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Abstract: Cancer is the second leading cause of death worldwide after cardiovascular diseases.
Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of
cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering
has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including
T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States
Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the
effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of
bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not
only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in
clinical development and their approval by the US FDA for human malignancy treatment, but also on
summarizing the currently known and emerging therapeutic targets in cancer. This review provides
insights into practical considerations for developing next-generation ICEs.

Keywords: bispecific antibody; immune-cell engager; cancer; therapeutic target; T-cell; NK cell

1. Introduction

Cancer is one of the major leading causes of death worldwide. In 2020, nearly 19.3 mil-
lion new cancer cases and 10.0 million cancer deaths were reported globally. More specifi-
cally, the most common cancers among new cases were breast cancer (11.7%), followed by
lung (11.4%), colorectal (10.0%), prostate (7.3%), and stomach (5.6%) cancers [1]. The order
of the mortality rate on the basis of cancer types was as follows: lung (18%), colorectal
(9.4%), liver (8.3%), stomach (7.7%), and breast (6.9%) cancers [2]. By 2040, the number
of new cancer cases is expected to be approximately 28.3 million, which is nearly >50%
from that reported in 2020 [3]. Currently, various therapeutic regimens, such as surgical
resection, chemotherapy, antibody therapy, radiotherapy, and combination therapy, have
been used in clinical practice for the effective treatment of patients with cancers, depending
on their health conditions and cancer status [4].

One of the most promising targeted therapies for cancer treatment is antibody ther-
apy. It has a superior targeting ability for antigens that are expressed on cancer cells,
which results in prominent antitumor activity and lower toxicity, compared with that of
chemotherapeutic agents [5]. As of December 2021, 110 therapeutic antibodies, including
monoclonal antibodies (mAbs), bispecific antibodies (bsAbs), and antibody–drug conju-
gates (ADCs), have been approved by the United States Food and Drug Administration
(US FDA) and/or the European Medicines Agency (EMA). Among them, 46 antibodies
are indicated for cancer treatment [6]. Generally, immunoglobulin (Ig) G-based mAb—the
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most widely used mAb form for antibody therapy—comprises two heavy and two light
chains. The light chain has one variable (VL) and one constant (CL) domain, whereas
the heavy chain has one variable (VH) and three constant (CH; CH1–CH3) domains [7,8].
Furthermore, the fragment antigen-binding (Fab) region of mAb plays a key role in can-
cer therapy, and specifically in modulating or blocking the signaling pathways that are
involved in cancer development; on the other hand, the fragment crystallizable (Fc) region
interacts with Fc receptors that are expressed on immune cells and participates in various
effector functions, such as killing cancer cells via antigen-dependent T-cellular cytotoxicity
(ADCC) [9,10].

BsAbs harness the specificities of two antibodies and combine them to simultaneously
recognize two independent epitopes or antigens [11]. More specifically, these antibodies
are designed and manufactured to contain two target-binding units in one antibody-
based molecule, whereby each unit independently recognizes its unique epitope, through
quadromas, chemical conjugation, or genetic recombination [12]. Compared with mAbs
in cancer therapy, bsAbs have several potential benefits, such as the improvement in
therapeutic efficacy, the enhancement of tumor-cell selectivity, and the reduction in tumor-
cell resistance [13]. In 2009, catumaxomab—a rat–mouse hybrid bsAb for the CD3 epithelial
cell adhesion molecule (EpCAM)—was first approved by the EMA for the treatment of
malignant ascites in patients with EpCAM-positive cancer [14]. However, it was voluntarily
withdrawn from the US market in 2013, and from the European Union (EU) market in
2017, because of commercial reasons [15]. Since the US FDA approval of blinatumomab—a
CD19 × CD3 mouse bispecific T-cell engager (BiTE) antibody—for the treatment of acute
lymphoblastic leukemia (ALL) in 2014, much attention has been paid to the development of
bsAb-based immune-cell engagers (ICEs) that redirect immune effector cells against cancer
cells and promote antitumor activities [16,17]. Furthermore, compared with adoptive
immune-cell therapy, which requires an expensive and complicated manufacturing process,
ICE has become a feasible therapeutic cancer-therapy approach. Currently, increasing
numbers of bsAb-based ICEs are extensively evaluated in clinical trials worldwide [18,19].

Herein, we focus on highlighting the action mechanisms, structures, roles, and rel-
evance of the currently known and potential therapeutic targets of bsAb-based ICEs in
cancers. In addition, this review covers the current developmental status of bsAb-based
ICEs approved by the US FDA and/or the EMA, or in clinical development for cancer
therapy. This review provides insights into practical considerations for the development of
the next-generation bsAb-based ICEs.

2. Action Mechanism of bsAb-Based ICEs in Cancer

BsAb-based ICEs play a key role in cancer immunotherapy, and specifically in recruit-
ing and engaging immune effector cells that are proximal to tumor-associated antigens
(TAA) that are expressed on cancer cells and that allow the formation of immune synapses
and a specialized cell–cell junction between the immune and cancer cells [20,21]. Ulti-
mately, these immune synapses promote the elimination of target cancer cells [22]. These
bsAb-based ICEs are currently classified into T- and natural killer (NK)-cell engagers
(Figure 1).
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Figure 1. Action mechanism of bispecific antibody (bsAb)-based immune-cell engagers (ICEs) in
cancers. The schematic drawing represents bsAb-based ICEs, including T- and natural killer-cell
engagers, that bind simultaneously to tumor-associated antigens on cancer cells and specific antigens,
such as CD3, CD28, and CD16 on immune cells. These interactions result in the formation of an
immune synapse and the activation of immune cells that release cytokines, perforins, and granzymes
to induce the cytotoxic effects on cancer cells.

2.1. T-Cell Engagers

T-cell engagers are engineered bsAbs that redirect and activate T-cells to induce the
robust elimination of poorly immunogenic tumors [23]. Most T-cell engagers comprise
two linked antigen-binding variable fragments (Fvs) that specifically target TAAs and the
CD3 unit of the T-cell-receptor (TCR) complex, which thereby engages T-cells to form an
immune synapse on the surface of tumor cells [24,25]. Generally, the TCR complex on
T-cells directly interacts with antigens that are presented on the major-histocompatibility-
complex (MHC) molecules of target T-cells, and this interaction plays a pivotal role in
T-cell activation and target T-cell killing [26]. However, most tumor cells are known to
exhibit the loss or depletion of MHC expression, which hampers the antitumor effects of
activated T-cells [27]. The unique feature of T-cell engagers is the redirection of T-cells
against TAAs on tumor cells, as well as the direct activation of T-cells without TCR/MHC
interaction [28]. Simultaneously, it links T-cells with tumor cells to form immune synapses,
wherein the activated T-cells release perforins to form pores on the surface of cancer cells,
and granzymes to proteolyze cellular proteins. Eventually, these immune responses lead to
the cell death (also known as apoptosis) of tumors [22,29,30]. Moreover, T-cell activation
by an anti-CD3 arm of a T-cell engager induces cytokine secretion and concomitant T-cell
proliferation that sustain durable antitumor immune responses [31]. Currently, 47 bsAb-
based T-cell engagers have been studied in clinical trials (Table 1).
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Table 1. Current statuses of bispecific antibody (bsAb)-based immune-cell engagers (ICEs) in clinical studies or bsAb-based ICEs approved by the United States
Food and Drug Administration or European Medicines Agency.

BsAb Names Company Target Role Development Stage
(Selected)

AFM13 Affimed CD16 × CD30 NK cell engager Phase II (NCT04101331)
AMG 160 Amgen CD3 × PSMA T-cell engager Phase I (NCT03792841)
AMG 199 Amgen CD3 × MUC17 T-cell engager Phase I (NCT04117958)
AMG 330 Amgen CD3 × CD33 T-cell engager Phase I (NCT02520427)
AMG 427 Amgen CD3 × FLT3 T-cell engager Phase I (NCT03541369)
AMG 509 Amgen CD3 × STEAP1 T-cell engager Phase I (NCT04221542)
AMG 701 Amgen CD3 × BCMA T-cell engager Phase I (NCT03287908)
AMG 910 Amgen CD3 × CLDN18.2 T-cell engager Phase I (NCT04260191)

APVO414/ES414/MOR209 Aptevo Therapeutics CD3 × PSMA T-cell engager Phase I (NCT02262910)
APVO436 Aptevo Therapeutics CD3 × CD123 T-cell engager Phase I (NCT03647800)

Blinatumomab/Blincyto Amgen CD3 × CD19 T-cell engager Marketed

Catumaxomab/Removab Fresenius Biotechand
and Trion Pharma CD3 × EpCAM T-cell engager Withdrawn from the

market
CC-1 University of Tubingen CD3 × PSMA T-cell engager Phase I (NCT04104607)

CC-93269/EM801 Celgene CD3 × BCMA T-cell engager Phase I (NCT03486067)
Cibisatamab/RG7802/RO6958688 Roche CD3 × CEA T-cell engager Phase I (NCT02324257, NCT02650713)

