ﬁ“ Discrete Event Dynamic Systems: Theory and Applications, 8, 377-429 (1998)
'~ © 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Bisimulation, the Supervisory Control Problem and
Strong Model Matching for Finite State Machines

GEORGE BARRETT grbarret@eecs.umich.edu
Department of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Avenue,
Ann Arbor, Ml 48109-2122

STEPHANE LAFORTUNE stephane@eecs.umich.edu
Department of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Avenue,
Ann Arbor, MI 48109-2122

Abstract. A fundamental relationship between the controllability of a language with respect to another language
and a set of uncontrollable events in the Supervisory Control Theory initiated by (Ramadge and Wonham, 1989)
and bisimulation of automata models is derived. The theoretical results relating bisimulation to controllability
support an efficient solution to the Basic Supervisory Control Problem. Using (Fernandez, 1990) generalization of
the partition refinement algorithm of (Paige and Tarjan, 1987), itis possible to find a partition which represents the
supremal controllable sublanguage of an automaton with respect to the language of another automaton and a set
of events in a worst-case running time of@pg(n)), wherem is the number of transitions amds the number of

states. Utilizing the bisimulation property of language controllability and derived relationships between automata
languages and input/output finite-state machine behaviors, a precise relationship is formally derived between
Supervisory Control Theory and the system-theoretic problem posed by (DiBenedait{d 994) called Strong
Input/Output FSM Model Matching. Specifically, it is proven that in deterministic settings instances of each
problem can be mapped to the other framework and solved.

Keywords: supervisory control, bisimulation, model matching, controllability

1. Introduction

This paper presents the results of an investigation of the relationship between supervisory
control of discrete-event systems (DES) (Ramadge and Wonham, 1989), bisimulation re-
lations (Arnold, 1994, Baeten and Weijland, 1990), and strong input/output finite-state
machine model matching (DiBenede#b al., 1994, 1995, 1996). The approach taken
throughout this text is from the point of view of automata as DES models (Cassatdras
al., 1995). A basic understanding of DES supervisory control is assumed, for the introduc-
tory material given here is brief. One of the main focal points of this paper is the exploitation
of the level of information contained in a finite-state automaton model when solving the
supervisory control problem.

Of particular interest is the fact that an automaton model contains not only the language
information about a DES but also the branching structure of allowable sequences of events.
This level of detail of information allows the supervisory control problem to be generalized
to several process-theoretic semantics. A semantics used in computer science which has not
previously been applied to the supervisory control problem is the bisimulation semantics.
A discussion of bisimulation is given and results are presented for its application to the
supervisory control problem.

378 BARRETT AND LAFORTUNE

Supervisory control is not the only system-theoretic problem for which bisimulations can
apply. One other such class of problems is strong input/output (I/O) finite-state machine
(FSM) model matching introduced in (DiBenede#ibal,, 1994). This model matching
problem is closely related to supervisory control, hence bisimulation is also related to 1/0
FSM model matching. The other key focus of this paper is to demonstrate how bisimulation
can be used to solve both supervisory control problems and model matching problems; thus,
an underlying similarity of the two types of problems is exposed.

The contributions of this work are:

1. Theoretical results relating bisimulation and controllability are presented in Section 3
which support an efficient algorithm for solving the “Basic Supervisory Control Prob-
lem.” The algorithm, presented in Section 4, is based on a partition refinement algorithm
which finds the coarsest relation partition with complexatymlog(n)) wherem is the
number of related pairs in the relation amd the number of elements in the partition.
Understanding how bisimulation, as the descriptive semantics, relates to supervisory
control lends insight toward utilizing weaker semantics, e.g., trajectory model (Hey-
mann and Meyer, 1991), failure, failure trace, ready, ready trace, and trace (language)
(Baeten and Weijland, 1990).

2. Section 5 reviews I/O FSM model matching as presented in (DiBenestetto 1994,
1995, 1996). In addition, we present a precise relationship between “behavioral equiv-
alence” of FSMs in the /0 FSM model matching framework and bisimulation between
two FSMs.

3. Thebehaviorof I/O FSMs is related to the language properties of associated Moore
automata in section 7.1. Itis shown that, in deterministic settings, the notlwehafv-
ioral inclusionof I/O FSMs presented by (DiBenedettbal., 1995, 1996) is equivalent
to the inclusion of families of marked languages represented by Moore automata.

4. ltis also shown in Section 7 that, in deterministic settings, I/O FSM behaviors that
are achievable in the presence of measurable disturbances are precisely those whose
associated set of marked languages is controllable.

5. In Section 7.2 a method is presented for solving the “Basic Supervisory Control Prob-
lem” by mapping itto an instance of the “Strong /O FSM Model Matching with Measur-
able Disturbances to A Maximal Set of Reference Behaviors Problem.” (DiBenedetto
et al., 1996) give examples of solving the BSCP in their I/O FSM framework; how-
ever, they do not present a formal proof that the supremal controllable sublanguage is
obtained. We establish, through formal proof, an exact relationship between the two
paradigms.

6. A method is presented in Section 7.3 for solving the “Strong I/0 FSM Model Matching
with Measurable Disturbances to A Maximal Set of Reference Behaviors Problem”
of (DiBenedettoet al., 1995 and 1996) in deterministic settings by mapping it to an
instance of the “Basic Supervisory Control Problem”.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 379

This paper is organized as follows. Section 2 gives a brief introduction to results from for-
mal language theory, DES, the Basic Supervisory Control Problem, and bisimulation. An
efficient algorithm for finding bisimulation relations is also discussed. Section 3 discusses
the relationship between controllability in the supervisory control problem and bisimula-
tion. Section 4 discusses using bisimulation to solve the Basic Supervisory Control Problem
with both off-line and on-line strategies. Section 5 discusses I/O finite-state machine model
matching, its operators and some of its associated problems. The relationship between I/O
FSM model matching and supervisory control is discussed in Sections 6 and 7. Section 6
presents methods of discrete-event model conversion so the two paradigms may be com-
pared, and Section 7 formally establishes a link between Strong I/0 FSM Model Matching
and Supervisory Control Theory. The paper concludes with Section 8 where the basic ideas

are summarized. Parts of this paper, in its preliminary form, have appeared in (Barrett and
Lafortune, 1996, 1997).

2. Preliminaries
2.1. Automata and Languages

Forthe investigation and discussion of discrete-event systems at alogical level of abstraction,
the automaton will be used as the primary descriptive model.

DEFINITION 2.1 (Cassandras etal., 1995 deterministic finite-state automaton (DFSA)
denoted G, is a six-tuple

G= (Xev Eev 5(37 acth Xco0, XGm)

that generates the languagi&G) and marks the languagé,(G) where

Xs = finite set of states of G
Y = setof events associated with the transitions in G
3s = partial transition function of G§; : Xs x s — Xg
act;(x) = active event set of G at stateex X, i.e., subset of;
for whichd (X, -) is defined
Xe = Initial state of G

Xsm = asubset of X which representmarkedstates.

The transition functiod; is not necessarily total as in the “standard” definition of automa-
ton, and all automata in this paper are assumed to be accessible, i.e., all unreachable states
have been deleted from the model X{,, is omitted, then it is understood th&t,, = X;.
Furthermore, it is common to define the empty trade be the trace containing no events.
The transition functiong;, is often extended from events to traces recursively:

3s(Xs, €) = Xg,

380 BARRETT AND LAFORTUNE

andfort € %, 0 € X!
3 (Xs, to) = 85(8s(Xe, 1), 0).

If G is a nondeterministic finite-state automaton, tlig(xs, t) is a set. The notion of
language mentioned above is now formally defined.

DEFINITION 2.2 (Cassandras et al., 1995) The languageneratedby G is:
L(G) = {t € T} : 8c(Xeo, 1) is definedl.

Likewise, the special subset 6G) that represents thmarked language of G is defined
as:

Lm(G) = {t € L(G) : 8c(Xeo,) € Xem}-

The notion of a set of marked states can be generalized to several sets of marked states
{Xm1, ---» Xmk}. This generalization is discussed arameterized stateis (Arnold,
1994); thus, a single automaton can be viewed as marking several languages. This idea of
multiple marking sets is useful when states are considered to have associated “outputs” as
is the case of Moore type automata; in this case, it is possible to associate an output value
with a set of specifically marked states. Such a generalization was first used in the context
of supervisory control in (Thistlet al., 1995).

Two common operations on automata are the product, denqtadd the parallel compo-
sition, denoted|. These two operations are designed to describe the interactions between
discrete-event systems modeled as automata.

DEFINITION 2.3 (Cassandras et al., 1995) Tipeoduct of two automata Gand G, where:

Gl = (XGl’ EGla 8@1, aCTGIa Xeo1 XGml)

GZ = (Xez, EGZa 8G27 aCtSZa Xco2s Xsz)

is
G1 x G2 = (X1 X Xgzy X1 N Lz, 6, actslxz’ (Xso1» Xs02)» Xom X Xame)
where
_ (861(Xa1, 0), 82(Xe2, 0)) if 0 € ACk; (Xsy) N ACL,(Xs2)
3 ((Xe1, Xs2), 0) = { undefined otherwise
and

actslxz (Xa1> Xs2) = ACls1(Xe1) N ACk,(Xs2)-

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 381

A resulting composite state is considered to be marked if and only if both constituent
states are marked. Intuitively, the product machine represents the set of possible actions
that are common to both machin@s andG», hencel(G; x Gy) = L(G1) N L(G,) and
Lm(G1 x G2) = Lm(G1) N Lim(G2).

DEFINITION 2.4 (Cassandras et al., 1995) Tiparallel composition of two automata G
and G is

G1l|G2 = (Xa1 X Xez, T U Xy, 8, actsmzs (Xo1> X02)» Xom X Xone)
where

(861(Xe1, 0), 862(Xez, 0)) if 0 € ACH; (Xs1) N ACK,(Xs,)

_ (861 (Xe1, 0), Xg2) ifo e acts; (Xe)\ Zez
Oe1: X2) =4 (x| beaXer 0) it o € aCks(Xer)\ e
undefined otherwise

and

act,, (Xor, Xe2) = [ACk1(Xe1) N AC2(Xs2)] U [ACk: (Xer) \ o] U [ACk:(Xe2) \]

With the parallel composition, only events common to the alphabets of both automata
must be synchronized on, and as in the product a resulting composite state is considered to
be marked if and only if both constituent states are marked.

In addition to the above operations, itis convenient to define the natural projection operator
which “removes” events from a trace which do not belong to a particular event set.

DEFINITION 2.5 (Cassandras et al., 1995) Thatural projections P, : (X, U X)* —
¥ifori =1,2are
P (e) = €
o ifo el
€ ifo gl
Py, (so) = Py, (S)Py (o) forse (21U X))* 0 € (1 U X)),

Pzi (o) =

and the corresponding inverse maps'P. = — 2%1%2)" are

Pt i={se (Z1UZy)": Py (s) =t}
The definitions ofP(-) and P~1(.) are extended to sets in the usual manner. Given the
definition of inverse projection, the result of the parallel composition can be written as:

L(G1lIGp) = P LG N P HL(GY)]
Ln(G1l|G2) = P Lm(G1)] N P Lm(G2)].

382 BARRETT AND LAFORTUNE

*“Supervisor”’

t S(t)

Figure 1. Feedback loop of supervisory control.

It is also convenient to consider an automaton which represents the projected language of
G;. This “projected” automatonP(G;), is denoted here using the same notation used
for language projection, i.e., for some set of evedis,, L£(P:an(G1)) = Pran(L(G1)).
Because the projected automaton, as itis used here, only needs to capture the projected lan-
guage aspects &, it will be assumed thal®;,,(G,) is a DFSA. If uniqueness d?,.,,,(G1)
is required, then it can be assumed tRaf,(G;) is its minimum-state representatidithe
inverse projection of an automaton can be defined in a similar manner.

Finally, when considering multiple automata, it is common that not every event is defined
in every automaton model. For this reason, the symb@lvith no subscripts) is used to
denote the universe of events for all automata of interest.

2.2. The Basic Supervisory Control Problem

Supervisory Control Theory (SCT) deals with the control of discrete-event systems. A
point of view is assumed that some behavior of a plant modeled as a DHgjéd and

must be disabled by a controller callegd@pervisofRamadge and Wonham, 1987, 1989).
This control scheme is depicted in Figure 1. Associated @itils a set of uncontrollable
events,X,c C Xs which cannot be directly disabled by control; hence, the supervisor is a
function

S:L(G) — {y €2¥ : Ty C y).
The set of enabled events tHatcan execute after a tratés given by
acts/g(t) = S(t) Nact(3s(X, t))- 1)

Note thatS/ G does notimply quotient in this usage; ratHetG meanss controlled byS
as described in Egn. 1. Furthermof& S/ G) is the generated language of the closed-loop

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 383

system under the control & andLn(S/G) = L(S/G)NLn(G). Consider a sublanguage

K of £(G) which is the desired set of traces for the controlled discrete-event system. Let
K be represented by the automatdn= (X, X, §,, acty, X0, Xum), i.€., K = L(H).

The language is said to becontrollable(with respect toZ(G) andX,) if4

KZueNLG) C K. (2)

This relationship betweeK and£(G) can be interpreted several ways. At the language
level, Egn. 2 says that for a desired language to be controllable the execution of an uncon-
trollable event must not generate a trace that is nét.irBecause it is assumed here tKat

is represented by the automatin controllability can also be interpreted at the state level.
Equation 2 states that fé to be controllable then for every state pair (Xs) in the product
automatorH x G the conditionPyx, (act(Xs)) € Py, (act,(x,)) must be satisfied where
Ps,. () represents the natural projection onto the set of uncontrollable events. Furthermore,
if it is given thatK < £(G), then the condition becomes an equality. These conditions
indicate that controllability can be viewed as a relation on the set of statésof. This

state interpretation is explored later in Section 3.

