
ically, let a DES be modeled by the DFSAG = (XG, 6G, δG,actG, xG0, XGm), and let a
desired behavior be modeled by the DFSAH = (XH , 6H , δH ,actH , xH0, XHm). Considered
here is the case whenXGm 6= XG and XHm 6= XH . Assume thatLm(H) ⊆ Lm(G) and
L(H) ⊆ L(G). LetLm(H)↑ = Lm([H ×G]↑), and let the set of uncontrollable events be
6uc.

Off-Line Non-Blocking Algorithm: BISIM-BSCP-NB

Step 0. Initialize such that

R0↑ = the empty automaton,

H0 = H,

50 = {XH ∪ XG}
i = 0.

Step 1. i = i + 1. Let Hi = (Xi
H , 6H , δ

i
H ,actH , xi

H0, Xi
Hm), where

Xi
H = {xH ∈ XH |∃xG ∈ XG such that(xH , xG) ∈ 85i−1}

δi
H(xH , σ) =

{
δH(xH , σ) if δH(xH , σ) ∈ Xi

H

undefined otherwise

Xi
Hm = XHm ∩ Xi

H .

Find the coarsest stable relational partition,5i , of G and Hi with respect to the set of
uncontrollable events,6uc, using the algorithm in (Fernandez, 1990).

Step 2. If (xH0, xG0) is not in the greatest bisimulation relation ofHi and G (with re-
spect to6uc) induced by5i , then letRi be the empty automaton. Otherwise, letRi =
(Xi

R, 6R, δ
i
R,actiR, xR0, Xi

Rm) where

Xi
R = {xR ∈ Xi

H × XG|xH ∈ Xi
H , xG ∈ XG, xR = (xH , xG) ∈ 85i }

Xi
Rm = {xR ∈ Xi

H × XG|xH ∈ Xi
Hm, xG ∈ XGm, xR = (xH , xG) ∈ 85i }

xR0 = (xH0, xG0)

∀σ ∈ 6 :

δi
R((xH , xG), σ) =

{
(δi

H(xH , σ), δG(xG, σ)) if (δi
H(xH , σ), δG(xG, σ)) ∈ Xi

R

undefined otherwise

actiR((xH , xG)) = {σ ∈ 6|δi
R((xH , xG), σ) is defined}.

Step 3.Let Ri↑ = trim(Ri). If Ri↑ = Ri−1↑, then stop; otherwise go toStep 1.

THEOREM4.2 The automaton Ri↑ generated at convergence following the algorithmBISIM-
BSCP-NBgenerates the supremal controllable sublanguage ofLm(H)with respect toL(G)
and6uc. If Ri↑ is the empty automaton, thenLm(H)↑ = ∅; otherwiseLm(Ri↑) = Lm(H)↑.

394 BARRETT AND LAFORTUNE

Figure 4. H, Automaton representing desired language.

Figure 5. G, Automaton representing plant.

Proof 4.2: Follows from the results of Section 3 and the standard algorithm (Wonham and
Ramadge, 1987) for solving the BSCP-NB.

4.3. BSCP Solution Example

This subsection demonstrates the off-line solution of the Basic Supervisory Control Prob-
lem using the greatest bisimulation with respect to the set of uncontrollable events. An
automaton that represents a desired language is shown in Figure 4. The plant automaton is
shown in Figure 5. Assume6uc = {σ4}.

To find the coarsest stable relational partition with respect to6uc, we begin by forming a
partition,50, of the union of all the states inH andG:

50 = {I } = {{A, B,C, D, E,a,b, c,d}}
and determine the preimage set of blockI due to the uncontrollable event to be:

E−1
[σ4]({A, B,C, D, E,a,b, c,d}) = {C}.

Refining the initial partition with respect toE−1
[σ4](I) yields the partition:

51 = {I I , I I I } = {{A, B, D, E,a,b, c,d}, {C}}
which is stable with respect to bothE−1

[σ4](I I)andE−1
[σ4](I I I) causing the partition refinement

algorithm to terminate.R↑, shown in Figure 6, is the reachable part of the product machine
over possible state pairs in851 (cf. Step 3 of BISIM-BSCP) where

851 = {(A,a), (A,b), (A, c), (A,d), (B,a), (B,b), (B, c), (B,d),
(D,a), (D,b), (D, c), (D,d), (E,a), (E,b), (E, c), (E,d)}.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 395

Figure 6. Solution to BSCP.

4.4. Discussion of Computational Complexity

Off-Line

Inspection of the off-line solution of Section 4.2 to the Basic Supervisory Control Problem
reveals that finding a partition that constrains the state-pairings allowed for the standard real-
ization (Cassandraset al., 1995) of the supervisor can be done inO(|6uc|(nH+nG) log(nH+
nG)). Actually constructing R↑, the standard realization of the supervisor, by forming the
state-pairs still maintains the worst-case complexity,O(|6|nH nG), as previous efficient
methods for computing the supremal controllable sublanguage when the marked language
is prefix-closed.

As previous discussed, when the marked language is not prefix-closed computing control-
lable sublanguage and trimming must be iterated upon. Finding the partition representing
the greatest bisimulation relation with respect to6uc in O(m log(n)) allows efficient deter-
mination of states that violate the controllability condition. This additional information is
useful in Step 1 of each iteration of BISIM-BSCP-NB and reduces the expected complexity
as compared to the equivalent step in the standard algorithm which constructs the product
automatonfirst with worst-case complexity ofO(mn).

The primary advantage of using partition refinement is that information is obtained about
which states violate controllabilitybeforethe product automaton is formed. The improved
algorithm may be more practical for finding supervisory controllers of larger systems, as
discussed below, where constructing the entire product automaton is not desirable.

On-Line

If one has a small amount of computing power available for on-line computations, then
the reachability test of Step 3 of BISIM-BSCP can be avoided if the supervisor is generated
on-line, and Step 2 of BISIM-BSCP only requires aO(|6c|) complexity “1-step-lookahead”
search over the set of controllable events,6c, at each current state to ensure that the
bisimulation relation is not violated. The storage requirements for such an on-line supervisor
is O(|6|(nH +nG)), for only the partition associated with the greatest bisimulation relation
with respect to6uc, the plant model,G, and the specification model,H , need to be stored
(andnot the product).

Specifically, the coarsest relational partition ofXH ∪ XG with respect to6uc, 5, is
determined off-line and is one of the components stored by the on-line supervisor. The
automata models ofH andG are also stored by the on-line supervisor. During operation,
the on-line supervisor observes an event and determines the current state in the plant model

396 BARRETT AND LAFORTUNE

and the specification model from their respective transition functions. The supervisor then
uses the model transition functions and performs a “1-step-lookahead” search to determine
which state pairs are immediately reachable by controllable events; this operation is done
in O(|6c|) time. The supervisor then checks the list of state pairs to determine which
controllable events need to be disabled to prevent the bisimulation relation from being
violated. More precisely, for each pair of possible next states (x′H , x′G), if x′H andx′G are not
in the same block of5, then the event leading to (x′H , x′G) is disabled. Checking a state pair
against5 requiresO(1) time. In summary, off-line calculations for the on-line supervisor
requireO(|6uc|(nH+nG) log(nH+nG)) time, and the on-line calculations are of complexity
O(|6c|) at each state. On-line storage isO(|6|(nH + nG)).

5. Input/Output Finite-State Machine Model Matching

The problem of strong model matching for finite-state machines (FSMs), as posed by
(DiBenedettoet al., 1994, 1995, 1996), consists of finding a controller for a given open loop
system that results in a desired closed loopbehavior(cf. precise statement in Section 5.1).
The resulting controller maps command signals in some command setV to control signals
in some control setU. It is claimed in (DiBenedettoet al., 1995, 1996) that the supervisory
control problem in its basic form can be posed as a special case of model matching for finite-
state machines. This claim suggests I/O FSM model matching may be more general than
the feedback loop of supervisory control in the Ramadge-Wonham paradigm (Ramadge
and Wonham, 1987, 1989). This section introduces strong I/O FSM model matching. In
Section 7, the above claim will be formally investigated. The remainder of this section is
organized as follows. Subsection 5.1 provides introductory material covering I/O finite-
state machines, FSM behavior and how behavioral equivalence relates to bisimulation.
The decision problems associated with strong I/O FSM model matching are presented in
Subsection 5.2, and Subsection 5.3 presents some behavioral inclusion problems associated
with strong I/O FSM model matching.

5.1. Input/Output FSMs, Behavioral Equivalence, and Bisimulation

This section deals primarily with basic definitions for FSMs and operations between FSMs
as given in (DiBenedettoet al., 1994, 1995, 1996). As in (DiBenedettoet al., 1995, 1996),
Greek letters are used for functions or relations, capital English letters represent sets, and
lower case represent elements. The numbers associated with definitions and theorems
correspond to section numbers used in this paper and are not necessarily those given in
(DiBenedettoet al., 1994, 1995, 1996) unless otherwise stated.

DEFINITION 5.1 (DiBenedetto et al., 1995) Aninput/output finite-state machine (I/O
FSM) is a 6-tuple F=(I , O, S,λ, γ , r) with I the input alphabet, O the output alphabet, S
the set of states,λ : I × S→ 2S the next-state function,γ : I × S× S→ 2O the output
function, and r∈ S the initial state.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 397

The next-state function for sequences of inputs can be defined recursively. LetI k =
I × · · · × I (k times) wherek is a finite integer,k ≥ 1. The next-state function for a
sequence of inputs,λk : I k × S→ 2S is defined by

λ1(i0, s) = λ(i0, s)

λk(i0i1 . . . i k−1, s) =
⋃

s̃∈λ1(i0,s)

λk−1(i1i2 . . . i k−1, s̃),

and an output sequence associated with an input sequence of lengthk is defined by

γ k(i0 . . . i k−1, r) = {(o0 . . .ol . . .ok−1)|ol ∈ γ (i l , sl , sl+1) ∧ sl+1 ∈ λ(i l , sl), l =
0, . . . , k− 1; s0 = r }.

