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Abstract— The performance of motor imagery (MI) based
Brain-computer interfacing (BCI) is easily affected by noise
and redundant information that exists in the multi-channel
electroencephalogram (EEG). To solve this problem, many
temporal and spatial feature based channel selection meth-
ods have been proposed. However, temporal and spatial fea-
tures do not accurately reflect changes in the power of the
oscillatory EEG. Thus, spectral features of MI-related EEG
signals may be useful for channel selection. Bispectrum
analysis is a technique developed for extracting non-linear
and non-Gaussian information from non-linear and non-
Gaussian signals. The features extracted from bispectrum
analysis can provide frequency domain information about
the EEG. Therefore, in this study, we propose a bispectrum-
based channel selection (BCS) method for MI-based BCI.
The proposed method uses the sum of logarithmic ampli-
tudes (SLA) and the first order spectral moment (FOSM)
features extracted from bispectrum analysis to select EEG
channels without redundant information. Three public BCI
competition datasets (BCI competition IV dataset 1, BCI
competition III dataset IVa and BCI competition III dataset
IIIa) were used to validate the effectiveness of our proposed
method. The results indicate that our BCS method outper-
forms use of all channels (83.8% vs 69.4%, 86.3% vs 82.9%
and 77.8% vs 68.2%, respectively). Furthermore, compared
to the other state-of-the-art methods, our BCS method also
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can achieve significantly better classificationaccuracies for
MI-based BCI (Wilcoxon signed test, p <0.05).

Index Terms— Brain-computer interface, motor imagery,
electroencephalogram (EEG), bispectrum analysis, channel
selection.

I. INTRODUCTION

B
RAIN-COMPUTER Interfacing (BCI) provides a new
external pathway which can use brain signals to control

devices (e.g., wheelchairs, robot arms, drones etc.) without
involvement of the muscles [1], [2]. Electroencephalogram
(EEG)-based BCI is one of the most commonly studied
BCI systems. It has the advantages of being non-invasive,
low cost, and highly portable [3]. Currently, P300 [4]–[7],
steady-state visual evoked potential (SSVEP) [8], [9], and
motor imagery (MI) [10]–[13] based BCIs are the three main
research directions in the field of EEG-based BCI. Although
P300 and SSVEP based BCI systems have better classification
accuracies and information transfer rates (ITRs), these two
kinds BCI are limited because of the need for an external
stimulus [14], [15]. Compared with stimulation-based BCIs,
MI-based BCIs are often more intuitive for their users. When
individuals imagine movement of their body there are asso-
ciated changes in the power of the oscillatory EEG. These
changes are known as event-related desynchronization (ERD)
and event-related synchronization (ERS) [16], and their accu-
rate detection is the basic principle of MI based BCI.

In order to solve the problem of performance degradation
due to the redundant information and noise across multiple
EEG channels [17], many researchers have proposed channel
selection methods for MI-based BCI. Considering the neuro-
physiologic knowledge, the simplest channel selection method
is to extract data from EEG channels Cz, C3, and C4, which
are located over the motor cortex.

Channel selection methods can be categorized as either
filter [18] or wrapper [17] based methods. Filter methods
usually select channels based on F score, mutual information
or another criterion. In contrast, wrapper methods make use of
a classifier to validate the effects of different sets of selected
channels. However, those methods are most frequently used
to select channels based on their temporal [18], [19] or spatial
features [17].

Bispectrum analysis has also been used to extract
features for MI-based EEG classification [20]–[22].
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Bispectrum analysis is a technique which can extract
useful non-linear and non-Gaussian information from non-
linear and non-Gaussian signals such as EEG [23]. But to
the best of our knowledge, bispectrum-based features have
not been used to aid EEG channel selection. Therefore, this
study proposes a bispectrum-based channel selection method.
We suggest that the spectral information existing in the
bispectrum of MI-related EEG signals may aid identification
of which channels contain redundant information. In this
study, the sum of logarithmic amplitudes (SLA) and the
first order spectral moment (FOSM) features extracted
from bispectrum analysis are used to select channels for
MI-based BCI.

