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Bisphosphonates (BPs) are bone-avid compounds used as first-line medications for the prevention and treatment of

osteoporosis. They are also used in other skeletal pathologies such as Paget’s and metastatic bone disease. They

effectively reduce osteoclast viability and also activity in the resorptive phase of bone remodelling and help preserve

bone micro-architecture, both major determinants of bone strength and ultimately of the susceptibility to fractures. The

chemically distinctive structure of each BP used in the clinic determines their unique affinity, distribution/penetration

throughout the bone and their individual effects on bone geometry, micro-architecture and composition or what we call

‘bone quality’. BPs have no clinically significant anabolic effects. This review will touch upon some of the components of

bone quality that could be affected by the administration of BPs.
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Introduction

Osteoporosis is the result of inadequate maintenance of the
skeleton and by definition it is the deterioration of bone
micro-architecture that leads to increased fragility and
consequently to increased risk of fracture.1 Bisphosphonates
(BPs) are a group of anti-resorptive medications that preserve
the macro- and micro-architecture of the skeleton and reduce
the risk of fracture. As such, they affect the collective properties
of what we describe as ‘bone quality’, which includes bone
geometry, micro-architecture and composition.2

The strength of any object is determined by its structural and
material properties, which require constant maintenance and
repair. Bone structure can be maintained via the process of
remodelling through discrete cellular units comprised of
osteoclasts and osteoblasts, known as basic multicellular units
(BMUs).3 The rate of the tightly regulated coupling of bone
resorption followed by bone formation could be affected by the
use of BPs. Individual BPs inhibit bone resorption to various
degrees due to differences in their physico-chemical structure,
which leads to differences in binding affinity and biochemical
potency (mainly through the inhibition of the farnesyl
pyrophosphate synthase enzyme in osteoclasts), thus
suppressing bone turnover.4 The individual characteristics of
BPs affect their fluid and tissue concentrations (influenced by
the route of administration and dosing regimens), distribution
and penetration, as well as tissue release (off-loading), and
ultimately their clinical efficacy in fracture prevention. Broadly,
BPs are classified as non-nitrogen-containing BPs (etidronate,

clodronate and tiludronate), and nitrogen-containing BPs
(alendronate, risedronate, ibandronate, pamidronate and
zoledronate). The addition of nitrogen in the structure of BPs led
to a marked increase in their potency and introduced a new
mechanism of action involving primarily the mevalonate pathway
and the inhibition of farnesyl pyrophosphate synthase.4

Several clinical trials studied the effects of the individual
BPs on fracture outcomes, primarily evaluating the effect of
BP administration on the risk of vertebral and hip fractures.
Non-vertebral fractures, changes in bone mineral density (BMD)
and bone turnover markers were often evaluated as secondary
end points. Furthermore, the performance of paired bone
biopsies in some of these patients enabled the study of several
aspects of bone quality and turnover. This review provides an
overview of how BP treatments reduce fracture risk, in the
context of bone quality.

BP Distribution and Bone Affinity

Bone is composed of two distinct layers. The outer layer of
cortical bone is compact and dense, and allows little space for
cell migration or vascular formation. The inner layer of
trabecular bone, however, is composed of a rod-like matrix that
allows room for marrow, blood vessels and easy cell migration.
In the trabecular bone, the BMUs lie on the surface of
trabeculae; in the cortical bone they can only start from an
existing Haversian or Volkmann’s canal and therefore cortical
bone could be less accessible to BPs. The binding affinity of
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individual BPs to hydroxyapatite (influenced by both side chains
R1 and R2, attached to the carbon atom of the P-C-P group)
determines their distribution.5,6 Their rank order from the BP
with the highest hydroxyapatite affinity to that with the lowest
is as follows: zoledronate4pamidronate4alendronate4
ibandronate4risedronate4etidronate4clodronate.7,8 BPs with
high affinity bind rapidly to resorbing surfaces that are more
abundant in trabecular than in cortical bone, and disappear
quickly from the bloodstream and extracellular fluid. BPs with
lower affinity are available for longer periods and penetrate
more deeply, depositing onto cortical bone and deep within
canaliculi.5 To a lesser extent, BPs are also deposited onto bone
surfaces that are not undergoing active remodelling.9 In
general, high-affinity compounds tend to concentrate mostly
near the surface, whereas low-affinity compounds distribute
more equally across the cement/reversal line.10 Furthermore,
despite the fact that the trabecular bone comprises only 20% of
the total skeletal mass,11 BPs overall tend to bind more
extensively to trabecular bone, which is more accessible and
metabolically active than cortical bone. This may be one of the
reasons for the greater reduction of the vertebral fracture risk
observed in patients taking BPs, compared with BP-induced
reduction in non-vertebral fracture risk, as the vertebrae have a
greater trabecular-to-cortical bone ratio.

BP Effects on Bone Cells

Osteoclasts
The primary target cell of BPs is the osteoclast. BPs bind to the
bone surface and are ‘ingested’ by osteoclasts during active
bone resorption or, in a similar process, are internalised via
pinocytosis from the extracellular fluid.12 However, secondary
to their high affinity to bone relative to other tissues, significant
exposure of BPs to non-osteoclastic cells is limited to the initial
period immediately following dose administration. Once
attached to the bone surface, BPs may only be released during
the active resorption process and then could be taken up by
osteoclasts. Their efficacy of action is determined by both the
quantity of BP absorbed by the osteoclast and the individual
potency of each BP in interfering with intracellular processes.