From the above description of input/output sequences, it is evident that thebehaviorof
a FSM in the framework of (DiBenedettoet al., 1994, 1995) is identified with its set of
extended traces(Arnold, 1994) of the form

i j0 Oj0i j1 Oj1 . . . i jk−1 Ojk−1,

wherei j∗ ∈ I andOj∗ ⊆ O, k ≥ 1.
In the sequel, we drop the qualifier I/O for FSMs whenever it will be clear from the context.

It is common to label a transition due to inputi that generates outputo with the labeli /o.
If λ andγ always map to singletons, i.e., we can view them as functionsλ : I ×S→ Sand
γ : I × S× S→ O, then the FSM is called a deterministic finite-state machine (DFSM).
Otherwise, the FSM is called a nondeterministic finite-state machine (NDFSM). If there are
multiple outputs due to the same input,i , between two states, then this will be represented
by multiple transitions with labelsi /o1, i /o2, etc. LetI(s) denote the set of applicable
inputs to the FSM at states. Similarly, letIk(s) denote the set of applicable input sequences
of lengthk at states. According to the semantics given in (DiBenedettoet al., 1995), if an
input i ∈ I is not applicable at a states, thenλ(i, s) = θ whereθ is a special state called
thedead state. For every input, the next state relation for the dead state is the dead state. If
there are no outputs for a given transition, thenγ (i, s, s′) = µ whereµ is called thesilent
output. All transitions leading to the dead state have the silent output. Hereafter all FSMs
will be assumed to have a dead state and every transition defined at every state; the dead
state is always identifiable among the elements ofS(we will call it θ), andI(s) is implicitly
defined by the knowledge ofθ .

To compare FSMs in (DiBenedettoet al., 1994, 1995, 1996) the notion of FSM behavioral
equivalence is introduced:

DEFINITION 5.2 (DiBenedetto et al., 1995)10 Given DFSM F1 = (I ,O, S1, λ1, γ1, r1) and
NDFSM F2 = (I ,O, S2, λ2, γ2, r2), the behavior of F1 is equivalent to the behavior of F2,
denoted F1 =B F2, if

∀k ≥ 1,∀i0i1 . . . i k−1 ∈ I k,

γ k
1 (i0 . . . i k−1, r1) = γ k

2 (i0 . . . i k−1, r2).

In words, equivalence of FSMs is equivalence of their extended trace sets. Because one
of the FSMs must be a DFSM, behavioral equivalence is the same as bisimulation, i.e.,

398 BARRETT AND LAFORTUNE

behavioral equivalence indicates thatF1 andF2 are bisimilar with respect to the input and
output alphabets. To formalize this concept, we present the following theorem.

THEOREM5.1 Let F1 and F2 be as in Definition 5.2, and let their respective state spaces S1

and S2 contain only reachable states. Then F1 =B F2 iff F1 is bisimilar to F2 with respect
to I × O.

Proof 5.1: Note that marking is not an issue here sinceF1 andF2 are not defined to have
marked states; hence, the third condition in the definition of bisimulation is not relevant.

If : Let F1 be bisimilar toF2 with respect toI × O, then the normal forms ofF1 andF2

are isomorphic (and deterministic becauseF1 is deterministic), so clearlyF1 =B F2.

Only if : Let F1 =B F2 and construct a binary relationR as follows.
(1) (r1, r2) ∈ R
(2) ∀k ≥ 1,∀i0i1 . . . i k−1 ∈ I k,∀r ′2 ∈ λk

2(i0 . . . i k−1, r2), (λk
1(i0 . . . i k−1, r1), r ′2) ∈ R

By Definition 5.2 and construction ofR, for all s1 ∈ S1 reachable by sequencei0i1 . . . i j

there exists as2 ∈ S2 such that(s1, s2) ∈ R. If (s1, s2) ∈ R ands1
i /o−→ s′1, then the output

o is unique due to the determinism ofF1. There existss′2 such thats2
i /o∗−→ s′2 ando∗ = o by

Definition 5.2 and the fact thato is unique. Becauses′1 ands′2 are reachable with the same
input sequence,(s′1, s

′
2) ∈ R. Similarly, for all s2 ∈ S2 reachable by sequencei0i1 . . . i j

there exists a uniques1 ∈ S1 such that(s1, s2) ∈ R. If (s1, s2) ∈ R ands2
i /o−→ s′2, then

there existss′1 such thats1
i /o∗−→ s′1, o∗ = o ando is unique by Definition 5.2 and the fact

that o∗ is unique. s′1 ands′2 are reachable by the same input sequence, so(s′1, s
′
2) ∈ R.

Thus,R is a bisimulation relation andF1 is bisimilar to F2 with respect toI × O.

Evidently, if a NDFSM is behaviorally equivalent to a DFSM, then the normal form of
the NDFSM is deterministic. It will be said thatF1 and F2 are equivalent ifF1 =B F2.
Examining the definition of behavioral equivalence reveals that it is defined in terms of at
least one of the FSM being deterministic, and it is this requirement that allows the statement
of Theorem 5.1. In general, equivalence of extended trace sets does not imply bisimulation.

The interaction of two I/O FSMs (a controller and a plant) is modeled by the I/O FSM
composition operation.

DEFINITION 5.3 (DiBenedetto et al., 1995)11 Given DFSM M1 and possibly NDFSM M2
where

M1 = (U,Y, S1, λ1, γ1, r1)

M2 = ((V,Y),U, S2, λ2, γ2, r2),

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 399

Figure 7. Example of composition.

thecompositionof M1 and M2 is the FSM M1◦M2 denotedM̂ = (V,Y, Ŝ, λ̂, γ̂ , r̂) defined
as:

Ŝ = S1× S2

r̂ = (r1, r2)

λ̂(v, (s1, s2)) = {(s′1, s′2)|∃u ∈ U, ∃y ∈ Y,

s′1 = λ1(u, s1) ∧
s′2 ∈ λ2((v, y), s2) ∧
u ∈ γ2((v, y), s2, s

′
2) ∧

y = γ1(u, s1, s
′
1)}

γ̂ (v, (s1, s2), (s
′
1, s
′
2)) = {y ∈ Y|∃u ∈ U,

s′1 = λ1(u, s1) ∧
s′2 ∈ λ2((v, y), s2) ∧
u ∈ γ2((v, y), s2, s

′
2)}

Figure 7 shows an example composition between two FSMs.

5.2. Strong Model Matching Decision Problems

This section presents problems in strong I/O FSM model matching whereexactmatching
of behaviors is desired. The Strong FSM Model Matching Problem (SMMP) is as follows.

SMMP : Given DFSMsM1 = (U,Y, S1, λ1, γ1, r1) and M = (V,Y, S, λ, γ, r),
determine a dynamic state feedback compensatorM2, such that

M2 = ((V,Y),U, S2, λ2, γ2, r2), and

M1 ◦ M2 =B M.

The major result of [(Dibenedettoet al., 1995), Theorem 3.2] states that the SMMP is solv-
able if and only if the inverse automaton12 of M , M−1, is simulated by the inverse automaton

400 BARRETT AND LAFORTUNE

Figure 8. Feedback loop of the SMMP–D.

of M1, M−1
1 . Intuitively, the machineM2 must map command inputs inV to elements in

U which drive the plant FSMM1. The simulation requirement of the inverse automata of
M andM1 can be viewed as requiring the existence of anM2 that does not attempt to force
the plant,M1, to produce an output sequence that it cannot.

The problem of strong model matching with disturbance measurement (SMMP–D) is as
follows (DiBenedettoet al., 1996).

SMMP–D : Given DFSMs M1 = ((W,U),Y, S1, λ1, γ1, r1) and M =
((W,V),Y, S, λ, γ, r), determine a dynamic state feedback compensator
for M1, M2 = (((W,V),Y), (W,U), S2, λ2, γ2, r2), with γ2 = (γ w2 , γ u

2)

and γ w2 = ((W,V),Y) × S2× S2 → W, γ u
2 = ((W,V), Y)×

S2× S2→ U such thatγ w2 is the canonical projection and

1. M1 ◦ M2 =B M .

2. ∀(s1, s2) ∈ Ŝ,W(s1, s2) = W(s1) whereW(s) is the set of distur-
bances applicable at states.

The canonical projection is simply the identity mapping of elements inW from input to
output, i.e., ifw appears in the input set,((W,V),Y), for a particular transition, thenwmust
appear in the output set,(W,U), of that transition. With the introduction of measureable
disturbances, the feedback loop of the SMMP–D is described as that shown in Figure 8 (see
also [(DiBenedettoet al., 1996), Figure 9]).

No formal definition of I/O FSM composition is given in (DiBenedettoet al., 1996) for the
case of measurable disturbances; however, from its description and for the purposes here,
Figure 9 is taken as representative of FSM composition with disturbances. We assume that
only one input can occur at a time, i.e., a disturbance cannot occur while a command is
given and vice versa.

New machines are defined in (DiBenedettoet al., 1995) for the case of measurable

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 401

Figure 9. Generalization of FSM composition when disturbances are present.

disturbances. Machines̃M andM̃1 are modifications ofM andM1 where the disturbances
are present at the input and output of both machines. Theorem 4.1 of (DiBenedettoet
al., 1995) states that the SMMP-D is solvable if and only if the inverse automatonM̃−1 is
simulated by the inverse automatoñM−1

1 . The intuition for this result about the SMMP-D
is the same as for the SMMP with the constraint thatM2 cannot alter disturbances.

Both the SMMP and the SMMP–D aredecisionproblems. Once a reference model is
created, all that need be checked is whether the reference model is simulated by the plant,
i.e., the desired behavior is feasible or not. This checking is performed by creating the
greatest simulation relation between the reference and the plant models which, fortunately,
also provides the correct state matching to perform the modified product. Thus, forming
the simulation relation decides and produces the solution to the problem.

If a solution does not exist, i.e., exact matching cannot occur, there is no indication from
the SMMP as to what sub-behaviorcouldbe matched. In order for the Basic Supervisory
Control Problem to be solved in the I/O FSM Model Matching framework, there needs to
be some mechanism for determining maximal or supremal solutions, that is, there must be
some way to cast model matching decision problems as optimization problems.