CLN-049 Cullinan Oncology CD3 × FLT3 T-cell engager Phase I (NCT05143996)
Elranatamab/PF-06863135 Pfizer CD3 × BCMA T-cell engager Phase II (NCT04649359)

EMB-06 EpimAb Biotherapeutics CD3 × BCMA T-cell engager Phase I/II (NCT04735575)
Epcoritamab/GEN3013 Genmab A/S CD3 × CD20 T-cell engager Phase III (NCT04628494)

ERY974 Chugai CD3 × GPC3 T-cell engager Phase I (NCT05022927)
Flotetuzumab/MGD006 MacroGenics CD3 × CD123 T-cell engager Phase II (NCT04582864)

Glofitamab/RG6026/RO7082859 Roche CD3 × CD20 T-cell engager Phase III (NCT04408638)
ISB 1342/GBR 1342 Ichnos Sciences CD3 × CD38 T-cell engager Phase I (NCT03309111)

JNJ-63709178 Johnson & Johnson CD3 × CD123 T-cell engager Phase I (NCT02715011)
JNJ-63898081 Johnson & Johnson CD3 × PSMA T-cell engager Phase I (NCT03926013)
JNJ-67571244 Johnson & Johnson CD3 × CD33 T-cell engager Phase I (NCT03915379)
JNJ-75348780 Johnson & Johnson CD3 × CD22 T-cell engager Phase I (NCT04540796)

Linvoseltamab/REGN 5458 Regeneron Pharmaceuticals CD3 × BCMA T-cell engager Phase I/II (NCT03761108)
M701 YZYBio CD3 × EpCAM T-cell engager Phase I (NCT04501744)
M802 YZYBio CD3 × HER2 T-cell engager Phase I (NCT04501770)

MGD007 Macrogenics CD3 × GPA33 T-cell engager Phase I/II (NCT03531632)
Mosunetuzumab/RG7828 Genentech CD3 × CD20 T-cell engager Phase III (NCT04712097)



Int. J. Mol. Sci. 2022, 23, 5686 5 of 35

Table 1. Cont.

BsAb Names Company Target Role Development Stage
(Selected)

Nivatrotamab/Hu3F8-BsAb Y-mAbs CD3 × GD2 T-cell engager Phase I/II (NCT04750239)
Odronextamab/REGN1979 Regeneron Pharmaceuticals CD3 × CD20 T-cell engager Phase II (NCT03888105)

REGN4018 Regeneron Pharmaceuticals CD3 × MUC16 T-cell engager Phase I/II (NCT03564340)
REGN5459 Regeneron Pharmaceuticals CD3 × BCMA T-cell engager Phase I/II (NCT04083534)
REGN5678 Regeneron Pharmaceuticals CD28 × PSMA T-cell engager Phase I/II (NCT03972657)
REGN7075 Regeneron Pharmaceuticals CD28 × EGFR T-cell engager Phase I/II (NCT04626635)

Talquetamab/JNJ-64407564 Johnson & Johnson CD3 × GPRC5D T-cell engager Phase II (NCT04634552)
Tarlatamab/AMG 757 Amgen CD3 × DLL-3 T-cell engager Phase II (NCT05060016)

Teclistamab/JNJ-64007957 Johnson & Johnson CD3 × BCMA T-cell engager Phase III (NCT05083169)
Tepoditamab/MCLA-117 Merus CD3 × CLEC12A T-cell engager Phase I (NCT03038230)

TNB-383B TeneoOne CD3 × BCMA T-cell engager Phase I (NCT03933735)
TNB-486 TeneoTwo CD3 × CD19 T-cell engager Phase I (NCT04594642)
TNB-585 Amgen CD3 × PSMA T-cell engager Phase I (NCT04740034)

XmAb13676/Plamotamab Xencor CD3 × CD20 T-cell engager Phase I (NCT02924402)
XmAb14045/Vibecotamab Xencor CD3 × CD123 T-cell engager Phase I (NCT02730312)
XmAb18087/Tidutamab Xencor CD3 × SSTR2 T-cell engager Phase I/II (NCT04590781)
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2.2. NK-Cell Engagers

NK cells are effector lymphocytes of the innate immune system that play protective
roles against both infectious pathogens and cancers [32]. NK cells are divided into several
subpopulations on the basis of the relative expressions of the adhesion molecule CD56 and
the activating receptor CD16 (FcγRIIIa) [33]. The CD56dim CD16bright NK cells represent
at least 90% of all peripheral blood NK cells [34]. Currently, CD16 is the most important
NK-cell target for the NK-cell engagers. CD16-targeting NK-cell engagers lead to both
NK-cell activation and tumor-cell-specific cytotoxicity [35]. More specifically, NK-cell
engagers recruit NK cells toward target tumor cells by binding a tumor-specific antigen
with one arm of the engagers, and by bridging CD16 onto NK cells with the other [36].
Then, the NK-cell engagers trigger the death of target cancer cells by not only releasing
cytotoxic granules that contain granzymes and perforin, but also by secreting chemokines
and cytokines, such as those regulated on activation, normal T-cell expressed and secreted,
and interferon-gamma [32]. AFM13 is a bsAb-based NK-cell engager that specifically
targets CD16 and CD30; it is currently under clinical development for use in the treatment
of hematological malignancy (Table 1).

3. Role of Known and Emerging Targets of ICEs
3.1. Single-Pass ICE Targets in Solid Cancers
3.1.1. Delta-Like Ligand 3

Delta-like ligand 3 (DLL3) is a 65-kDa type I transmembrane protein and a Notch
receptor ligand. It plays an important role in the regulation of Notch signaling [37]. In
small-cell lung cancer (SCLC), DLL3 has been reported as a key factor in the promotion of
the tumor growth, migration, and invasion of SCLC cells. Several lines of evidence support
this notion [37,38]. Upregulated DLL3 expression was verified to promote tumor growth
in a mouse xenograft model that was implanted with DLL3-overexpressing SBC-5 human
SCLC cells. Additionally, DLL3 knockdown reduces SCLC-cell migration and invasion,
whereas its overexpression in the cells increases these activities [38]. This protein is highly
upregulated and aberrantly expressed in SCLC and other neuroendocrine malignancies,
but not in nonmalignant T-cells [37,39]. Currently, DLL3 is considered an attractive novel
potential therapeutic target in neuroendocrine tumors (NETs), including SCLC. A preclinical
study on robalpituzumab tesirin—an ADC that targets DLL3—showed a dose-dependent
reduction in the tumor size with a complete response (CR) in B6129SF1/J mice that were
implanted with DLL3-positive KP1 SCLC cells, which led to the absence of measurable
tumors for >80 days after treatment [40].

3.1.2. Epidermal Growth Factor Receptor

Epidermal growth factor receptor (EGFR) is a 170-kDa receptor tyrosine kinase that
belongs to the ErbB family and that comprises two major functional domains—the extracel-
lular and cytoplasmic domains—and a tyrosine kinase domain that is linked by a single
transmembrane region [41,42]. EGF binding to the receptor induces the dimerization of the
receptor; triggers the autophosphorylation of cytoplasmic tyrosine residues; and eventually
participates in the regulation of cell proliferation, migration, and adhesion [41,43–45]. EGFR
is overexpressed in various cancers, such as colorectal cancer (CRC), lung cancer, breast
cancer, glioblastoma, and head and neck squamous cell carcinoma. EGFR overexpression
in CRC has been closely associated with tumor progression and poor prognosis [46–50].
Currently, EGFR is one of the most well-known therapeutic targets in various cancers.
Phase II clinical studies on cetuximab—a human/mouse chimeric mAb that targets EGFR
in advanced CRC—have demonstrated that the use of cetuximab as monotherapy exerts
anticancer effects with approximately 10% partial response (PR) and 33% stable disease
(SD) [51].
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3.1.3. EpCAM

EpCAM is a 40-kDa type I transmembrane glycoprotein that plays a key role in the reg-
ulation of cell adhesion, proliferation, and differentiation [52–54]. EpCAM is overexpressed
in various cancers, such as ovarian cancer, CRC, breast cancer, lung cancer, and pancreatic
cancer [55–58]. Its protease-cleaved intracellular domain associates with β-catenin to form
a nuclear protein complex that is translocated to the nucleus, activates the transcription
of genes that are involved in cancer-cell proliferation, and results in tumorigenesis [52].
Several studies have suggested EpCAM as a potential target for antibody therapy against
cancers. For instance, a phase II clinical study on adecatumumab (MT201)—a fully human
mAb that targets EpCAM in metastatic breast cancer—reports that, of 112 patients treated
with adecatumumab, 2 showed a PR and 10 had SD, according to the response evaluation
criteria in solid tumors (RECIST) [59].

