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ABSTRACT

We present a unified approach to Bismut type differentiation formulas for heat semigroups on functions
and forms. Both elliptic and hypoelliptic situations are considered. Nonlinear extensions apply to the
case of harmonic maps between Riemannian manifolds and solutions to the nonlinear heat equation.

1. INTRODUCTION

Let M be a smooth-dimensional manifold. O/ consider a Stratonovich SDE
with smooth coefficients of the type

§X = A(X)8Z + Ao(X) dt, (1.1)

whereAg € T'(TM) is a vector field andi: M xR" — TM, (x,z) — A(x)za
bundle map oveM for somer. The driving procesZ is assumed to be & -valued
Brownian motion on some filtered probability space satisfying the usual complete-
ness conditions. We writ& (x) for the solution to (1.1) starting from the point

x € M, and denote its maximal lifetime lay(x).

Solutions to (1.1) are diffusions with generator given in Hormander form as

17
L=AO+E;AZ-2 (1.2)
with A; = A(.)e; e T(TM) fori =1, ..., r. We consider the minimal semigroup
to (1.1)
(P )() = E[(f 0 X (0)) L <o) (1.3)
likewise let

u(x) = E[f o Xr(x)(x)] (1.4)
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be the representation of drharmonic functions on some domai®® C M, where
7(x) is the first exit time ofX from D when starting at.

Our aim, if possible, is to find formulas for the differentigl®if), respectively d,
which do not involve derivatives of. Such differentiation formulas are sometimes
called “Bismut type” formulas. For a survey on applications of differentiation for-
mulas we refer to (Elworthy and Li, 1994).

2. AN INTEGRATION BY PARTS ARGUMENT

In this section we explain a general integration by parts argument at the level of local
martingales which will serve as a key ingredient in our approach to differentiation
formulas. Suppose that we are given a time-space funétitmnsforming our dif-
fusion into a continuous local martingald -, X (x)). All processes considered in
this paper are supposed to have continuous paths. The furicti®assumed to be

C! in the space variable with a derivative continuous in both variables. We have
mainly two cases in mind, namely

1) F(-, X.(x)) = u(X.(x)), whereu is someL-harmonic function, and
(2) F(-, X.(x)) = (P—.f)(X.(x)) for somef € B(M), i.e. f is a bounded mea-

surable function o/

Suppose further thavo ;: T, M — Tx,(x)M are linear transports aif alongX (x)
such that, foreach € T, M,

dF (s, )X, (x) WO’SU, s >0, (2.1)

is a local martingale. We assume thﬁto = Wo; andW 00 = = id7, . Note that
a possible choice foWg ; is for mstanceWo = T, X,. This follows from the fact

that the derivative of &1-family (w.r.t. compact convergence in probability) of local
martingales is again a local martingale (Arnaudon and Thalmaier, 1998a).

LEMMA 1. For F(-, X.(x)) as above, letVy . be a linear transport along((x)
such that(2.1) are local martingales. Then, for af/ -valued proces$ in Lloc(Z)
and anyv € T, M,

Nyt =dF(s, )x,0 Wo, | v —/Wg}A(Xr(x))kr dr

+ F(s, X5(x)) /(k, dz) (2.2)

is a local martingale fol0 < s < o, where[0, o[ denotes the stochastic interval on
which F(., X (x)) is defined, e.gr =t A ¢(x) or t(x), etc.
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Proof. We have to show that
S S
A (s, xo Wo, [ Wt AKX )k dr = Fis. X [ d2) s >0
0 0

is alocal martingale. Let, = [ W&}A(X,(x))k, dr. Then (s, -)x,(x) W, /s —

fg dF(r, )x, ) Wo., dh,, s > 0, is a local martingale, and the claim follows upon
noting thatF (s, X5(x)) = F(0,x) + fg dF (r, -)x, ) A(X,(x)) dZ, which implies
that [y dF (r, -)x, () Wy, dh, — F (s, X5 (x)) Jo (k. dZ),s > 0, is alocal martingale.

