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ABSTRACT

We present a unified approach to Bismut type differentiation formulas for heat semigroups on functions
and forms. Both elliptic and hypoelliptic situations are considered. Nonlinear extensions apply to the
case of harmonic maps between Riemannian manifolds and solutions to the nonlinear heat equation.

1. INTRODUCTION

Let M be a smoothn-dimensional manifold. OnM consider a Stratonovich SDE
with smooth coefficients of the type

δX = A(X) δZ +A0(X) dt, (1.1)

whereA0 ∈ 0(TM) is a vector field andA : M × Rr → TM, (x, z) 7→ A(x)z a
bundle map overM for somer. The driving processZ is assumed to be anRr -valued
Brownian motion on some filtered probability space satisfying the usual complete-
ness conditions. We writeX.(x) for the solution to (1.1) starting from the point
x ∈M, and denote its maximal lifetime byζ(x).

Solutions to (1.1) are diffusions with generator given in Hörmander form as

L = A0+ 1

2

r∑
i=1

A2
i (1.2)

with Ai = A( . )ei ∈ 0(TM) for i = 1, . . . , r. We consider the minimal semigroup
to (1.1)

(Ptf )(x) = E
[(
f ◦Xt(x)

)
1I{t<ζ(x)}

]
, (1.3)

likewise let

u(x) = E
[
f ◦Xτ(x)(x)

]
(1.4)
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be the representation of anL-harmonic functionu on some domainD ⊂ M, where
τ(x) is the first exit time ofX fromD when starting atx.

Our aim, if possible, is to find formulas for the differential d(Ptf ), respectively du,
which do not involve derivatives off . Such differentiation formulas are sometimes
called “Bismut type” formulas. For a survey on applications of differentiation for-
mulas we refer to (Elworthy and Li, 1994).

2. AN INTEGRATION BY PARTS ARGUMENT

In this section we explain a general integration by parts argument at the level of local
martingales which will serve as a key ingredient in our approach to differentiation
formulas. Suppose that we are given a time-space functionF transforming our dif-
fusion into a continuous local martingaleF( . ,X.(x)). All processes considered in
this paper are supposed to have continuous paths. The functionF is assumed to be
C1 in the space variable with a derivative continuous in both variables. We have
mainly two cases in mind, namely

(1) F( . ,X.(x)) = u(X.(x)), whereu is someL-harmonic function, and

(2) F( . ,X.(x)) = (Pt−.f )
(
X.(x)

)
for somef ∈ B(M), i.e.f is a bounded mea-

surable function onM.

Suppose further thatW0,s : TxM → TXs(x)M are linear transports onM alongX(x)
such that, for eachv ∈ TxM,

dF(s, . )Xs(x) W0,sv , s > 0, (2.1)

is a local martingale. We assume thatWs,0 = W−1
0,s andW0,0 = idTxM . Note that

a possible choice forW0,s is for instanceW0,s = TxXs . This follows from the fact

that the derivative of aC1-family (w.r.t. compact convergence in probability) of local
martingales is again a local martingale (Arnaudon and Thalmaier, 1998a).

LEMMA 1. For F( . ,X.(x)) as above, letW0,. be a linear transport alongX(x)
such that(2.1)are local martingales. Then, for anyRr -valued processk in L2

loc(Z)

and anyv ∈ TxM,

Ns : = dF(s, . )Xs(x) W0,s

v − s∫
0

W−1
0,r A

(
Xr(x)

)
kr dr


+ F(s,Xs(x))

s∫
0

〈k,dZ〉 (2.2)

is a local martingale for0 6 s < σ , where[0, σ [ denotes the stochastic interval on
whichF( . ,X.(x)) is defined, e.g.σ = t ∧ ζ(x) or τ(x), etc.
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Proof. We have to show that

dF(s, . )Xs(x) W0,s

s∫
0

W−1
0,r A

(
Xr(x)

)
kr dr − F(s,Xs(x))

s∫
0

〈k,dZ〉, s > 0,

is a local martingale. Leths =
∫ s

0 W
−1
0,r A(Xr(x))kr dr. Then dF(s, . )Xs(x) W0,shs−∫ s

0 dF(r, . )Xr(x) W0,r dhr , s > 0, is a local martingale, and the claim follows upon
noting thatF(s,Xs(x)) = F(0, x)+

∫ s
0 dF(r, . )Xr (x) A(Xr(x)) dZr which implies

that
∫ s

0 dF(r, . )Xr(x) W0,r dhr−F(s,Xs(x))
∫ s

0 〈k,dZ〉, s > 0, is a local martingale.