3.1.4. Glycoprotein A33

Glycoprotein A33 (GPA33)—also known as cell surface A33 antigen—is a 43-kDa
cell surface differentiation glycoprotein that belongs to the type I transmembrane protein
family [60–62]. It is associated with cell–cell adhesion [60]. GPA33 is highly overexpressed
in >95% of human CRCs but is not detected in any other tissues [62]. Several studies
have indicated GPA33 as a potential target in immunotherapy against CRC. For instance,
in vivo studies on KRN330—a human mAb that targets GPA33—have demonstrated its
dose-dependent antitumor activities in mouse and rat xenograft models implanted with
LS174T human CRC cells [63,64].

3.1.5. Human EGFR 2

Human EGFR 2 (HER2) is a member of the ErbB family and is a 185-kDa single-pass
transmembrane receptor. To the best of our knowledge, direct ligands for HER2 have not
been identified yet. HER2 activation is achieved through homo- or heterodimerization
with HER2 or other ErbB-family receptor members, including EGFR and HER3 [65–67]. It
is overexpressed in various cancers, such as breast, gastric/gastroesophageal, and colon
cancers [68–70]. HER2 is closely associated with cancer-cell proliferation and invasion, as
well as with tumor growth [71,72]. Particularly in breast cancers, HER2 is overexpressed
in 15–30% of the total patients with breast cancers [65]. Substantial evidence has shown
that HER2 is an important predictive biomarker in HER2-targeted therapies, and a well-
known therapeutic target in breast cancers. Trastuzumab is the first anti-HER2 humanized
mAb that targets HER2 in breast cancer. In a phase III clinical study, patients with breast
cancer treated with trastuzumab combined with chemotherapy had a longer survival
(median survival, 25.1 vs. 20.3 months) and prolonged disease progression (median, 7.4 vs.
4.6 months) than those treated with chemotherapy alone [73].

3.1.6. Mucin 16

Mucin 16 (MUC16)—also known as human carbohydrate antigen 125 (CA-125)—is a
heavily glycosylated 300–500-kDa type I transmembrane protein [74–76]. It is a biomarker
for ovarian cancer. MUC16 is overexpressed in ovarian cancer and contributes to ovarian-
cancer progression and metastasis [76,77]. Increased MUC16 expression is associated with
poor prognosis in patients with ovarian cancer [78]. Some studies have reported that
MUC16 is a potential target for antibody therapy against ovarian cancers. Oregovomab is a
mouse mAb that targets MUC16 in advanced ovarian cancer. In a phase II clinical study,
145 patients with stage III/IV ovarian cancer were randomized to receive oregovomab
(n = 73) or placebo (n = 72). The time to recurrence was prolonged in the oregovomab group
(24.0 months) compared with that in the placebo group (10.8 months) [79].

3.1.7. Mucin 17

Mucin 17 (MUC17) is a 452-kDa type I membrane-associated mucin that is expressed
on the apical surface of gastrointestinal epithelial cells [80–82]. As a key component of
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the mucosal layer, MUC17 has been suggested to play a crucial role in the restoration
and protection of epithelial cells [80]. Recent studies have demonstrated that aberrant
MUC17 overexpression is correlated with the malignant potential of gastric and pancreatic
cancers [81,83]. Particularly in gastric-cancer tissues, MUC17 is overexpressed in approx-
imately 50% of the gastric-cancer cases. Thus, MUC17 is a compelling target in gastric
cancer because of its prevalent expression on tumor cells compared with its low, relatively
restricted expression in normal tissues [84].

3.1.8. Prostate-Specific Membrane Antigen

Prostate-specific membrane antigen (PSMA) is a 100-kDa type II membrane protein,
is exclusively overexpressed in prostate cancer, and acts as a glutamate-preferring car-
boxypeptidase. Its expression is associated with tumor invasiveness [85,86]. PSMA is not
only a well-known biomarker but is also a potential therapeutic target in prostate cancer. Its
expression is 100–1000-fold higher in prostate-cancer tissue than in normal tissue, and it is
present on the cell surface without being released into the circulation [87–90]. Furthermore,
J591 was recently developed as the first humanized mAb that targets the extracellular
domain of PSMA in prostate cancer. A phase I/II study was conducted to evaluate the
safety and efficacy of J591 in patients with metastatic castration-resistant prostate cancer
(mCRPC). Of the 23 patients with measurable disease, 14 (60.8%) had SD and 6 (26.1%) had
progressive disease, according to the RECIST [91].

3.2. Multi-Pass Transmembrane Proteins as ICE Targets in Solid Cancers
3.2.1. Claudin-18 Isoform 2

Claudin-18 isoform 2 (CLDN18.2) is a 23-kDa tetra-transmembrane protein. It plays
an important role in the regulation of tight junction formation and cell adhesion [92–94]. It
is known as a tumor-specific marker in gastric or gastroesophageal junction (GEJ) cancers
because it is overexpressed exclusively in primary gastric malignancies, but not in any
healthy tissues, except stomach mucosa [90,92,95]. Some studies have suggested that
CLDN18.2 is a target for antibody therapy against cancer. Claudiximab (IMAB362) is
a chimeric mAb that targets CLDN18.2 in gastric cancer. In a phase II study, patients
with advanced/recurrent gastric and GEJ cancers who were treated with claudiximab
combined with chemotherapy exhibited a significantly improved progression-free survival
(PFS) (median, 7.9 vs. 4.8 months) and prolonged overall survival (OS) (median, 13.3 vs.
8.4 months) compared with those treated with chemotherapy alone [96].

3.2.2. Six-Transmembrane Epithelial Antigen of Prostate 1

Six-transmembrane epithelial antigen of prostate 1 (STEAP1) is a 39-kDa integral mem-
brane protein that comprises six transmembrane helices [97,98]. In normal cells, STEAP1
plays a key role in the regulation of cell migration and proliferation, despite its low expres-
sion or absence in normal tissues [97,99]. It is highly overexpressed in various cancers, and
particularly in prostate cancer, wherein it is involved in the regulation of various functions,
such as cancer-cell invasion and proliferation, as well as tumorigenesis [98,99]. The knock-
down of STEAP1 has been shown to inhibit T-cell growth in androgen-dependent prostate
cancer [100]. Moreover, high STEAP1 expression is closely associated with poor outcomes
in patients with prostate cancer [101]. These properties make STEAP1 a potential target for
antibody therapy. DSTP3086S—an ADC that targets STEAP1—exhibited antitumor activity
in a phase I clinical trial in patients with mCRPC. Of the 46 patients, 2 (4%) showed a PR
and 24 (52%) had SD, according to the RECIST [102].

3.2.3. Somatostatin Receptor 2

Somatostatin receptor 2 (SSTR2) is a 41-kDa G protein-coupled receptor (GPCR),
which is also known as a seven-transmembrane receptor. It is highly overexpressed in
most NETs [103–105]. Among the NETs, and particularly in SCLC, the high expression of
SSTR2 is closely associated with poor prognosis. Furthermore, the loss of SSTR2 reduced
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tumor growth in a mouse xenograft model implanted with H1048 human SCLC cells [104].
Several studies have suggested that SSTR2 is a therapeutic target in NETs. For instance, the
antitumor efficacy of ADC that targets SSTR2 was evaluated in a mouse xenograft model
implanted with BON-1 human NET cells, in which it reduced tumor growth [106].

3.3. Glycosylphosphatidylinositol-Anchored Proteins as ICE Targets in Solid Cancers
3.3.1. Carcinoembryonic Antigen

Carcinoembryonic antigen (CEA) is a 180–200-kDa member of the immunoglobulin
supergene family. It plays a key role in the regulation of various cellular functions, such
as cell interaction, cell adhesion, and immune response [107–109]. CEA is one of the most
widely used tumor-marker proteins for various cancers, such as colorectal, gastric, and
liver cancers [110–112]. It is highly overexpressed in 90% of the total CRC cases, and it
is closely associated with poor prognosis in patients with CRC [113]. In CRCs, CEA is
involved in cancer progression and metastasis, as well as drug resistance [110,114–117].
Furthermore, CEA appears to be a potential target for antibody therapy against CRC.
A preclinical study on IMMU-130—an ADC that targets CEA—revealed that the ADC
efficiently reduced tumor growth in a mouse xenograft model implanted with LS174T
human CRC cells [118,119].

3.3.2. Glypican 3

Glypican 3 (GPC3) is a 60-kDa glycosylphosphatidylinositol (GPI)-anchored membrane-
bound heparin sulfate proteoglycan. It plays an important role in normal cell growth [120,121].
GPC3 is overexpressed in various cancers, such as hepatocellular carcinoma (HCC), lung
squamous cell carcinoma, and ovarian clear cell carcinoma [122–124]. In particular, it
is highly overexpressed in 70–81% of HCCs; its overexpression correlates with the poor
prognosis of patients with HCC [121]. Several studies have suggested that GPC3 is a target
for antibody therapy against HCCs. For instance, a preclinical study on GC33—a mAb
that targets GPC3—demonstrated its prominent antitumor activity in a mouse xenograft
mouse model implanted with SK-HEP-1 human HCCs. The administration of 1 mg/kg
of GC33 significantly inhibited tumor growth, and that of 5 mg/kg resulted in tumor
remission [125].