The rest part of paper is organized as follows.
Section II introduces our proposed method and related
research. Section III describes the data used in this study and
the experimental setup. Section IV and V shows the result and
discussion, respectively. Section VI is the conclusion of our
study.

II. METHODS

A. Bispectrum Analysis

Bispectrum analysis is a statistical analysis method used to
study the interactions between non-linear signals [20]. It is
the expectation of three frequencies which includes two direct
frequency components and a complex conjugate frequency
of the sum of the two direct frequencies. Moreover, for
a deterministic and zero mean signal x(n), its bispectrum
B( f1, f2) can be estimated by:

B( f1, f2) = E < X ( f1)X ( f2)X∗( f1, f2) > (1)

where X ( f ) is the Fourier Transform (FT) of the signal x(n),
X∗( f ) is the complex conjugate of X ( f ) and E < • > is the
statistical expectation operator.

In practice, both nonparametric and parametric model based
techniques can be used to estimate the bispectrum [22].
Moreover, nonparametric techniques can be employed with
indirect and direct methods [24]. The direct method has the
advantages of being easy to implement and requiring less
computational resources [25]. Therefore, we use the direct
nonparametric technique to estimate the bispectrum in this
study.

As the third-order spectrum, bispectrum analysis is able to
increase the signal-to-noise ratio (SNR) of signals contam-
inated with Gaussian noise. It also can detect and quantify
the quadratic phase coupling (QPC) between signals [22].
That is to say, compared to power spectrum analysis,
bispectrum analysis may be more suitable for processing
MI-related EEG signals, which have non-linear and non-
Gaussian characteristics [26].

B. Bispectrum Based Feature Extraction

The bispectrum of a set of signals has symmetrical proper-
ties because of the conjugate symmetry of the Fourier trans-
form (FT). Hence, we only calculate the bispectral values on
the principal domain (non-redundant area) in this study [27].
The principal domain � is shown as a gray area in Fig. 1.

Fig. 1. Principal domain (gray area) of bispectrum estimation. The f1 and
f2 represent two normalized frequency components used to estimated
bispectrum.

It is given by the triangular region f1 ≥ f2 ≥ 0 and
f1 + f2 ≤ 1 [28]. The f1 and f2 represent two frequency
components of EEG and the frequencies are shown normalized
in Fig. 1.

We do not directly use the bispectral values in this study.
In order to retain the temporal and spectral information within
the MI-related EEG signals, the following two features of the
bispectrum are extracted:

1) The sum of the logarithmic amplitudes.
2) The first order spectral moment.

C. Sum of Logarithmic Amplitudes (SLA)

The SLA is a widely derived bispectral feature that can be
obtained by computing the sum of absolute log bispectrum
over all bisfrequencies in the principal domain [22]. Mathe-
matically this is defined as

BSla =
∑

f1, f2∈�

log(|B( f1, f2)|) (2)

where B( f1, f2) denotes the 2D bispectrum on the principal
domain �.

D. First Order Spectral Moment (FOSM)

The FOSM is the first order spectral moment of the ampli-
tudes of the diagonal elements in the bispectrum and can be
calculated according to the following formula:

BFosm =

N∑

n=1

n × log(|B(n, n)|) (3)

where N denotes the number of diagonal elements of the
bispectrum.

E. Bispectrum-Based Channel Selection (BCS)

We think the channels related to MI should contain more
information in the µ (8-13 Hz) and β (13-25 Hz) frequency
bands when participants are performing MI tasks [29]. Mean-
while, compared to MI related channels, other channels may
contain less information in the corresponding bands.

Hence, we can select channels by extracting bispectrum
features (e.g., SLA and FOSM) of each channel for different
classes of EEG data. Then, the discriminative power of the

 



Fig. 2. Diagram of BCS method. First, each channel of EEG data estimates the bispectrum on the principal domain (Fig. 1). Then, the SLA and
FOSM features are extracted from the bispectrum of each channel. Next, features are classified to two classes according to the label of data. Finally,
F score can be calculated for each channel, and all channels will be arranged according to F score.

bispectrum features is estimated by the F score, which is
calculated according to the following formula [18]:

F̂b =
(B̄1

Sla − B̄2
Sla)