DEFINITION 2.6 Basic Supervisory Control Problem (BSCP)(Ramadge and Wonham,
1987) Given a DES modeled by DFSA B,c € X, and desired legal language, K
K C L(G), build supervisor S such that:

1. L(S/G)C K

2. For any other Ssuch that£(S/G) C K, L(S/G) C L(S/G), i.e., L(S/G) is as
large as possible.

The solution to the BSCP is called theénimally restrictive solutiofMRS): L(S/G) =
K*, whereK' is the supremal controllable sublanguage<ofvith respect tol(G) and
Zuc (Wonham and Ramadge, 1987).

A common solution technique, the “standard” algorithm (Wonham and Ramadge, 1987),
for the BSCP is to form the automaton prodiittx G and iteratively remove states which
violate the controllability condition or are not reachablen|fandn, are the number of
states inH andG respectively, then the worst-case running time of this type of algorithm
is O(|X|nyne) using the technique in (Kumaat al., 1991) for cleverly pruning the state
space or using the constructive approach in (Hadj-Alowediaé, 1994)° More “efficient™
algorithms exist which are based on an interesting relation between controllability and
bisimulation.

Because the blocking behavior of a system is of interest, we definalaocking super-
visor as one which allows the closed loop system to complete any trace in its generated
language to a marked trace.

DEFINITION 2.7 Nonblocking Version of BSCP (BSCP-NB)YRamadge and Wonham,
1987) Given DES GZy¢ C X, and desired legal marked language, &K Li1(G), with K

384 BARRETT AND LAFORTUNE

assumed to b€,(G)-closed, buildhonblockingsupervisor S such that:
1. Ln(S/G)C K

2. For any other nonblocking’Such that(S/G) C K, L(S/G) C L(S/G), i.e.,
Ln(S/G) is as large as possible.

The solution to the BSCP-NB is called th@nimally restrictive nonblocking solution
(MRNBS): £L(S/G) = KT andLn(S/G) = K.

The standard method for calculatitg' is by an iterative algorithm that starts with an
automatorH that marksK. The product automatotj x G, is formed as in the BSCP, and
the resulting automaton is pruned in an iterative manner until convergence. The iterative
procedure consists of (i) deleting states that violate the controllability condition, and (ii)
deleting states that are not accessible or coaccessible, i.e., “trimming”. Because trimming
does not perserve controllability, removing states which violate controllability must be
performed following each trim operation. The complexity of timmin@i&,,n;); hence
if K is not prefix-closed, the worst-case running time of this algorith@ e |(n,ng)?).

2.3. Bisimulation Relations, Partitions and the Bisimulation Semantics

In what follows,x —— x’ denotes that there exists a transition with the lab&bm state
X to statex’.

DEFINITION 2.8 Let H and G be as in Subsection 2.2 bsimulation relation of H and
G with respect taz; C X, U X; is a binary relationyr € X, x X, satisfying (Arnold,
1994, Baeten and Weijland, 1990):

1. If (X4, %), 0 € T and %, —> X/, then there is a xsuch that ¥ — x. and
Y (X, Xg)-

2. f (X4, %), 0 € T and % — x., then there is a X such that ¥ — x/, and
Y (X, Xg)-

3. (Bisimulation with markingyr (x,,, Xs) implies %, € X, iff X¢ € Xgn.

For fixed parameteX;, bisimulation relations are closed under arbitrary unions (Arnold,
1994, Baeten and Weijland, 1990), so there exisgseatestbisimulation relatiorf. Au-
tomataH and G are bisimilar with respect toX,, denotedH<5,G, if there exists a
bisimulation relation ofH and G with respect tox, such that each state éf and each
state ofG appears in the relation arig,,, Xs,) is in the relation.

For example, it is easily verified th&t; and F, of Figure 2 are bisimilar with respect
to the event &”. The greatest bisimulation relation &f; and F, with respect to &”,

d, C X, X Xg,, is easily verified to be:

P = {(A,D,(B,2),(B,3),(B,4),(C,2),(C,3),(C,4),(D,2),(D,3),(D,4,
(E, 2), (E,3), (E, 4)}.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 385

Figure 2. Example of simulation relation.

On the other handf; and F, are not bisimiliar with respect to the total event 3et=
{a, b, c}; for instance, afterd” occursF; can be at a state where"‘can never occur, but
“c” can always occur followingd” in F,; henceF, 45 F2.

DEFINITION 2.9 Let H and G be as in Subsection 2.2situlation relation of H and G
with respect taxs € X, is a binary relationys € X,, x X satisfying (Arnold, 1994):

1. If ¥ (X4, %), 0 € Tsand x, — X/, then there is a X such that ¥ — x. and
Y (X, Xg)-

2. (Simulation with markingy (x,;, Xs) implies %, € Xy, iff X¢ € Xgm-

If ¥ is a simulation relation and@r(x,, Xs) then xs simulates x. AutomatonH is
simulatedby automatorG with respect ta=., denotedH C5 G, if there exists a simulation
relation betweerH and G with respect toX. such that every state df appears in the
relation and(Xy,, Xs0) is in the relation (ifXs = =, then we will drop the subscript on
C.) Clearly, if H andG are deterministic, the” CG iff L(H) € £(G) andLn(H) <
Lm(G).

As an example of simulation relation, consider again Figure 2 Witk {a, b, c}. Au-
tomatonF; is simulated by automatoR, with respect taz; however,F; is not simulated
by F; with respect tox (by the same argument given above far >5 F,). Notice that
L(F1) = L(F,). This example also shows the inability of language to capture nondeter-
ministic behavior described by the branching structure of finite-state automata.

Itis often convenient to consider a bisimulation relation between an automaton and itself.
The greatest bisimulation relation of an automaton with itself (with respect to some event
setX,) is called the automatongreatest autobisimulatio(Baeten and Weijland, 1990)
(with respect tax). Observe that the greatest autobisimulation relation of an automaton
is an equivalence relation on the states of the automaton.

DEFINITION 2.10 Let G be a finite-state automaton (not necessarily deterministic) with
greatestautobisimulation relatiob (with respectt®;.) Denote by the set of equivalence

386 BARRETT AND LAFORTUNE

classesinduced b¥y. Thenormal form of G, denoted by KG), is the automaton generated
by using the equivalence classe@dis the states of ING) (Baeten and Weijland, 1990). The
states of NG) inherit marking information and allincoming and outgoing event transitions
from the previous states of G.(I$) can be called the minimum state realization of G.

In the trace or language semantics, two discrete-event systems modeled byAyBS&

A,, are considered equivalent if they have equivalent trace sets;{&;) = L(Ay) and
Lm(A1) = Ln(A2). The bisimulation semantics, however, has a more detailed requirement
for DES equivalence. Within the bisimulation semantics two DES modeled by automata
A; and A, are equivalent if theinormal formsare equal (isomorphic), i.eN(A;) =

N(A2) (Baeten and Weijland, 1990). Figure 2 shows a case where two automata are
equivalent in the trace semantics but not equivalent in the bisimulation semantigg. If
and A, are both deterministic, theN(A;) = N(Ap) iff L(A) = L(A) andLn(Ay) =
ﬁm(AZ)-

Bisimulation is a more detailed semantics than the trajectory model semantics in (Hey-
mann and Meyer, 1991) and ready (accepting trace (Arnold, 1994)), ready trace, failure
(refusing trace (Arnold, 1994)), failure trace, and trace semantics in (Baeten and Weijland,
1990), that is, bisimulation equivalence implies equivalence in all of the above listed se-
mantics. Indeed, bisimulationisodetailed (Bloonet al., 1988) for many purposes, i.e., it
distinguishes DES that are indistinguishable given the observation of a sequence of events.
Referring to Figure 2 again, upon observing the eveal$ a supervisor could not distin-
guish F; from F, without receivingmenu$ of possible events from the DES at each state
along the patlab. Despite bisimulation being finer than trace equivalence, algorithms exist
for bisimulation equivalence that are more efficient than analogous algorithms for regular
languages. If the automata being processed by these algorithms are deterministic, then the
bisimulation results are equivalent to trace results.

2.4. Using Partition Refinement to Find Bisimulation Relations

As previously stated in Section 2.3, the greatest autobisimulation relation of an automaton
(with respect tox) is an equivalence relation making it representable as a partition of
the states of the automaton. Furthermore, it has been shown that the problem of finding
the greatest autobisimulation relation of an automaton with respect to an evéig et
equivalent to theoarsest relational partitioproblem (Fernandez, 1990, Paige and Tarjan,
1987).

The algorithm of (Paige and Tarjan, 1987) for solving the coarsest relational partition
problem considers the case of asingle relation &} = 1. (Fernandez, 1990) generalizes
the algorithm of Paige and Tarjan to handle the case whah > 1. When applied to an
automatonA, the algorithm of Fernandez runs in time bounde¥®ym log(n)) and space
bounded by @m + n) wherem is the number of transitions iA, andn is the number of
states inA.

The greatest bisimulation relation of two automeitandG with respect ta 5, denoted
dy,, can be found by first forming the autobisimulation (with respec i@ of the union
of H andG and then considering only the ordered state-pairs of the formx;). As

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 387

A1: b a a c a,b
—
A B C
b

Figure 3. Example automata.

mentioned above, the greatest autobisimulation can be found by solving the coarsest re-
lational partition problem; hence, it is in this manner that the coarsest relational partition
induces the greatest bisimulation relatidg,. To illustrate this fact, the following sub-
section presents an example. The computatiofl dfas worst-case time complexity of
O(Zal(ny + ng) log(ng + ng)) wheren, andng are the number of states iH and G
respectively.

2.4.1. Example of Finding Coarsest Stable Relational Partition

The details of the efficient algorithm can be found in (Fernandez, 1990). Here, a simple

example of a “naje” implementation of the algorithm in tabular form is presented.
Consider the problem of finding a bisimulation relation between the two autofgdad

Az, shown in Figure 3. States are shown in capital letters or numbers, while transitions are

shown by lower case letters. Blocks in a partitioned set are denoted by Roman numerals.
Begin by forming a block, I, of all of the states 8§ and A,, and put this block into a

set,[1p:

I ={l} ={{A,B,C, 1,2, 3,4}}

The basic iteration ofl; involves choosing a block,, in the partition and determining its
preimage set

Ei,7(J) = {x|3X" € j such thak %X

Each block of the partition is examined asplit using preimage sets. The algorithm termi-
nates wherl; = IT;_;. For example, the transition relation of Figure 3 can be expressed

388 BARRETT AND LAFORTUNE

in tabular form showing from each state which block is reachable for a given event label:

a b

-th\JHOm)‘
SES SRSl

This tabular form allows the preimage sets to be determined by inspection: group all
states with identical transitions. Notice that the block | is not stable with respect to itself,
so it splits. The refined partition is (here, block names are being reused):

I, = {,II} = {{A,C, 1, 3,4}, {B, 2}}.

Repeating this process yields the tabular transition relation:

(on

a
1
(.
1
I
I
I

In the terminology of (Paige and Tarjan, 1987) block Il isitter of blocks | and II. In

this case, block | is also a splitter. (Splitters are common to both tive aijorithm shown

here and the efficient algorithms in (Fernandez, 1990, Paige and Tarjan, 1987). The key to
the efficiency of the improved algorithms is the intelligent chosing of splitters.) Because
the partition contains blocks that can be split by the splitters, the partition &atdewith
respect to the splitters. Forming groups with similar transitions yields the partition:

N WEREO>
et BRSSP

I, = {LILILIV } = {{A, 1, 3}, {C, 4}, {B}, {2}}.

Notice, blocks Ill and IV are singletons, so they cannot be split; thus, they need not be
examined in the tabular transition relation:

a b c
Allll 1T @
111V | @
3(IV | @
clin n g
4 11 11 @

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 389

Examining this table yields:
I3 = {LILILIV,V } = {{A}, {1, 3}, {C, 4}, {B}, {2}},

where only one block has elements frémandA,, namely C,4). Looking at the transition
behavior of these two states yields:

|a b ¢
cilim m]
4 |11)

Hencells is the coarsest partition ok,, U X,, that is stable with respect t@, b, c}
transitions. This partition is equivalentto the greatest autobisimulation relatidg orX ,,,
namely the greatest bisimulation relati@to, 0N [Xa U Xo] X [Xa U X,,], OF

Bauto={(A, A),(1,1),(1,3),(3,1),(3,3),(C,C),(C,4,(4,C), (44, (B, B), (2 2)}.

The greatest bisimulation relation 8§ and Az, ®,, can be taken as the subset3)f;io
thatis in X, x X,,, specifically:

P, = {(C,).

The greatest bisimulation relatiod®,, found in this subsection does not contain all
states ofA; and A, (or even the initial states) so it can be concluded taand A, are not
bisimilar.

3. Controllability and Bisimulation

This section presents the main theoretical results of this paper that relate controllability
with bisimulation. These results support efficient algorithms that will be discussed later for
solving supervisory control and related problems.

THEOREM3.1 Giventwo deterministic finite-state automata-A (X, X a1, 8a1, ACty, Xa o)
and A = (Xn, X, Sas @Chy, X o) WhereL(Ar) € L(A), lety C X,y x X, be the set of
state pairs that are reachable by tracesdigA;). LetX,c € ¥, be the set of uncontrollable
events.