3.4. Sphingolipid as ICE Targets in Solid Cancers
GD2

GD2 is a 1.6-kDa glycosylated lipid molecule that belongs to the class of glycosphin-
golipids [126–129]. It plays a key role in the attachment of tumor cells to extracellular matrix
proteins. It is overexpressed in various cancers, such as neuroblastoma, melanoma, and
SCLC, but not in normal tissues [127,130–132]. Particularly in SCLC and neuroblastoma,
GD2 overexpression is involved in cell proliferation [130]. GD2 has been suggested as a
target for antibody therapy against cancer. A phase II clinical study on 3F8—a mouse mAb
that targets GD2 in patients with neuroblastoma—revealed that, of 16 patients, 1 showed a
CR, and 1 showed a mixed response [133].

3.5. Single Transmembrane Proteins as ICE Targets in Hematological Cancers
3.5.1. B-Cell Maturation Antigen

B-cell maturation antigen (BCMA)—a member of tumor necrosis factor receptor super-
family member 17 (TNFRSF17)—is a 20-kDa type III transmembrane protein [134]. BCMA
binds to its ligands, such as proliferation-inducing ligand and B-cell-activating factor, which
thus promotes the survival of B-cells [135,136]. It is overexpressed in malignant plasma
cells, including multiple myeloma (MM) cells, and it plays a crucial role in the growth
of MM [137,138]. A preclinical study that was conducted that used a mouse xenograft
model implanted with RPMI 8226 human MM cells has shown that BCMA overexpression
promotes tumor growth [137]. Furthermore, high BCMA expression is associated with
poor prognosis in patients with MM [139]. Substantial evidence has shown that BCMA is a
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target for antibody therapy against MM. Preclinical studies on belantamab mafodotin—a
US FDA-approved ADC that targets BCMA—showed that it efficiently inhibited tumor
growth and prolonged survival in a mouse xenograft model implanted with H929 human
MM cells [140,141].

3.5.2. CD19

CD19 is a 95-kDa type I transmembrane protein [142]. It is a coreceptor of B-cell antigen
receptor (BCR), and it plays a role in regulating B-cell growth [143,144]. It is overexpressed
in most B-cell malignancies, such as ALL, non-Hodgkin lymphoma (NHL), and chronic
lymphocytic leukemia (CLL). The overexpression of CD19 promotes the proliferation
and survival of these B-cell malignancies [145,146]. Previous studies have suggested that
CD19 is an attractive target for antibody therapy against B-cell malignancies. In a phase
IIa clinical study on XmAb5574 (MOR00208)—a humanized mAb that targets CD19—of
the total patients with relapsed and/or refractory (R/R) NHL who received XmAb5574
monotherapy, 8% showed a CR [147].

3.5.3. CD22

CD22 is a 140-kDa type I transmembrane protein and an inhibitory coreceptor of
the BCR that regulates the overstimulation of B-cells [148,149]. CD22 is overexpressed in
various B-cell lymphomas, such as CLL, ALL, and NHL, but it is expressed at low levels
on immature B-cells and plasma cells [150,151]. Owing to the restricted expression on the
B-cell and the inhibitory function of CD22, CD22 has been indicated as a therapeutic target
in B-cell lymphoma [152]. Epratuzumab—a humanized mAb that targets CD22—has been
reported to be a CD22 agonistic antibody that leads to B-cell inhibition [153]. In a phase
II clinical trial, patients with R/R indolent or aggressive NHL were enrolled to receive
epratuzumab combined with rituximab, which is a US FDA-approved anti-CD20 mAb. Of
the 16 patients with indolent NHL, 9 showed a CR and an unconfirmed CR, and 1 showed
a PR. Furthermore, of the six patients with aggressive NHL, three showed a CR, and one
showed a PR [154,155].

3.5.4. CD30

CD30 is a 120-kDa type I transmembrane protein that belongs to the tumor necrosis
factor receptor family [156]. It plays a key role in lymphocyte activation and proliferation
through the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase path-
ways that have antiapoptotic and prosurvival benefits [157,158]. It is overexpressed in
hematopoietic malignancies, including Hodgkin lymphoma (HL) and NHL, and is associ-
ated with the survival of these cells [159,160]. Several studies have suggested that CD30 is a
target for antibody therapy against hematologic malignancies. For instance, in vivo studies
on XmAb2513—a humanized mAb that targets CD30—showed a significant reduction
in the tumor growth, and enhanced survival was observed in a mouse xenograft model
implanted with CD30-expressing L540 human HL cells [161].

3.5.5. CD33

CD33—also known as the sialic acid-binding Ig-like lectin 3 (Siglec-3)—is a 67-kDa
type I transmembrane protein [162]. It plays a crucial role in the modulation of immune-cell
functions, such as phagocytosis, cytokine release, and apoptosis [163,164]. It is overex-
pressed in acute myeloid lymphoma (AML), and its overexpression is observed in >80% of
patients with AML [165]. This increased CD33 expression is correlated with the poor prog-
nosis of patients with AML. In patients with AML who were treated with chemotherapy,
the OS rate has been reported to be 42.9% in patients with high CD33 expression, compared
with 67.5% in those with low CD33 expression [166]. CD33 is a target for antibody therapy
against AML. Gemtuzumab ozogamicin (Mylotarg)—a US FDA-approved ADC that tar-
gets CD33—showed promising clinical efficacy in patients with AML [167]. In a phase II
clinical study, patients with AML in the first recurrence received gemtuzumab ozogamicin
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monotherapy; of the 277 patients, 35 showed a CR, and 36 showed a CR with incomplete
platelet recovery [168].

3.5.6. CD38

CD38 is a 45-kDa type II transmembrane protein [169]. It is overexpressed in MM
cells but shows a low expression in normal lymphoid and myeloid cells [170]. It partici-
pates in MM cell survival and proliferation [171]. Previous studies have elucidated that
tumor growth decreased in a mouse xenograft model implanted with CD38-knockout
RPMI 8226 human MM cells, compared with those nontargeting cells [172]. CD38 is a
potential target for antibody therapy against MM. Daratumumab (Darzalex) is the first
US FDA-approved human mAb that targets CD38 in the treatment of patients with R/R
MM [173]. In a phase III clinical study, patients with R/R MM received chemotherapy
(control group) or chemotherapy combined with daratumumab (daratumumab group); the
CR rate was significantly higher in the daratumumab group (19.2%) than in the control
group (9.0%) [174].

3.5.7. CD123

CD123—the alpha chain of the interleukin-3 (IL-3) receptor—is a 75-kDa type I trans-
membrane protein [175]. It is overexpressed in leukemic stem cells but shows low or
no expression in normal hematopoietic stem cells [176]. CD123 binds to IL-3, which is
a hematopoietic growth factor, which leads to the survival and proliferation of various
hematologic cancers, such as AML, ALL, and HL [175,177–179]. Particularly in AML,
increased CD123 expression is associated with a poor prognosis of patients with AML [180].
Previous studies have suggested that CD123 is a target for antibody therapy against AML.
In vivo studies on IMGN632—an ADC that targets CD123—have revealed its antitumor
activities in a mouse xenograft model implanted with MOLM-13 human AML cells; the
mice received IMGN632 or control ADC, and IMGN632 increased the survival of mice
compared with the vehicle treatment [181].

3.5.8. C-Type Lectin Domain Family 12 Member A

C-type lectin domain family 12 member A (CLEC12A)—a myeloid inhibitory receptor—
is a 31-kDa type II transmembrane protein. It plays a crucial role in the negative regulation
of inflammation [182,183]. CLEC12A is specifically expressed in AML and is observed
in approximately 90% of patients with AML, but not in normal hematopoietic stem and
progenitor cells [184,185]. It is closely associated with the poor prognosis of patients with
AML. Previous studies have shown that CLEC12A-positive AML cells are more resistant to
chemotherapy than CLEC12A-negative AML cells [186]. Furthermore, the administration
of anti-CLEC12A chimeric mAb showed a significant tumor-growth delay of up to 38% in a
mouse xenograft model implanted with HL-60 human AML cells [187]. These observations
suggest that CLEC12A is a target for antibody therapy against AML.

