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Abstract: We demonstrate passive mode-locking of a Bi-
doped fiber laser using a nanotube-based saturable absorber.
We achieve stable mode-locking in both the all-normal and net
anomalous dispersion regimes. Near transform-limited 4.7 ps
soliton pulses are generated in the average-soliton regime, with
a chirped fiber Bragg grating used for dispersion compensation
to retain an all-fiber format.
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(a) – optical spectrum of Bi-doped soliton fiber laser and (b) –
corresponding autocorrelation function
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1. Introduction

Bismuth doping of silica glass fiber has recently emerged
as a potentially useful fiber-based technology because it
provides gain in a region of the near-infrared inaccessi-
ble to rare-earth-doped fibers, such as Yb and Er [1–3].
A broad emission band (1100–1250 nm) makes Bi-doped
fiber attractive for the generation of short pulses. Recently,
it was shown that the luminescence band could be fur-
ther extended, as far as 1550 nm, with modification of
the core glass composition and optimization of the pump
wavelength [4,5]. Bi-doped fiber systems mode-locked us-
ing semiconductor saturable absorber mirrors (SESAMs)
have been reported [6–8]. However, SESAMs are typi-
cally complex and expensive quantum well devices. While
other all-fiber passive mode-locking schemes are available
[9,10], adopting an artificial saturable absorber approach
can result in poor self-starting operation. Nanotube and
graphene-based saturable absorbers have recently emerged
as a competitive alternative to SESAMs and have been
used to mode-lock a number of rare-earth-doped fiber

lasers due to their outstanding properties, such as subpi-
cosecond recovery time, broad operation range, polariza-
tion insensitivity, easy fabrication, and environmental ro-
bustness [11–28].

Here, we report the use of a single-wall nanotube-
based saturable absorber (SWNT-SA) to mode-lock a
Bi-doped fiber ring laser. In Bi-doped lasers the cav-
ity dispersion at the wavelength of operation is inher-
ently normal. Hence, dispersion compensation is needed to
achieve soliton-like operation, providing near transform-
limited pulses. However, all-normal dispersion (ANDi)
lasers can support stable dissipative soliton solutions, car-
rying a large linear chirp [29], providing a source of high-
energy ultrafast pulses [30,31]. Their pulse-dynamics has
received significant attention [29,32,33]. We show that our
Bi-doped fiber laser operates with contrasting dispersion
maps producing both 558 ps pulses and near-transform
limited 4.7 ps pulses in the ANDi and average-soliton
regime, respectively. In the average-soliton regime disper-
sion compensation is provided by a chirped fiber Bragg
grating (CFBG) to retain an all-fiber format.
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Figure 1 (online color at www.lphys.org) SWNT-SA absorption.
The operation wavelength is indicated
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Figure 2 (online color at www.lphys.org) Experimental setup.
Bi – Bi-doped fiber, OC – output coupler (with coupling ratios
indicated), SWNT-SA – nanotube-based saturable absorber. In-
sets: C – circulator, CFBG HR – chirped fiber Bragg grating high
reflector (anomalous cavity), ISO – inline optical isolator (ANDi
cavity)

The band-gap of the SWNTs determines the SA opera-
tion wavelength [11,17]. This can be controlled in several
ways, for example by changing the growth methods and
conditions [11]. Here, we optimize our SWNT-SA for the
intended operation wavelength of ∼1170 nm, correspond-
ing to the peak gain of our Bi-doped fiber. To match this
wavelength, we need to use SWNTs with ∼0.9 nm diam-
eter [34]. Therefore, we select CoMoCaT SWNTs to fab-
ricate a SWNT-polyvinyl Alcohol composite, as described
in [11] and references therein. The absorption spectrum of
the composite is shown in Fig. 1. A strong peak is observed
at ∼1170 nm, close to the desired operation wavelength, in
correspondence to the first transition of (7,6) SWNTs [34].
Another band at ∼1028 nm is also seen, assigned to (6,5)
SWNTs [34].
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Figure 3 (online color at www.lphys.org) (a) – optical spectrum
of the ANDi laser, (b) – corresponding temporal pulse shape

2. Experimental setup

The all-fiber geometries are shown schematically in Fig. 2.
We investigated two cavity configurations with contrast-
ing dispersion maps: an ANDi cavity, because of the natu-
ral normal dispersion of the Bi-doped fiber at the wave-
length of operation, and an anomalous cavity including
dispersion compensation provided by a CFBG for a net
anomalous dispersion. Common to both configurations
were a 30 m Bi-doped active fiber, core-pumped through
a custom wavelength division multiplexer (WDM) using
a commercial 10 W Yb-doped fiber laser, a fused fiber
output coupler, and the SWNT-SA. The residual pump
light was coupled out of the cavity with a second WDM.
The alumosilicate-core Bi-doped fiber preform was fab-
ricated using a surface plasma chemical vapor deposition
(SPCVD) process [35] and drawn into a single-mode fiber
compatible with commercial Corning HI-1060 to facilitate
direct fusion splicing to passive cavity components with
low loss: typically less than 0.1 dB. Such a long length
of active fiber is needed because of low pump absorption
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Figure 4 (online color at www.lphys.org) (a) – optical spectrum
of the dispersion compensated anomalously dispersive cavity,
with prominent solitonic sides bands. (b) – intensity autocorre-
lation, with sech2 fit in red