The procedure is now straightforward. Suppose that we are able to choose the
processk in (2.2) in such a way that the following two conditions hold:

(a)
∫ σ

0 W
−1
0,r A(Xr(x))kr dr = v a.s., and

(b) Nσ ≡ (Nt∧σ )t>0 is a uniformly integrable martingale.

Then, evaluatingE [N0] = E [Nσ ] gives a formula for dF(0, . )xv in terms of the
processF( . ,X.(x)). In the elliptic case, both (a) and (b) can easily be achieved
(Thalmaier, 1997), by exploiting the fact that there is a right-inverse to the process
A(X.(x)).

3. THE ELLIPTIC CASE

Suppose that our system (1.1) is elliptic, i.e.A(x) : Rr → TxM is onto for eachx ∈
M. Then there is a Riemannian metricg onM which makesA(x)∗ : TxM → Rr to
an isometric inclusion for eachx ∈ M. In particular, the generator (1.2) then writes
as

L = 1
21M + V, (3.1)

where1M is the Laplace–Beltrami operator onM with respect to the metricg and
V is a first order term, i.e.V ∈ 0(TM).
In this case, there is an intrinsic choice for the linear transportsW0,. in (2.1). To
this end, letW0,s : TxM → TXs(x)M be defined by the following covariant equation
alongX(x):

D

ds
W0,s = −1

2
RicM(W0,s, · )#+∇V (W0,s ), W0,0 = idTxM . (3.2)

Then the local martingale property of (2.1) is elementary to check: indeed, this can
be done either directly by applying Weitzenböck’s formula to the Laplacian on 1-
forms (see, for instance, Thalmaier, 1998), or by using the method of filtering out
redundant noise from the derivative processTxX (cf. Elworthy and Yor, 1993). Let

Br =
r∫

0

//−1
0,s A(Xs(x)) dZs (3.3)



26 M. Arnaudon and A. Thalmaier

be the martingale part of the anti-developmentA(X) := ∫ .
0 //
−1
0,s δXs of X = X(x).

Obviously,B is a Brownian motion onTxM and, by definition,A(Xs(x)) dZs =
//0,s dBs . In this situation, Lemma 1 is easily adapted to give the local martingale
property of

Ns = dF(s, . )Xs(x) W0,s

v − s∫
0

W−1
0,r //0,r kr dr

+ F(s,Xs(x)) s∫
0

〈k,dB〉.

Taking hs = v − ∫ s0 W−1
0,r //0,r kr dr, we get the following typical applications in

the elliptic case, see (Thalmaier, 1997) for details. In the sequel, letH(R+, TxM)
denote the Cameron–Martin space of pathsγ : R+ → TxM of finite energy.

THEOREM 2 (Differentiation formula for heat semigroups).Let f : M → R be
bounded measurable,x ∈ M andv ∈ TxM. Then, for any bounded adapted process
h with paths inH(R+, TxM) such that(

∫ τ(x)∧t
0 |ḣs |2 ds)1/2 ∈ L1, and the property

thath0 = v, hs = 0 for all s > τ(x) ∧ t, the following formula holds:

d(Ptf )xv = −E

f (Xt(x))1{t<ζ(x)}

τ(x)∧t∫
0

〈
W0,s(ḣs), //0,s dBs

〉 , (3.4)

whereτ(x) is the first exit time ofX(x) from some relatively compact open neigh-
bourhoodD of x.

THEOREM 3 (Differentiation formula for harmonic functions).Let D ⊂ M be a
nonvoid relatively compact open subset with smooth boundary∂D 6= ffl , andτ(x) =
inf{t > 0 : Xt(x) 6∈ D} the first exit time ofX fromD when started atx ∈ D. Let
u ∈ C(D̄) beL-harmonic onD. Then

(du)xv = −E

u(Xτ(x)(x)) τ(x)∫
0

〈
Ws(ḣs), //0,s dBs

〉 (3.5)

for any bounded adapted processh with paths inH(R+, TxM) such thath0 = v,
hs ≡ 0 for s > τ(x), and the property that(

∫ τ(x)
0 |ḣs |2 ds)1/2 ∈ L1+ε for some

ε > 0.

For possible choices of the processh see (Thalmaier and Wang, 1998) where formula
(3.5) is used to prove local gradient estimates of harmonic functions.

4. NONLINEAR GENERALIZATIONS

The arguments of the previous section are easily extended to nonlinear situations,
e.g. to harmonic mapsu : M → N between Riemannian manifolds, and more
generally, to solutions of the nonlinear heat equation

∂

∂t
u = 1

2
1u (4.1)
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for maps betweenM andN , where1u = trace∇du is the tension ofu. In these
cases

(1)Fs ≡ F(s,Xs(x)) = u(Xs(x)), respectively

(2)Fs ≡ F(s,Xs(x)) = ut−s(Xs(x)),
define∇-martingales onN for Brownian motionsX onM.