The procedure is now straightforward. Suppose that we are able to choose the
process in (2.2) in such a way that the following two conditions hold:

@ Jo W&rl A(X,(x)k,dr = v a.s., and
(b) N = (N;r0)i>0 IS @ uniformly integrable martingale.

Then, evaluatind: [No] = E [N, ] gives a formula for & (0, -),v in terms of the
processF (-, X (x)). In the elliptic case, both (a) and (b) can easily be achieved
(Thalmaier, 1997), by exploiting the fact that there is a right-inverse to the process
A(X.(x)).

3. THE ELLIPTIC CASE

Suppose that our system (1.1) is elliptic, 4gx): R" — T, M is onto for each €

M. Then there is a Riemannian metgion M which makesA (x)*: TyM — R’ to

an isometric inclusion for each e M. In particular, the generator (1.2) then writes
as

L=3Ay+V, (3.1)

whereAy, is the Laplace—Beltrami operator a with respect to the metrig and
V is afirst order term, i.eV € I'(T M).

In this case, there is an intrinsic choice for the linear transpdstsin (2.1). To
this end, letWo ,: .M — Tx,(»)M be defined by the following covariant equation
alongX (x):

D 1 _. .
awo,s =3 Ric” (Wos, ¥+ VV(Wos), Woo=id7rm. (3.2)

Then the local martingale property of (2.1) is elementary to check: indeed, this can
be done either directly by applying Weitzenb6ck’s formula to the Laplacian on 1-

forms (see, for instance, Thalmaier, 1998), or by using the method of filtering out
redundant noise from the derivative proc&sx (cf. Elworthy and Yor, 1993). Let

B = [ lstacxcdz, (3.3)
0
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be the martingale part of the anti-developmdiik) := fd //0‘,5l 38X, of X = X(x).
Obviously, B is a Brownian motion orf, M and, by definition,A(X;(x))dZ; =

o.s dB;. In this situation, Lemma 1 is easily adapted to give the local martingale
property of

Ny = dF (s, )x,0 Wo, | v — / Wor o, ke dr | 4+ Fs, Xs(x))/(k,dB).
0 0

Takinghy = v — fg W&rl /fo.-kr dr, we get the following typical applications in
the elliptic case, see (Thalmaier, 1997) for details. In the sequél](Rt,., T, M)
denote the Cameron—Martin space of pathsR — T, M of finite energy.

THEOREM 2 (Differentiation formula for heat semigroupd)et f: M — R be
bounded measurable,e M andv € T, M. Then, for any bounded adapted process
h with paths inH(R ., T, M) such that( [7 """ |i,2ds)Y/2 € L1, and the property
thathg = v, hy = Ofor all s > t(x) A ¢, the following formula holds:

T(xX)AL

d(Ptf)xv =-E f(Xt(x)) 1{t<§(x)} f (WO,S(];ls)y //O,s st> , (34)
0

wheret (x) is the first exit time o (x) from some relatively compact open neigh-
bourhoodD of x.

THEOREM 3 (Differentiation formula for harmonic functiondlet D ¢ M be a
nonvoid relatively compact open subset with smooth bouridary ffl, andz (x) =
inf{z > 0: X,(x) ¢ D} the first exit time oX from D when started at € D. Let
u € C(D) be L-harmonic onD. Then
T(x)
(du)xv = —E | u(Xr(x)(x)) f(ws(hs),//o,s dBy) (3.5)
0
for any bounded adapted processwith paths inH(R, 7, M) such thathg = v,
hy = Ofor s > 7(x), and the property tha(f()’(") |hs|2ds)Y/2 e L1t for some
e > 0.

For possible choices of the procéssee (Thalmaier and Wang, 1998) where formula
(3.5) is used to prove local gradient estimates of harmonic functions.