2 + (B̄1
Fosm − B̄2

Fosm)2

B̃1
Sla + B̃2

Sla + B̃1
Fosm + B̃2

Fosm

(4)

with

B I S
χ
b =

1

Nχ

Nχ∑

i=1

B I S
χ
b (i) (5)

B̃ I S
χ

b =
1

Nχ − 1

Nχ∑

i=1

(B I S
χ
b (i) − B I S

χ
b )2 (6)

where B I S
χ
b (i) and B̃ I S

χ

b (i) are the estimated means and
variances of the bispectrum features (e.g., SLA and FOSM),
and Nχ is the number of training trials belong to class
χ ∈ {1, 2}. It should be noted that this study only discusses
the issue of channel selection with two classes of EEG data.

Let X ∈ RNC ×NT ×NS denote the recorded EEG signals,
where NC , NT and NS denote the number of channels,
the number of temporal points, and the trial number of EEG

signals, respectively. To be noted, Ns =
2∑

χ=1
Nχ . The diagram

and steps of the proposed method are shown in Fig. 2 and the
following table, respectively.

F. MI Feature Extraction and Classification

The common spatial pattern (CSP) algorithm is used to
extract features in this study. CSP can identify a spatial filter

Algorithm 1 Bispectrum-based channel selection
algorithm (BCS)

1 Extract data X ∈ RNC ×NT ×NS from a fixed time
window of raw EEG data, NC = number of channels,
NT = number of temporal points, NS = trial number
of EEG signals

2 For i = 1:NS

3 For j = 1:NC

4 Estimate the bispectrum of each channel in each
trial of X according to Eq. (1), HBis(:, :, j, i) =

B(X ( j ,:, i))

5 Calculate the SLA features BSla( j, i) of H
χ
Bis(:, :

, j, i) according Eq. (2)
6 Calculate the FOSM features BFosm( j, i) of H

χ
Bis(:

, :, j, i) according Eq. (3)
7 End
8 End
9 SLA and FOSM feature matricesBSla, BFosm ∈

RNC ×NS are obtained. Then, BSla, BFosmcan be split
into B1

Sla, B2
Sla, B1

Fosmand B2
Fosm according to the label

information of each trial.
10 Compute the F score for each channel according to

Eqs. (4), (5), and (6)
11 Arrange NC channels in descending order according to

the F score, and acquire the first NCh channels.

to maximize the variance for one class and minimize the
variance for the other at the same time [30]–[32]. Suppose
X i,l ∈ RNC ×NT denotes EEG temporal data in the i th trial

 



of class l (l ∈ {1, 2}), where NC and NT are the number of
channels and the number of samples, respectively. The spatial
filter can be obtained by the following steps.

First, the raw EEG signals should be bandpass filtered at a
specified frequency band and the mean should be subtracted.
Then, the spatial covariance matrix of class χ can be calculated
as:

6χ =
1

Nχ

Nχ∑

i=1

X i,l X T
i,l (7)

where Nχ and T denote the number of trials belong to χ and
the transpose operator, respectively.

Then, the way to find the spatial filter can be expressed as
the following Rayleigh quotient [19]:

arg min
w

wT 61w

wT 62w
s.t .||w||2 = 1 (8)

To solve Eq. (8), it can be transformed into a generalized
eigenvalue problem:

61w = λ62w (9)

Hence, the M largest and smallest generalized eigenvalues
can form a spatial filter W = [w1, · · · , w2M ] ∈ RNC ×2M .
In this study, M is set as 2. Finally, the features of a single
trial X i can be computed as:

z = log(var(W T X i )) (10)

After feature extraction by the CSP algorithm, we fed the
features into a support vector machine (SVM) classifier with
a radial basis function (RBF) kernel for the classification.
In this study, we use the LIBSVM [33] toolbox in MATLAB
to implement the SVM classifier. Many methods can be used
to classify. The reason for using SVM as a classifier is that it
performs well in BCI systems. The main idea of SVM is to
find a hyperplane with the largest possible margin to separate
the data from the two classes [34], [35].

H : x 7→ sign(wT x + b) (11)

where w and b are the weight vector and the offset of the
hyperplane, respectively.