DEFINITION 4 (Arnaudon and Thalmaier, 1998b). For a continuous semimartingale
Y taking values in a manifoldN , endowed with a torsionfree connection∇, the geo-
desic transport (also called deformed or damped transport; Dohrn–Guerra transport)
20,t : TY0

N → TYtN onN alongY is defined by the following covariant equation
alongY :

d
(
//−1

0,.20,.
) = −1

2 //
−1
0,. R(20,.,dY) dY, 20,0 = id, (4.2)

where//0,t : TY0
N → TYtN is parallel transport onN alongY andR denotes the

curvature tensor to∇. TheTY0N-valued process

Adef(Y ) =
.∫

0

2−1
0,s δYs (4.3)

is called deformed anti-development ofY .

Now let20,. be the geodesic transport onN along the martingaleF( . ,X.(x)). Ex-
ploiting the fact that the Stratonovich integral in (4.3) can be replaced by an Itô
integral, we get

Adef
(
F( . ,X.(x))

) = .∫
0

2−1
0,s dF(s, . )Xs(x) A

(
Xs(x)

)
dZs.

Further, by taking into account that (Arnaudon and Thalmaier, 1998b)

ms := 2−1
0,s dF(s, . )Xs(x) W0,s

is local martingale inT ∗x M ⊗ TF(0,x)N , we obtain the following generalization of
Lemma 1 to the nonlinear case.

LEMMA 5. LetF( . ,X.(x)), x ∈ M, be a family of∇-martingales onN , as above.
Then, for any predictableRr -valued processk in L2

loc(Z),

2−1
0,. dF( . ,X.(x))W0,.

.∫
0

W−1
0,s //0,sks ds −Adef

(
F( . ,X.(x))

) .∫
0

〈k,dZ〉

is a local martingale inTF(0,x)N .

Following the lines of Section 3, Lemma 5 leads to explicit differentiation formulas
in the nonlinear case, cf. (Arnaudon and Thalmaier, 1998b) for technical details.
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THEOREM 6 (A nonlinear differentiation formula).Let u : [0, t] ×M → N be a
smooth solution of equation(4.1)andv ∈ TxM. Then

(dut)xv = −E
[
Adef

(
u(t − . ,X.(x))

)
τ(x)∧t

τ (x)∧t∫
0

〈
W0,s ḣs , //0,s dBs

〉]
for any bounded adapted processh with sample paths in the Cameron–Martin space
H([0, t], TxM) such that(

∫ τ(x)∧t
0 |ḣs |2 ds)1/2 ∈ L1+ε for someε > 0, and the

property thath0 = v, hs = 0 for all s > τ(x) ∧ t; hereτ(x) is again the first exit
time ofX(x) from some relatively compact neighbourhoodD of x.

In the same way, formulas for the differential of harmonic mapsu : M → N be-
tween Riemannian manifolds can be derived,

(du)xv = −E
[
Adef

(
u(X.(x))

)
τ(x)

τ (x)∫
0

〈
W0,s ḣs , //0,s dBs

〉]
, (4.4)

with assumptions analogous to Theorem 6. Note that the stochastic integral in (4.4)
depends only on the local geometry ofM about the pointx. Formula (4.4) has
been used in (Arnaudon and Thalmaier, 1998b) to prove local gradient estimates for
harmonic maps of bounded dilatation, recovering theorems of Goldberg–Ishihara–
Petridis and Shen as special cases.

5. EXTENSIONS TO DIFFERENTIAL FORMS

In this section we sketch extensions from functions to differential forms. For more
general results in this direction, e.g. for sections in vector bundles, see (Driver and
Thalmaier, 1999).

On a Riemannian manifoldM, endowed with the Levi–Civita connection∇, con-
sider the exterior algebra bundle

E = 3T ∗M ≡
⊕
p>0

3pT ∗M.