4. NONLINEAR GENERALIZATIONS

The arguments of the previous section are easily extended to nonlinear situations,
e.g. to harmonic mapg: M — N between Riemannian manifolds, and more
generally, to solutions of the nonlinear heat equation

a 1

—u==A 4.1
8tu 2 " (“4.1)
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for maps betwee and N, whereAu = traceVdu is the tension of:. In these
cases

(1) Fs; = F(s, X5(x)) = u(Xs(x)), respectively

(2) Fy = F(s, Xs(x)) = us—5(X5(x)),

defineV-martingales oV for Brownian motionsX on M.

DEFINITION 4 (Arnaudon and Thalmaier, 1998b). For a continuous semimartingale
Y taking values in a manifold/, endowed with a torsionfree connecti®nthe geo-
desic transport (also called deformed or damped transport; Dohrn—Guerra transport)
©g,: Iy,N - T, NonN alongY is defined by the following covariant equation
alongY:

d(//5 1 00.) = =3 /g T RO .dY)dY, Oy, =id, (4.2)

where//y ,: Ty, N — T, N is parallel transport oV alongY and R denotes the
curvature tensort@ TheTyON -valued process

Ader(Y) = f Og 8Y; (4.3)
0
is called deformed anti-developmentiof

Now let ®q . be the geodesic transport dhalong the martingal&'( -, X.(x)). Ex-
ploiting the fact that the Stratonovich integral in (4.3) can be replaced by an It6
integral, we get

Ader(F (-, X.(x))) = f Oal dF (s, )x,) A(Xs(x)) dZg
0
Further, by taking into account that (Arnaudon and Thalmaier, 1998b)
my = O T dF (s, ) x, ) Wo,

is local martingale i’ M ® Tr(o,x)N, we obtain the following generalization of
Lemma 1 to the nonlinear case.

LEMMA 5. LetF (., X.(x)),x € M, be a family ofV—martingaIes onv, as above.
Then, for any predictabl®’-valued process in L2 .(Z),

OGLAFC X0 Wy [ Wk ks s — AP X.00) [ (k.02
0
is a local martingale inlr )N

Following the lines of Section 3, Lemma 5 leads to explicit differentiation formulas
in the nonlinear case, cf. (Arnaudon and Thalmaier, 1998b) for technical details.
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THEOREM6 (A nonlinear differentiation formulaletu: [0,t] x M — N be a
smooth solution of equatiqd.1)andv € T, M. Then

T(X)AL

(du»xv:—E[Adef(uu—-,x.<x>>),<x)A, / (washs,//o,sst)}
0

for any bounded adapted procdssith sample paths in the Cameron—Martin space
H([O, ¢], T M) such that(fof(")“ |hs|?ds)Y/2 e L1t for somee > 0, and the
property thathg = v, hy = Ofor all s > ©(x) A t; heret(x) is again the first exit
time of X (x) from some relatively compact neighbourhadaf x.

In the same way, formulas for the differential of harmonic maps\f — N be-
tween Riemannian manifolds can be derived,

T(x)
(du)yv = _E[Adef(u(x.(x)))r(x) f (WO,S ils > //O,s st>:|a (44)
0

with assumptions analogous to Theorem 6. Note that the stochastic integral in (4.4)
depends only on the local geometry &f about the point. Formula (4.4) has
been used in (Arnaudon and Thalmaier, 1998b) to prove local gradient estimates for
harmonic maps of bounded dilatation, recovering theorems of Goldberg—Ishihara—
Petridis and Shen as special cases.

5. EXTENSIONS TO DIFFERENTIAL FORMS

In this section we sketch extensions from functions to differential forms. For more
general results in this direction, e.g. for sections in vector bundles, see (Driver and
Thalmaier, 1999).