3.5.9. FMS-Like Tyrosine Kinase 3

FMS-like tyrosine kinase 3 (FLT3)—a receptor tyrosine kinase—is a140–160-kDa type
I transmembrane protein [188]. FLT3 promotes the proliferation and differentiation of
hematopoietic cells by binding to its ligand [189,190]. FLT3 is overexpressed in AML, and
its mutations have been detected in approximately 30% of patients with AML [191,192].
The mutation of FLT3 causes ligand-independent FLT3 signaling and leads to a poor
prognosis of patients with AML [193,194]. FLT3 is a potential target for antibody therapy
against AML. LY3012218 (IMC-EB10) is a human mAb that targets FLT3, which prevents
FLT3 signaling [195]. In preclinical studies, LY3012218 has shown efficacy in a mouse
xenograft model implanted with MOLM-14 human AML cells; LY3012218 exerts its effects
by reducing the engraftment of leukemic cells and extending survival [196].
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3.6. Multi-Pass Transmembrane Proteins as ICE Targets in Hematological Cancers
3.6.1. CD20

CD20 is a 33–37-kDa tetra-transmembrane protein [197]. It is involved in B-cell differ-
entiation and it is overexpressed in most B-cell malignancies, such as follicular lymphoma
(FL), but not in hematopoietic stem cells or plasma cells [198–200]. Several studies have
shown that CD20 is a potential target for antibody therapy against FL. Rituximab (Rit-
uxan) is a chimeric mAb that has been approved by the US FDA against CD20 [155]. In
a phase III clinical study, patients with R/R FL received lenalidomide plus rituximab or
placebo plus rituximab; the median PFS increased in the lenalidomide-plus-rituximab group
(39.4 months), compared with that in the placebo-plus-rituximab group (14.1 months) [201].

3.6.2. GPCR Class C Group 5 Member D

GPCR class C group 5 member D (GPRC5D) is a 39-kDa seven-transmembrane pro-
tein [202]. It is an orphan receptor that is normally expressed only in the hair follicle.
GPRC5D is overexpressed in MM and is unlikely to be shed from the membrane, which
prevents the decrease in the efficacy of GPRC5D-targeted therapy [203–205]. The role of
GPRC5D in cancers is yet to be defined; nonetheless, selective GPRC5D expression may be
valuable as a target for antibody therapy against MM. Figure 2 summarizes the known and
emerging targets for ICE therapy against cancers.

Int. J. Mol. Sci. 2022, 23, x  12 of 36 
 

 

 

Figure 2. Known and emerging targets for immune-cell engager (ICE) therapy against cancers. The 

schematic representation shows known and emerging therapeutic targets of bispecific antibody-

based ICEs in solid (red background) and hematological (blue background) cancers. All therapeutic 

targets listed in this figure are grouped on the basis of their relationship with the bilayer and trans-

membrane topology. 

4. Design and Structure of bsAb-Based ICEs 

BsAb-based ICEs are designed to contain two different antigen-binding sites that 

comprise determinants from the VH and VL chains of different antibodies that are specific 

to each target [206]. Thus far, various efforts have been made to increase their homogene-

ity, yield, and functional properties to generate desired bsAb-based ICEs [11]. On the basis 

of the bsAb-based ICE structures, they are divided into two categories: Fv-based ICEs and 

immunoglobulin G (IgG)-based ICEs (Figure 3). Fv-based ICEs are easy to produce and 

show lower immunogenicity, whereas IgG-based ICEs have higher solubility, stability, 

affinity, and extended half-life in serum [207]. 

Figure 2. Known and emerging targets for immune-cell engager (ICE) therapy against cancers. The
schematic representation shows known and emerging therapeutic targets of bispecific antibody-
based ICEs in solid (red background) and hematological (blue background) cancers. All therapeutic
targets listed in this figure are grouped on the basis of their relationship with the bilayer and
transmembrane topology.

4. Design and Structure of bsAb-Based ICEs

BsAb-based ICEs are designed to contain two different antigen-binding sites that
comprise determinants from the VH and VL chains of different antibodies that are specific
to each target [206]. Thus far, various efforts have been made to increase their homogeneity,
yield, and functional properties to generate desired bsAb-based ICEs [11]. On the basis
of the bsAb-based ICE structures, they are divided into two categories: Fv-based ICEs
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and immunoglobulin G (IgG)-based ICEs (Figure 3). Fv-based ICEs are easy to produce
and show lower immunogenicity, whereas IgG-based ICEs have higher solubility, stability,
affinity, and extended half-life in serum [207].
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Figure 3. Immune-cell engager (ICE) structures in clinical studies, or ICEs approved by the United
States Food and Drug Administration (US FDA) and/or European Medicines Agency (EMA). The
schematic drawing depicts the structures of bispecific antibody (bsAb)-based ICEs that are currently
evaluated in clinical studies or that have been approved by the US FDA and/or EMA. The structures of
bsAb-based ICEs are subdivided into three major classes: variable fragments -based, immunoglobulin
G (IgG)-based symmetric, and IgG-based asymmetric ICEs. Variable heavy-chain domains (VHs)
of two different antibodies, designated as antibodies A, B, or C, are shown in dark blue, red, or
pink, respectively. The variable light-chain domains (VLs) are shown in light blue, red, and pink,
respectively. Moreover, rat or mouse antibody is depicted in purple or green, respectively.

4.1. Fv-Based ICEs
4.1.1. BiTE

BiTE comprises two single-chain Fvs (scFvs) combined with a flexible linker [29,208].
Blinatumomab (Blincyto) was the first US FDA-approved BiTE against CD19 and CD3 for
the treatment of patients with R/R B-cell ALL [209]. It has a molecular weight of approxi-
mately 55 kDa and it is constructed by linking anti-CD19 scFv in a VL–VH orientation to
anti-CD3 scFv in a VH–VL orientation through a short polypeptide (G4S) linker [29,208].
Furthermore, each scFv has two flexible long (G4S)3 linkers between the VH and VL to
maintain the proper conformation of scFvs [210].

4.1.2. Dual-Affinity Retargeting Protein

Dual-affinity retargeting protein (DART) comprises two engineered heterogenous
scFvs, which exchanged their VH regions, and it has a molecular weight of approximately
50 kDa [211]. Precisely, scFv1 comprises a VH from antibody A and a VL from antibody B,
and scFv2 comprises a VH from antibody B and a VL from antibody A in the VL(B)–VH(A)
and VL(A)–VH(B) orders, respectively [212]. This combination allows DART to mimic
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natural interactions within IgG molecules. The scFv1 of flotetuzumab—a CD3 × CD123
DART—comprises VL(CD123)—linker—VH(CD3), whereas scFv2 comprises VL(CD3)–
linker–VH(CD123) [213]. The linker between VH and VL of the DART platform is as short
as approximately five amino acids to prevent their association from forming an undesired
scFv. Moreover, the C-terminal disulfide bridge between two VHs contributes to holding
the molecule together in the correct orientation [214]. CD19 × CD3 DART molecules have
been reported to be more stable and potent than CD19 × CD3 BiTE molecules in targeting
and killing B-cell lymphoma cells [210,212,214].

4.1.3. Tandem Diabody

Tandem diabody (TandAb) is a novel tetravalent bsAb-based ICE with four binding
sites: two for tumor antigens and the other two for immune cells [215]. It has a molecular
weight of approximately 105 kDa. The configuration of TandAb is as follows: VH(A)–linker
1–VL(B)–linker 2–VH(B)–linker 3–VL(A) [216]. In this configuration, both linkers 1 and
3 comprise six amino acids (GGSGGS); however, linker 2 has one of the following three
peptide sequences: GGSG, GGSGG, or GGSGGS [213]. AFM13—a CD16- and CD30-specific
NK-cell engager—is currently being evaluated in a phase II clinical study for use in the
treatment of patients with CD30-positive T-cell lymphoma [217].

4.2. IgG-Based ICEs: Symmetric Format

IgG-based ICEs are classified into symmetric and asymmetric architecture. Symmetric
formats are mainly tetravalent (2 + 2) and are constructed by Fv or Fab fused with an IgG
molecule [11].

4.2.1. Fabs-In-Tandem Ig

Fabs-In-Tandem Ig (FIT-Ig) is a tetravalent ICE, where Fab(A) is structurally fused
in tandem with the N terminus of Fab(B), without any mutations or the use of peptide
linkers [218]. It has a molecular weight of approximately 240 kDa. More specifically, it
comprises one long chain and two short chains: the long chain where the light-chain
(VL(A)–CL) domains are directly fused in tandem with the N terminus of a heavy chain
(VH(B)–CH1–CH2–CH3), and two short chains (VH(A)–CH1 and VL(B)–CL) [218,219]. The
resulting FIT-Ig may have activities that are similar to those of both parental mAbs [218].
EMB-06a—a CD3 × BCMA FIT-Ig—combines intact Fab fragments from two parental
antibodies, and it exhibits favorable drug-like properties and manufacturing advantages
that are similar to those of each parental mAb [218,220].

4.2.2. IgG–[L]–scFv2

IgG–[L]–scFv2 is a tetravalent ICE that is constructed by fusing the scFv with the C
terminus of each IgG light chain [221]. This antibody is constructed by linking the human
CD3-specific scFv on T-cells to the C terminus of the light chain of each antitumor IgG
via a polypeptide linker [222,223]. Nivatrotamab is a 200-kDa (nearly) type of IgG–[L]–
scFv2 antibody [224]. The heavy chain of nivatrotamab is identical to that of an anti-GD2
IgG, whereas its light chain is constructed by linking an anti-GD2 IgG light chain to a
(G4S)3 linker, followed by the CD3-specific scFv [222–224]. Previous studies have indicated
IgG–[L]–scFv2 as a promising platform for robust antitumor activity [221].