Let1 denote the de Rham–Hodge Laplacian on0(E) with sign convention

1 = −(dd∗ + d∗d), (5.1)

where d and d∗ are the exterior differential, respectively codifferential. Note that for
a ∈ 0(E),

da = c+∇a, d∗a = −c−∇a, (5.2)

where∇ : 0(E)→ 0(T ∗M ⊗ E) is the induced covariant derivative onE and

c+ = ∧ : T ∗M ⊗3T ∗M → 3T ∗M, s ⊗ v 7→ s ∧ v,
c− = : T ∗M ⊗3T ∗M → 3T ∗M, s ⊗ v 7→ s v
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denote wedge product and contraction inE = 3T ∗M, respectively. On3TM
the operationsc± are defined analogously. Recall that, by definition,s v =∑p

k=1 (−1)k+1〈s, vk〉 v1∧· · · v̂k ∧· · · vp for v = v1∧· · ·∧vp. Further, by Weitzen-
böck’s formula,

1a = �a −Ra, (5.3)

where�a = trace∇2a is the “rough Laplacian” on0(E) andR ∈ 0(HomE) the
Weitzenböck curvature term.

For x ∈ M fixed, the Weitzenböck termR can be used to define a processQ with
values in Aut(Ex) via the pathwise equation

d

dt
Qt = −1

2
Qt R//0,t , Q0 = idEx , (5.4)

whereR//0,t = //−1
0,t ◦RXt (x) ◦ //0,t .

For the remainder of this section, let〈 · , · 〉 denote the natural pairing between
3T ∗x M and3TxM, and letQ∗t ∈ Aut(3TxM) be determined by〈Qtv,w〉 =
〈v,Q∗t w〉 for v ∈ 3T ∗x M,w ∈ 3TxM.

The following lemma is crucial for derivative formulas in our situation, see (Driver
and Thalmaier, 1999) for generalizations in various directions.

LEMMA 7. Let a be a solution to the heat equation on differential forms, i.e. on
0(E), d

dt a = 1
21a, where1 is the de Rham–Hodge Laplacian given by(5.1). Then

Ns =
〈
Qs //

−1
0,s dat−s(Xs(x)), `(s)

〉
−
〈
Qs //

−1
0,s at−s(Xs(x)),

s∫
0

(Q∗r )−1(dBr Q∗r ˙̀(r)
)〉

and

N∗s =
〈
Qs //

−1
0,s d

∗at−s(Xs(x)), `(s)
〉

+
〈
Qs //

−1
0,s at−s(Xs(x)),

s∫
0

(Q∗r )−1(dBr ∧Q∗r ˙̀(r))〉
are local martingales for any adapted process` with paths in the Cameron–Martin
spaceH([0, t],3TxM). HereX(x) is a Brownian motion onM starting fromx and
B its anti-development taking values inTxM.

The following theorem is a typical application of Lemma 7, see also (Elworthy and
Li, 1998). For simplicity, we assumeM to be compact. ForL2-sectionsa of E, let
the semigroupPta = et/21̄a be defined by means of the spectral theorem, where1̄

denotes the closure of1. Then(Pta)x = E[Qt //−1
0,t a(Xt(x))].
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THEOREM 8. LetM be a compact manifold,a ∈ L2-0(3T ∗M) be a boundedL2-
section andv ∈ 3TxM for somex ∈ M. Then

(dPta)xv = −E

〈Qt //−1
0,t a(Xt(x)),

t∫
0

(Q∗s )−1(dBs Q∗s ˙̀(s)
)〉 ,

(d∗Pta)xv = E

〈Qt //−1
t,a (Xt(x)),

t∫
0

(Q∗s )−1(dBs ∧Q∗s ˙̀(s))〉


for any adapted process̀with sample paths inH([0, t],3TxM) such that̀ (0) = v,
`(t) = 0, and the property that(

∫ t
0 | ˙̀(s)|2ds)1/2 ∈ L1.

6. FORMULAS IN THE HYPOELLIPTIC CASE

In the rest of this survey, we give a generalization of the results in Section 3. We
consider again our system (1.1) but now with the assumption that the generatorL =
A0+ 1

2

∑r
i=1A

2
i is only hypoelliptic, i.e.

Lie
(
Ai, [A0, Ai ] : i = 1, . . . , r

)
(x) = TxM, for all x ∈ M. (H1)

In other words: the ideal in Lie(A0, A1, . . . , Ar) generated by(A1, . . . , Ar) is as-
sumed to be full at eachx ∈ M. We want to extend Theorem 1 and Theorem 2 to
the hypoelliptic situation.