ThenL(A,) is controllable with respect td (A,) and Z¢ if and only ify is a bisimulation
relation of A and A with respect tox,,.

Proof 3.1: For deterministic automata, bisimulation is simply two-way simulation; hence
we need only showC (A1) Zyc N L(A2) C L(Ay) iff Ay is simulated byA, with respect to
Yue andA; is simulated byA; with respecttd, .. The language inclusion assumption gives
half of this requirement because for deterministic autonfa®,) € L(Ay) iff A; C Ay;
henceA; is simulated byA, with respect ta,,.

390 BARRETT AND LAFORTUNE

The burden of the proof rests upon showing that gi€éA;) C L(Az) we haveL(A;) X ¢
N L(A2) C L(Ay) iff Apis simulated byA; with respect taxc.

Using contraposition for showing simulation®s by A; with respectto the uncontrollable
events yields:

givenL(A;) € L(A2), then

LADZucN L(A2) Z L(A) & 3t € L(A1), Joue € Sucsuchthatoye & L(A) Atoye €

L(A).

& Xy = SauXavo, 1), Xy = Sp(Xpo0, 1), Joue € Xy
such thabyc € act, (X.) andoyc € acty,(Xa).

& WXu = 8A1(XA1,01), IXpe = (X0, 1) such tha-tzuc N
aCty(Xp) € Tuc N aCy (Xa)-

& Xy = (SAI(XALO5 t)7 Xy, = SAZ(XA2A07 t) such thab(Az is
not simulated by,, with respect tax .

< A is not simulated byA; with respect taz,.
[|

The greatest bisimulation relatio®,., between two automata with respect to the set
of uncontrollable events may lieo large, that is, it may contain unreachable state-pairs.
The importance of is derived from the need to be able to determine if the bisimulation
is violated by reachable state pairs or if the bisimulation is violated by unreachable state
pairs. In the latter case, the violation is not of consequence.

Theorem 3.1 requires both automata to be deterministic. Generally, for nondeterministic
automata, bisimulation is much too strong a requirement for language controllability. That
is, bisimulation with respect to the set of uncontrollable events is, in general, sufficient for
language controllability, but it is not necessary.

DEFINITION 3.1 Let a DES be modeled by the DFSAE (X;, ¥, 86, acts, Xs0), and

let a desired behavior be modeled by the DFSA=H X, =, 8y, act,, X,,). Denote by

[H x G]' the automaton formed using the standard algorithm (Wonham and Ramadge,
1987) for computing the supremal controllable sublanguag@(éf) with respect taZ(G)

and X, i.e., forming the product Hx G and iteratively pruning states which 1) violate
the controllability condition or 2) are unreachable; henga[H x G]1) = L(H x G)*.

Theorem 3.1 implies that for two automataandG as in Definition 3.1 wher&€(H) C
L(G), L(H) is controllable with respect t&€(G) and X, if and only if the set of all
reachable state- pairs &f x G is a bisimulation relation oH andG with respect taz,,..
The following theorem characterizes the supremal controllable sublangu#dgél ofwith
respect toZ(G) and Z .

THEOREM 3.2 Let G and H be as in Definition 3.1 such tha¢H) € £(G) and£(H)t =
L([H x G]"). Denote the (accessible) state spacdtdfx G]' by S. Let the set of

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 391

uncontrollable events bE,,¢, and let®d,. be the greatest bisimulation relation between H
and G with respect t&,.. Then

1. (Xnos Xc0) € St iff Dyc(Xuo, Xs0), and

2. (Xu, Xs) € STiff dyc(Xy, Xo) and(X,, Xs) is reachable fronix,,, Xs,) by a sequence of
state transitions that never leadg,.

Proof 3.2. Implications 1 and 2 are proved seperately.

1. Follows directly from Theorem 3.1. The existence of a nonempty controllable sublan-
guage mandates the existence of a bisimulation relation with respeg tioat contains
(Xuo, Xg0) @nd vice-versa.

2. LetR = (Xg, Xk, 8g, aCty, Xgo) Where

XR = {XR € XH X XG|XH € XHvXG € XG: Xg = (XHvXG) € q’uc}

XRO (XHOa XGO)

Vo e X
{ (84 (X, 0), 86 (Xs, 0)) if (84 (X4, 0), 86(Xs, 0)) € Xg

3r((Xu, %), 0) = 1 | ndefined otherwise
actk((Xu, Xs)) = {0 € Z|8x((Xy, Xo),) is defined.

Definexg to be the reachable state spaceR;)hence,Xl is the greatest bisimulation
relation betweerH and G with respect toX. that is reachable fromx,,,, Xs,). For
(Xu, Xs) € X, Definition 2.8 implies:

(@) Vouc € Tucif X, =5 x/,, thendx., such that, —5 x, and(x,, x.) € X}

(b) Voyc € Ty if Xo —5 x., then3x, such thaix,, —% x/, and(x/,, x,) € X1.

Now, let (%, %;) € S'. By language inclusion:

Ouc,

Voue € Sycif % —5 £/, then3k, such thaks —% %, and(X,, %) € S'.

H* G

By controllability:

Voue € Sy if % —% %, then3x,, such thak, =5 %, and(x,,, X.) € S'.
St is a bisimulation relation with respect ®,. and is as large as possible (by the
supremality ofC(H)™1), further S’ only contains state pairs reachable froxg,, Xs,).
Xl is the greatest bisimulation with respectdg. reachable fron(x,,, Xs,); hence,
St = XQ, and by the construction O(Q, (X4, X5) State pairs can only be members of
St if they are reachable frorx,,, Xs,) by sequences of state transitions that remain in
®ye. As a consequencg(H)t = L(R). []

392 BARRETT AND LAFORTUNE

The greatest bisimulation relation betwdémandG with respectt®,,¢, @, can be found
by partition refinement in time bounded I&(| X,c|(n, + ng) log(n, + ng)) (Fernandez,
1990), wheren, andn, are the number of states kh andG respectively. Perhaps limiting
the importance of this result is that a reachability test is still required to eliminate extraneous
unreachable states, i.e., forming the greatest bisimulation relation in a running time of
O(|Zye|(ny + ng) log(n,, + ny)) does not allowC(H)' to be determined inmlog(n)’,
too. This issue is currently being investigated; however, for many applications (such as
constructing on-line supervisors) it is often the case that reachability is not of concern.

4. Solution to the Supervisory Control Problem using Bisimulation
4.1. Off-Line Solution to the BSCP

Let a DES and desired behavior be modeled as in Definition 3@ agdH, respectively,
whereL(H) € £(G) andL(H)" = L([H x G]). Let every state be marked@andH,
and let the set of uncontrollable eventshg.

Presented here is an algorithms®-BSCP, that uses bisimulation to find a DFSA that
generate€(H)".

Off-Line Algorithm: BisIM-BSCP

Step 1. Find the coarsest stable relational partitibh,of G andH with respect to the set
of uncontrollable eventg;,, using the algorithm in (Fernandez, 1990). Denot@tythe
greatest bisimulation relation &f andG (with respect tox,¢) induced byTI.

Step 2. If (Xu0, Xs0) IS NOt in the equivalence relation represented hythen letR be the
empty automaton. Otherwise, [Bt= (X, Xg, 8, acty, Xz,) Where

Xg = {XR € Xy x XG|XH € Xy, X € Xg, Xg = (X4, Xg) € q>n}

Xro = (Xos Xeo)

Vo € &
_ (8u(Xu, 0), 8(Xs, 0)) if (8u(Xn, 0), 86(Xs, 0)) € Xg
5R((XHv XG)» U) - { undeflned otherWISe

ack((Xy, X)) = {0 € Z8:((Xy, Xs), 0) Iis defined.
Step 3.Let RT be the accessible submachineRof
THEOREM4.1 The automaton Rgenerated by following the algorithBisim-BSCPgen-
erates the supremal controllable sublanguageC¢H) with respect tol(G) and . If

(Xuo» Xso) IS NOt in the bisimulation relation induced by the partitibin then R is the empty
automaton andC(H)" = @. Otherwise L(R") = L(H)".

Proof 4.1: Follows from the results of Section 3. [|

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 393

4.2. Solving the Nonblocking Version of the BSCP

The non-blocking version of the Basic Supervisory Control Problem can also be solved
using bisimulation relations by iterating on Steps 1-3 of the above algorithm. More specif-
ically, let a DES be modeled by the DFSA = (X, X6, 3, aCls, Xs0, Xom), and let a
desired behavior be modeled by the DFEA= (X,,, 4, 84, @cty, X0, Xum). Considered

here is the case wheX,, # X; and X,,,, # X,,. Assume that,(H) € £L,»(G) and

L(H) C L(G). LetLm(H)" = Ln([H x G]1), and let the set of uncontrollable events be
Yue-

Off-Line Non-Blocking Algorithm: BISIM-BSCP-NB
Step 0. Initialize such that

R = the empty automaton
HO = H,
m° = {X,UX¢}
i = 0.
Step1l.i =i +1. LetH' = (X!, 5, 8., act,, x!,,, XL), where
X = (x4 € Xy|3xs € X such thai(x,, Xs) € Pt}
300.0) = | tisinad othemioe

XL = Xynn XL

Find the coarsest stable relational partitidfi, of G and H' with respect to the set of
uncontrollable events;,, using the algorithm in (Fernandez, 1990).

Step 2. If (X0, Xeo) IS not in the greatest bisimulation relation Bf and G (with_ re-
spect toXyc) induced byIT', then letR' be the empty automaton. Otherwise, Rt =
(Xks Zr, 8y, ACH, Xpo, Xk Where
X =[xz € X1 x Xe|Xy € X1, X € X, Xg = (X, Xg) € Pryi}
X = Xz € X, x Xs|Xu € X}, X6 € Xoms Xa = (Xuy, Xo) € P}
Xeo = (Xno, Xco)
Yo e X

Sh((Xu, Xo), 0) = {

act (X4, X)) = {0 € T|8L((X4, Xo), o) is defined.

i
Hm?

(8, (X, 0), 86(Xe, 0)) i (8], (X, 0), 85(Xs, 0)) € XL,
undefined otherwise

Step 3.Let Rt = trim(R'). If R'" = R—1, then stop; otherwise go ®tep 1

THEOREM4.2 The automaton R generated at convergence following the algoritBrsim-
BSCP-NBgenerates the supremal controllable sublanguagé.afH) with respect ta’(G)
andXyc. If R'T is the empty automaton, thém(H)' = @; otherwiseL,(R'") = L (H)T.

394 BARRETT AND LAFORTUNE

o4 o, G
—@ ® -O——— @ DOs
Figure 4. H, Automaton representing desired language.

—@®— 2 2 @ s

Figure 5. G Automaton representing plant.

Proof 4.2: Follows from the results of Section 3 and the standard algorithm (Wonham and
Ramadge, 1987) for solving the BSCP-NB.]

4.3. BSCP Solution Example

This subsection demonstrates the off-line solution of the Basic Supervisory Control Prob-
lem using the greatest bisimulation with respect to the set of uncontrollable events. An
automaton that represents a desired language is shown in Figure 4. The plant automaton is
shown in Figure 5. ASSUME ¢ = {o4}.

To find the coarsest stable relational partition with respe<o we begin by forming a
partition, Ig, of the union of all the states iH andG:

Mo={l}={{A B,C,D,E,a,b,c,d}}

and determine the preimage set of bldcfue to the uncontrollable event to be:
E,;({A.B.C.D,E,a b, cd})={C}

Refining the initial partition with respect tE[j,}] (1) yields the partition:
Iy ={I,111}={{A B,D, E,a,b,c,d}, {C}}

which is stable with respectto boH@;j](l 1) andE[;}] (I'1'1) causing the partition refinement
algorithm to terminateR", shown in Figure 6, is the reachable part of the product machine
over possible state pairs b, (cf. Step 3 of BsiM-BSCP) where
o, = {(A,a), (A b), (A 0), (A d),(B,a), (B,b),(B,0), (B,d),
(D,a), (D,b), (D,c), (D,d), (E,a), (E,b), (E, ¢, (E, d)}.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 395

—@—

Figure 6. Solution to BSCP.

4.4. Discussion of Computational Complexity
Off-Line

Inspection of the off-line solution of Section 4.2 to the Basic Supervisory Control Problem
reveals that finding a partition that constrains the state-pairings allowed for the standard real-
ization (Cassandraet al., 1995) of the supervisor can be don&i | (n, +n) log(n,, +

ne)). Actually constructing R, the standard realization of the supervisor, by forming the
state-pairs still maintains the worst-case complex@y|>|n.ns), as previous efficient
methods for computing the supremal controllable sublanguage when the marked language
is prefix-closed.

As previous discussed, when the marked language is not prefix-closed computing control-
lable sublanguage and trimming must be iterated upon. Finding the partition representing
the greatest bisimulation relation with respeckq in O(mlog(n)) allows efficient deter-
mination of states that violate the controllability condition. This additional information is
useful in Step 1 of each iteration ofv-BSCP-NB and reduces the expected complexity
as compared to the equivalent step in the standard algorithm which constructs the product
automatorfirst with worst-case complexity o (mn).

The primary advantage of using partition refinement is that information is obtained about
which states violate controllabilityeforethe product automaton is formed. The improved
algorithm may be more practical for finding supervisory controllers of larger systems, as
discussed below, where constructing the entire product automaton is not desirable.