4.2.3. IgG–[H]–scFv2

IgG–[H]–scFv2 is a tetravalent ICE that is constructed by fusing the scFv with the C
terminus of each IgG heavy chain. In this format, CD3-specific scFvs are covalently attached
to the C terminus of each TAA-specific IgG heavy chain [210]. CC-1 (CD3 × PSMA) and
CLN-049 (CD3 × FLT3) are the major ICEs of IgG–[H]–scFv2, with a molecular weight
of approximately 200 kDa [225]. To construct the CC-1 ICE, anti-CD3 scFv is linked to an
anti-PSMA IgG by a flexible (G4S)3 linker [226]. CC-1 ICE has been reported as a highly
potent ICE with significant productivity and low aggregation [227].
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4.2.4. scFv2–Fc–scFv2

scFv2–Fc–scFv2, including Aptevo’s ADAPTIR antibodies, is a type of tetravalent
ICE that comprises two scFv pairs that are joined via the Fc region [226]. Antitumor
scFvs are attached to the N terminus of the hinged domain, whereas anti-CD3 scFvs
are fused at the C terminus of the Fc region with an unknown linker. The length and
composition of the ADAPTIR linker vary to modulate the binding and activity [228].
APVO436 (CD3 × CD123), which is generated by using the ADAPTIR platform as a T-cell
engager, is currently being evaluated in clinical studies [229].

4.3. IgG-Based ICEs: Asymmetric Format

The major challenge in the generation of IgG-based ICEs with asymmetric formats
is ensuring the correct association between the heavy and light chains [11]. Thus far,
various conventional and state-of-the-art technologies, including mouse–rat hybrid, knob-
into-hole (KiH), charge pair, controlled Fab-arm exchange (cFAE), common light chain,
and CrossMab technology, have been used to develop desirable IgG-based ICEs to avoid
random associations between the heavy and light chains [230–232].

4.3.1. Mouse–Rat Hybrid IgG

Mouse–rat hybrid IgG is a bispecific chimeric antibody that is generated by using the
quadroma technology that is based on the fusion of two distinct hybridomas [233]. This
antibody is also called the trifunctional antibody or Triomab, owing to the retained effector
function of the mouse/rat Fc part [234]. It comprises two different full-size IgG-like half
antibodies, each with one light and one heavy chain, which originate from the parental-
mouse-IgG2a and rat-IgG2b isotypes [235]. The use of the isotype combination enables
the high yield of correctly paired bsAbs because of species-restricted heavy–light chain
pairing [236]. By using this technology, catumaxomab—an EpCAM- and CD3-specific
ICE—was developed and approved as the first bispecific ICE in 2009 by the EMA for the
treatment of patients with malignant ascites [235]. However, catumaxomab was reported
to have several issues that are related to the highly immunogenic nature of the mouse–rat
hybrid antibody and large-scale commercial manufacturing. Catumaxomab was voluntarily
withdrawn from the US and EU markets in 2013 and 2017, respectively [237].

4.3.2. KiH-Based IgG

The KiH technology invented by Genentech is the most widely used bispecific platform
for the generation of asymmetric bsAbs [238]. The concept relies on interface modifications
between the two CH3 domains that are crucial for reciprocal interactions. A bulky residue
is introduced as a key into the CH3 domain of one antibody heavy chain, and a hole that
accommodates this bulky residue acts as a lock in the other heavy chain. Precisely, a knob
is designed by replacing T366 with a bulky W residue on one heavy chain, and the three
amino acid residues on the partner heavy chain are changed into T366S, L368A, and Y407V
for the hole formation [238,239]. This technology produces >90% of the desired asymmetric
bsAbs under coexpression conditions [240]. More recently, the yield of the heterodimeric
bsAb has been increased to >97% by the introduction of two additional mutations: S354C
in the knob chain, and Y349C in the hole chain [241]. Furthermore, these KiH mutations
are known to not significantly affect the antibody properties, such as the immunogenicity,
thermal stability, Fc7R binding, Fc effector function, and pharmacokinetic behavior [235].

4.3.3. Charge-Pair-Based IgG

The charge-pair-based technology is a novel platform to generate electrostatically
matched Fc domains by altering the charge polarity between the CH3 interfaces of an IgG
antibody [242]. Previous studies have reported that the point mutations of three specific
charged residue pairs in the heavy chains (E356K-K439E, E357K-K370E, and D399K-K409D)
resulted in favorable attractive interactions [235]. This method uses the asymmetric re-
engineering technology Ig (ART-Ig) platform [242]. ERY974, which is a CD3- and GPC3-
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specific ICE based on the ART-Ig platform, comprises E365K in one anti-CD3 heavy chain,
and K439E in the other anti-GPC3 heavy chain [243]. However, the charge-pair approach
may not result in the higher yield and purity of the respective heterodimeric antibodies
than the KiH approach [244].

4.3.4. cFAE-Based IgG

cFAE technology is inspired by a natural immune phenomenon that is known as
Fab-arm exchange, in which a half molecule of an IgG4 antibody is reassembled with that
of another IgG4 antibody in vivo [232,245]. It is used to generate IgG-like bsAbs. One
pair of these matching CH3 mutations (F405L in one antibody and K409R in the other)
has been reported through extensive site-directed mutagenesis in IgG1 [246]. The cFAE
platform does not need additional technology to correct the light-chain assembly because
light-chain mispairing does not occur in this case [241]. Epcoritamab—a CD3 × CD20 ICE—
is generated by individually introducing an F405L mutation into an anti-CD3 heavy chain,
and a K409R mutation into a CD20-specific heavy chain [247]. This technology includes the
DuoBody platform that was developed by Genmab. Recently, amivantamab—a bispecific
molecule that targets EGFR and mesenchymal–epithelial transition factor (c-MET)—which
was produced by Johnson & Johnson by using the aforementioned platform, was approved
by the US FDA for the treatment of patients with locally advanced or metastatic non-
SCLC [248].

4.3.5. Common Light-Chain-Based IgG

Common light-chain technology is developed to overcome the mispairing of light
chains and is used in combination with an Fc-modified technology, such as KiH and charge-
pair-based technologies [249]. This technology is based on the findings that antibodies
against various antigens often share the same VL domain, in which antibodies were identi-
fied from phage display libraries with a very limited size of the light-chain repertoire [210].
bsAbs that are designed by using the common light-chain technology have identical light
chains that can be paired with two different heavy chains. This antibody can prevent the
mispairing between light and heavy chains [238]. By using this technology, REGN1979—a
CD20- and CD3-specific ICE—was developed and is currently being evaluated in a phase
II clinical study for use in the treatment of patients with B-cell NHL [250]. The common
light-chain technology is based on simplifying antibody engineering, but this approach
may cause less flexibility for antibody engineering [210].

4.3.6. CrossMab-Based IgG

CrossMab technology is developed to inhibit the mispairing of light chains [251].
However, it takes a different approach from that of the common light-chain technology.
This technology is based on the crossover of the constant region (CL and CH1 domains)
of one Fab arm, whereas the other Fab arm undergoes no change [241]. This approach
employs the KiH technology for correct heavy-chain pairing, as well as domain swap to
enable orthogonal light–heavy chain pairing [207]. Glofitamab—a CD20- and CD3-specific
ICE—was developed by using this technology and is currently being evaluated in a phase
III clinical study for use in the treatment of patients with diffuse large B-cell lymphoma
(DLBCL) [252].

4.3.7. Fab–scFv–Fc

The Fab–scFv–Fc format is another strategy to correct the pairing of the light chain.
The issue of light-chain mispairing is resolved by exchanging one Fab arm with scFv [253].
Fab–scFv–Fc comprises one Fab arm and one scFv that is fused with an Fc domain [254].
This antibody is used by several companies and it has various names, such as Xmab,
Ybody, and BEAT [254,255]. Tidutamab (XmAb18087)—a CD3- and SSTR2-specific ICE—is
currently being evaluated in a phase I/II clinical study for use in the treatment of patients
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with SCLC [256]. Additionally, six different ICEs that have the Fab–scFv–Fc format are
currently being evaluated in clinical studies [257,258].

4.3.8. Fc-Fused Fvs

The small size of Fv-based ICEs contributes to high renal clearance, which results in
a half-life shorter than that noted in the case of IgG-based ICEs. BiTE and DART ICEs
have recently been engineered to improve their pharmacokinetics (PK) [210]. Several BiTEs
are linked to the Fc domain to generate half-life-extended BiTE-Fc molecules (HLE-BiTE),
which are compatible with once-weekly dosing for treatments. DART is fused with the Fc
region, which generates a DART–Fc complex. MGD007 (CD3 × GPA33) was constructed as
a DART–Fc complex that results in a significant extension of the half-life in serum [259].