and a relatively low gain coefficient [7,36]. The gain had a
strong temperature dependence, being enhanced when the
Bi-doped fiber was cooled to 77 K, which we did for all ex-
periments. The SWNT-SA film was integrated using two
APC fiber connectors, having typically 3.5 dB insertion
loss, with 2 dB attributed to the linear transmission of the
composite (Fig. 1). Unidirectionality was imposed upon
both cavities with the inclusion of an inline fiber-pigtailed
isolator in the ANDi oscillator and a fiber-pigtailed opti-
cal circulator in the net anomalous case. A 20% output
coupler was used in the ANDi laser to maximize the out-
put pulse energy. The output coupling ratio was modified
(to 5%) to facilitate mode-locking in the average-soliton
regime, where the roundtrip loss was greater because of
the addition elements providing dispersion compensation.

3. Results and discussion

Self-starting, fundamental continuous-wave (CW) mode-
locking was achieved in both cavity configurations, with
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Figure 5 (online color at www.lphys.org) Electrical spectra of
the fundamental harmonic (f1). (a) – ANDi cavity, (b) – anoma-
lous cavity. The radio frequency background is shown with a red
line

a ∼5 MHz repetition rate defined by the long cavity
(∼40 m). The mode-locking threshold was considerably
higher in the ANDi laser, with stable CW mode-locking
obtained for ∼1.5 W pump power. At reduced pump power
strong Q-switched mode-locking was dominant. Stable,
pure Q-switch pulses were obtained for increased pump-
ing, itself a useful regime of operation for some applica-
tions [37]. The ANDi laser generated 558 ps pulses with a
minimum 3 dB bandwidth of 3.3 nm centered at 1157 nm
(Fig. 3a), giving a time-bandwidth product of ∼412 indica-
tive of a large chirp, and a pulse energy of 1.4 nJ, assuming
most of the power to be contained within the spectral pro-
file of the pulse. The temporal pulse shape, measured using
a photodiode with a 15 ps rise time and a 50 GHz sampling
oscilloscope, is shown in Fig. 3b.

In the dispersion compensated net anomalous cavity,
with the inclusion of the circulator and CFBG, we obtained
average-soliton operation. The average output power was
considerably lower in the net-anomalous case, typically
10 – 15 μW for 200 mW pumping, with modest pulse en-
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ergies ∼3 pJ. Fig. 4a shows the output spectrum centered
at 1177 nm, defined by the passband of the CFBG, with
prominent soliton sidebands and a full width half maxi-
mum (FWHM) bandwidth of 0.35 nm. The spikes on the
long-wavelength edge can be attributed to high-order dis-
persion due to the CFBG. Fig. 4b is the corresponding
intensity autocorrelation trace, fitted with the autocorrela-
tion shape expected for a sech2 pulse. The pulse duration
was 4.7 ps, giving a time-bandwidth product of 0.36, near
transform-limited for a sech2. The achieved pulse width
is limited by the intracavity dispersion. Sub-picosecond
pulses should be obtainable with more balanced dispersion
compensation. Although reliable CW mode-locking was
achieved for a fixed pump power, because of the low gain
coefficient of the active fiber and relatively high modula-
tion depth of the SWNT-SA (∼12% at 1.064 μm) the sys-
tem would become unstable with elements of Q-switching
for increased pump power.

The radio frequency (RF) spectra of the fundamen-
tal mode-locking harmonic for the two operation regimes
are shown in Fig. 5. Prominent side bands, characteristic
of Q-switching instabilities and high intensity noise, ap-
pear in Fig. 5a at a resolution bandwidth of 300 Hz. Ob-
servations of the pulse-train on a 400 MHz analog oscil-
loscope supported the existence of temporal fluctuations
over longer time-scales. The peak to pedestal extinction
of the fundamental harmonic in the RF spectrum of the
anomalous cavity (Fig. 5b) is at least 50 dB at the resolu-
tion limit of the device (30 Hz), limited by the noise floor
of the RF analyzer. The linewidths in both regimes are
again device limited, indicating low temporal inter-pulse
jitter. Measurement of the pulse train on a 400 MHz ana-
log oscilloscope confirmed stable CW mode-locking in the
anomalous regime, with no signs of transient effects nor
Q-switching.

4. Conclusions
We demonstrated a Bi-doped fiber laser mode-locked with
a nanotube-based saturable absorber. Stable, self-starting
fundamental mode-locking was achieved in an ANDi cav-
ity, producing 558 ps pulses, with pulse energies up to
1.6 nJ at a 5.47 MHz repetition rate. Dispersion compen-
sation was provided by a fiber pigtailed optical circula-
tor and CFBG to obtain a soliton laser generating 4.7 ps
near transform-limited pulses at 5.13 MHz. With more bal-
anced dispersion compensation, for example using a suit-
able photonic crystal fiber, sub-picosecond pulses should
be achievable, while retaining the flexibility of a compact
all-fiber format.
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