On-Line

If one has a small amount of computing power available for on-line computations, then
the reachability test of Step 3 of8M-BSCP can be avoided if the supervisor is generated
on-line, and Step 2 of BIM-BSCP only requires & (| X¢|) complexity “1-step-lookahead”
search over the set of controllable eventy, at each current state to ensure that the
bisimulationrelationis notviolated. The storage requirements for such an on-line supervisor
is O(|Z|(ny + ng)), for only the partition associated with the greatest bisimulation relation
with respect taz,, the plant model, and the specification modét|, need to be stored
(andnotthe product).

Specifically, the coarsest relational partition Xf, U X; with respect toX,, II, is
determined off-line and is one of the components stored by the on-line supervisor. The
automata models dfl andG are also stored by the on-line supervisor. During operation,
the on-line supervisor observes an event and determines the current state in the plant model

396 BARRETT AND LAFORTUNE

and the specification model from their respective transition functions. The supervisor then
uses the model transition functions and performs a “1-step-lookahead” search to determine
which state pairs are immediately reachable by controllable events; this operation is done
in O(]Z¢|) time. The supervisor then checks the list of state pairs to determine which
controllable events need to be disabled to prevent the bisimulation relation from being
violated. More precisely, for each pair of possible next statesx,), if x/, andx; are not

in the same block of1, then the event leading ta)(, x.) is disabled. Checking a state pair
against1 requiresO(1) time. In summary, off-line calculations for the on-line supervisor
requireO (] Zycl(ny +Nng) log(n, +ng)) time, and the on-line calculations are of complexity
O(]Z¢]) at each state. On-line storageQs| = |(n,, + Ng)).

5. Input/Output Finite-State Machine Model Matching

The problem of strong model matching for finite-state machines (FSMs), as posed by
(DiBenedetteet al., 1994, 1995, 1996), consists of finding a controller for a given open loop
system that results in a desired closed lbepavior(cf. precise statement in Section 5.1).

The resulting controller maps command signals in some commandtseatontrol signals

in some control sdd. It is claimed in (DiBenedettet al., 1995, 1996) that the supervisory
control problem in its basic form can be posed as a special case of model matching for finite-
state machines. This claim suggests /O FSM model matching may be more general than
the feedback loop of supervisory control in the Ramadge-Wonham paradigm (Ramadge
and Wonham, 1987, 1989). This section introduces strong I/O FSM model matching. In
Section 7, the above claim will be formally investigated. The remainder of this section is
organized as follows. Subsection 5.1 provides introductory material covering I/O finite-
state machines, FSM behavior and how behavioral equivalence relates to bisimulation.
The decision problems associated with strong I/O FSM model matching are presented in
Subsection 5.2, and Subsection 5.3 presents some behavioral inclusion problems associated
with strong I/O FSM model matching.

5.1. Input/Output FSMs, Behavioral Equivalence, and Bisimulation

This section deals primarily with basic definitions for FSMs and operations between FSMs
as given in (DiBenedettet al., 1994, 1995, 1996). As in (DiBenedetbal., 1995, 1996),

Greek letters are used for functions or relations, capital English letters represent sets, and
lower case represent elements. The numbers associated with definitions and theorems
correspond to section numbers used in this paper and are not necessarily those given in
(DiBenedettcet al., 1994, 1995, 1996) unless otherwise stated.

DerINITION 5.1 (DiBenedetto et al., 1995) Amput/output finite-state machine (1/O
FSM) is a 6-tuple F=(I, O, SA, y, r) with | the input alphabet, O the output alphabet, S
the set of states, : | x S — 25 the next-state function; : | x Sx S— 2° the output
function, and re S the initial state.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 397

The next-state function for sequences of inputs can be defined recursively.¥ ket
I x --- x | (k times) wherek is a finite integerk > 1. The next-state function for a
sequence of inputsX : 1X x S— 25is defined by

A(i0.8) = Alio.9)
Wigir. . ik-s) = [AHaiz. . ike1. 9.,

5eal(io,s)

and an output sequence associated with an input sequence ofkeagtéfined by

YX(o...ik-1,7) ={(0g...0 ... 0k-1)|0 € ¥(i1,S,S5+1) AS41 € A0, 9),] =
0,....k—1sg=r}.

From the above description of input/output sequences, it is evident thaetieviorof
a FSM in the framework of (DiBenedettt al., 1994, 1995) is identified with its set of
extended trace§Arnold, 1994) of the form
ijo Ojoijl Ojl cee iik—l Ojk—l’

whereij, € | andQ;, € O,k > 1.

Inthe sequel, we drop the qualifier I/0 for FSMs whenever it will be clear from the context.
It is common to label a transition due to inputhat generates outpaotwith the labeli /o.
If » andy always map to singletons, i.e., we can view them as funciiansx S — Sand
y 1l x Sx S— 0O, then the FSM is called a deterministic finite-state machine (DFSM).
Otherwise, the FSM is called a nondeterministic finite-state machine (NDFSM). If there are
multiple outputs due to the same inputhetween two states, then this will be represented
by multiple transitions with labels/o,, i /0, etc. LetZ(s) denote the set of applicable
inputs to the FSM at stage Similarly, letZ¥(s) denote the set of applicable input sequences
of lengthk at states. According to the semantics given in (DiBenededt@l., 1995), if an
inputi € | is not applicable at a stat thenA(i, s) = 6 wheref is a special state called
thedead state For every input, the next state relation for the dead state is the dead state. If
there are no outputs for a given transition, than s, s') = u wherep is called thesilent
output All transitions leading to the dead state have the silent output. Hereafter all FSMs
will be assumed to have a dead state and every transition defined at every state; the dead
state is always identifiable among the elementS @fe will call it 6), andZ (s) is implicitly
defined by the knowledge of

To compare FSMs in (DiBenedetobal., 1994, 1995, 1996) the notion of FSM behavioral
equivalence is introduced:

DEFINITION 5.2 (DiBenedetto et al., 19953Y Given DFSM k = (1, O, S;, A1, y1, 1) and
NDFSM k, = (1, O, S, Ay, 2, I'2), the behavior of FFis equivalent to the behavior oL F
denoted F =5 P, if

vk > 1, Vioil...ik_]_ S |k,
Yi(io- - ik-1,11) = yX(io. . .ik_1, I2).

In words, equivalence of FSMs is equivalence of their extended trace sets. Because one
of the FSMs must be a DFSM, behavioral equivalence is the same as bisimulation, i.e.,

398 BARRETT AND LAFORTUNE

behavioral equivalence indicates thgatand F, are bisimilar with respect to the input and
output alphabets. To formalize this concept, we present the following theorem.

THEOREMS.1 Let /i and F, be as in Definition 5.2, and let their respective state spages S
and $ contain only reachable states. Then+5 F; iff F; is bisimilar to F, with respect
tol x O.

Proof 5.1: Note that marking is not an issue here sifgeand F, are not defined to have
marked states; hence, the third condition in the definition of bisimulation is not relevant.

If : Let F; be bisimilar toF;, with respect td x O, then the normal forms df; and F,
are isomorphic (and deterministic becalsds deterministic), so clearli; = F».

Onlyif: Let F; =5 F, and construct a binary relatioR as follows.

(1) (uraeRrR

(2) Vk > 1, Vigiq...ik1 € | k, Vl’é S)»g(io codke1, 2), ()»E(Io ko1, 1), I’é) eR
By Definition 5.2 and construction &?, for all s; € S, reachable by sequenég; . . . ij

there exists & € S such thai(s;, s;) € R. If (5,) € R ands; £> s;, then the output

. i/o*
0is unique due to the determinismB{f. There exists, such thas, — s, ando* = o by
Definition 5.2 and the fact thatis unique. Becausg ands, are reachable with the same
input sequences;, s;) € R. Similarly, for alls, € S reachable by sequentg; . . . ij

there exists a uniqug € S such that(s;,) € R. If (s1, %) € R ands; '—/°> s,, then

there exists; such thats; e s, 0 = o ando is unique by Definition 5.2 and the fact
thato* is unique. s; ands, are reachable by the same input sequencés;ss,) € R.
Thus, R is a bisimulation relation andF; is bisimilar to F, with respect tol x O.

[

Evidently, if a NDFSM is behaviorally equivalent to a DFSM, then the normal form of
the NDFSM is deterministic. It will be said th&, and F, are equivalent iff; =5 F».
Examining the definition of behavioral equivalence reveals that it is defined in terms of at
least one of the FSM being deterministic, and it is this requirement that allows the statement
of Theorem 5.1. In general, equivalence of extended trace sets does not imply bisimulation.

The interaction of two I/0O FSMs (a controller and a plant) is modeled by the I1/O FSM
composition operation.

DEFINITION 5.3 (DiBenedetto et al., 1995) Given DFSM M and possibly NDFSM M
where

My = (U,Y, S, Aq, y1,11)

Mz = ((V,Y),U, S, A2, 12, 12),

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 399

M1 O NG
\ /
COMZ v/y O

Figure 7. Example of composition.

thecompositionof M; and M, is the FSM M o M, denotedM = (V, Y, §, &, 7, f) defined
as:

S=395x%
f = (ry,ra)
A, (s, %) = {(s;,splAueU,Tye,
S1 = A1(U, S) A

$; € A2((v,Y), %) A
ue)/2((1), Y)» 2, Sé) A

y =y1(u, 81, 8}
7, (51, %), (5,S) = {yeYFueU,
S; = A1(U, 1) A

Sé €)‘2((1)7 y)9 SZ) N
uey(y),ss))

Figure 7 shows an example composition between two FSMs.

5.2. Strong Model Matching Decision Problems

This section presents problems in strong I/O FSM model matching vexaatmatching
of behaviors is desired. The Strong FSM Model Matching Problem (SMMP) is as follows.

SMMP : Given DFSMsM; = (U, Y, S, A1, y1, 1) andM = (V,Y, S A, y, 1),
determine a dynamic state feedback compengdtoisuch that
Mz = ((V,Y),U, 42,2, 12), and
Mio M, =5 M.

The major result of [(Dibenedettt al., 1995), Theorem 3.2] states that the SMMP is solv-
able if and only if the inverse automaft@of M, M1, is simulated by the inverse automaton

400 BARRETT AND LAFORTUNE

w
“ ’s
v ontroller
M2
Y U W
““‘Plant”’
Ml

Figure 8. Feedback loop of the SMMP-D.

of My, Ml‘l. Intuitively, the machinévl, must map command inputs W to elements in
U which drive the plant FSMM;. The simulation requirement of the inverse automata of
M andM; can be viewed as requiring the existence ofgthat does not attempt to force
the plant,M4, to produce an output sequence that it cannot.

The problem of strong model matching with disturbance measurement (SMMP-D) is as
follows (DiBenedettcet al,, 1996).

SMMP-D : Given DFSMs M; = (W, U),Y, S, A1, y1, 1) and M =
(W, V),Y, S, A, y,r), determine a dynamic state feedback compensator
for M1, M2 = (W, V), Y), (W, U), S, A2, y2, 2), With y2 = (15", v5)
and p' = (W,V),Y) x Sx S — W, p¥ = (W, V), Y)x
S x & — U such that,” is the canonical projection and

1. MioM; =5 M.

2. ¥(s1.%) € S W(s1,) = W(s1) whereW(s) is the set of distur-
bances applicable at state

The canonical projection is simply the identity mapping of element/ifrom input to
output, i.e., ifw appearsin the input setW, V), Y), for a particular transition, them must
appear in the output sefyV, U), of that transition. With the introduction of measureable
disturbances, the feedback loop of the SMMP-D is described as that shown in Figure 8 (see
also [(DiBenedett@t al., 1996), Figure 9]).

No formal definition of I/O FSM composition is given in (DiBenedettal., 1996) for the
case of measurable disturbances; however, from its description and for the purposes here,
Figure 9 is taken as representative of FSM composition with disturbances. We assume that
only one input can occur at a time, i.e., a disturbance cannot occur while a command is
given and vice versa.

New machines are defined in (DiBenede#tbal,, 1995) for the case of measurable

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 401

M M M M
C] WOy ':'7 0 8.9/ @)~ :’ @uwly :2 @v /(B0
MjoM, MoM,
O (w. @)/y G (: T (Dv)/y O

Figure 9. Generalization of FSM composition when disturbances are present.

disturbances. Machindd andM; are modifications oM andM; where the disturbances
are present at the input and output of both machines. Theorem 4.1 of (DiBenetetto
al., 1995) states that the SMMP-D is solvable if and only if the inverse automatdris
simulated by the inverse automatbt] . The intuition for this result about the SMMP-D
is the same as for the SMMP with the constraint tilatcannot alter disturbances.

Both the SMMP and the SMMP-D adecisionproblems. Once a reference model is
created, all that need be checked is whether the reference model is simulated by the plant,
i.e., the desired behavior is feasible or not. This checking is performed by creating the
greatest simulation relation between the reference and the plant models which, fortunately,
also provides the correct state matching to perform the modified product. Thus, forming
the simulation relation decides and produces the solution to the problem.

If a solution does not exist, i.e., exact matching cannot occur, there is no indication from
the SMMP as to what sub-behavicould be matched. In order for the Basic Supervisory
Control Problem to be solved in the I/O FSM Model Matching framework, there needs to
be some mechanism for determining maximal or supremal solutions, that is, there must be
some way to cast model matching decision problems as optimization problems.

5.3. Strong Model Matching Inclusion Problems

As discussed in the previous section, the casexattmodel matching is not enough to
allow supervisory control problems to be solved using the formalisms discussed in (Di-
Benedetteet al., 1994, 1995, 1996). Additionally, there must exist some methodology of
dealing with matching some maximal set of desired behaviors. This problem is addressed
in (DiBenedettaet al., 1995, 1996) as matching a set of behavastainedn a reference
model.