On a Riemannian manifol?, endowed with the Levi—Civita connectidn, con-
sider the exterior algebra bundle

E=AT*M = @ APT*M.
p=0

Let A denote the de Rham—Hodge Laplacianuik) with sign convention
A = —(dd* + d*d), (5.1)

where d and Hare the exterior differential, respectively codifferential. Note that for
a e I'(E),

da = ¢ Va, d*a = —c Va, (5.2)
whereV: I'(E) — I'(T*M ® E) is the induced covariant derivative éghand
cF=AT*M QAT*M — AT*M, s@ui>sAv,
¢ =L:T*MQAT*M — AT*M, s@uvi>sLv
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denote wedge product and contractionBn= AT*M, respectively. OnMATM
the operationg:* are defined analogously. Recall that, by definition, v =
S DM s v vaA- T Ay fOr v = v1A- - Av,. Further, by Weitzen-
bock’s formula,

Aa =Ua — Ra, (5.3)

where(la = traceVZa is the “rough Laplacian” o' (E) andR € I'(HomE) the
Weitzenbdck curvature term.

Forx € M fixed, the Weitzenbdck terR can be used to define a proce@wwith
values in AutE,) via the pathwise equation

d

1 .
2 =32 Ry, Qo=ide, (5.4)

whereR ;= //(;tl o Rx,(x) © Moz

For the remainder of this section, lét, -) denote the natural pairing between
AT!M and AT M, and letQ; € Aut(AT M) be determined byQ;v, w) =
(v, QFw) forv e ATy M, w € AT M.

The following lemma is crucial for derivative formulas in our situation, see (Driver
and Thalmaier, 1999) for generalizations in various directions.

LEMMA 7. Leta be a solution to the heat equation on differential forms, i.e. on
I'(E), %a = %Aa, whereA is the de Rham—Hodge Laplacian given(byl). Then

Ny =(Qs /g rda, (X (x)). £(s))
- <Qs Mo (X5 (x)), f (0 "Y(dB, L 0 g(r))>
0

and

N =(0s /g yd*a, (X5 (x)), £(s))
+ <Qs Mowar (X (X)), / (@) HdB, A Qfé<r>)>
0

are local martingales for any adapted proceswith paths in the Cameron—Martin
spaceH([0, t], ATy M). Here X (x) is a Brownian motion o/ starting fromx and
B its anti-development taking valuesTpM.

The following theorem is a typical application of Lemma 7, see also (Elworthy and
Li, 1998). For simplicity, we assum# to be compact. Fok?-sections: of E, let

the semigroupP,a = €/224 be defined by means of the spectral theorem, where
denotes the closure @f. Then(P;a), = E[Q; //Oftla(X,(x))].
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THEOREMS8. Let M be a compact manifold, € L?-T'(AT*M) be a bounded.?-
section and € AT, M for somex € M. Then

t
(dPra),v = —E <Q, Yo ka(X, (x)), / (0~ Y(dB, L Q;?tf(s))ﬂ :
0

t
(d*Pa)v=E <Q: M (X (), f(Q}‘)*l(st A Q5 é(S))>i|
0

for any adapted procegswith sample paths ([0, t], AT, M) such thatZ(0) = v,
€(t) = 0, and the property that/y |€(s)|?ds)¥2 € L.

6. FORMULAS IN THE HYPOELLIPTIC CASE

In the rest of this survey, we give a generalization of the results in Section 3. We
consider again our system (1.1) but now with the assumption that the generator
Ao+ 3 37_; AZis only hypoelliptic, i.e.

Lie(A;, [Ao0, Ail: i=1,...,r)(x) =T:M, forallx e M. (H1)

In other words: the ideal in Liglg, A1, ..., A;) generated byA1, ..., A,) is as-
sumed to be full at each € M. We want to extend Theorem 1 and Theorem 2 to
the hypoelliptic situation.