III. MATH MATERIALS AND EXPERIMENT

A. Data Descriptions

DS1: We denote the dataset 1 from the BCI Competition IV
[36] as DS1 in this study. DS1 contains MI EEG data recorded
from 7 participants. However, we only use the data for par-
ticipants ‘a’, ‘b’, ‘f’ and ‘g’ because the data for participants
‘c’, ‘d’ and ‘e’ are artificially generated. At the beginning of
each run, a fixation cross was displayed at the center of the
computer screen for 2 s. Then, an arrow with the direction of
left, right or down was displayed for 4 s to instruct participants
to perform the corresponding MI task. Next, participants were
asked to rest for 2 s while looking at a blank screen. After
the rest time, the next trials occurred. Each of run contained
100 trials. The timeline of each trial is shown in Fig. 3(a).
We down-sampled the EEG recorded from 59 channels to

Fig. 3. Timeline of each trial for DS1(a), DS2(b) and DS3(c).

100 Hz. The channels were positioned according international
EEG 10-20 systems. More details can be found in the follow-
ing website: http://www.bbci.de/competition/iv/.

DS2: We denote dataset IVa from the BCI Competition III
[37] as DS2. This dataset was recorded from 5 healthy partic-
ipants. The timeline is shown in Fig. 3(b). It can be seen that
visual cues were first displayed for 3.5 s to instruct participants
to perform left hand, right hand and foot imagery. Then, par-
ticipants were instructed to randomly relax for 1.75 to 2.25 s.
The total number of trials completed for each participant
was 280 and the EEG was recorded from 118 channels that
were positioned according to the international 10-20 system
for electrode placement. The EEG were down-sampled to
100 Hz. More details can be found in the following website:
http://www.bbci.de/competition/iii/.

DS3: Dataset IIIa from BCI Competition III [37] is denoted
as DS3. The original data was recorded over 60 channels with
a sample rate of 250 Hz from three participants labeled k3b,
k6b, l1b. As shown in Fig. 3(c), a blank screen was displayed
in the first 2 s of each trial to instruct participants to rest.
An acoustic stimulus and fixation cross were presented in
the next 1 s. Then, a visual cue of an arrow pointing left,
right, up, or down was displayed for 1 s. From t = 3 to 7 s,
participants were asked to perform corresponding MI tasks
(left hand, right hand, tongue, or foot movement). In this
study, we only use the trials of left and right hand MI tasks.
More details also can be found in the following website:
http://www.bbci.de/competition/iii/.

B. Whole Framework

The proposed framework is shown in Fig. 4. In preprocess-
ing stage, we extract data from fixed time windows (as shown
in Fig. 3, 2-6 s for DS1, 0-3 s for DS2, and 3-6 s for DS3).
In addition, the EEG for each trial is bandpass filtered in

 



Fig. 4. Block Diagram of the proposed framework. The framework consists of training and test stage. In training stage, training data are used to
select channels, train CSP filter and train SVM classifier. In test stage, test data are used to evaluate the performance of the proposed BCS method.

the range of 8 to 30 Hz with a third-order Butterworth filter.

Then, we use the bispectrum-based channel selection (BCS)

algorithm to select optimal channels. Moreover, CSP and SVM

are used for feature extraction and classification of MI tasks,

respectively.

IV. RESULT

A. Classification Accuracies Comparison

As mentioned above, an experiment is conducted to evaluate

the performance of the proposed BCS algorithm. In this

study, 10-fold cross validation is applied to avoid overfitting.

In addition, 3C-CSP and CSP-rank methods were used to

compare with our proposed method.

The 3C-CSP method only uses the data extracted from

the Cz, C3, and C4 EEG channels. This method has the

advantages of ease of implementation and can be prepared

quickly. Nevertheless, it is not appropriate for everyone. For

example, for individuals who are not able to control typical

BCIs with high levels of accuracy, the 3C-CSP method may

cause further deterioration in the performance of the classifier

(see Table I’AC-CSP’ and ‘3C-CSP’).