5.3. Strong Model Matching Inclusion Problems

As discussed in the previous section, the case ofexactmodel matching is not enough to
allow supervisory control problems to be solved using the formalisms discussed in (Di-
Benedettoet al., 1994, 1995, 1996). Additionally, there must exist some methodology of
dealing with matching some maximal set of desired behaviors. This problem is addressed
in (DiBenedettoet al., 1995, 1996) as matching a set of behaviorscontainedin a reference
model.

DEFINITION 5.4 (DiBenedettoet al., 1996)Given NDFSMs F1 = (I ,O, S1, λ1, γ1, r1) and
F2 = (I ,O, S2, λ2, γ2, r2), the behavior of F1 is contained in the behavior of F2, denoted
F1 ⊆B F2, if

∀k ≥ 1, ∀i0i1 . . . i k−1 ∈ Ik(r1),

γ k
1 (i0...i k−1, r1) ⊆ γ k

2 (i0...i k−1, r2).

This definition implies that the set of all input-output sequences ofF1 such that the input se-
quence does not takeF1 to the dead state is a subset of the set of input-output sequences ofF2.

402 BARRETT AND LAFORTUNE

The problem of strong FSM model matching with a set of sub-behaviors contained in a
reference models is given in (DiBenedettoet al., 1995) as:

SMMP–SB : Given DFSM M1 = (U,Y, S1, λ1, γ1, r1) and NDFSM M =
(V,Y, S, λ, γ, r), determine a dynamic state feedback compensator for
M1, M2 = ((V,Y),U, S2, λ2, γ2, r2) such thatM1 ◦ M2 =B M̂ where
M̂ = (V,Y, Ŝ, λ̂, γ̂ , r̂) is a nontrivial DFSM andM̂ ⊆B M .

For the sake of notational simplicity (DiBenedettoet al., 1995), the following notation is
used for a NDFSMF = (I ,O, S, λ, γ, r) : F = (I ,O, S,1, r)where1 = {(i, s, s′,o) ∈
I × S× S× O|s′ ∈ λ(i, s) ∧ o ∈ γ (i, s, s′)}.

Given M = (V,Y, S,1, r) and M1 = (U,Y, S1,11, r1), let M = (V,Y, S,1, r) be
defined as follows13:

r = (r1, r)

S = {s ∈ S1× S|s is reachable fromr }
s = (s1, s)

s′ = (s′1, s
′)

(v, s, s′, y) ∈ 1 if ∃u ∈ U such that(u, s1, s
′
1, y) ∈ 11 ∧

(v, s, s′, y) ∈ 1
(v, s, θ, y) ∈ 1 otherwise.

To solve the SMMP-SB problem, any particular deterministic behavior inM can be chosen
and a controller constructed by looking at theV , U andY information at the corresponding
state-pairs ofM . (DiBenedettoet al., 1995) state that the language associated withM is the
supremal controllable language in the supervisory control framework; however, since there
are no uncontrollable events or disturbances associated withM , this fact is immediate and
it cannot be used as a basis to state that the Basic Supervisory Control Problem is a special
case of strong I/O FSM model matching.

Generalizing their earlier results, DiBenedettoet al. recently produced (DiBenedettoet
al., 1996) which gives results for the Strong I/O FSM Model Matching with measurable
disturbances to any set of deterministic behaviors contained in a reference model. This
problem is abbreviated here as SMMP-D-SB and the problem statement is given as follows.

SMMP-D-SB : Given DFSMM1 = ((W,U),Y, S1, λ1, γ1, r1) and NDFSMM =
((W,V),Y, S, λ, γ, r), determine a dynamic state feedback com-
pensator forM1, M2 = ((W,V,Y), (W,U), S2, λ2, γ2, r2) such
that

1. M1 ◦ M2 =B M̂ whereM̂ = ((W,V),Y, Ŝ, λ̂, γ̂ , r̂) is a non-
trivial DFSM andM̂ ⊆B M .

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 403

2. ∀(s1, s2) ∈ Ŝ,W(s1, s2) = W(s1) whereW(s) is the set of
disturbances applicable at states.

In addition to the above problem, DiBenedettoet al. derive a characterization of the set of
maximal deterministic behaviors that can be matched given the constraint that the reference
modelM is an output-deterministic FSM (ODFSM). An ODFSM has the property that for
any state and any input, for each unique output generated at a state, there is a unique next
state.

A compensator,M2, is said to solve the maximal behavior problem (SMMP–D–MB) if,
in addition to the SMMP–D–SB requirements, the resulting closed loop behavior,M̂ , is as
large as possible, that is:

SMMP-D-MB : SMMP-D-SB +
3. M̂ is as large as possible, i.e., if there exists any other compen-

satorM∗2 such thatM1 ◦ M∗2 =B M̂∗ ⊆B M , M̂ ⊆B M̂∗ and
∀(s1, s∗2) ∈ Ŝ∗,W(s1, s∗2) =W(s1), thenM̂ =B M̂∗.

The following sections present an alternative method for solving, whenM1 and M are
DFSMs, the Strong I/O FSM Model Matching with Measurable Disturbances to a Maximal
Set of Allowable Behaviors in a Reference Model Problem. The problem is solved by being
posed in the framework of SCT as an instance of BSCP–NB with multiple marking classes.
Solving the SMMP–D–MB as the BSCP–NB utilizes two key relationships that we derive:

1. behavioral inclusion is related to marked language inclusion, and

2. languages associated with matchable behaviors in the presence of disturbances must be
controllable.

Note that we require the reference model,M , to be deterministic. The procedure presented
also assumes that the “plant”M1 is a DFSM which is consistent with the algorithms presented
in (DiBenedettoet al., 1996). Prior to establishing a formal link between SMMP and SCT,
a method is presented for converting discrete-event models from one framework to another.

6. Discrete-Event Model Conversions

In order to investigate the relationship between I/O FSM model matching and Supervisory
Control Theory, it is necessary to take models in one framework and modify them to fit
into another framework. This section discusses a means to convert models in the SCT
framework to I/O FSM models in the Strong I/O FSM Model Matching framework, and
vice-versa.

404 BARRETT AND LAFORTUNE

6.1. Converting SCT Automata Models to I/O FSM Models

Translating a possibly nondeterministic automaton from the supervisory control framework
to a I/O FSM of the model matching framework utilizes the “classical” method to convert a
Moore type machine to a Mealy type machine. The conversion procedure involves moving
“output labels” from states to state transitions. Further, uncontrollable events for automata
in the SCT framework are viewed as disturbances in I/O FSM models and transition labels
are constructed to reflect this analogy. Let the eventσ take the automaton from states to
states′, i.e.,

s
σ−→ s′.

If an outputo is associated with states′ then the corresponding transition in the I/O FSM is
assigned the transition:

s
σ/o−→ s′.

In the supervisory control framework it is often the case that outputs are not assigned to
states; thus, there is no state output to “move” to the transition label. In this treatment of the
problem the marking class of a state will serve as the output component of the appropriate
transition label.

In SCT, the marking of a state generally represents some particular action of interest such
as a completed task. The notion of state marking is a special case of the stateparameters
discussed in (Arnold, 1994). Here, as in (Thistleet al., 1995), state marking will be
generalized to a class of possible state markings. Instead of considering a single set of
marked states,Xm, we will consider several sets of marked states associated with each
automaton. Denote the set of marking classes of an automaton with the indexed setXm =
{Xm1, Xm2, . . . , Xmk}. Different automata can have different sets of marking classes, but it
will be maintained that two marking classes with the same index hold the same “meaning”
(e.g. similar indices represent similar output values.) Utilizing many sets of marked states in
a single automaton to represent a family of marked languages is more convenient than using
many automata, one for each marked language. The markings of a composite state resulting
from the product (×) or parallel composition (||) of two automata are the intersection of the
markings of similar index of the two component states, i.e., a composite state is markedmi

if each component state is markedmi . As mentioned above, an output can be associated
with a state; hence, an output marking class,mi , is used here to denote the specific output,
oi , of a state. Define an indexed setO = {o1,o2, . . . ,ok} such that the index outputs
correspond with marking classes of similar index. The function that relates states to their
corresponding outputs will beh : X→ O ∪ {µ}, where

h(x) =
{

oi if x ∈ Xmi

µ otherwise.
(3)

Each automaton,Aj , can have an associated output functionhj ; however, each output
function maps to the same co-domain,O ∪ {µ}.

The set of states and number of transitions remains unchanged when the automaton is
“converted” to an I/O FSM. This procedure is described more formally below.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 405

Consider the following procedure to translate aneventbased automaton model to an I/O
FSM model. Given a DFSAA = (XA, 6A, δA,actA, xA,0,XAm) let M = ((W,V),Y, S, λ, γ,
r) be the I/O FSM resulting fromA. The NULL event,∅, is introduced and represents only
a “place holder” and is indicative of the absence of an event. Assign the components ofM
as follows14

W = 6uc ∪ {∅}
V = 6A \6uc ∪ {∅}
Y = O ∪ {µ}
S = X ∪ {θ}
r = xA,0

λ : (W,V)× S→ 2S

∀v ∈ V,∀w ∈ W

λ((∅, v), s) = δA(s, v) if v ∈ actA(s) \6uc

λ((w,∅), s) = δA(s, w) if w ∈ actA(s) ∩6uc

= θ otherwise.

γ : (W,V)× S× S→ 2Y

γ ((w, v), s, s′) = h(s′) if s′ ∈ XA

= µ otherwise.

OnceA is converted toM , denoted byA
I O7−→ M , each transition inM will have a label of

the form(W,V)/Y.

6.2. Converting I/O FSM Models to SCT Automaton Models

The conversion of an I/O FSM to an automaton is equivalent to converting a Mealy machine
to a Moore machine with the interpretation of state outputs being markings. The procedure
described below explicitly uses the “classical” method of converting a Mealy machine to a
Moore machine (Hayes, 1993, Kohavi, 1978).