5. Current Development Status of bsAb-Based ICEs
5.1. ICEs Targeting Tumor Antigens in Solid Cancers
5.1.1. CEA-Specific ICE

RO6958688 is a CD3- and CEA-specific bsAb-based T-cell engager that is used for the
treatment of patients with advanced CEA-positive solid tumors. In phase I clinical studies
(NCT02324257 and NCT02650713), RO6958688 has been administered as monotherapy
or in combination with atezolizumab—a US FDA-approved anti-PD-ligand 1 mAb—in
patients with advanced CEA-positive solid tumors. Two patients showed a PR after
monotherapy, and two after its use in combination with atezolizumab. Antitumor activity
was observed with RO6958688 monotherapy, which was enhanced when this engager was
used in combination with atezolizumab, with a manageable safety profile [260].

5.1.2. CLDN18.2-Specific ICE

AMG 910 is a bsAb-based T-cell engager against CD3 and CLDN18.2 that is used for
the treatment of patients with gastric or GEJ adenocarcinoma [261]. A phase I clinical study
(NCT04260191) on AMG 910 is currently being conducted to evaluate its dose-limiting
toxicity, treatment-related adverse event, PK, response duration, time to progression, and
recommended phase 2 dose (RP2D) [261,262].

5.1.3. DLL3-Specific ICE

Tarlatamab (AMG 757) is a CD3- and DLL3-specific bsAb-based T-cell engager that is
used for the treatment of patients with DLL3-expressing SCLC. In a phase I clinical study
(NCT03319940) on tarlatamab, a confirmed PR was reported across all dose levels in 8 out
of 60 patients (13%), and an unconfirmed PR in 5 out of 8 patients (63%), at the highest
dose level [263]. A phase II clinical study (NCT05060016) is currently ongoing to evaluate
the safety and efficacy of tarlatamab [264].

5.1.4. EGFR-Specific ICE

REGN7075 is a CD28- and EGFR-specific bsAb-based T-cell engager that is used for the
treatment of patients with advanced solid cancers. A phase I/II clinical trial (NCT04626635)
is currently being conducted to assess the safety and tolerability of REGN7075 in combina-
tion with cemiplimab—a US FDA-approved antihuman programmed cell death receptor-1
(PD-1) mAb—in patients with advanced solid tumors [265].

5.1.5. EpCAM-Specific ICE

Catumaxomab (Removab) is the first bsAb-based T-cell engager that was approved
by the EMA against CD3 and EpCAM for use in the treatment of malignant ascites in
patients with EpCAM-positive cancer [14]. In a phase II/III clinical study (NCT00836654),
the puncture-free survival was significantly longer in the catumaxomab group (median:
46 days) than in the control group (median: 11 days) [266]. M701 is another type of CD3-
and EpCAM-specific bsAb-based T-cell engager that is used for the treatment of malignant
ascites that are caused by advanced solid tumors. The interim results of a phase I clinical
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study (NCT04501744) on M701 revealed promising efficacy results: of 16 patients treated
with M701, 3 showed a CR, 7 showed a PR, and 6 had SD [267].

5.1.6. GD2-Specific ICE

Nivatrotamab is a CD3- and GD2-specific bsAb-based T-cell engager that is used
for the treatment of patients with metastatic SCLC [268]. A phase I/II clinical study
(NCT04750239) is currently being conducted to evaluate the safety and tolerability of
nivatrotamab in patients with metastatic SCLC [269].

5.1.7. GPA33-Specific ICE

MGD007 is a bsAb-based T-cell engager against CD3 and GPA33 that is based on the
DART platform and that is used for the treatment of patients with metastatic CRCs [270].
The safety, tolerability, and efficacy of MGD007 in combination with retifanlimab (previ-
ously known as MGA012)—an investigational anti-PD-1 humanized mAb—were assessed
in a phase I/II clinical study (NCT03531632) [271].

5.1.8. GPC3-Specific ICE

ERY974 is a CD3- and GPC3-specific bsAb-based T-cell engager that is used for the
treatment of patients with advanced or metastatic HCCs [272]. A phase I clinical study
(NCT05022927) is currently being conducted to evaluate the safety, tolerability, PK, and
antitumor activity of ERY974 in combination with atezolizumab and bevacizumab—a
US FDA-approved anti-vascular endothelial growth factor mAb—in patients with locally
advanced or metastatic HCC [273].

5.1.9. HER2-Specific ICE

M802 is a bsAb-based T-cell engager against CD3 and HER2 that is used for the
treatment of patients with HER2-positive advanced solid cancers [255,274]. M802 has been
approved for phase I clinical study (NCT04501770) to evaluate its safety and tolerability in
patients with HER2-positive advanced solid cancers [274].

5.1.10. MUC16-Specific ICE

Ubamatamab (REGN4018) is a bsAb-based T-cell engager against CD3 and MUC16
that is used for the treatment of patients with advanced ovarian cancer. A phase I/II clinical
study (NCT03564340) is currently being conducted to assess the PK, safety, tolerability, and
preliminary antitumor activity of ubamatamab monotherapy and its combined use with
cemiplimab, which is a US FDA-approved anti-PD-1 mAb [275].

5.1.11. MUC17-Specific ICE

AMG 199 is an HLE-BiTE molecule against CD3 and MUC17. It induces the activation
and proliferation of CD3+ T-cells and activates T-cell-mediated tumor-cell lysis in MUC17-
positive gastric cancer [81]. A phase I clinical study (NCT04117958) on AMG 199 is currently
being conducted to evaluate the safety, tolerability, PK, and antitumor activity of AMG 199
in MUC17-positive solid tumors, and to determine the maximum tolerated dose and/or
RP2D [276].

5.1.12. PSMA-Specific ICE

Acapatamab (AMG 160) is a CD3- and PSMA-specific bsAb-based T-cell engager that
is used for the treatment of patients with mCRPC. Acapatamab induces the infiltration, acti-
vation, and expansion of T-cells, as well as the killing of tumor cells [277]. A phase I clinical
study (NCT03792841) is currently being conducted to evaluate the safety and tolerability
of acapatamab monotherapy or its combined use with pembrolizumab (Keytruda)—an
anti-PD-1 mAb—in patients with mCRPC [278]. Additionally, other anti-PSMA bsAb-based
ICEs, such as CC-1, JNJ-63898081, TNB-585, REGN5678, and MOR209/ES414, are currently
being evaluated in clinical studies conducted on patients with mCRPC [226,279].
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5.1.13. STEAP1-Specific ICE

AMG 509 is a CD3- and STEAP1-specific bsAb-based T-cell engager that is used for
the treatment of patients with STEAP1-expressing prostate cancers. A phase I clinical study
(NCT04221542) on AMG 509 is currently being conducted to evaluate its safety, tolerability,
PK, and efficacy in patients with mCRPC [280].

5.1.14. SSTR2-Specific ICE

Tidutamab (XmAb18087) is a bsAb-based T-cell engager against CD3 and SSTR2 for the
treatment of patients with advanced NETs [281]. A phase I/II clinical study (NCT04590781)
is currently being conducted to evaluate the safety, tolerability, PK, and potential efficacy of
tidutamab in patients with extensive-stage SCLC [256].

5.2. ICEs Targeting Tumor Antigens on Hematological Cancers
5.2.1. BCMA-Specific ICE

Teclistamab (JNJ-64007957) is a CD3- and BCMA-specific bsAb-based T-cell engager
based on the DuoBody platform [282]. In a phase I clinical study (NCT03145181), patients
with R/R MM received teclistamab monotherapy at the RP2D. Of the 40 patients, 58%
showed a very good PR (VGPR) or better outcome, and 30% showed a CR [283]. A phase III
clinical study (NCT05083169) aimed at evaluating the efficacy of teclistamab in combination
with daratumumab, which is a US FDA-approved anti-CD38 mAb, in the treatment of
patients with R/R MM is ongoing [284]. Other CD31- and BCMA-specific bsAb-based T-
cell engagers, such as elranatamab (PF-06863135), linvoseltamab (REGN5458), REGN5459,
EMB-06, CC-93269 (EM801), TNB-383B, and AMG 701, are being actively assessed in
various clinical studies [251,285].

5.2.2. CD19-Specific ICE

Blinatumomab (Blincyto) is a CD3- and CD19-specific bsAb-based T-cell engager
that was approved by the US FDA on the basis of the BiTE platform [286]. In a phase
II/III clinical study (NCT02910063), patients with R/R aggressive B-cell NHL received
blinatumomab as the second salvage therapy. Of the 41 patients, 9 showed complete
metabolic responses, and 6 showed partial metabolic responses [287,288]. Then, in a phase
II clinical study (NCT03023878), patients with high-risk DLBCL who received first-line
treatment with rituximab plus chemotherapy were treated with blinatumomab. Of them,
7 of 8 patients with PR and SD after treatment with rituximab plus chemotherapy showed
CR following treatment with one cycle of blinatumomab [289]. In addition, TNB-486—
another anti-CD19 bsAb-based T-cell engager—is currently being evaluated in a phase I
clinical study (NCT04594642) for its safety and clinical activity in patients with R/R B-cell
NHL [290].