Tam et al. proposed a channel selection method called

CSP-rank in 2011 [38]. This method first calculates the

projection matrix w according to Eq. (8). Then, the absolute

values of elements of the eigenvectors corresponding to the

maximum and minimum eigenvalues were used alternately

to select channel. The first channel is selected according to

the maximum absolute values of either elements of these two

eigenvectors. The index of the maximum absolute member

of the eigenvector denotes the channel to select. The second

channel is selected according to the maximum absolute value

of the elements of the other eigenvectors. If the channel

is already selected, the channel corresponding to the next

maximum absolute value will be selected. According this

selecting method, all channels will be sorted.

The best classification accuracies for all participants with

four different methods are shown in Table I. It may be noted

that information on electrode labels and positions is not

provided in DS3. Therefore, the 3C-CSP method was not used

on DS3.

As can be seen, for all three dataset (e.g., DS1, DS2, and

DS3), the proposed BCS method can achieve the highest

classification accuracies. Specifically, for four participants

from DS1, the mean accuracies are 69.4% (with AC-CSP),

65.4% (with 3C-CSP), 79.1% (with CSP-Rank), and 83.8%

(with BCS -CSP), respectively. For five participants from

DS2, the mean accuracies are 82.9% (with AC-CSP), 72.1%

(with 3C-CSP), 86.3% (with CSP-Rank), and 86.3% (with

BCS -CSP), respectively. For three participants from DS3,

the mean accuracies are 68.2% (with AC-CSP), 74.5% (with

CSP-Rank) and 77.8% (with BCS -CSP), respectively. Among

all methods, the performance of the BCS algorithm is supe-

rior in ten out of all twelve of the participants. Since the

classification accuracies were not meet the normal distribution

(p=0.006, Kolmogorov-Smirnov test, BCS-CSP vs. AC-CSP),

Wilcoxon signed rank test is performed (using IBM SPSS

v.25) to evaluate the significance of this difference. The results

confirms the superiority of the BCS method over the AC-

CSP and CSP-rank methods (BCS vs. AC-CSP: Z = −3.059,

p = 0.002 <0.05; BCS vs. CSP-rank: Z = −2.395,

p = 0.017 <0.05).



TABLE I

ACCURACY (%) AND RESULT OF WILCOXON SIGNED RANK

TESTS COMPARISONS ON DS1, DS2 AND DS3 WITH

FOUR DIFFERENT METHODS

B. Comparison of the Number of Selected Channels

We also compare the number of selected channels when
using the different channel selection methods. Table II shows
the number of selected channels using AC-CSP, 3C-CSP,
CSP-Rank, and our proposed method. The ∗ indicates that
the average selected number of channels is not an integer,
and the displayed number is the result of rounding up.
The 3C-CSP method was not applied to DS3 because the
information about electrode positions is not provided in DS3.
As can be seen, to achieve the best classification accuracy,
the number of channels selected using the CSP-rank and BCS-
CSP methods is similar (24 vs 25 for DS1, 63 vs 79 for
DS2, 27 vs 14 for DS3).

C. Distribution of Selected Channels

For DS1 and DS2, the distribution of the channels selected
by the BCS algorithm is discussed. As mentioned before,
we are unable to analyze the distribution of selected channel
for DS3.

To investigate the distribution of selected channels, we sort
all channels based on their F scores, which are calculated
according to Eq. (4). The index score (IS) of the channel with
the highest F score is the number of all channels (e.g., 59 for
DS1 and 118 for DS2). The IS of the channel with the second
highest F score is equal to the number of all channels minus

TABLE II

THE NUMBER OF SELECTED CHANNELS WITH FOUR DIFFERENT

CHANNEL SELECTION METHODS ON DS1, DS2 AND DS3

Fig. 5. Topography of index scores of channels selected for DS1
(Participants a, b, f, and g). Color changes from red to blue indicate
that the channel is becoming less important.

one, and so on. Hence, for 10-fold validation, all channels can
get 10 IS numbers. Then, we sort all channels according to the
average IS. The range of average IS values for DS1 and DS2 is
1 to 59 and 1 to 118, respectively. According to the average



Fig. 6. Topography of index scores of channels in DS2 (Participants aa, al, av, aw, and y). As with Fig. 5, color changes from red to blue indicate
that the channel is becoming less important.