Converting a Mealy machine to a Moore machine is slightly more complicated than
renaming transitions as in the Moore-to-Mealy case. Briefly, for each states′ of the I/O
FSM with transitions of the form:

s
v/o−→ s′

a new state is introduced into the automaton for each distinct output valueo among the
transitions entering that state. Thus, ifo assumesk distinct valuesy1, y2, . . . yk thens′

is replaced withk new statess′1, s
′
2, . . . s

′
k. Each new states′i is assigned the fixed output

yi and supplied with the original transitions. Define an indexed set of marking classes
Xm = {Xm1, Xm2, . . . , Xmk} and assign states as elements of a marking class with index

similar to that of the state output. Denote byM
sct7−→ A that the Mealy-type machineM

converts to the automatonA interpreted as a Moore-type machine. Because it does not add

406 BARRETT AND LAFORTUNE

information to the model, we will assume the dead state of the Mealy-type machine is not
kept in the resulting Moore-type automaton. Figure 10 shows the conversion of a Mealy
LIFO stack control unit state diagram to a Moore type diagram (Hayes, 1993). The resulting
Moore LIFO machine has four marking classes:{∅, E RR, LS, RS}, one for each distinct
output of the Mealy LIFO control unit. As discussed in Section 6.1, the output marking of
a particular states is denotedh(s), e.g., in Figure 10(b) (outputs are in bold) it can be seen
thath(s′′1) = RS15. The initial state is given the output value∅ by default. In addition to
the output marking classes,mi , a marking classmos is also defined and holds the meaning
“output state”. If a state is a member of any output marking class, then it is also assigned
to be a member ofmos. States that aremos-marked are denoted in figures hereafter by a
double circle. Some of the properties of the automatonA represented by the Moore LIFO
machine in Figure 10 are as follows:

XA = {s0, s
′
0, s
′′
0, s1, s

′
1, s
′′
1, s2, s

′
2, s
′′
2}

Xm = {Xm∅ , XmE RR, XmLS, XmRS, Xmos}
Xm∅ = {s0, s1, s2}

XmE RR = {s′′0, s′2}
XmLS = {s′0, s′1}
XmRS = {s′′1, s′′2}
Xmos = {s0, s

′
0, s
′′
0, s1, s

′
1, s
′′
1, s2, s

′
2, s
′′
2}.

6.3. Modeling the Strong Model Matching Feedback Loop

To determine the “feasible” or joint behavior between what is required by the specification
and what can be performed by the plant, the behavior of the Moore automata must be
intersected in some way. For DES modeled as automata, it is common to form the behavioral
intersection by composing the specification automaton with the plant automaton.

The finite-state machines used in model matching generally have different input alphabets,
i.e., M1 (the “plant”) is defined with input alphabetU , and M (the “specification”) is
defined with input alphabetV . Because of this, the Moore machine versions ofM1 and
M cannot be directly composed using the product composition (×) of SCT. The FSM
composition operation (◦) of strong model matching must therefore be modeled to allow
thesynchronizationof the Moore machines.

The FSM composition operation allows an outputy to occur iff a disturbancew produces
y or an input sequencevu producesy. After an output is allowed, the composition operator
checks the state reached by the previous sequence to determine if another valid sequence
produces an output. Thus, synchronization of all possible sequences is easily modeled as
composition with the regular expression(W+VU)∗, whereW represents all disturbances,
V represents all command inputs andU represents all control inputs. Figure 11 shows
the automatonSyncrepresenting the event ordering effect of the I/O FSM composition

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 407

Figure 10.LIFO stack control unit: (a) Mealy state diagram, (b) Moore state diagram.

Figure 11.Synchronizer automaton,Sync, that models SMMP feedback loop.

operation. The initial state of the composition synchronizer is marked as belonging to all
output classes (denoted byY in the figure).

For example, consider the conversion ofM and M1 to H andG respectively shown in
Figure 12. The resulting Moore automata have differing alphabets in thatH is defined over
W ∪ V andG is defined overW ∪ U . The feasible behavior is formed by synchronizing

408 BARRETT AND LAFORTUNE

Figure 12.Example machinesM1 andM and their associated Moore automata.

the specificationH and plantG with the feedback-loop modelSync. Performing this
synchronization yields the Moore automata shown in Figure 13.

Examining Figure 13 reveals several interesting artifacts. First, the automatonG̃ has
traces which do not lead to output states. This arises due to the fact that after the production
of a y1 or y2 output, nou input exists to extend the secondv sequences to output states.
Another interesting artifact is that somemos-marked states iñH do not have an associated
output marking class. This artifact results from the fact that the output classes of the
composite states may not match; hence, during the parallel composition no output marking
class can be assigned. These artifacts represent desired behavior that cannot be “matched”
by the plant. Future sections will discuss how to procedurally address this issue.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 409

Figure 13.Feasible behaviors formed by synchronization.

7. Formal Comparison of Input/Output FSM Model Matching and
Supervisory Control

As stated earlier, it was claimed in (DiBenedettoet al., 1995, 1996) that the supervisory
control problem can be posed as a special case of model matching for finite-state machines.
This claim is investigated more thoroughly in this section. Specifically, the above conjecture
found in (DiBenedettoet al., 1995, 1996) is confirmed. Furthermore, it is shown that finding
a maximal solution to the SMMP–D can be solved as an instance of the BSCP–NB for a
familyof marked languages.

The investigation of the relationship between supervisory control and strong FSM model
matching in the presence of disturbances will proceed with the following steps:

1. A relationship is derived between behavioral inclusion and inclusion of marked lan-
guages (Section 7.1).

2. A relationship is found between behaviors which are matchable in the presence of

410 BARRETT AND LAFORTUNE

disturbances and the controllability of the marked languages associated with those
behaviors (Sections 7.2 and 7.3).

3. A method is presented for solving the BSCP as an instance of strong model matching
in the presence of measurable disturbances (Section 7.2).

4. A method is presented for solving the SMMP-D-MB for a set of maximal deterministic
behaviors as an instance of BSCP–NB for a family of marked languages (Section 7.3).

7.1. Strong Model Matching and Language Properties

The following lemma reveals the relationship between FSMs and the languages of their
associated automata.

LEMMA [Language Inclusion]: Let DFSMs F1 and F2 be given such that
F1 = ((W,V),Y, S1, λ1, γ1, r1)

F2 = ((W,V),Y, S2, λ2, γ2, r2),

and F1
sct7−→ A1, F2

sct7−→ A2. Then F1 ⊆B F2 if and only if for all j ∈ {1, . . . , |O|}
Lmj (A1) ⊆ Lmj (A2), whereLmj is the marked language associated with mj -marked states.

Recall thatY = O ∪ {µ} and that similarly indexed elements ofY andO are equivalent.

Proof [Language Inclusion Lemma] : From the definition of behavioral containment, it
is known that:

F1 ⊆B F2⇔ ∀k ≥ 1,∀i0i1 . . . i k−1 ∈ Ik(r1)

γ k
1 (i0...i k−1, r1) = {(y0...yl ...yk−1)|yl ∈ γ1(i l , sl , sl+1)

∧sl+1 ∈ λ1(i l , sl), l = 0, ..., k− 1; s0 = r1}
γ k

2 (i0...i k−1, r2) = {(y0...yl ...yk−1)|yl ∈ γ2(i l , sl , sl+1)

∧sl+1 ∈ λ2(i l , sl), l = 0, ..., k− 1; s0 = r2}
[γ k

1 (i0...i k−1, r1) = γ k
2 (i0...i k−1, r2)].

We have equality here becauseF1 andF2 are deterministic, so the output sequence sets,γ k
i ,

are singleton sets. From the discussion of Mealy-to-Moore model conversion, the following
holds by construction:

F1 ⊆B F2⇔ ∀k ≥ 1,∀i0i1 . . . i k−1 ∈
⋃

j∈{1,...,|O|} Lmj (A1)

0k
1(i0 . . . i k−1, r1) = {(∅y0 . . . yl . . . yk−1)|∀l ,0≤ l ≤ k− 1, yl = h1(δ1(i0 . . . i l , r1))}
0k

2(i0 . . . i k−1, r2) = {(∅y0 . . . yl . . . yk−1)|∀l ,0≤ l ≤ k− 1, yl = h2(δ2(i0 . . . i l , r2))}
[0k

1(i0i1 . . . i k−1, r1) = 0k
2(i0i1 . . . i k−1, r2)],

where, again due to determinism, these sequence sets are singletons. What must be proven,
then, is the following:

∀ j ∈ {1, . . . , |O|},Lmj (A1) ⊆ Lmj (A2)⇔ ∀k ≥ 1,∀i0i1 . . . i k−1 ∈
⋃

j∈{1,...,|O|} Lmj (A1)

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 411

0k
1(i0 . . . i k−1, r1) = {(∅y0 . . . yl . . . yk−1)|∀l ,0≤ l ≤ k− 1, yl = h1(δ1(i0 . . . i l , r1))}
0k

2(i0 . . . i k−1, r2) = {(∅y0 . . . yl . . . yk−1)|∀l ,0≤ l ≤ k− 1, yl = h2(δ2(i0 . . . i l , r2))}
[0k

1(i0i1 . . . i k−1, r1) = 0k
2(i0i1 . . . i k−1, r2)].

Sufficiency: Choose some input sequencet = i0i1 . . . im−1 ∈ Im(r1); hence, by Mealy-
to-Moore model conversion we also havet ∈ L(A1). SinceF1 ⊆B F2 we have:

(∅yω1
0
. . . yω1

l
. . . yω1

m
) = 0m

1 (i0i1 . . . im−1, r1)

= 0m
2 (i0i1 . . . im−1, r2) = (∅yω2

0
. . . yω2

l
. . . yω2

m
).

SinceA1 andA2 are deterministic, only the last generated output of the sequence needs to
be considered. Because the output sequences are equal we know thatyω1

m
= yω2

m
. Assume

that yj = yω1
m
, then t ∈ Lmj (A1). Furthermore, sinceyj = yω1

m
= yω2

m
we also have

t ∈ Lmj (A2). From this we conclude∀ j ∈ {1, . . . , |O|},Lmj (A1) ⊆ Lmj (A2).