Under hypothesis (H1), the “Malliavin Covariance”

Ct(x) =
r∑
i=1

t∫
0

(
X−1
s∗ Ai

)
x
⊗ (X−1

s∗ Ai
)
x

ds (6.1)

defines a positive symmetric bilinear form onT ∗x M for x ∈ M such thatt < ζ(x).
We readCt (x) : T ∗x M → TxM, Ct (x)−1 : TxM → T ∗x M and write

Ct (x) =
t∫

0

(
X−1
s∗ A

)
x

(
X−1
s∗ A

)∗
x

ds (6.2)

where(X−1
s∗ A)x : Rr → TxM is defined byz 7→∑r

i=1(X
−1
s∗ Ai)x zi . Recall that by

Lemma 1, for anyRr -valuedk process inL2
loc(Z),

Ns := dF(s, . )Xs∗

v − s∫
0

X−1
r∗ A

(
Xr(x)

)
kr dr

+ F(s,Xs(x)) s∫
0

〈k,dZ〉

is a local martingale on[0, t ∧ ζ(x)[.

Remark9. Forx ∈M andv ∈ TxM one may consider the systeṁhs = −(X−1
s∗ A)x ks ,

h0 = v. Note that if we are able to find a predictablek with values inRr such that

(1) hσ = 0 whereσ = τ(x) or σ = τ(x) ∧ t, and in addition,
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(2) (
∫ σ

0 |ks |2ds)1/2 ∈ L1+ε for someε > 0,
then the results of Section 3 in the elliptic case carry over almost verbatim.

However, it can be shown (Arnaudon and Thalmaier, 1998c) that, in general, this is
not possible in the hypoelliptic situation. A counterexample in three dimensions (a
two-dimensional Brownian motion and its Lévy area as a third coordinate) has been
communicated to us by Jean Picard.

The following result in the hypoelliptic case is taken from (Arnaudon and Thalmaier,
1998c). A similar result can be given forL-harmonic functions.

THEOREM 10. LetM be a smooth manifold andf : M → R be bounded measur-
able. Assume that(H1) holds. Letv ∈ TxM and t > 0. Then, forPtf defined by
(1.3), there is a formula of the type

(Ptf )xv = E
[
f
(
Xt(x)

)
1I{t<ζ(x)}8tv

]
, (6.3)

where8t is a T ∗x M-valued random variable,Lp-integrable for1 6 p < ∞ and
local in the following sense: for any relatively compact neighbourhoodD of x inM
there is a choice for8t which isFσ -measurable whereσ = t ∧ τ(x) andτ(x) is the
first exit time ofX fromD when starting atx.

We briefly sketch some arguments underlying Theorem 10. For simplicity, we as-
sume thatM is compact andf is C1. Our sketch of proof does not show that8t
is indeed local: to see this, the given arguments have to be reformulated in terms of
local martingales (cf. Arnaudon and Thalmaier, 1998c).

Let a be a predictable process with values inT ∗x M⊗Rr andλ ∈ TxM ≡ Rn (locally
about 0) such that fort > 0,

E

exp

1

2

t∫
0

|asλ|2 ds

 <∞.
Let dZλ = dZ + aλdt and consider the Girsanov exponentialGλ. defined by

Gλt = exp

− t∫
0

〈aλ,dZ〉 − 1

2

t∫
0

|aλ|2ds

 .
We writeXλ for the flow to our SDE driven by the perturbed Brownian motionZλ,
analogouslyCλ. (x), etc. By Girsanov’s theorem, we find thatH(λ) =∑` E[f (Xλt (x))·
Gλt · (Cλt (x)−1)k` v

`] is independent ofλ for eachk. Thus ∂
∂λk

∣∣
λ=0H(λ) = 0, from

where we conclude that

∑
i,k,`

E
[(
Dif

)(
Xt(x)

)(
Xt∗

t∫
0

(X−1
s∗ A)x as ds

)
ik

(
Ct(x)

−1)
k`
v`
]
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= −
∑
k,`

E
[
f
(
Xt(x)

) ∂

∂λk

∣∣∣∣
λ=0

(
Gλt

(
Cλt (x)

−1)
k`
v`
)]
.

Recall that(X−1
s∗ A)x ∈ Rr⊗TxM. Now the idea is to setas = ans = (X−1

s∗ A)∗x1I{s6τn} ∈
T ∗x M ⊗ Rr , whereτn ↗ t is a sequence of stopping times such that eachan. sat-
isfies the integrability condition. This givesE[(df )Xt (x) Xt∗ Cτn(x) Ct(x)−1v] =
E[(f ◦Xt(x)) ·8nt v].
Finally, taking the limit asn → ∞, we get d(Ptf )xv = E[(df )Xt (x) Xt∗v] =
E[(f ◦Xt(x)) ·8t v], where

8t v =
 t∫

0

(X−1
s∗ A)x dZs

C−1
t (x) v

+
∑
k,`

(
Ct (x)

−1
(
∂

∂λk

∣∣∣∣
λ=0

Cλt (x)

)
Ct (x)

−1
)
k`

v`.
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