DEFINITION 5.4 (DiBenedettet al., 1996)Given NDFSMs F= (I, O, S, A1, y1, 1) and
F, = (1,0, S, Ay, ¥2, I2), the behavior of Fis containedin the behavior of F, denoted
Fi1Cp Fy, if

vk > 1, Vioil . ik_]_ € Ik(rl),

YE0-ik-1,T1) € Y (0. ik_1,12).

This definition implies that the set of all input-output sequencds slich that the input se-
guence does not talkg to the dead state is a subset of the set of input-output sequerfees of

402 BARRETT AND LAFORTUNE

The problem of strong FSM model matching with a set of sub-behaviors contained in a
reference models is given in (DiBenedettoal., 1995) as:

SMMP-SB : Given DFSM M; = (U,Y, S, A1, 1,r1) and NDFSM M =
M, Y, S A, y,r), determine a dynamic state feedback compensator for
M1, My = ((V,Y),U, S, A2, 2, I2) such thatM; o M, =5 M where
M = (V.Y, S 4, 7,f)is anontrivial DFSM andVl Cz M.

For the sake of notational simplicity (DiBenede#tbal., 1995), the following notation is
usedforaNDFSM- = (1,0, S, A, y,r): F= (1,0, S A,r)whereA = {(i,s,5,0) €
| x Sx Sx O|g € A(i,s) A 0€ ¥(i,s,9)}.

GivenM = (V,Y,S A,r) andM; = (U,Y, S, Aq,ry), letM = (V,Y, S A, T) be
defined as follows:

F = (r,r)
S = {Se S x S[sis reachable frorn}
S = (s1,9)
§ = (s,9)
(v,5,5,y) € A if JueU suchthaiu,s;, s, y) € A1 A
(v,s8,9,y) € A

(v,5,0,y) € A otherwise.

To solve the SMMP-SB problem, any particular deterministic behavier @an be chosen
and a controller constructed by looking at ¥eU andY information at the corresponding
state-pairs oM. (DiBenedettet al., 1995) state that the language associated Mifk the
supremal controllable language in the supervisory control framework; however, since there
are no uncontrollable events or disturbances associatedithis fact is immediate and
it cannot be used as a basis to state that the Basic Supervisory Control Problem is a special
case of strong I/O FSM model matching.

Generalizing their earlier results, DiBenedettaal recently produced (DiBenedetéd
al., 1996) which gives results for the Strong I/O FSM Model Matching with measurable
disturbances to any set of deterministic behaviors contained in a reference model. This
problem is abbreviated here as SMMP-D-SB and the problem statement is given as follows.

SMMP-D-SB : Given DFSMM; = (W, U), Y, S, A1, y1, 1) and NDFSMM =
(W, V),Y, S A, y,r), determine a dynamic state feedback com-
pensator forM;, My = (W, V,Y), (W,U), S, A2, y2,r2) such
that

1. Myo Mz =5 M whereM = (W, V).Y, S J, 7.f) is a non-
trivial DFSM andM Cz M.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 403

2. Y(s1,S) € SW(s,) = W(s1) where W(s) is the set of
disturbances applicable at state

In addition to the above problem, DiBenedettmal. derive a characterization of the set of
maximal deterministic behaviors that can be matched given the constraint that the reference
modelM is an output-deterministic FSM (ODFSM). An ODFSM has the property that for
any state and any input, for each unique output generated at a state, there is a unique next
state.

A compensatorM,, is said to solve the maximal behavior problem (SMMP-D—-MB) if,
in addition to the SMMP-D-SB requirements, the resulting closed loop beh&jds,as
large as possible, that is:

SMMP-D-MB : SMMP-D-SB +
3. M is as large as possible, i.e., if there exists any other compen-
satorMs such thatM; o M3 =5 M* €5 M, M Cp M* and
V(s1,S5) € §, W(st, s5) = W(s1), thenM =5 M*.

The following sections present an alternative method for solving, iieand M are
DFSMs, the Strong I/0 FSM Model Matching with Measurable Disturbances to a Maximal
Set of Allowable Behaviors in a Reference Model Problem. The problemis solved by being
posed in the framework of SCT as an instance of BSCP—NB with multiple marking classes.
Solving the SMMP-D—-MB as the BSCP—NB utilizes two key relationships that we derive:

1. behavioral inclusion is related to marked language inclusion, and

2. languages associated with matchable behaviors in the presence of disturbances must be
controllable.

Note that we require the reference modél,to be deterministic. The procedure presented
also assumesthatthe “plamil; isa DFSM which is consistent with the algorithms presented
in (DiBenedetteet al., 1996). Prior to establishing a formal link between SMMP and SCT,
a method is presented for converting discrete-event models from one framework to another.

6. Discrete-Event Model Conversions

In order to investigate the relationship between 1/O FSM model matching and Supervisory
Control Theory, it is necessary to take models in one framework and modify them to fit
into another framework. This section discusses a means to convert models in the SCT
framework to I/O FSM models in the Strong 1/0 FSM Model Matching framework, and
vice-versa.

404 BARRETT AND LAFORTUNE

6.1. Converting SCT Automata Models to I/O FSM Models

Translating a possibly nondeterministic automaton from the supervisory control framework
to al/O FSM of the model matching framework utilizes the “classical” method to convert a
Moore type machine to a Mealy type machine. The conversion procedure involves moving
“output labels” from states to state transitions. Further, uncontrollable events for automata
in the SCT framework are viewed as disturbances in I/O FSM models and transition labels
are constructed to reflect this analogy. Let the evetdke the automaton from stag¢o
states’, i.e.,

g /
S—> S.

If an outputo is associated with stagéthen the corresponding transition in the I/O FSM is
assigned the transition:

sy,
In the supervisory control framework it is often the case that outputs are not assigned to
states; thus, there is no state output to “move” to the transition label. In this treatment of the
problem the marking class of a state will serve as the output component of the appropriate
transition label.

In SCT, the marking of a state generally represents some particular action of interest such
as a completed task. The notion of state marking is a special case of thpastateeters
discussed in (Arnold, 1994). Here, as in (Thistieal, 1995), state marking will be
generalized to a class of possible state markings. Instead of considering a single set of
marked statesXn,, we will consider several sets of marked states associated with each
automaton. Denote the set of marking classes of an automaton with the indexg¢-set
{Xm,» Xm,, - .-, Xm,}. Different automata can have different sets of marking classes, but it
will be maintained that two marking classes with the same index hold the same “meaning”
(e.g. similarindices represent similar output values.) Utilizing many sets of marked statesin
a single automaton to represent a family of marked languages is more convenient than using
many automata, one for each marked language. The markings of a composite state resulting
from the product k) or parallel composition|[) of two automata are the intersection of the
markings of similar index of the two component states, i.e., a composite state is marked
if each component state is markeg. As mentioned above, an output can be associated
with a state; hence, an output marking class,is used here to denote the specific output,

0, of a state. Define an indexed 9Bt = {0y, 02, ..., 0k} such that the index outputs
correspond with marking classes of similar index. The function that relates states to their
corresponding outputs will bie: X — O U {u}, where

hoo — {oi if X € X,

u otherwise. (3)

Each automatond;, can have an associated output functign however, each output
function maps to the same co-doma U {u}.

The set of states and number of transitions remains unchanged when the automaton is
“converted” to an I/O FSM. This procedure is described more formally below.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 405

Consider the following procedure to translateementbased automaton model to an I/O
FSMmodel. Givena DFSA = (X,, T, 84, @Cly, Xa o, Xam) 16tM = (W, V), Y, S/ 4, y,
r) be the I/O FSM resulting fronA. The NULL event, is introduced and represents only
a “place holder” and is indicative of the absence of an event. Assign the componéts of
as follows*

W = Z,cU{d}

V = Z.\ Zyc U {0}

Y = OU{u}

S = XU{#}

I = Xao

At (W, V) x S— 25
YveV,YVweW

A, v),8) = 8a(s,v) if v € act(s) \ Tuc
Al(w, D),8) = 8.(s,w) if w e acty(s) N Ty
= 0 otherwise.
y © (W,V)x SxS— 2"
y((w,v),s,8) = h(s)ifs e X,
= u otherwise.

OnceA s converted taV, denoted byA LN M, each transition iM will have a label of
the form(W, V)/Y.

6.2. Converting I/O FSM Models to SCT Automaton Models

The conversion of an I/O FSM to an automaton is equivalent to converting a Mealy machine
to a Moore machine with the interpretation of state outputs being markings. The procedure
described below explicitly uses the “classical” method of converting a Mealy machine to a
Moore machine (Hayes, 1993, Kohavi, 1978).

Converting a Mealy machine to a Moore machine is slightly more complicated than
renaming transitions as in the Moore-to-Mealy case. Briefly, for each stafethe 1/0
FSM with transitions of the form:

s 8y
a new state is introduced into the automaton for each distinct output adngong the
transitions entering that state. Thuspifissumek distinct valuesy, ¥, ... yx thens
is replaced wittk new states;, s,, ...s,. Each new statg is assigned the fixed output
yi and supplied with the original transitions. Define an indexed set of marking classes
Xm = {Xmy» Xmy, - ., Xm,} @nd assign states as elements of a marking class with index

similar to that of the state output. Denote M/rs—Ct> A that the Mealy-type machini!
converts to the automatohinterpreted as a Moore-type machine. Because it does not add

406 BARRETT AND LAFORTUNE

information to the model, we will assume the dead state of the Mealy-type machine is not
kept in the resulting Moore-type automaton. Figure 10 shows the conversion of a Mealy
LIFO stack control unit state diagram to a Moore type diagram (Hayes, 1993). The resulting
Moore LIFO machine has four marking class¢s; ERR LS, RS, one for each distinct
output of the Mealy LIFO control unit. As discussed in Section 6.1, the output marking of
a particular stats is denotech(s), e.g., in Figure 10(b) (outputs are in bold) it can be seen
thath(s]) = RS®. The initial state is given the output valdeby default. In addition to

the output marking classesy, a marking classgs is also defined and holds the meaning
“output state”. If a state is a member of any output marking class, then it is also assigned
to be a member ofnys. States that armys-marked are denoted in figures hereafter by a
double circle. Some of the properties of the automaaepresented by the Moore LIFO
machine in Figure 10 are as follows:

J /) J

Xa = {%0, % %> S1 81, 81> 2, S0 &)
Xm = {me’ XmERR’ XmLS’ XmRS’ Xmos}

me) = {&)1 Slv SZ}

XmERR = {S/O/’ Sé}
Xms = {81}
XmRS = {S/l/’ S/z/}

Xmos = {&)1 S(/)v ng Sls S]_v

6.3. Modeling the Strong Model Matching Feedback Loop

To determine the “feasible” or joint behavior between what is required by the specification
and what can be performed by the plant, the behavior of the Moore automata must be
intersected in some way. For DES modeled as automata, itis common to form the behavioral
intersection by composing the specification automaton with the plant automaton.

The finite-state machines used in model matching generally have differentinput alphabets,
i.e., M1 (the “plant”) is defined with input alphab&t, and M (the “specification”) is
defined with input alphabeétf. Because of this, the Moore machine versionsvifand
M cannot be directly composed using the product compositionof SCT. The FSM
composition operatioro] of strong model matching must therefore be modeled to allow
the synchronizatiorof the Moore machines.

The FSM composition operation allows an outgud occur iff a disturbance produces
y or an input sequenael producesy. After an output is allowed, the composition operator
checks the state reached by the previous sequence to determine if another valid sequence
produces an output. Thus, synchronization of all possible sequences is easily modeled as
composition with the regular expression + V U)*, whereW represents all disturbances,

V represents all command inputs addrepresents all control inputs. Figure 11 shows
the automatorByncrepresenting the event ordering effect of the I/O FSM composition

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 407

() 2/0 2/ 2/

PUSH/RS PUSH/RS

POP /LS

POP/LS

POP/ERR PUSH/ERR

(b)

Figure 10.LIFO stack control unit: (a) Mealy state diagram, (b) Moore state diagram.

Figure 11. Synchronizer automatoSyn¢ that models SMMP feedback loop.

operation. The initial state of the composition synchronizer is marked as belonging to all
output classes (denoted¥oin the figure).

For example, consider the conversionMfand M; to H and G respectively shown in
Figure 12. The resulting Moore automata have differing alphabets inrtligtefined over
W UV andG is defined ove U U. The feasible behavior is formed by synchronizing

408 BARRETT AND LAFORTUNE

M w,D)y; M, w.)y,
@.wly, (@, uply;
) <] >
@y, D, wly,

W={w},V={v.v},U={upuy}, Y ={y, Yy}

HSCT HSCT

ZH={W,V1 Wy) Y ={w} 2G= {w, ul,uz}

Figure 12. Example machineM; andM and their associated Moore automata.

the specificationH and plantG with the feedback-loop modé&ync Performing this
synchronization yields the Moore automata shown in Figure 13.

Examining Figure 13 reveals several interesting artifacts. First, the autorGatws
traces which do not lead to output states. This arises due to the fact that after the production
of ay; or y, output, nou input exists to extend the secondsequences to output states.
Another interesting artifact is that somes-marked states il do not have an associated
output marking class. This artifact results from the fact that the output classes of the
composite states may not match; hence, during the parallel composition no output marking
class can be assigned. These artifacts represent desired behavior that cannot be “matched”
by the plant. Future sections will discuss how to procedurally address this issue.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 409

G=Gll Sync
& Yy -
w .
@ ® -O
vl Vs vy
/y% vl,v2
O O
H=HIl Sync Il G
[} Y
w
~Q C
V2 V] UI
y y2
Y O—+—0
Uy uy
) 4

Figure 13. Feasible behaviors formed by synchronization.