5.2.3. CD20-Specific ICE

Mosunetuzumab (RG7828) is a CD3- and CD20-specific bsAb-based T-cell engager
that is based on the CrossMab platform [291]. In a phase I/II clinical trial (NCT02500407),
90 patients with R/R FL who received ≥2 prior lines of therapy were treated with mosune-
tuzumab monotherapy. Of them, 57.8% showed a CR. The 12-month event-free rates were
80.1% in CR patients [292]. A phase III clinical study (NCT04712097) is currently being
conducted to evaluate the safety and efficacy of mosunetuzumab in combination with
lenalidomide in patients with R/R FL [269]. Additionally, other CD3- and CD20-specific
bsAb-based T-cell engagers, such as glofitamab (RG6026 and RO7082859), epcoritamab
(GEN3013), odronextamab (REGN1979), and plamotamab (XmAb13676), are being actively
assessed in various clinical studies [293,294].
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5.2.4. CD22-Specific ICE

JNJ-75348780 is a CD3- and CD22-specific bsAb-based T-cell engager. It has been
evaluated in a phase I clinical study (NCT04540796) to assess its safety and RP2D in
patients with R/R B-cell NHL and CLL [295].

5.2.5. CD30-Specific ICE

AFM13 is a bsAb-based NK-cell engager against CD16A and CD30 [296]. In a phase
I/II clinical study (NCT04074746), patients with R/R HL and NHL were treated with
precomplexed cord-blood NK cells with AFM13. Of the 13 patients, 8 showed a CR and
5 showed a PR after two cycles of treatment. Of 8 patients who showed a CR, 7 remained in
CR at the median follow up of 6.5 months [297]. A phase II clinical study (NCT04101331) is
currently being conducted to evaluate AFM13 monotherapy in patients with R/R peripheral
T-cell lymphoma or transformed mycosis fungoides that are classified as a subtype of
NHL [217].

5.2.6. CD33-Specific ICE

AMG 330 is a CD3- and CD33-specific bsAb-based T-cell engager. A phase I clinical
study (NCT02520427) enrolled 40 patients with R/R AML to receive AMG 330 monotherapy.
Of them, two showed a CR, two showed a CR with incomplete hematologic recovery (CRi),
and one achieved the morphologic leukemia-free stage (MLFS) [298]. In addition, JNJ-
67571244—another CD3- and CD33-specific bsAb-based T-cell engager—has been included
in a phase I clinical study (NCT03915379) to evaluate its safety and clinical activity in
patients with R/R AML, as well as those with high-risk or very-high-risk myelodysplastic
syndrome [299].

5.2.7. CD38-Specific ICE

ISB 1342 (GBR 1342) is a CD3- and CD38-specific bsAb-based T-cell engager. A phase
I clinical study (NCT03309111) is currently being conducted to evaluate the safety and
efficacy of ISB 1342 in patients with R/R MM [300].

5.2.8. CD123-Specific ICE

Flotetuzumab (MGD006) is a bsAb-based T-cell engager against CD3 and CD123 that
is based on the DART platform [301]. In a phase I/II clinical study (NCT02152956), patients
with primary induction failure (PIF) or early relapsed (ER) AML received flotetuzumab
monotherapy. Among the patients with PIF/ER AML who were treated by using the RP2D,
31.8% showed a CR, CRi, and CR with partial hematologic recovery [302]. Flotetuzumab
is in phase II clinical trial (NCT04582864) to evaluate its safety and efficacy in patients
with relapsed AML following allogeneic hematopoietic-stem-cell transplantation [303].
Additionally, other CD3- and CD123-specific bsAb-based T-cell engagers, such as JNJ-
63709178, vibecotamab (XmAb14045), and APVO436, are also being evaluated in clinical
studies for their use in the treatment of CD123-expressing hematological malignancies [304].

5.2.9. CLEC12A-Specific ICE

Tepoditamab (MCLA-117) is a bsAb-based T-cell engager against CD3 and CLEC12A [305].
A phase I clinical study (NCT03038230) enrolled 58 patients with AML to receive tepodi-
tamab monotherapy; the result showed that >50% of bone-marrow blast reduction was
observed in six patients, including one patient who achieved the MLFS [306].

5.2.10. FLT3-Specific ICE

CLN-049 is a CD3- and FLT3-specific bsAb-based T-cell engager [307]. In preclinical
studies, CLN-049 showed dose-dependent tumor reduction in the blood, and prolonged
survival in a mouse xenograft model implanted with MOLM-13 human AML cells [308].
CLN-049 is currently being evaluated in a phase I clinical study (NCT05143996) for use in
the treatment of patients with R/R AML [309]. In addition, AMG 427—another CD3- and
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FLT3-specific bsAb-based T-cell engager—is also in a phase I clinical study (NCT03541369)
for use in the treatment of patients with R/R AML [310].

5.2.11. GPRC5D-Specific ICE

Talquetamab (JNJ-64407564) is a bsAb-based T-cell engager against CD3 and GPRC5D
that is based on the DuoBody platform. In a phase I clinical study (NCT03399799), the
patients with R/R MM received talquetamab monotherapy at the RP2D, and 50% of the
patients showed a VGPR or better outcome [311]. Talquetamab is currently being evaluated
in a phase II clinical study (NCT04634552) for its safety and efficacy in patients with R/R
MM [312].

6. Practical Considerations for the Development of Next-Generation ICEs

On the basis of the currently available evidence, this study proposes practical consider-
ations for the development of the next-generation ICEs. First, the proximity of immune and
tumor cells appears to underlie the improvement in the anticancer effects that are exerted
by ICEs. A previous study compared (in vitro and in vivo) the efficacy of two different
CD3 × GD2 ICEs that were designed by using the IgG–[L]–scFv2 or IgG–[H]–scFv2 for-
mat. The results show that IgG–[L]–scFv2 has an antitumor effect that is superior to that
of IgG–[H]–scFv2 [221]. Second, another challenge in the ICE generation is to reinforce
the PK of ICEs. Recently, several Fv-based ICEs, such as BiTE and DART, extend the
in vivo half-life of antibodies. Thus, most bsAb-based ICEs are currently developed in
the IgG-like or Fc-fused form [259,313]. Third, a high affinity of ICE for CD3 may not be
necessary for achieving optimal T-cell activation without causing systemic toxicity. The
systemic administration of anti-CD3 antibodies or catumaxomab (CD3 × EpCAM) often
leads to systemic toxicity that is due to the uncontrolled T-cell activation in the peripheral
blood [314]. Anti-CD3 antibodies of ICEs reportedly have various affinities that range from
1 to 200 nM [315]. Furthermore, a recent study reports that low-affinity anti-CD3 antibody
shows better tumor distribution in vivo, without targeting T-cell-containing normal tissues,
such as the spleen and lymph nodes [316]. Fourth, ICEs with silenced Fc are required for
diminishing effector functions, such as ADCC, antibody-dependent T-cellular phagocytosis,
and complement-dependent cytotoxicity. The binding of Fc to Fcγ receptors on immune
cells may induce nonspecific immune activation that is associated with undesired toxic-
ity [317]. Various ICEs with silenced Fc are currently being developed. For instance, the Fc
domain of some ICEs was silenced by introducing various mutations: L234A-L235A-P329G
(EM801), L234A-L235A-G237A-K322A (APVO436), E233P-L234V-L235A-G236del-S267K
(Vibecotamab), N297G (AMG 330), or L234F-L235E-D265A (GEN3013) [11,247,318,319].
Furthermore, ICEs with silenced Fc improve the immune cells’ infiltration into solid tumors
and enhance antitumor effects. Fifth, the optimal amino acid composition and ICE linkers’
length are the crucial factors for ensuring favorable physicochemical properties that are
closely associated with manufacturing efficiencies [210]. Finally, despite recent advances in
the identification of therapeutic targets of ICEs in cancer, cancers are highly heterogeneous
diseases that harbor frequent mutations that are resistant to pre-existing drugs. Thus, the
identification of novel potential targets for ICE therapy against cancers remains crucial for
improving the clinical outcomes of patients with cancers.

7. Conclusions

Over several decades, cancer therapies have continuously evolved and have substan-
tially improved the quality of life and the survival of patients with cancers. In particular, the
advent of cancer immunotherapy has revolutionized the treatment paradigms in various
cancers. Recently, bsAb-based ICEs have been established as a feasible modality for effec-
tive cancer immunotherapy and, consequently, have become the focus of several preclinical
and clinical studies that are conducted globally to evaluate the efficacy and/or toxicity of
bsAb-based ICEs to known and/or emerging therapeutic targets. There are still multiple
challenges that are associated with the use of bsAb-based ICEs, such as drug resistance,
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manufacturing difficulties, and adverse effects on adjacent normal cells; nevertheless, these
ICEs have potential in cancer treatments, as they are single-molecule anticancer agents
that combine the advantages of two different mAbs that specifically target tumor-specific
antigens or TAAs. Continuous research and development may help overcome the current
pitfalls of these treatments, which may create new avenues for the successful treatment of
patients with various cancers in the near future.
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