Necessity: (By induction on length of sequences). We want to show that ifLmj (A1) ⊆
Lmj (A2) for all j , then∀k ≥ 1,∀i0i1 . . . i k−1 ∈

⋃
j∈{1,...,|O|} Lmj (A1) the following holds:

0k
1(i0i1 . . . i k−1, r1) = 0k

2(i0i1 . . . i k−1, r2).

Every output sequence contains∅ as its initial element, so when no input has occurredA1

and A2 generate the same∅. Now, for k = 1, choosei0 ∈
⋃

j∈{1,...,|O|} Lmj (A1). Assume
i0 ∈ Lmj 0(A1), then the state ofA1 reached following the execution ofi0 is mj0-marked,
and

01
1(i0, r1) = (∅yj0).

SinceLmj 0(A1) ⊆ Lmj 0(A2) this implies

01
2(i0, r2) = (∅yj0) = 01

1(i0, r1).

The induction hypothesis is that fork = n,∀i0i1 . . . i n−1 ∈
⋃

j∈{1,...,|O|} Lmj (A1) we have

0n
1(i0i1 . . . i n−1, r1) = 0n

2(i0i1 . . . i n−1, r2).

Choose somet ′ = i0i1 . . . i n ∈
⋃

j∈{1,...,|O|} Lmj (A1), and letr ′1 be the state ofA1 reached
following the execution oft ′. BecauseA1 is deterministic we have

0n+1
1 (i0i1 . . . i n−1i n, r1) = (∅yj0 . . . yjn−1 yjn) (4)

= (∅yj0 . . . yjn−1)h1(r
′
1)

= 0n
1(i0i1 . . . i n−1, r1)h1(r

′
1).

Let r ′2 be the state reached inA2 following the execution oft ′. Becauset ′ ∈ Lmjn (A1) ⊆
Lmjn (A2) we know

h2(r
′
2) = yjn = h1(r

′
1). (5)

Equations 4, 5, and the induction hypothesis yield

0n+1
1 (i0i1 . . . i n−1i n, r1) = 0n

1(i0i1 . . . i n−1, r1)h1(r
′
1)

412 BARRETT AND LAFORTUNE

= 0n
2(i0i1 . . . i n−1, r2)h1(r

′
1)

= 0n
2(i0i1 . . . i n−1, r2)h2(r

′
2)

= 0n+1
2 (i0i1 . . . i n−1i n, r2)

which completes the induction step and the proof.

A family of marked languages is called amultitraceset in (Arnold, 1990) where the state
parameters of the multitrace set are the marking classes used here. The Language Inclusion
Lemma, simply put, says that when the models considered are deterministic themultitrace
sets with elements of the form

i0i1 . . . i k−1Ok−1,

representing a family of marked languages, contain the same modeling information as
extended tracesets with elements of the form

i0O0i1O1 . . . i k−1Ok−1,

representing the behavior of a FSM. See [(Arnold, 1994), pages 148–158] for a thorough
discussion and generalization of trace equivalences.

In addition to the Language Inclusion Lemma, which will allow the use of marked lan-
guages to determine behavioral inclusion, there is yet another relationship which links
behaviors that are matchable in the presence of disturbances to the controllability of their
associatedmos-marked language. This relationship will be described in detail later in the
proofs of Theorem 7.1 in Section 7.2 and Theorem 7.2 in Section 7.3.

7.2. Solving BSCP as FSM Model Matching

This section describes how the model matching formalism proposed by (DiBenedettoet
al., 1994, 1995, 1996) can be used to solve the Basic Supervisory Control Problem. More
specifically, it is shown that the BSCP posed in the framework of supervisory control can be
translated to the I/O FSM modeling framework of (DiBenedettoet al., 1994, 1995, 1996)
and solved as the SMMP–D–MB.

THEOREM7.1 Let H and G be as in Definition 3.1, and let M and M1 be such that H
I O7−→ M

and G
I O7−→ M1; hence V= U and W= 6uc. Solve the SMMP–D–MB given M and M1

for the solution M2 such that M1 ◦ M2 =B M̂. Let H† be the solution to the BSCP, i.e.,

L(H†) = L(H × G)↑, and H† I O7−→ M†. Furthermore, letM̂
sct7−→ Ĥ . ThenM̂ =B M†,

andL(Ĥ) = L(H†).

Proof 7.1: Each state ofĤ can be associated with a state ofM̂ by identifying states
reached in both by the same input sequence. BecauseV = U andW is common among
the deterministic machines, we can use traces to uniquely identify states. Lett be an input
sequence in the behavior represented byM̂ , and denote the state of̂M reached following the

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 413

execution oft by(st
1, s

t
2)wherest

1 is the state of the FSMM1 reached following the execution
of t . Let the corresponding state in̂H be denoted by(xt

H , xt
G) wherext

H corresponds to the
state ofH reached by the input sequencet andxt

G corresponds to the state ofG reached by
the input sequencet .

M̂ being matchable in the presence of disturbances implies that for all states ofM̂

W((st
1, s

t
2)) =W(st

1). (6)

For the associated states in̂H andG we have

6uc(x
t
Ĥ) = 6uc((x

t
H , xt

G)) = 6uc(x
t
G), (7)

where6uc(x) represents the set of uncontrollable events defined at statex, i.e.,act∗(x)∩6uc.
Clearly, Eqn. 7 defines a bisimulation relation betweenĤ andG with respect to the set of

uncontrollable events. From Theorem 3.1 it follows thatL(Ĥ) is controllable with respect
toL(G) and6uc = W; hence,

L(Ĥ) ⊆ L(H†),

and by the Language Inclusion Lemma we have

M̂ ⊆B M†.

BecauseLm(H†) = L(H†) ⊆ L(G) = Lm(G) the Language Inclusion Lemma implies
M† ⊆B M1, and M† does not requireM1 to do anything that it is unable to do. This
“feasibility” of M† allows us to claim that a controller,M†

2, exists such thatM1◦M†
2 =B M†

(consider a controller which simply passes inputs to outputs identically iff that input is
defined inM†). By Theorem 3.1, the controllability ofL(H†) defines a bisimulation
relation with respect toL(G) and6uc; hence, by a similar argument as in Eqns. 6 and 7,
M† is matchable in the presence of disturbances. By assumption,M̂ contains all other
behaviors that are matchable in the presence of disturbances; hence,

M† ⊆B M̂ , andL(H†) ⊆ L(Ĥ).
ThereforeL(H†) = L(Ĥ) which, for deterministic FSMs, yieldsM† =B M̂ .

The conjecture of (DiBenedettoet al., 1994, 1995, 1996) that the BSCP can be solved in
the I/O FSM model matching framework has been verified. This is insufficient, however, to
conclude that the strong model matching paradigm is more general than the feedback loop
of supervisory control. Section 7.3 below investigates this further by discussing a means
to map an instance of the SMMP (specifically, SMMP–D–MB) to the Ramadge–Wonham
SCT paradigm.

7.2.1. An Example of Solving the BSCP as FSM Model Matching

Consider using the I/O FSM model-matching framework to solve the BSCP on the systems
shown in Figures 4 and 5. The converted models are shown in Figures 14 and 15
respectively where the output associated with a marked state is “1” (recall6uc = {σ4}).

414 BARRETT AND LAFORTUNE

Figure 14. I/O FSM representing desired behavior (cf. Fig. 4).

Figure 15. I/O FSM representing plant (cf. Fig. 5).

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 415

Figure 16. (a) Maximal matchable behavior and (b) associated controller.

Given these two finite-state machines, the maximal matchable behavior in the presence of
disturbances and the corresponding controller,M2, can be found using the method described
in (DiBenedettoet al., 1996) and are shown in Figure 16. The maximal behavior corresponds
to the automaton shown in Figure 6 (up to the completion of the transition function).

7.2.2. Solving BSCP–NB as FSM Model Matching

Although the Basic Supervisory Control Problem for prefix-closed languages can be solved
in the realm of finite-state machine model matching, the case of non-prefix-closed languages
has not been addressed. Non-prefix-closed languages can lead to blocking solutions in
Supervisory Control Theory; hence, a more general problem, the BSCP–NB, is required.

According to the model translation procedures presented in Section 6, an instance of
the BSCP–NB translated to the FSM model matching framework (assuming marked states
have an output value “1”) would require an additional condition such as “all input sequences
can always be continued to sequences that produce 1-outputs.” As is the case in the SCT
framework, an iterative procedure would be required in the FSM model matching framework
that removes input sequences that cannot be extended to sequences that end with a 1-output.
The algorithm for solving the BSCP–NB in the FSM model matching framework would
need to be iterative for the removal of illegal sequences may result in behavior not matchable
in the presence of disturbances; thus, the SMMP–D–MB would need to be solved again
after each “trimming” operation.

7.3. Solving FSM Model Matching as the BSCP

This section describes how the SMMP–D–MB can be solved as an instance of the BSCP
(specifically, the BSCP–NB). Thus, I/O FSM model matching can be solved as a supervisory
control problem.

416 BARRETT AND LAFORTUNE

In the previous section where the BSCP is solved in the I/O FSM framework, the set
of FSM inputs forM1 and M were defined over the same alphabets, i.e,V = U . When
V 6= U (as is often the case when solving the SMMP–D–MB) it is necessary to use the
Syncautomaton to model the I/O FSM composition operator in the SCT paradigm.

Previously, it was shown in the Language Inclusion Lemma that, in deterministic set-
tings, behavioral inclusion for I/O FSMs is equivalent tomarkedlanguage inclusion of
corresponding automata; therefore, any useful means of determining “feasible” behavior
must maintain deterministic models. Consider, then, the following procedure to generate
a DFSA that represents the (not necessarily controllable) set of marked languages corre-
sponding to sub-behavior of a DFSM that can be matched by a DFSM. The procedure is
given the acronym DCM meaning “deterministic and consistent Moore automaton.”

Procedure: DCM
Step 1 : Given DFSMsM1 andM where

M1 = ((W,U),Y, S1, λ1, γ1, s1,0)

M = ((W,V),Y, S, λ, γ, s0),

generateH andG such thatM
sct7−→ H (DFSA) andM1

sct7−→ G (DFSA). Every state inH
andG is marked as belonging to the classmos. The classmos holds the meaning “output
state”. Note that the dead-states ofM1 andM are not present inH andG.