7. Formal Comparison of Input/Output FSM Model Matching and
Supervisory Control

As stated earlier, it was claimed in (DiBenedettoal., 1995, 1996) that the supervisory
control problem can be posed as a special case of model matching for finite-state machines.
This claimis investigated more thoroughly in this section. Specifically, the above conjecture
foundin (DiBenedettet al., 1995, 1996) is confirmed. Furthermore, itis shown that finding
a maximal solution to the SMMP-D can be solved as an instance of the BSCP-NB for a
family of marked languages.

The investigation of the relationship between supervisory control and strong FSM model
matching in the presence of disturbances will proceed with the following steps:

1. A relationship is derived between behavioral inclusion and inclusion of marked lan-
guages (Section 7.1).

2. A relationship is found between behaviors which are matchable in the presence of

410 BARRETT AND LAFORTUNE

disturbances and the controllability of the marked languages associated with those
behaviors (Sections 7.2 and 7.3).

3. A method is presented for solving the BSCP as an instance of strong model matching
in the presence of measurable disturbances (Section 7.2).

4. A method is presented for solving the SMMP-D-MB for a set of maximal deterministic
behaviors as an instance of BSCP-NB for a family of marked languages (Section 7.3).

7.1. Strong Model Matching and Language Properties

The following lemma reveals the relationship between FSMs and the languages of their
associated automata.

LEmMMA [Language Inclusion]: Let DFSMs I and F, be given such that
Fr=(W,V),Y, S, A1, y1, 1)
Fo= (W, V),Y, S, A2, y2,12),
and R i3 A, R e A;. Then ik Cp Fyifand only if for all j € {1,...,|O[}
L (A1) € L, (A2), whereLy, is the marked language associated witfrmarked states.

Recall thaty = O U {u} and that similarly indexed elements¥fand O are equivalent.

Proof [Language Inclusion Lemma] : From the definition of behavioral containment, it
is known that:

FiCs Fo & Vk > 1, Vigi1...lk_1 € Ik(rl)
Y Goik-1. 1) = {(Yo.. Y- YD) W € (i1, 9, 541)
ASy1 € A1(1,9),1 =0, ..., k=1, 5 =r1}
V&G0 ik-1.12) = {(Yo--- WYk IV € ¥2(i1. S, S11)
AS+1 € A2(11,9),1 =0, ..., k— 1,5 =r3}

[y Go...iko1, 1) = Y (0. .iko1, 12)].

We have equality here becausgandF; are deterministic, so the output sequence $éts,
are singleton sets. From the discussion of Mealy-to-Moore model conversion, the following
holds by construction:

.....

F‘{(?ou-?k—l,fl) ={@¥%.. Y- YDV, 0 <l <k =1y =hy(a(io...i1, 1))}
Ti(io...ik-1,12) = {(BYo. .. Y- Y=V, 0 < | <k — 1,y = ho(Sa(ip...01,12)}

[TX(oi1. . .ik_1,r1) = Dk(igi1. . .ik-1,r2)],

where, again due to determinism, these sequence sets are singletons. What must be proven,
then, is the following:

.....

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 411

TX(io...ike1, 1) = {BYo. .. Y- eIV, 0 < | <k — 1,y = hy(Sa(io.. .01, 1))}
Ti(io...ik-1,12) = {(BYo. .. Y- Y=V, 0 < | <k — 1,y = ho(Sa(ip...01,2)}

[Flf(ioil ke, ry) = Flz((ioi]_.. Jke1, I’z)].

Sufficiency: Choose some input sequertce: igiy...im—1 € Z™(r1); hence, by Mealy-
to-Moore model conversion we also have L£(A;). SinceF; Ci F, we have:

(@ywéywllywrln) = FT(ioil...im_l,rl)
= an(lolllm,]_,l’z):((/)ngywlzyw%)

SinceA; and A; are deterministic, only the last generated output of the sequence needs to
be considered. Because the output sequences are equal we kngy thay,2 . Assume
thaty; = y,u, thent € Lm (A). Furthermore, sincg; = y,. = Y,z we also have

t € Lm (Az). From this we conclud€j € {1, ..., |Ol}, Lm (A1) S L (A2).

Necessity: (By induction on length of sequences). We want to show th&jf(A1) <

.....

TX(igiq...ik_1,r1) = Ts(oi1. ..k 1,r2).
Every output sequence contaifss its initial element, so when no input has occurfed

44444

io € Lm, (A1), then the state oA, reached following the execution of is m;,-marked,
and

Ti(io, r1) = (Dyj,).
SinceLm, (A1) € Ly, (Az) this implies

(o, r2) = (DY,) = T'i(io, ro).

.....

.....

following the execution of’. Becausée!; is deterministic we have

Do inc1in 1) = @Yo - - - Vi Vi) (4)
= BYj - - - Yjn)a(ry)
= I'{(ioi1...in-1,r)ha(ry).

Letr, be the state reached ¥ following the execution of’. Becausé’ € L, (A) C
L, (A2) we know

ha(r) = yj, = hu(ry). 5)
Equations 4, 5, and the induction hypothesis yield

I igig .. in_in, r1) = T(igi1...in_1, rDha(r)

412 BARRETT AND LAFORTUNE

Fg(ioil colinet, rz)hl(ri)
(o1 .. .in-1,r2)h2(ry)
= 5™ (igi1...in_1in,r2)

which completes the induction step and the proof. []

A family of marked languages is calledvaultitraceset in (Arnold, 1990) where the state
parameters of the multitrace set are the marking classes used here. The Language Inclusion
Lemma, simply put, says that when the models considered are deterministicltiteace
sets with elements of the form

ioi1...ik—10k_1,

representing a family of marked languages, contain the same modeling information as
extended tracsets with elements of the form

10001101 . . . ik—10k_1,

representing the behavior of a FSM. See [(Arnold, 1994), pages 148-158] for a thorough
discussion and generalization of trace equivalences.

In addition to the Language Inclusion Lemma, which will allow the use of marked lan-
guages to determine behavioral inclusion, there is yet another relationship which links
behaviors that are matchable in the presence of disturbances to the controllability of their
associatedn,s-marked language. This relationship will be described in detail later in the
proofs of Theorem 7.1 in Section 7.2 and Theorem 7.2 in Section 7.3.

7.2. Solving BSCP as FSM Model Matching

This section describes how the model matching formalism proposed by (DiBenetetto
al., 1994, 1995, 1996) can be used to solve the Basic Supervisory Control Problem. More
specifically, it is shown that the BSCP posed in the framework of supervisory control can be
translated to the 1/O FSM modeling framework of (DiBenedettal., 1994, 1995, 1996)

and solved as the SMMP-D-MB.

THEOREM7.1 Let H and G be as in Definition 3.1, and let M and bk such that H'C, M

and G L M1; hence V= U and W= Zuc: Solve the SMMP-D-MB given M anci M
for the solution M such that M o My =g M. Let H' be the solution to the BSCP, i.e.,
L(HT) = L(H x G)', and H 2 M1, Furthermore, letVl =55 H. ThenM =z M1,
andL(H) = L(H™).

Proof 7.1: Each state oM can be associated with a state Mif by identifying states
reached in both by the same input sequence. BecduseU andW is common among
the deterministic machines, we can use traces to uniquely identify statesbé an input
sequence in the behavior represented/bhyand denote the state bf reached following the

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 413

execution of by (s}, sb) wheres! is the state of the FSMI, reached following the execution
of t. Let the corresponding state i be denoted byx!,, x.) wherex!, corresponds to the
state ofH reached by the input sequertcandx’, corresponds to the state Gfreached by
the input sequence

M being matchable in the presence of disturbances implies that for all states of

W((s], sp) = W(s)). (6)
For the associated stateskhandG we have
Tuc(X) = Buc((X), X)) = Zuc(Xy), (7)

whereX.(X) represents the set of uncontrollable events defined atstateact, (X)NXyc.

Clearly, Eqn. 7 defines a bisimulation relation betwekandG with respect to the set of
uncontrollable events. From Theorem 3.1 it follows tﬁaﬂ) is controllable with respect
to £L(G) andXyc. = W, hence,

L(H) € L(HY),
and by the Language Inclusion Lemma we have
M CB MT.

Becauseln(HT) = £L(H") € £(G) = L(G) the Language Inclusion Lemma implies
MT C5 My, andMT does not requiréM; to do anything that it is unable to do. This
“feasibility” of M allows us to claim that a controllei)], exists such thatl;o MJ =5 M1
(consider a controller which simply passes inputs to outputs identically iff that input is
defined inM™). By Theorem 3.1, the controllability of (H") defines a bisimulation
relation with respect t&(G) and Z,¢; hence, by a similar argument as in Eqns. 6 and 7,
M' is matchable in the presence of disturbances. By assumpdocontains all other
behaviors that are matchable in the presence of disturbances; hence,

MT cz M, and(HY) € £(H).
ThereforeC(H') = £(H) which, for deterministic FSMs, yieldslt =z M. |

The conjecture of (DiBenedettd al., 1994, 1995, 1996) that the BSCP can be solved in
the 1/0O FSM model matching framework has been verified. This is insufficient, however, to
conclude that the strong model matching paradigm is more general than the feedback loop
of supervisory control. Section 7.3 below investigates this further by discussing a means
to map an instance of the SMMP (specifically, SMMP-D-MB) to the Ramadge—Wonham
SCT paradigm.

7.2.1. An Example of Solving the BSCP as FSM Model Matching

Consider using the I/O FSM model-matching framework to solve the BSCP on the systems
shown in Figures 4 and 5. The converted models are shown in Figures 14 and 15
respectively where the output associated with a marked state is “1” (BBgat {04}).

414 BARRETT AND LAFORTUNE

(@,2)/ 1

@.05) /1

(XM
(@.05)/ n
(6,03)/ K
(064.9)
(©,9)/ n

Figure 14.1/0 FSM representing desired behavior (cf. Fig. 4).

(©.2)1

@.05) 11

(042 1
@09/ 1
@)/ 1
(04@)/ p

(2.2)/ 1
@,65) /1

(@,05) n
(04.2) 1

@0}/ u
(D,05)/ 1
(@,05)/ 1
(64.2) 1
(2,9)/ n

Figure 15.1/0 FSM representing plant (cf. Fig. 5).

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 415

Figure 16.(a) Maximal matchable behavior and (b) associated controller.

Given these two finite-state machines, the maximal matchable behavior in the presence of
disturbances and the corresponding controlNer, can be found using the method described
in (DiBenedettetal., 1996) and are shown in Figure 16. The maximal behavior corresponds
to the automaton shown in Figure 6 (up to the completion of the transition function).

7.2.2. Solving BSCP-NB as FSM Model Matching

Although the Basic Supervisory Control Problem for prefix-closed languages can be solved
in the realm of finite-state machine model matching, the case of non-prefix-closed languages
has not been addressed. Non-prefix-closed languages can lead to blocking solutions in
Supervisory Control Theory; hence, a more general problem, the BSCP-NB, is required.

According to the model translation procedures presented in Section 6, an instance of
the BSCP-NB translated to the FSM model matching framework (assuming marked states
have an output value “1”) would require an additional condition such as “all input sequences
can always be continued to sequences that produce 1-outputs.” As is the case in the SCT
framework, an iterative procedure would be required in the FSM model matching framework
that removes input sequences that cannot be extended to sequences that end with a 1-output.
The algorithm for solving the BSCP-NB in the FSM model matching framework would
need to be iterative for the removal of illegal sequences may result in behavior not matchable
in the presence of disturbances; thus, the SMMP-D-MB would need to be solved again
after each “trimming” operation.

7.3. Solving FSM Model Matching as the BSCP

This section describes how the SMMP-D-MB can be solved as an instance of the BSCP
(specifically, the BSCP-NB). Thus, I/O FSM model matching can be solved as a supervisory
control problem.

416 BARRETT AND LAFORTUNE

In the previous section where the BSCP is solved in the I1/O FSM framework, the set
of FSM inputs forM; andM were defined over the same alphabets,\V.e- U. When
V #£ U (as is often the case when solving the SMMP-D-MB) it is necessary to use the
Syncautomaton to model the I/O FSM composition operator in the SCT paradigm.

Previously, it was shown in the Language Inclusion Lemma that, in deterministic set-
tings, behavioral inclusion for I/O FSMs is equivalentrimrkedlanguage inclusion of
corresponding automata; therefore, any useful means of determining “feasible” behavior
must maintain deterministic models. Consider, then, the following procedure to generate
a DFSA that represents the (not necessarily controllable) set of marked languages corre-
sponding to sub-behavior of a DFSM that can be matched by a DFSM. The procedure is
given the acronym DCM meaning “deterministic and consistent Moore automaton.”

Procedure: DCM
Step 1 : Given DFSMsM; andM where

M1 = ((W,U),Y, S, A1, y1, S10)
M = ((W’ V)’ Y’ S?)\” y’ &))’
generateH andG such that =% H (DFSA) andM; =% G (DFSA). Every state iH
andG is marked as belonging to the clasgs. The classngs holds the meaning “output
state”. Note that the dead-statesdf andM are not present il andG.

Step 2 : Mark only the initial state of th&yncautomaton as belonging to the classs,

and form the parallel compositioB = Sync||G. Form the parallel composition dfl,
SyncandG: H = H||G. In the parallel composition a resulting composite stateis

marked if and only if all constituent states amp-marked, and a state is,s-marked iff

both constituent states ang,s-marked. Furthermore, if two states are composed that do

not share the same output marking then the resulting state does not have an associated out-
put value (or the output could be considered NULL). Defihes WUV UU andX,c = W.