IS, we plot the topography for all participants from DS1 and
DS2 using MATLAB 2019a with the EEGLAB toolbox [39].

Fig. 5 shows the distribution of selected channels for par-
ticipants a, b, f, and g from DS1. Red colored areas indicate
higher IS values, while blue color areas indicate lower IS
values. It can be seen that the channels with high average IS
values (red color) for participants a and g are located in the
vicinity of both channels CCP3 and CCP4. For participants b
and f, the channels with high average IS values are located in
the vicinity of channels CCP3 or CCP4.

Fig. 6 shows the distribution of selected channels for par-
ticipants aa, al, av, aw, and ay from DS2. The meaning of the
color in Fig. 6 is the same as in Fig. 5. As can be seen, for
participants aa, al, and aw, the channels with high average IS
values are also located in the vicinity of channels CCP3 or
CCP4. But for participants av and ay, the channels with high
average IS values are only located in the vicinity of channel
CCP3. Similarities in the distributions of selected channel
for DS1 and DS2 suggests that the BCS algorithm could be
identifying neurophysiological meaningful patterns in the data.

We also used the mean (83.84) and standard deviation
(30.16) of the numbers of the original channels and the mean
of the numbers of chosen channels (44.08) to estimate the
statistical power [40]. The result shows that we can achieve the
statistical power of 0.8696. The relation between the statistical
power and the sample size is shown in Fig. 7.

D. Parameter Sensitivity

As shown in Fig. 8, for each participant, we explore the
classification accuracies of the data with different numbers of
channels.

Fig. 7. The relation between the statistical power and the sample size.

For all three datasets, the trend of classification accuracies is
the same, increasing first then decreasing. The reason perhaps
is the different proportions of useful and redundant information
in the selected channels. When using 4 channels for the
first time, even if all information in the 4 channels is not
redundant, the discriminative feature is not enough for accurate
classification. Then, with the number of selected channels
increasing, the discriminative features can be extracted from
these channels. But redundant information will become dom-
inant if the number of selected channels is too large. For
example, the highest classification accuracy for participant g
from DS1 is achieved when using around 13 channels. If too
many channels are used, the accuracy of the SVM classifier
will deteriorate. In addition, participants k3, k6, and l1 from
DS3 also show the same phenomenon.

However, the circumstances for participants aa and ay
from DS2 are not identical. As can be seen from Table II,



Fig. 8. Classification accuracies of four participants from DS1, DS2 and DS3 with different numbers of selected channels.

the number of channels which can achieve the best classi-
fication accuracies for participants aa and ay are 105 and
111, respectively. This may because each channel has only a
small amount of useful information. In order to achieve better
performance, a larger number of channels must be used to
extract discriminative features for the SVM classifier.

E. Impacts of Different Kinds of Filters and Classifiers

We also used the second-order Chebyshev bandpass filter,
the linear discriminate analysis (LDA) and the SVM classifier
with linear kernel (SVM-Linear) to investigate the impacts
of different kinds of filter and classifiers on BCS algorithm.
The bandpass range of the Chebyshev filter is the same
as that of the Butterworth filter and the results are shown
in Table III and IV.

Table III show the accuracies and the number of selected
channels on DS1, DS2 and DS3 using the Butterworth filter,
the LDA classifier and the SVM-Linear. As shown in Table III,
the BCS algorithm can achieve higher mean accuracies than
that of the CSP-rank on DS1 and DS3 for both two classifiers.
For DS2, the BCS algorithm has the same mean accuracy
(86.9%) when using SVM-Linear classifier whereas when
using the LDA classifier, the CSP-rank outperforms the BCS
algorithm.

Table IV show the accuracies and the number of selected
channels on DS1, DS2 and DS3 using the second-order
Chebyshev filter, the LDA classifier, the SVM-Linear and the
SVM-RBF. For all three datasets and three classifiers, the mean
accuracies achieved by the BCS algorithm are both higher than
that achieved by the CSP-rank.

When compared Table III and IV with Table I, it can be
seen that different kinds of filters could affect the performance

of MI-BCI (Butterworth filter outperforms Chebyshev filter),
however, the impacts of different kinds of classifier will
not be great. In addition, in most case, compared with the
CSP-rank, the proposed BCS algorithm can achieve higher
accuracies.