Step 2 : Mark only the initial state of theSyncautomaton as belonging to the classmos,
and form the parallel compositioñG = Sync||G. Form the parallel composition ofH ,
SyncandG: H̃ = H ||G̃. In the parallel composition a resulting composite state ismi -
marked if and only if all constituent states aremi -marked, and a state ismos-marked iff
both constituent states aremos-marked. Furthermore, if two states are composed that do
not share the same output marking then the resulting state does not have an associated out-
put value (or the output could be considered NULL). Define6 = W∪V∪U and6uc = W.

Step 3 : ∀t ∈ Lmos(H̃), remove allmos-marked statesxH̃ = δH̃(xH̃0, t) from H̃ for which
the output is NULL, i.e.,hH̃(xH̃) 6= hG̃(xG̃) wherexG̃ = δG̃(xG̃0, t). Perform the “trim”
operation (removes states which are not accessible with respect toxH̃0 or coaccessible with
respect to the remaining states inXH̃mos), and call the resulting DFSA automatoñH∗.

Note: ∀t ∈ Lmos(H̃
∗), there exists a unique output marking class, that is, a state can only

produce a single output. This fact results from the following:

1. every transition inM1 generates an output,

2. G̃ is deterministic, and

3. afterH is composed withG̃ the above Step 3 will remove all output states that do not
“agree” with the unique output marking following tracet in G̃.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 417

Figure 17.Resulting deterministic Moore automaton with consistent state outputs.

Denote the transformation of DFSMM to the deterministic and consistent Moore automaton
H̃∗ (which is dependent onM1 andG̃) by (M1,M)

dcm7−→ (G̃, H̃∗). The automatonH̃∗ is
called consistent, for every state ofH̃ ∗ reached by some trace of eventst has an output class
which is consistent with the output class of the state inG̃ reached byt .

As an example of DCM, consider the FSMsM and M1 of Figure 12. The automata
H andG in Figure 12 illustrate Step 1 of the DCM procedure. ComposingH andG as
described in Step 2 of DCM yields the automatonH̃ shown in Figure 13. The deterministic
automatonH̃ ∗ of Figure 17 illustrates Step 3 of DCM where NULL outputmos-marked
states are removed and the resulting automaton is trimmed.

Given the ability to translate models from each framework to the other, it is now possible
to present the major result of this section.

THEOREM7.2 Given DFSMs M1 and M where

M1 = ((W,U),Y, S1, λ1, γ1, r1)

M = ((W,V),Y, S, λ, γ, r);
let M2 be any solution to the SMMP-D-SB, if such a solution exists, i.e.,

M1 ◦ M2 =B M̂, and

M̂ ⊆B M,

whereM̂ is a DFSM. Let H,G, G̃, H̃ , and H̃∗ result from(M1,M)
dcm7−→ (G̃, H̃∗). Define

H† to be the automaton representing the solution to the BSCP–NB givenH̃∗, G̃ and
6uc = W with non-blocking behavior determined by mos-marked states, that is,Lmos(H

†)

is the supremal controllable sublanguage ofLmos(H̃
∗) with respect toL(G̃) and6uc = W.

Finally, let PW,V(H†)
I O7−→ M†. If M† is nontrivial, then

(i) M † ⊆B M,

(ii) A controller, M†
2 , can be constructed from H† such that M1 ◦ M†

2 =B M†, and
∀(s1, s

†
2) ∈ S† : W((s1, s

†
2)) = W(s1); hence, M†

2 is a solution to the SMMP-D-SB
with respect to M1 and M.

418 BARRETT AND LAFORTUNE

(iii) M̂ ⊆B M†,

(iv) If M̂ satisfies condition (3) of the SMMP-D-MB problem statement, that is,M̂ is the
largest deterministic behavior that can be matched in the presence of disturbances, then
M̂ =B M†.

Proof: Each part of Theorem 7.2 is given particular attention below.
(i) By the construction ofH̃∗ andH† we have∀ j ∈ {1, . . . , |O|} :

Lmj (H
†) ⊆ Lmj (H̃

∗) ⊆ Lmj (H̃) = Lmj (H ||G̃) ⊆ Lmj (P
−1
W,V(H)).

Projecting onto the setW ∪ V yields

Lmj (PW,V(H
†)) = PW,V(Lmj (H

†)) ⊆ PW,V(Lmj (P
−1
W,V(H))) = Lmj (H),

which, by the Language Inclusion Lemma, impliesM† ⊆B M .

(ii) By the construction ofH̃∗ andH† we have∀ j ∈ {1, . . . , |O|} :

Lmj (H
†) ⊆ Lmj (H̃

∗) ⊆ Lmj (G̃).

Projecting onto the alphabet ofM1, W ∪U , yields

∀ j, PW,U(Lmj (H
†)) ⊆ PW,U(Lmj (H̃

∗)) ⊆ PW,U(Lmj (G̃)) = Lmj (G);
hence,Lmos(H

†) contains only traces which correspond to input/output sequences that are
possible in the plant,M1. To show that there existsM†

2 such thatM1 ◦M†
2 =B M† consider

the following construction usingH† = (XH†, 6H†, δH†,actH†, xH0†,XH†
m
):

DefineF = ((W,V,Y), (W,U), SF, λF, γF, r F), where

SF ⊆ XH†

r F = xH0†

λF((w, v, y), s) =
 δH†(t, s) if [(t = w) ∨ (∃u ∈ U such thatt = vu)]∧

[y = hH†(δH†(t, s))]
θF otherwise

γF((w, v, y), s, s′) =



(∅,u) if [w = ∅] ∧ [δH†(vu, s) = s′]∧
[y = hH†(s′)]

(w,∅) if [v = ∅] ∧ [δH†(w, s) = s′]∧
[y = hH†(s′)]

(µ,µ) if s′ = θF

undefined otherwise.

Examining the definition of FSM composition, it is evident thatM1 ◦ F =B M†, and
M†

2 = F is a compensator which produces the desired result.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 419

Consider now, the implications of the controllability ofLmos(H
†) with respect toL(G̃)

and6uc = W. By Theorem 3.1 and Definition 2.8 the following equalities are true
∀xH† = (xH , xSync, xG) ∈ XH† :

6uc(xH†) = 6uc((xH , xSync, xG))

= 6uc((xSync, xG))

= 6uc(xG).

BecausePW,V(H†)
I O7−→ M† and M† =B M1 ◦ M†

2, the above equalities imply that
∀(s1, s

†
2) ∈ S† : W((s1, s

†
2)) = W(s1); hence,M†

2 is a solution to the SMMP-D-SB
with respect toM1 andM .

(iii) Define H̃∗W,V = PW,V(H̃∗). Let M̂
sct7−→ Ĥ and H̃∗W,V

I O7−→ M̃∗W,V . By the Language

Inclusion Lemma,M̂ ⊆B M̃∗W,V if and only if Lmj (Ĥ) ⊆ Lmj (H̃
∗
W,V),∀ j . We will show

containment for each marked language by induction on the length of traces inLmos(Ĥ).

(Basis of induction): For tracet such that|t | = 0, t = ε andxĤ0
= δĤ(xĤ0

, t). Further-
more, xH̃∗

W V0
= δH̃∗

W V
(xH̃∗

W V0
, t), and by constructionhĤ(xĤ0

) =
hH̃∗

W V
(xH̃∗

W V0
) = ∅ which we can associate with its own marking

classm∅. Thus,t ∈ Lm∅(Ĥ) andt ∈ Lm∅(H̃
∗
W,V).

(Inductive hypothesis): Assume for all tracest ∈ L(Ĥ) of length |t | = n, [t ∈
Lmi (Ĥ)] ⇒ [t ∈ Lmi (H̃

∗
W,V)].

(Inductive step): Now, we show iftσ ∈ Lmj (Ĥ) (|tσ | = n + 1), thentσ ∈
Lmj (H̃

∗
W,V):

Let t ∈ Lmi (Ĥ) be of lengthn; hence, t ∈ Lmi (H̃
∗
W,V).

Chooseσ such thattσ ∈ Lmj (Ĥ), and letxĤ = δĤ(xĤ0, t).
t ∈ Lmi (H̃

∗
W,V) implies there existst ′ ∈ P−1

W,V(Lmi (H̃
∗
W,V)) such

thatt ′ ∈ Lmi (H̃
∗). Let (xH , xSync, xG) = δH̃∗((xH0, xSync,0, xG0), t ′),

and identify:

1. xH with its corresponding states in M , and

2. xG with its corresponding states1 in M1.

Sincet ∈ Lmi (H̃
∗
W,V) we also know thathH(xH) = hG(xG) = yi . Now,

tσ ∈ Lmj (Ĥ) ⇒ x ′̂H = δĤ(xĤ , σ) andhĤ(x
′̂
H) = hH(x

′
H) = yj

⇒ ŝ′ = λ̂(σ, λ̂(t, r̂)) andγ̂ (σ, λ̂(t, r̂), ŝ′) = yj .

420 BARRETT AND LAFORTUNE

There are two possible cases concerning the identity ofσ :

Case 1:σ ∈ W ⇒ ∃s′1 = λ1(σ, s1) andγ1(σ, s1, s
′
1) = yj

⇒ ∃x′G = δ(xG, σ) andhG(x
′
G) = hH(x

′
H) = yj

⇒ (x′H , xSync,0, x′G) = δH̃∗((xH , xSync,0, xG), σ) and

hH̃∗((x
′
H , xSync,0, x′G)) = yj

⇒ t ′σ ∈ Lmj (H̃
∗)

⇒ tσ ∈ Lmj (H̃
∗
W,V),

Case 2:σ ∈ V ⇒ (by FSM composition)∃u ∈ U such that

∃s′1 = λ1(u, s1) andγ1(u, s1, s
′
1) = yj

⇒ ∃x′G = δ(xG,u) andhG(x
′
G) = hH(x

′
H) = yj

⇒ (x′H , xSync,0, x′G) = δH̃∗((xH , xSync,0, xG), σu) and

hH̃∗((x
′
H , xSync,0, x′G)) = yj

⇒ t ′σu ∈ Lmj (H̃
∗)

⇒ tσ ∈ Lmj (H̃
∗
W,V),

which completes the proof by induction thatLmj (Ĥ) ⊆ Lmj (H̃
∗
W,V),∀ j .