Step 3:Vt € Ly, (H), remove allmys-marked states,; = 8, (X, t) from H for which
the output is NULL, i.e.h;(Xs) # hs(Xs) wherexs = §5(Xs0, t). Perform the “trim”
operation (removes states which are not accessible with respegtdocoaccessible with
respect to the remaining statesxn,,.), and call the resulting DFSA automatétt.

Note: vt € L, (H*), there exists a unique output marking class, that is, a state can only
produce a single output. This fact results from the following:

1. every transition irfM; generates an output,
2. Gis deterministic, and

3. afterH is composed witlG the above Step 3 will remove all output states that do not
“agree” with the unique output marking following traté G.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 417

Figure 17.Resulting deterministic Moore automaton with consistent state outputs.

Denote the transformation of DFSM to the determigicﬁqtic and consistent Moore automaton
H* (which is dependent oM; andG) by (M3, M) — (G, H*). The automatorH* is
called consistent, for every stateldf reached by some trace of eventss an output class
which is consistent with the output class of the stat€ireached by.

As an example of DCM, consider the FSN#6 and M; of Figure 12. The automata
H andG in Figure 12 illustrate Step 1 of the DCM procedure. ComposihgndG as
described in Step 2 of DCM yields the automatéshown in Figure 13. The deterministic
automatonH * of Figure 17 illustrates Step 3 of DCM where NULL outpugs-marked
states are removed and the resulting automaton is trimmed.

Given the ability to translate models from each framework to the other, it is now possible
to present the major result of this section.

THEOREM 7.2 Given DFSMs M and M where

M1 = (W,U),Y, S, A1, y1,11)
M = (W, V),Y,S A, y,r1);

let M, be any solution to the SMMP-D-SB, if such a solution exists, i.e.,
Mio My =5 |\7|, and
M Ciz M,

dcm

whereM is a DFSM. Let HG, G, H, and H* result from(M¢, M) — (G, H*). Define
HT to be the automaton representing the solution to the BSCP-NB giverG and
~uec = W with non-blocking behavior determined bysrmarked states, that i€y (H)
is the supremal controllable sublanguagef, (H*) with respect toC(G) and Xy = W.

Finally, let Ry, (HT) % MT. If MT is nontrivial, then
() MTcp M,

(i) A controller, M}, can be constructed from Hsuch that M o Mg =5 MT, and

V(s1,8)) € St W((s1, 8) = W(s); hence, M is a solution to the SMMP-D-SB
with respect to M and M.

418 BARRETT AND LAFORTUNE

(i) M cp M,

(iv) If M satisfies condition (3) of the SMMP-D-MB problem statement, thafliss the
largest deterministic behavior that can be matched in the presence of disturbances, then
M= MT.

Proof: Each part of Theorem 7.2 is given particular attention below.
(i) By the construction oH* andH ™ we havevj € {1,...,|O|}:

Loy (HT) € Ly (H") € L, (H) = L, (H]|G) € L, (P L(H)).
Projecting onto the s&/ U V yields
Lo, (Puy (HT) = Py (L (HT) € Py (L (P (H)) = L (H),

which, by the Language Inclusion Lemma, implids Cz M.

(ii) By the construction oH* andH T we havevj € {1,...,|0|} :
Ly (H") S Lo (H*) € L (G).
Projecting onto the alphabet &, W U U, yields
Vi, Puu Loy (HD) € Puy (Lo (H*) € Py (L (G) = Liny (G);

hence L, (HT) contains only traces which correspond to input/output sequences that are
possible in the plantyl;. To show that there exisl?ﬂ;r such thaiM; o M; =5 MT consider
the following construction usinglt = (X1, =41, 8.1, aCtyr, Xuet, XH;):

DefineF = (W, V,Y), (W, U), S, As, ¥&, I), Where
S C Xyt

e = Xuot
Sut(t,s) if[(t = w) Vv (3u € U such that = vu)]A
[y = hHT(SHT(t, S))]

)\-F((w’ U, y)v S)

0: otherwise
@, u) if [w= 0] A[8ut(vu,s) = SA
[y = hut(s)]
N (w, D) if [v=4d] A[8ut(w,S) =S]A
yF((wv Us Y)’ S7 S) - [y — hHT(S,)]

(H“’ /‘L) If S/ = OF
undefined otherwise.

Examining the definition of FSM composition, it is evident thdi o F =5z MT, and
MJ = F is a compensator which produces the desired result.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 419

Consider now, the implications of the controllability ﬂfnos(H*) with respect tal(G)
and T, = W. By Theorem 3.1 and Definition 2.8 the following equalities are true
VXt = (Xu, Xsyno Xs) € Xyt :

EUC(XHT) = EUC((XHﬂ Xsyno XG))
= z:UC((XSyncv XG))
= Zuc(XG)-

BecauseP,, ,(H") RS Mt and Mt =5 M o M), the above equalities imply that
V(s s € ST W((sLsh) = Wesy); hence,M, is a solution to the SMMP-D-SB
with respect tavi; and M.

(iii) Define HZ, = P, (H". LetM % H andH, > M. By the Language

Inclusion LemmaM Cp M, if and only if L (H) € Lm (H;,), V. We will show
containment for each marked language by induction on the length of traﬁ‘aﬁs'(rhfl).
(Basis of induction): Fortrace suchthaft| = 0,t = € andx,, = 8. (Xy,, t). Further-

more, Xg: = &8s+ (Xs: 1), and by constructiom, (x4,) =
WV0 V. WVo
hH'va(X”vao) = ¢ which we can associate with its own marking

classmy. Thus,t Emw(l-i) andt e Emv,(|:|w*,V .

(Inductive hypothesis): Assume for all traces € L(H) of length|t| = n, [t €
L ()] = [t € L (Hy)]

(Inductive step): Now, we show ifte € £mi(lf|) (to] = n+ 1), thento €
L (Hy -

Lett € Lm(H) be of lengthn; hence,t € Ly (Hz,).
Chooseo such thatte € L (H), and letxy = 8 (X0, 1).
t € Lm (H;,) implies there exists’ € P L(Lm (H,)) such
thatt’ € L, (H*). Let (X, Xeyme: Xe) = 85 (Xuor Xsynoo Xoo)- 1),
and identify:

1. x, with its corresponding statein M, and
2. Xs with its corresponding statg in M.
Sincet € Lm, (H;:,) we also know thah,, (x,) = he(Xs) = ¥i. Now,

to € Emj(ﬁ) = X; = 8i(Xa, 0) andh,(x;) = h. (X)) =Y;
= § =i(0,At, 1)) andp (o, AL, F),8) = ;.

420 BARRETT AND LAFORTUNE

There are two possible cases concerning the identity. of
Caselo € W = 3s; = 11(0, S1) andyi(o, S1, S;) =Y
= 3Ix; = 8(Xs, 0) andhg(x}) = h, (X)) =,
= (X Xoyneo X6) = 84 (i, Xsyneor Xo), 0) and
R (X5 Xsyneo X6)) = Y
= t'o € Lm(H")
= to € Lm (H},).

Case 20 € V = (by FSM compositionfu € U such that
35 = M (u, s1) andy (U, 1, S) =Y
= 3Ix; = 8(Xs,) andhg(x)) = h, (X)) =y,
= (X, Xgyneor Xg) = 8= ((Xus Xgynoor Xs), o'U) @nd
s (X5, Xsyne.o X5)) = Y]
= tou e Ly (H")
= to € Lm (H},),
which completes the proof by induction tha, (H) Lo, (I:|V’§_V), Vij.

Define a submachine ¢f*, Hee SUCh that
Limes(Hreo) = Py (Longs(F) N L, (H).

SinceLy, (H) € Py (Lm(H*)) itis evident® that P, , (L. (Hred) = Lm,,(H), and
Lines(Hee) € Lo (H*).

For brevity, make the following associations for all commonly defined trageg(H*):

1. Associatex!, = 8y (Xuo, Py (1)) in H with st = A(P,,,(t),r) in M.

2. Associatex, = 85 (Xeo, Py (1)) in G with s} = A1 (P, (), r1) in M.

3. Associated!, = 84 (X0, Py (1)) in H with 8 = A(P,,, (1), F) = (s}, 8}) in M.

Note thatHg,, HT andH* are all defined on the common automataG andSyng so for
commonly defined traces we have:

t t t t t t

HReq = XH‘r = X,:l* = (XH, Xsym, XG) = 5H*((XH07 XSync,Oa XGO)a t)-

Furthermore, sincé! €z M we can associa# with s' (which is associated witk!) for
all commonly defined traces

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 421

Now, consider the implications &fl being matchable in the presence of disturbances:

V(sl, sh) € SW((SL, $) = W(s) = i = (x|, x}) € Xq,
zDuc(xg) = Euc(XG)
= V(x,,x) e Xy,
z:uc((xw G)) = Zuc(x)
= V(XH, ayne G) € XHRQq
2:uc((xw Sync? G) - EUC(XSync’)
which defines a bisimulation relation betweef)., and G with respect tox,.. Since

Ly (Hreg) € L£(G), Theorem 3.1 yields thaf . (Hrey) is @ controllable sublanguage of
EmOS(H*) with respect to(G) and .. By supremality, then, we obtain:

Linge(Hreg) € Lo (H).

We also have containmentjor each marked Ianguage beéhusndH T are both defined
on the same state-spaceldf, and each state dfi* has a unique output marking. The
Language Inclusion Lemma yields:

M Cp MT. (8)

(iv) From Eqgn. 8 and the result of part (i) above, we conclude Méis matchable (with
respect toM and M,) in the presence of disturbances and contains any other determin-
istic sub-behaviorM, that is matchable (with respect 8 and M,) in the presence of
disturbances; hendd <z M.

If M satisfies condition (3) of the SMMP-D-MB problem statement, thaMsis the
largest deterministic behavior that can be matched in the presence of disturbances, then
becauseM; and M are deterministicM contains any other deterministic behavior that
can be matched in the presence of disturbances. As shown in part (i) addvis, a
deterministic behavior that can be matched in the presence of disturbanced, thys M
and

|\7| =5 MT. |
Given DFSMsM; andM, the solution of the SMMP-D-MB as an instance of the BSCP-NB
is summarized as follows:
1. Transform the DFSMs to Moore-type automata, Mal,ns—a) GandM % H.

2. Determine every possible closed-loop behavior by composing the @lanith Sync
to form G.

3. Determine the largest legal subset of the desired behavior by using DCM td+form

422 BARRETT AND LAFORTUNE

— DGy~ 26 2O
e @ GO G, @

@v3) v

Figure 18.1/0 FSM to be matched.

(@,up) vy

©@.uq) vy

(@,Uz)/ y2

@1 ys

@.ug)/ v,

Figure 19.1/0 FSM representing plant.

4. FindHT representing the solution to the BSCP-NB (with respediito G, and =)
where non-blocking behavior is determinedry;-marked states.

5. The largest deterministic behavior that can be matched in the presence of disturbances
is Pyy(H") — M.

6. A controller, M;, that realizesM™ can be constructed frol T (as described in the
proof of Theorem 7.2).

It is important to emphasize that the construction of the contrdméris of polynomial
complexity asl\/I;r is built from HT, and thus it doesotinvolve the deterministic projected
automatorP,, , (H ™) for which the construction is exponential in the worst case.

The above item 4 uses the relationship between controllability of a language and bisim-
ulation with respect to uncontrollable events discussed in Theorem 3.1.

7.3.1. An Example of Solving FSM Model Matching as the BSCP-NB

Using the I/0O FSMs shown in Figures 18 and 19, the previous results are applied to find the
controller that generates the maximal matchable behavior in the presence of disturbances
(thedead states not shown).

Given the two state diagrams of Figures 18 and 19, the first step of the procedure is
to generate the corresponding Moore state diagrams with the appropriate markings. The
resulting two Moore machines are shown in Figures 20 and 21.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 423

%] ¥y Y2 Y3
—V1_’

Figure 20. Moore machineH, to be matched (cf. Fig. 18).

O——0O

Y3
Figure 22. Maximal matchable behavior with disturbances (Solution to BSCP-NB).

The two Moore type machines are modified as described in DCM to FbfrandG which
are then sent to BIM—BSCP-NB to solve the BSCP—-NB with the markings representing
output states. The solution to the BSCP-NB is shown in Figure 22. As can be seen in
Figure 22, then,s-marked states of the controller alternate revealing that system outputs
occur only after a command input M is translated to a control inplt. The controller
corresponding to Figure 22 which solves the SMMP-D-MB is shown in Figure 23. Had
the SMMP-D-MB been solved in the I/O FSM framework, the resulting controller would

424 BARRETT AND LAFORTUNE

(@,v1 'Yq) us

~O

(@,v1 Yq Y uy

(DVo.y5) Uy (@.V3,y3)/ Uy
O O O

Figure 23. Solution to SMMP-D-MB (cf. Fig. 22).

have been precisely that shown in Figure 23 with, of course, a completed transition function
to a “dead” state.

7.4. Discussion of FSM Model Matching and SCT

As shown in Subsections 7.2 and 7.3, when the finite-state machines or automata repre-
senting the “plant” and reference model are deterministic the BSCP can be solved as an
instance of SMMP—-D-MB in the I/O FSM framework, and the SMMP-D-MB can be
solved as an instance of the BSCP—NB for a family of marked languages. Thus, for the
problems addressed, no framework is more general than thetéther.