V. DISCUSSION

Previous studies have demonstrated that using bispectrum
features as classifier inputs in BCI systems can achieve good
performance [41]–[43]. Moreover, it has been shown that
bispectrum can work especially well for MI BCIs because of
the ERD/ERS phenomenon which is most frequently analyzed
in the frequency domain [44]. Bispectrum amplitudes can
represent the phase relationship between two frequency com-
ponents [22], whereas sum of logarithmic amplitudes (SLA)
and first order spectral moment (FOSM) are two most widely
used features.

However, it is still unclear whether bispectrum features can
be used to select channels in BCI systems. Thus, in this study,
we proposed a channel selection method based on SLA and
FOSM features extracted from the bispectrum. The proposed
method can directly use the F score calculated by the SLA
and FOSM features to sort channels, which is different from
the wrapper-based channel selection methods. For example,
in [45], authors use the sequential feature selection method to
reduce MEG sensors, which is required to use the classifier to
evaluate the effect of the combination of each sequential fea-
ture whereas the proposed BCS method can sort all channels
at once according the F score of each channel.

We have demonstrated the effective of the proposed BCS
algorithm in three public BCI competition datasets. As shown
in Table I and II, the BCS algorithm can achieve better



TABLE III

ACCURACIES (%) AND THE NUMBER OF SELECTED CHANNELS COMPARISONS ON DS1, DS2 AND DS3 USING THE

BUTTERWORTH FILTER AND TWO CLASSIFIERS (LDA AND SVM-LINEAR)

TABLE IV

ACCURACIES (%) AND THE NUMBER OF SELECTED CHANNELS COMPARISONS ON DS1, DS2 AND DS3 USING THE

CHEBYSHEV FILTER AND THREE CLASSIFIERS (SVM-RBF, SVM-LINEAR AND LDA)

classification performance with fewer channels. Compare
with other state-of-the-art channel selection method such as
CSP-rank method, Wilcoxon signed rank test results also
show that the BCS algorithm can achieve significantly better

classification accuracies (p = 0.017 <0.05). Compared with
the traditional 3C-CSP channel selection method, the proposed
method aslo shows the superiority in the classification accu-
racies (83.8% vs. 65.4% on DS1, 86.3% vs. 72.1% on DS2).



The proposed BCS method also can be used in real-time BCI
systems. Specifically, before the real-time BCI systems run,
the training data of EEG signals need to be used to calculate
the bispectrum for channel selection.

Our proposed method also has some limitations. On the one
hand, according to the formula (4), SLA and FOSM features
had the same contribution to the process of F score calculation.
That is to say, the selected channels were equally affected by
the SLA and FOSM features. But the SLA and FOSM are
two different features extracted from bispectrum (formula (2)
and (3)), and using different weights for SLA and FOSM
features may have better performance. On the other hand,
the effect of different frequency ranges of the filter on the
calculation of bispectrum is not to be considered. Although our
proposed method achieves good performance, the frequency
range of the filter may affect the BCS algorithm.

Xing et al. first proposed a metric learning method to
improve clustering performance [46]. Recently, Sheoran et

al. used various distance metric learning algorithms to map
features to a discriminant space, improving the accuracy of
epileptic seizure detection [47]. Mapping the SLA and FOSM
feature to a discriminant space may be helpful for identifying
which channels contain redundant information. Therefore,
we will try to combine the metric learning methods to further
improve the performance of the BCS algorithm in future
work. We will also investigate the different impacts of the
SLA, FOSM features and the influences of different frequency
ranges of the bandpass filter on the channel selection method
in MI based BCIs.

VI. CONCLUSION

In this paper, we proposed a bispectrum-based channel
selection (BCS) method for MI based BCIs. SLA and FOSM
features, extracted from bispectrum, were used to calculate the
F score for each channel. According to the F score, channels
without redundant information are selected. Compared to the
3C-CSP and CSP-rank methods, the proposed BCS algorithm
can achieve significantly better results. Overall, the BCS
algorithm is an efficient method to improve the performance
of MI based BCIs.
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