Define a submachine of̃H∗, HReq, such that

Lmos(HReq) = P−1
W,V(Lmos(Ĥ)) ∩ Lmos(H̃

∗).

SinceLmos(Ĥ) ⊆ PW,V(Lmos(H̃
∗)) it is evident16 that PW,V(Lmos(HReq)) = Lmos(Ĥ), and

Lmos(HReq) ⊆ Lmos(H̃
∗).

For brevity, make the following associations for all commonly defined tracest ∈ L(H̃∗):
1. Associatext

H = δH(xH0, PW,V(t)) in H with st = λ(PW,V(t), r) in M .

2. Associatext
G = δG(xG0, PW,U(t)) in G with st

1 = λ1(PW,U(t), r1) in M1.

3. Associatext
Ĥ
= δĤ(xĤ0, PW,V(t)) in Ĥ with ŝt = λ̂(PW,V(t), r̂) = (st

1, s
t
2) in M̂ .

Note thatHReq, H† andH̃∗ are all defined on the common automataH , G andSync, so for
commonly defined traces we have:

xt
HReq
= xt

H† = xt
H̃∗ = (xt

H , xt
Sync, xt

G) = δH̃∗((xH0, xSync,0, xG0), t).

Furthermore, sincêM ⊆B M we can associatêst with st (which is associated withxt
H) for

all commonly defined tracest .

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 421

Now, consider the implications of̂M being matchable in the presence of disturbances:

∀(st
1, s

t
2) ∈ Ŝ,W((st

1, s
t
2)) =W(st

1) ⇒ ∀xt
Ĥ = (xt

H , xt
G) ∈ XĤ ,

6uc(x
t
Ĥ) = 6uc(x

t
G)

⇒ ∀(xt
H , xt

G) ∈ XĤ ,

6uc((x
t
H , xt

G)) = 6uc(x
t
G)

⇒ ∀(xt
H , xt

Syncx
t
G) ∈ XHReq

,

6uc((x
t
H , xt

Sync, xt
G) = 6uc(x

t
Sync, xt

G),

which defines a bisimulation relation betweenHReq and G̃ with respect to6uc. Since
Lmos(HReq) ⊆ L(G̃), Theorem 3.1 yields thatLmos(HReq) is a controllable sublanguage of
Lmos(H̃

∗) with respect toL(G̃) and6uc. By supremality, then, we obtain:

Lmos(HReq) ⊆ Lmos(H
†).

We also have containment for each marked language becauseHReq andH† are both defined
on the same state-space ofH̃ ∗, and each state of̃H∗ has a unique output marking. The
Language Inclusion Lemma yields:

M̂ ⊆B M†. (8)

(iv) From Eqn. 8 and the result of part (ii) above, we conclude thatM† is matchable (with
respect toM and M1) in the presence of disturbances and contains any other determin-
istic sub-behavior,M̂ , that is matchable (with respect toM and M1) in the presence of
disturbances; hencêM ⊆B M†.

If M̂ satisfies condition (3) of the SMMP-D-MB problem statement, that is,M̂ is the
largest deterministic behavior that can be matched in the presence of disturbances, then
becauseM1 and M are deterministic,M̂ contains any other deterministic behavior that
can be matched in the presence of disturbances. As shown in part (ii) above,M† is a
deterministic behavior that can be matched in the presence of disturbances, thusM† ⊆B M̂
and

M̂ =B M†.

Given DFSMsM1 andM , the solution of the SMMP-D-MB as an instance of the BSCP-NB
is summarized as follows:

1. Transform the DFSMs to Moore-type automata, i.e.,M1
sct7−→ G andM

sct7−→ H .

2. Determine every possible closed-loop behavior by composing the plant,G, with Sync
to form G̃.

3. Determine the largest legal subset of the desired behavior by using DCM to formH̃∗.

422 BARRETT AND LAFORTUNE

Figure 18. I/O FSM to be matched.

Figure 19. I/O FSM representing plant.

4. Find H† representing the solution to the BSCP-NB (with respect toH̃∗, G̃, and6uc)
where non-blocking behavior is determined bymos-marked states.

5. The largest deterministic behavior that can be matched in the presence of disturbances

is PW,V(H†)
I O7−→ M†.

6. A controller, M†
2, that realizesM† can be constructed fromH† (as described in the

proof of Theorem 7.2).

It is important to emphasize that the construction of the controllerM†
2 is of polynomial

complexity asM†
2 is built from H†, and thus it doesnot involve the deterministic projected

automatonPW,V(H†) for which the construction is exponential in the worst case.
The above item 4 uses the relationship between controllability of a language and bisim-

ulation with respect to uncontrollable events discussed in Theorem 3.1.

7.3.1. An Example of Solving FSM Model Matching as the BSCP–NB

Using the I/O FSMs shown in Figures 18 and 19, the previous results are applied to find the
controller that generates the maximal matchable behavior in the presence of disturbances
(thedead stateis not shown).

Given the two state diagrams of Figures 18 and 19, the first step of the procedure is
to generate the corresponding Moore state diagrams with the appropriate markings. The
resulting two Moore machines are shown in Figures 20 and 21.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 423

Figure 20.Moore machine,H , to be matched (cf. Fig. 18).

Figure 21.Moore machine,G, representing plant (cf. Fig. 19).

Figure 22.Maximal matchable behavior with disturbances (Solution to BSCP–NB).

The two Moore type machines are modified as described in DCM to formH̃∗ andG̃ which
are then sent to BISIM–BSCP–NB to solve the BSCP–NB with the markings representing
output states. The solution to the BSCP–NB is shown in Figure 22. As can be seen in
Figure 22, themos-marked states of the controller alternate revealing that system outputs
occur only after a command input inV is translated to a control inputU . The controller
corresponding to Figure 22 which solves the SMMP–D–MB is shown in Figure 23. Had
the SMMP–D–MB been solved in the I/O FSM framework, the resulting controller would

424 BARRETT AND LAFORTUNE

Figure 23.Solution to SMMP–D–MB (cf. Fig. 22).

have been precisely that shown in Figure 23 with, of course, a completed transition function
to a “dead” state.

7.4. Discussion of FSM Model Matching and SCT

As shown in Subsections 7.2 and 7.3, when the finite-state machines or automata repre-
senting the “plant” and reference model are deterministic the BSCP can be solved as an
instance of SMMP–D–MB in the I/O FSM framework, and the SMMP–D–MB can be
solved as an instance of the BSCP–NB for a family of marked languages. Thus, for the
problems addressed, no framework is more general than the other.17

The ability to compare model matching and supervisory control results from being able to
associate language controllability to bisimulation and bisimulation to “behavioral control-
lability” (the matchability of a behavior in the presence of disturbances). For each problem,
a bisimulation relation with respect to the uncontrollable occurrences can be found which
constrains the set of states that can be paired. The particulars of each framework, such as
multiple transition labels, are manipulated so that each type of problem can be solved using
a bisimulation relation.

An important feature of the Strong I/O FSM Model Matching Problem is that it is posed
in a semantics for which the notion of equivalence is finer than language equivalence. FSM
equivalence requires that not only do traces generate the same final output, but every output
along the trace must match also. This notion of equivalence is somewhat analogous to
Ready Trace equivalence (see Appendix A) which requires the active event sets to match
along traces. Supervisory Control Theory is posed in the language semantics; thus, the
BSCP has little meaning in nondeterministic settings requiring more detailed semantics. In
this way, I/O FSM Model Matching can be compared to SCT: I/O FSM Model Matching has
the potential to deal with processes described in both deterministic and nondeterministic
settings without altering the meaning of equivalence, while SCT (in its original setting)
deals with equivalence at the language level which does not extend to nondeterministic
settings where automata “branching structure” is important.

Strong I/O FSM Model Matching does not presently deal with issues of blocking; fur-
thermore, it is questionable as to whether the FSM composition operator can deal with

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 425

partial observations. The ability to handle issues of blocking and partial observations are
significant contributors to the elegance and utility of Supervisory Control Theory, and it
has been shown here that using multiple marked languages allows I/O modeling issues to
be addressed by SCT.

It is important to note, however, that the generality of the two problems has little to do
with the fact that I/O FSMs have multiple labels on each transition while the automata used
to represent marked languages in supervisory control have one, i.e., Mealy machines and
Moore machines are equivalent in their ability to express behavior. The generality, in the
sense described, is derived solely from the semantics in which the problem was posed and
solved.

8. Conclusions

In this paper concepts from a different semantics, bisimulation, were used to solve the Basic
Supervisory Control Problem in deterministic settings. It was shown that, given language
inclusion of deterministic automata, controllability of languages is the same as bisimulation
of automata with respect to uncontrollable events. Further, these bisimulation relations can
be found by partition refinement for which there exist very efficient algorithms. One such
algorithm by (Fernandez, 1990), based on Paige and Tarjan’s famous algorithm (Paige and
Tarjan, 1987), finds the coarsest partition of a family of binary relations on a set,S, with
complexityO(c mlog(n)) wherem is the size of the relation,n is the size ofS, andc is
a bound on the largest image set of any element of the relation. This algorithm is used in
a very efficient “partially” on-line solution of the BSCP: given two automataH andG, a
partition that induces the greatest bisimulation relation,8uc, with respect to6uc is found
in O(|6uc|(nH + nG) log(nH + nG)) time andO(nH + nG) space. The on-line supervisor
maintains only a copy ofG, H , and the partition representing8uc and performsO(|6c|)
“1-step-lookahead” operations at each current state. Thus, the size of the on-line supervisor
is O(|6|(nH + nG)) (compare toO(|6|(nH nG))).