The ability to compare model matching and supervisory control results from being able to
associate language controllability to bisimulation and bisimulation to “behavioral control-
lability” (the matchability of a behavior in the presence of disturbances). For each problem,
a bisimulation relation with respect to the uncontrollable occurrences can be found which
constrains the set of states that can be paired. The particulars of each framework, such as
multiple transition labels, are manipulated so that each type of problem can be solved using
a bisimulation relation.

An important feature of the Strong I/O FSM Model Matching Problem is that it is posed
in a semantics for which the notion of equivalence is finer than language equivalence. FSM
equivalence requires that not only do traces generate the same final output, but every output
along the trace must match also. This notion of equivalence is somewhat analogous to
Ready Trace equivalence (see Appendix A) which requires the active event sets to match
along traces. Supervisory Control Theory is posed in the language semantics; thus, the
BSCP has little meaning in nondeterministic settings requiring more detailed semantics. In
this way, /0 FSM Model Matching can be compared to SCT: I/0 FSM Model Matching has
the potentialto deal with processes described in both deterministic and nondeterministic
settings without altering the meaning of equivalence, while SCT (in its original setting)
deals with equivalence at the language level which does not extend to nondeterministic
settings where automata “branching structure” is important.

Strong I/0 FSM Model Matching does not presently deal with issues of blocking; fur-
thermore, it is questionable as to whether the FSM composition operator can deal with

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 425

partial observations. The ability to handle issues of blocking and partial observations are
significant contributors to the elegance and utility of Supervisory Control Theory, and it
has been shown here that using multiple marked languages allows I/O modeling issues to
be addressed by SCT.

It is important to note, however, that the generality of the two problems has little to do
with the fact that I/O FSMs have multiple labels on each transition while the automata used
to represent marked languages in supervisory control have one, i.e., Mealy machines and
Moore machines are equivalent in their ability to express behavior. The generality, in the
sense described, is derived solely from the semantics in which the problem was posed and
solved.

8. Conclusions

In this paper concepts from a different semantics, bisimulation, were used to solve the Basic
Supervisory Control Problem in deterministic settings. It was shown that, given language
inclusion of deterministic automata, controllability of languages is the same as bisimulation
of automata with respect to uncontrollable events. Further, these bisimulation relations can
be found by partition refinement for which there exist very efficient algorithms. One such
algorithm by (Fernandez, 1990), based on Paige and Tarjan’s famous algorithm (Paige and
Tarjan, 1987), finds the coarsest partition of a family of binary relations on &sefth
complexity O(c mlog(n)) wherem is the size of the relatiom is the size ofS, andc is

a bound on the largest image set of any element of the relation. This algorithm is used in
a very efficient “partially” on-line solution of the BSCP: given two automitandG, a
partition that induces the greatest bisimulation relatibg,, with respect taz, is found

in O(|Zycl(ny + ng) log(n, + ng)) time andO(n, + ng) space. The on-line supervisor
maintains only a copy o6, H, and the partition representinly,. and perform (| X¢|)
“1-step-lookahead” operations at each current state. Thus, the size of the on-line supervisor
is O(|Z|(ny + ns)) (compare tdO(|X[(NkNe))).

The Supervisory Control Theory initiated by (Ramadge and Wonham, 1989) was carefully
compared to the Strong I/O FSM Model Matching Theory of (DiBenedettal., 1994,

1995, 1996). Itwas formally established that, in deterministic settings, the “Strong I/O FSM
Model Matching with Measurable Disturbances to A Maximal Set of Reference Behaviors
Problem” can be solved by mapping it to an instance of the “Basic Supervisory Control
Problem” and vice-versa. Strong I/O FSM Model Matching does not presently deal with
blocking behavior or partial observations; however, several important relationships between
the two paradigms were exposed.

The generality of /O FSM Model Matching was compared to that of Supervisory Control.
Being posed in a “stronger” semantics will allow nondeterministic problems to be solved
in the I/O FSM Model Matching framework without altering the meaning of machine
equivalence; however, all of the problems presented in (DiBenedetib, 1994, 1995,

1996) are based on deterministic “plants”. Supervisory Control Theory bases equivalence
on languages, and therefore, must be altered to handle nondeterministic settings; recent
work in that regard can be found in (Fabian, 1995, Heymann and Lin, 1996, Inan, 1994,
Overkamp, 1997, Shayman and Kumar, 1995).

426 BARRETT AND LAFORTUNE

A 1 A 2
] %}
a a a a
Y4 Yo ¥q Yo
b c b b c b
30 OVYa Y5 Y3 OVYa OVYs
d d
OVYe 6O

Figure 24. Example nondeterministic automata.

A Investigation of The Language Inclusion Lemma in Nondeterministic Settings

Throughout this work it has been stressed that deterministic models be used for comparisons
with Supervisory Control Theory. The fundamental reason for requiring deterministic
automata is that SCT was originally proposed in the language semantics, and language
equivalence is the weakest requirement that is necessary and sufficient for deterministic
automata equivalence.

DiBenedetteoet al. introduce a notion of equivalence that (with respect to the converted
marked automata) in addition to requiring the languages of two automata to be the same,
also requires that the sequences of visited marked states be the same. Consider the two
automatad; andA; shown in Figure 24. Every marked languag@efindA; is equivalent;
however, the two automata are not behaviorally equivalent because

T3(abd, x,,) = {(BY2ysYe)} # {(Py1Yaye)} = ['3(@bd, X,,,),

that is, although the final output marking of the state reached by thedtatmatches in
both automata, the sequence of markings visited along the trace do not match. Hence, the
Language Inclusion Lemma (LIL) presented in Section 7.1 does not hold.

The above example demonstrates that the LIL is not true when both automata are non-
deterministic. The following question can be asked: “can the LIL be used when only one
of the automata is nondeterministic?” For insight into the answer to this question consider
the automatom\; shown in Figure 25. Although every marked languagé/pis contained
by those ofA,, we still do not haveh; Sz A, for the same reason as above. Hence, the
Language Inclusion Lemma does not hold when any of the automata are nondeterministic.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 427

A
X
a
OY2

O

O
Figure 25. Example deterministic automaton.

Acknowledgements

We gratefully acknowledge Maria DiBenedetto and Alberto Sangiovanni—Vincentelli for
the many enlightening discussions on the topics of bisimulation relations and 1/0O FSM
model matching, and for sharing with us a copy of their report (DiBeneé¢tb, 1996).
We also acknowledge relevant comments from the reviewers of this paper, as well as the
anonymous reviewers of (Barrett and Lafortune, 1997).

This research was supported in partby NSF grant ECS-9057967 and ARO grant DAAHO04-

96-1-0377.

Notes

1. Inorderto make our presentation as self-contained as possible, we are including in Sections 2 and 5 definitions
and problem formulations that have appeared in prior works. In all of these cases, references to the literature
are given.

2. Reference (Cassandmisal., 1995) is not the original reference for the concepts reviewed in this section, but
rather a tutorial introduction to these concepts.

3. The deterministic projected automaton is only of theoretical use here in proofs, so we are not concerned with
its exponential complexity construction.

4. L denotes the prefix-closure of the language

5. Reference (Kumaatal, 1991) also shows that the boudd| 2 |(ny ng)) is tight for constructing an automaton
that generate T
In a sense to be made more precise in Section 4; refer to the discussion in Section 4.4.

7. Greatest bisimulation relations will be denoteddby

8. The term “menu” refers to the active event set at a particular state. Menus are not considered “available” as a
resource to supervisors in SCT; supervisors only observe traces of events.

9. More specifically, the worst-case running time of the Fernandez algorithmcisn@(g(n)) wherec is a
homogeneous upper bound on the number of times any label appears at any stigthelargestimage set
size due to any event (Fernandez, 1996). Here, the algorithm is only ustedesministicautomata se = 1.

428 BARRETT AND LAFORTUNE

10. The definition used here is a modified version of that found in (DiBeneglsttp1995); the notation associated
with the output sequences of the FSMs was condensed.

11. This definition has been modified from that presented in (DiBeneele#lq 1995) in terms of notation.

12. A concept defined in (DiBenedettbal., 1995); rougly speaking, the inverse automaton is simply the original
state machine using only the output labels on each transition.

13. In (DiBenedette@t al., 1995)M is referred to as which is not the same machine as defined earlier in this
paper; hence, we use the over-bar to distinguish these FSM here.

14. This is a modified version of a conversion method suggested in (Sangiovanni-Vincentelli, 1995). While the
method suggested in (Sangiovanni-Vincentelli, 1995) may work, the method presented here maintains the
intuitive notion of assigning the set of uncontrollable evenys to be the set of disturbancié.

15. With some abuse of notation, the curly braces are not shown for singleton outputs, and we will not distinguish
an output class from its associated output value.

16. Itis straightforward to derive the followireact: Let K, M andL be languages. IK = P~1(M) N L where
M C P(L), thenP(K) = M. FurthermoreK = P*l[P(K)] NL,i.e., K isnormal with respect t& andL.

17. We maintain that the use of multiple marked languages in this paper does not alter Supervisory Control Theory,
for existing SCT and language union concepts are used in dealing with the multiple marked language models
described herein. That is, our use of multiple sets of marked states is merely a modeling issue within the
existing body of Supervisory Control Theory.

References

Arnold, A. 1994.Finite Transition SystemdNJ: Prentice Hall.

Baeten, J. C. M., and Weijland, W. P. 1990. Process alg&aebridge Tracts in Theoretical Computer Science
18.

Barrett, G., and Lafortune, S. 1996. A bisimulation approach to the supervisory control of discrete event systems.
Proc. of 34th Annual Allerton Conference on Communication, Control and Compullegton Park, IL.

Barrett, G., and Lafortune, S. 1997. Using bisimulation to solve discrete event control prolifeots.1997
American Control ConfAlbuquerque, NM, pp. 2337-2341.

Bloom, B., Istrail, S., and Meyer, A. 1988. Bisimulation can’t be traced: Preliminary repaot. of 15th Annual
SIGACT-SIGPLAN Symposium on Principles of Programming Languages

Cassandras, C., Lafortune, S., and Olsder, G. 1995. Introduction to the modelling, control and optimization of
discrete event system3rends in Control. A European Perspectiv&. Isidori, ed., Springer-Verlag, pp. 217—
291.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1994. Model matching for finite state ma-
chines.Proc. of 33rd Conf. Decision and Contrdlake Buena Vista, FL. pp. 3117-3124.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1995. Strong model matching for finite state
machinesProc. of 3rd European Control Conferencome, Italy, pp. 2027-2034.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1995. Strong model matching for finite state
machines with non-deterministic reference modetoc. of 34rd Conf. Decision and ControNew Orleans,
LA. pp. 422-426.

DiBenedetto, M. D., Saldanha, A., and Sangiovanni-Vincentelli, A. 1996. Model matching for finite state ma-
chines. Cadence Berkeley Laboratories Technical Report.

Fabian, M. 1995. On object oriented nondeterministic supervisory control. Ph.D. thesis, Chalmers University of
Technology.

Fernandez, J. 1990. An implementation of an efficient algorithm for bisimulation equival&weComput.
Programmingl3: 219-236.

Fernandez, J. 1996. Personal communications.

Hadj-Alouane, N. B., Lafortune, S., and Lin, F. 1994. Variable lookahead supervisory control with state informa-
tion. IEEE Trans. Automat. ContB9-12: 2398-2410.

Hayes, J. P. 1993ntroduction to Digital Logic DesignReading, MA: Addison-Wesley.

Heymann, M., and Lin, F. 1996. Discrete event control of nondeterministic sysfBenh. Report # CIS 9601
Department of Computer Science Technion, Israel Institute of Technology.

BISIMULATION, THE SUPERVISORY CONTROL PROBLEM 429

Heymann, M., and Meyer, G. 1991. An algebra of discrete event processels. Report NASA Memorandum
102848 NASA, Ames Research Center, Moffett Field, CA.

Inan, K. 1994. Nondeterministic supervision under partial observatibth International Conference on Analysis
and Optimization of Systems: Discrete Event Syst&n€ohen and J. Quadrat, eds., Springer-Verlag, pp. 39—
48.

Kohavi, Z. 1978.Switching and Finite Automata Theoi3nd ed. New York: McGraw-Hill.

Kumar, R., Garg, V., and Marcus, S. I. On controllability and normality of discrete-event dynamical syStgsns.
Contr. Lett 17: 157-168.

Overkamp, A. 1997. Supervisory control using failure semantics and partial specificadi&isTrans. Automat.
Contr. 42-4: 498-510.

Paige, R., and Tarjan, R. 1987. Three partition refinement algoritBidgvl J. Computl16-6: 973-989.

Ramadge, P. J., and Wonham, W. M. 1987. Supervisory control of a class of discrete event pr@iéddek.
Control Optim 25-1: 206-230.

Ramadge, P. J., and Wonham, W. M. 1989. The control of discrete event syStemsof the IEEE/7-1: 81-98.

Sangiovanni-Vincentelli, A. 1995. Personal communications.

Shayman, M., and Kumar, R. 1995. Supervisory control of nondeterministic systems with driven events via
prioritized synchronization and trajectory mode®8AM J. Control Optim33-2: 469-497.

Thistle, J. G., Malham,R. P., Hoang, H. H., and Lafortune, S.1995. Blocking, modularity, and feature interactions
in distributed systems. Preprint.

Wonham, W. M., and Ramadge, P. J. 1987. On the supremal controllable sublanguage of a given |Sigihge.
J. Control Optim 25-3: 637-659.