Under hypothesis (H1), the “Malliavin Covariance”
r 13
ASEDY / (X5 A1), ® (X3, A7), ds (6.1)
i=1
0

defines a positive symmetric bilinear form @{iM for x € M such that < ¢(x).
We readC; (x): T)M — T, M, C;(x)"t: T,M — T}M and write

t
Ci(x) :/(X;}A)X(X;SA))’Z ds (6.2)
0

where(X;1A),: R — T, M is defined by, — Y "/_;(X;;}A:), z'. Recall that by

Lemma 1, for anyR"-valuedk process inLﬁ)c(Z),

Ng :=dF(s, -) Xs« |:v — / Xr—*l A(Xr(x))kr dr:| + F(s, Xs(x))f(k, dz)
0 0
is a local martingale of0, ¢ A ¢(x)[.

RemarlQ. Forx € M andv € T, M one may consider the systém: —(X;,}A)x ks,
ho = v. Note that if we are able to find a predictablavith values inR” such that

(1) hy = Owheres = 7(x) oro = t(x) At,andin addition,
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(2) (Jy lks|?ds)t/? € L1 for somes > 0,

then the results of Section 3 in the elliptic case carry over almost verbatim.
However, it can be shown (Arnaudon and Thalmaier, 1998c) that, in general, this is
not possible in the hypoelliptic situation. A counterexample in three dimensions (a
two-dimensional Brownian motion and its Lévy area as a third coordinate) has been
communicated to us by Jean Picard.

The following result in the hypoelliptic case is taken from (Arnaudon and Thalmaier,
1998c). A similar result can be given fdrharmonic functions.

THEOREM10. Let M be a smooth manifold anfl: M — R be bounded measur-
able. Assume thgH1) holds. Letv € T, M andt > 0. Then, forP; f defined by
(1.3), there is a formula of the type

(P f)xv = E[f(X:(0)) Ly <z (x)yPrv]. (6.3)

where®; is a T M-valued random variablel.”-integrable forl < p < oo and
local in the following sense: for any relatively compact neighbourhbazf x in M
there is a choice fo, which isF,;-measurable where = ¢ A t(x) andt (x) is the
first exit time ofX from D when starting ak.

We briefly sketch some arguments underlying Theorem 10. For simplicity, we as-
sume thatV is compact andf is C1. Our sketch of proof does not show thht

is indeed local: to see this, the given arguments have to be reformulated in terms of
local martingales (cf. Arnaudon and Thalmaier, 1998c).

Leta be a predictable process with valuegitwf  R" andi € T, M = R” (locally

about 0) such that far> 0,

t
1
E | exp §/|ask|2ds < 0.
0

Let dZ* = dZ + ax dr and consider the Girsanov exponentdl defined by

t

t

1

G} =exp —/(a,\,dz>— > /|a,\|2ds
0 0

We write X* for the flow to our SDE driven by the perturbed Brownian motit
analogously* (x), etc. By Girsanov's theorem, we find thd() = Yoo ELf (X} (x))-
G} - (C}(x) Yk v is independent of for eachk. ThusaaTk _oH () =0, from
where we conclude that

> E|:(Dl- F)(X:(x) (x,* / (X;1A), ag ds>

ikl

(Ct(x)fl)kz v{|

ik
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d
—- e[ | (6w, ).
[ k=0

Recall thatX;;}A), € R"®T, M. Nowtheideaistoset, = a" = (X;;'A)* 1<y, €
T'M @ R", wheret,  tis a sequence of stopping times such that egchat-
isfies the integrability condition. This gives(df)x, ) X:« Cz, (x) Ci(x) v =
E[(f o X;(x)) - D" v].

Finally, taking the limit as: — oo, we get dP; f),v = E[(df)x,x) Xixv] =
E[(f o X;(x)) - ®; v], where

t
O, v = / (X;1A),dz, | ¢ v
0

C,)‘(x)> G (x)l) vt
=i ke

0
E C) | —
i k.t ( /) <a)‘k A=0
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