The Supervisory Control Theory initiated by (Ramadge and Wonham, 1989) was carefully
compared to the Strong I/O FSM Model Matching Theory of (DiBenedettoet al., 1994,
1995, 1996). It was formally established that, in deterministic settings, the “Strong I/O FSM
Model Matching with Measurable Disturbances to A Maximal Set of Reference Behaviors
Problem” can be solved by mapping it to an instance of the “Basic Supervisory Control
Problem” and vice-versa. Strong I/O FSM Model Matching does not presently deal with
blocking behavior or partial observations; however, several important relationships between
the two paradigms were exposed.

The generality of I/O FSM Model Matching was compared to that of Supervisory Control.
Being posed in a “stronger” semantics will allow nondeterministic problems to be solved
in the I/O FSM Model Matching framework without altering the meaning of machine
equivalence; however, all of the problems presented in (DiBenedettoet al., 1994, 1995,
1996) are based on deterministic “plants”. Supervisory Control Theory bases equivalence
on languages, and therefore, must be altered to handle nondeterministic settings; recent
work in that regard can be found in (Fabian, 1995, Heymann and Lin, 1996, Inan, 1994,
Overkamp, 1997, Shayman and Kumar, 1995).

426 BARRETT AND LAFORTUNE

Figure 24.Example nondeterministic automata.

A Investigation of The Language Inclusion Lemma in Nondeterministic Settings

Throughout this work it has been stressed that deterministic models be used for comparisons
with Supervisory Control Theory. The fundamental reason for requiring deterministic
automata is that SCT was originally proposed in the language semantics, and language
equivalence is the weakest requirement that is necessary and sufficient for deterministic
automata equivalence.

DiBenedettoet al. introduce a notion of equivalence that (with respect to the converted
marked automata) in addition to requiring the languages of two automata to be the same,
also requires that the sequences of visited marked states be the same. Consider the two
automataA1 andA2 shown in Figure 24. Every marked language ofA1 andA2 is equivalent;
however, the two automata are not behaviorally equivalent because

03
1(abd, xA1,0

) = {(∅y2y5y6)} 6= {(∅y1y3y6)} = 03
2(abd, xA2,0

),

that is, although the final output marking of the state reached by the traceabd matches in
both automata, the sequence of markings visited along the trace do not match. Hence, the
Language Inclusion Lemma (LIL) presented in Section 7.1 does not hold.

The above example demonstrates that the LIL is not true when both automata are non-
deterministic. The following question can be asked: “can the LIL be used when only one
of the automata is nondeterministic?” For insight into the answer to this question consider
the automatonA′1 shown in Figure 25. Although every marked language ofA′1 is contained
by those ofA2, we still do not haveA′1 ⊆B A2 for the same reason as above. Hence, the
Language Inclusion Lemma does not hold when any of the automata are nondeterministic.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 427

Figure 25.Example deterministic automaton.

Acknowledgements

We gratefully acknowledge Maria DiBenedetto and Alberto Sangiovanni–Vincentelli for
the many enlightening discussions on the topics of bisimulation relations and I/O FSM
model matching, and for sharing with us a copy of their report (DiBenedettoet al., 1996).
We also acknowledge relevant comments from the reviewers of this paper, as well as the
anonymous reviewers of (Barrett and Lafortune, 1997).

This research was supported in part by NSF grant ECS-9057967 and ARO grant DAAH04-
96-1-0377.

Notes

1. In order to make our presentation as self-contained as possible, we are including in Sections 2 and 5 definitions
and problem formulations that have appeared in prior works. In all of these cases, references to the literature
are given.

2. Reference (Cassandraset al., 1995) is not the original reference for the concepts reviewed in this section, but
rather a tutorial introduction to these concepts.

3. The deterministic projected automaton is only of theoretical use here in proofs, so we are not concerned with
its exponential complexity construction.

4. L denotes the prefix-closure of the languageL.

5. Reference (Kumaret al., 1991) also shows that the boundO(|6|(nH nG)) is tight for constructing an automaton
that generatesK↑.

6. In a sense to be made more precise in Section 4; refer to the discussion in Section 4.4.

7. Greatest bisimulation relations will be denoted by8.

8. The term “menu” refers to the active event set at a particular state. Menus are not considered “available” as a
resource to supervisors in SCT; supervisors only observe traces of events.

9. More specifically, the worst-case running time of the Fernandez algorithm is O(c mlog(n)) wherec is a
homogeneous upper bound on the number of times any label appears at any state, i.e.,c is the largest image set
size due to any event (Fernandez, 1996). Here, the algorithm is only used ondeterministicautomata soc = 1.

428 BARRETT AND LAFORTUNE

10. The definition used here is a modified version of that found in (DiBenedettoet al., 1995); the notation associated
with the output sequences of the FSMs was condensed.

11. This definition has been modified from that presented in (DiBenedettoet al., 1995) in terms of notation.

12. A concept defined in (DiBenedettoet al., 1995); rougly speaking, the inverse automaton is simply the original
state machine using only the output labels on each transition.

13. In (DiBenedettoet al., 1995)M is referred to asM̃ which is not the same machine as defined earlier in this
paper; hence, we use the over-bar to distinguish these FSM here.

14. This is a modified version of a conversion method suggested in (Sangiovanni-Vincentelli, 1995). While the
method suggested in (Sangiovanni-Vincentelli, 1995) may work, the method presented here maintains the
intuitive notion of assigning the set of uncontrollable events6uc to be the set of disturbancesW.

15. With some abuse of notation, the curly braces are not shown for singleton outputs, and we will not distinguish
an output class from its associated output value.

16. It is straightforward to derive the followingFact: Let K , M andL be languages. IfK = P−1(M)∩ L where
M ⊆ P(L), thenP(K) = M . Furthermore,K = P−1[P(K)] ∩ L, i.e.,K is normal with respect toP andL.

17. We maintain that the use of multiple marked languages in this paper does not alter Supervisory Control Theory,
for existing SCT and language union concepts are used in dealing with the multiple marked language models
described herein. That is, our use of multiple sets of marked states is merely a modeling issue within the
existing body of Supervisory Control Theory.

References

Arnold, A. 1994.Finite Transition Systems. NJ: Prentice Hall.
Baeten, J. C. M., and Weijland, W. P. 1990. Process algebra.Cambridge Tracts in Theoretical Computer Science

18.
Barrett, G., and Lafortune, S. 1996. A bisimulation approach to the supervisory control of discrete event systems.

Proc. of 34th Annual Allerton Conference on Communication, Control and Computing. Allerton Park, IL.
Barrett, G., and Lafortune, S. 1997. Using bisimulation to solve discrete event control problems.Proc. 1997

American Control Conf. Albuquerque, NM, pp. 2337–2341.
Bloom, B., Istrail, S., and Meyer, A. 1988. Bisimulation can’t be traced: Preliminary report.Proc. of 15th Annual

SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
Cassandras, C., Lafortune, S., and Olsder, G. 1995. Introduction to the modelling, control and optimization of

discrete event systems.Trends in Control. A European Perspective. A. Isidori, ed., Springer-Verlag, pp. 217–
291.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1994. Model matching for finite state ma-
chines.Proc. of 33rd Conf. Decision and Control. Lake Buena Vista, FL. pp. 3117–3124.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1995. Strong model matching for finite state
machines.Proc. of 3rd European Control Conference. Rome, Italy, pp. 2027–2034.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1995. Strong model matching for finite state
machines with non-deterministic reference model.Proc. of 34rd Conf. Decision and Control. New Orleans,
LA. pp. 422–426.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1996. Model matching for finite state ma-
chines. Cadence Berkeley Laboratories Technical Report.

Fabian, M. 1995. On object oriented nondeterministic supervisory control. Ph.D. thesis, Chalmers University of
Technology.

Fernandez, J. 1990. An implementation of an efficient algorithm for bisimulation equivalence.Sci. Comput.
Programming13: 219–236.

Fernandez, J. 1996. Personal communications.
Hadj-Alouane, N. B., Lafortune, S., and Lin, F. 1994. Variable lookahead supervisory control with state informa-

tion. IEEE Trans. Automat. Contr. 39-12: 2398–2410.
Hayes, J. P. 1993.Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.
Heymann, M., and Lin, F. 1996. Discrete event control of nondeterministic systems.Tech. Report # CIS 9601,

Department of Computer Science Technion, Israel Institute of Technology.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 429

Heymann, M., and Meyer, G. 1991. An algebra of discrete event processes.Tech. Report NASA Memorandum
102848. NASA, Ames Research Center, Moffett Field, CA.

Inan, K. 1994. Nondeterministic supervision under partial observation.11th International Conference on Analysis
and Optimization of Systems: Discrete Event Systems. G. Cohen and J. Quadrat, eds., Springer-Verlag, pp. 39–
48.

Kohavi, Z. 1978.Switching and Finite Automata Theory, 2nd ed. New York: McGraw-Hill.
Kumar, R., Garg, V., and Marcus, S. I. On controllability and normality of discrete-event dynamical systems.Syst.

Contr. Lett. 17: 157–168.
Overkamp, A. 1997. Supervisory control using failure semantics and partial specifications.IEEE Trans. Automat.

Contr. 42-4: 498–510.
Paige, R., and Tarjan, R. 1987. Three partition refinement algorithms.SIAM J. Comput. 16-6: 973–989.
Ramadge, P. J., and Wonham, W. M. 1987. Supervisory control of a class of discrete event processes.SIAM J.

Control Optim. 25-1: 206–230.
Ramadge, P. J., and Wonham, W. M. 1989. The control of discrete event systems.Proc. of the IEEE77-1: 81–98.
Sangiovanni-Vincentelli, A. 1995. Personal communications.
Shayman, M., and Kumar, R. 1995. Supervisory control of nondeterministic systems with driven events via

prioritized synchronization and trajectory models.SIAM J. Control Optim. 33-2: 469–497.
Thistle, J. G., Malham´e, R. P., Hoang, H. H., and Lafortune, S.1995. Blocking, modularity, and feature interactions

in distributed systems. Preprint.
Wonham, W. M., and Ramadge, P. J. 1987. On the supremal controllable sublanguage of a given language.SIAM

J. Control Optim. 25-3: 637–659.