BPs suppress osteoclast activity and zoledronate has been
found to have the greatest anti-resorptive potency on the basis
of the degree of inhibition of the major target enzyme farnesyl
pyrophosphate synthase in osteoclasts. Next in the ranking
(in descending order) is risedronate, then ibandronate,
alendronate, pamidronate, clodronate and etidronate.4 In
actively resorbing osteoclasts, non-nitrogen-containing BPs
form ATP analogues and induce apoptosis.4 In contrast,
nitrogen-containing BPs interfere with the mevalonic pathway,
disturbing various cell functions and osteoclast capability to
digest bone, thereby functionally inactivating the cell.13,14

Indeed, inhibition of bone resorption by alendronate or
risedronate does not require osteoclast apoptosis.14 Following
treatment with a nitrogen-containing BP, the number of
osteoclasts could stay the same or even increase.15,16 In
rats treated with a high dose of zoledronate (0.3 mg per kg per
week) for 13 months, the number of TRAPþ mononuclear cells
and non-attached osteoclasts increased significantly.17

Clinically, long-term alendronate treatment (10 mg daily) in
postmenopausal women increased the number of osteoclasts
(compared with the placebo group), with the increase being

proportional to the cumulative dose. Almost one third of the
osteoclasts were described as being giant cells and detached;
up to 37% were apoptotic. The normal-appearing osteoclasts
apparently resorbed bone poorly.13

Osteoblasts
In primary osteoblasts/osteoblastic cell lines both nitrogen-
containing and non-nitrogen-containing BPs at low
concentrations (range 10� 9–10� 6M) increased osteoblast
proliferation, differentiation and/or mineralisation and inhibited
apoptosis. However, at higher concentrations, this trend
reversed18 and toxic effects could be seen.19 Clinically, and in
animal studies,20,21 bone formation markers are reduced and
this is interpreted as a causal consequence of the reduced bone
resorption. Generally, although both groups of BPs have
been reported to affect osteoblasts, the nitrogen-containing
compounds have been shown to be more potent.18

Lately, Eph receptors, members of the receptor tyrosine
kinase family, have been identified in the osteoblasts.
A membrane-bound ligand, the osteoclast-derived ephrin
B2 binds to the EphB4 receptor promoting osteoblast
differentiation and bone formation.22 This is a bidirectional
communication and requires cell contact between the
osteoclast and a differentiating osteoblast. When the signal is
emitted from the osteoblast to the osteoclast, osteoclast
differentiation could be suppressed. Moreover, ephrin B1 is also
strongly expressed during osteoclast differentiation and has
actions similar to ephrin B2.23 Alendronate appears to regulate
expression of ephrin B1 through the EphB1 andEphB3
receptors on the osteoblast to suppress further osteoblast
differentiation.24 Furthermore, nitrogen-containing BPs may
increase the gene expression and concentrations of the
receptor activator of nuclear factor -kB ligand or have the
opposite effects on osteoprotegerin (OPG) (a decoy receptor
and competitive inhibitor of receptor activator of nuclear
factor-kB ligand and receptor activator of nuclear factor-kB
interaction), both produced and secreted by osteoblasts.
However, the clinical significance of these actions of BPs has
not been established.25,26

Osteocytes
Osteocytes are the most abundant bone cells, orchestrating
signals affecting the bone remodelling cycle and mineralisation.
They are the main source of sclerostin, which, together with
DKK1, another inhibitor of the Wnt pathway, is an important
negative regulator of bone mass in humans.27 Fluorescein-
tagged risedronate analogues provided evidence that BPs gain
access to osteocytes through the canalicular compartment
(osteocytic network). BPs were present in osteocytic lacunae in
close proximity to vascular channels and were localised to the
lacunae of newly embedded osteocytes close to the bone
surface.9 When fluorescent conjugates of risedronate and
analogues of differing affinities were administered to growing
rats to visualise BP distribution, the bone mineral surrounding
the blood vessels in the cortical bone showed significantly
more pronounced florescent labelling with the administration
of higher-affinity compounds. However, the lower-affinity
analogues showed increased labelling within the osteocyte
canalicular network.5

In conditions such as micro-damage, mechanical loading,
weightlessness or glucocorticoid use that could induce
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apoptosis in osteocytes, BPs have been reported to exert
anti-apoptotic effects28,29 at concentrations approximately
three orders of magnitude lower than those required by the
same agents for the promotion of osteoclast apoptosis
in vitro.30 As in the case of osteoblasts, higher concentrations
could become toxic. Furthermore, these properties were also
expressed by experimental BP compounds (for example, the
R1-amino-substituted derivative of olpadronate IG940231) that
do not affect the resorptive activity of osteoclasts.32 Therefore,
this action of BPs on the lifespan of osteocytes (and
osteoblasts) may not be mediated through the mevalonate
pathway. Indeed, there has been evidence that the survival
signalling is conditional to the involvement of the connexin 43
hemichannels, the opening of which by BPs leads to activation
of extracellular signal-regulated kinases followed by calcium
influx.33 The proportion of sclerostin-positive rat osteocytes is
not significantly affected after treatment with alendronate,
which does not appear to alter the mechano-sensing function of
osteocytes to load.34 Clinically, the effects of BPs on the
circulating levels of sclerostin are currently under investigation,
with two studies reporting conflicting findings.35,36

BP Effects on Trabecular/Cortical Bone

Bone strength correlates directly to bone mass, which suggests
that it is the quantity of bone that determines strength. However,
the distribution of the mass is equally important in determining
bone integrity and its ability to withstand daily compressive and
tensile stress. Computer simulations have been useful tools in
the assessment of the effects of universal bone mass removal,
as seen with bone thinning in ageing, versus focal removal of
bone mass in discrete locations, which is seen in a number
of bone pathologies including the response to oestrogen
deficiency.37–39 They revealed that focal defects lead to loss of
connectivity within the overall bone structure and compromise
bone strength more significantly than universal thinning.

Current anti-resorptive regimens cannot restore lost structure
and improvement of micro-architecture, other than by the
closing of resorption pits, has not been documented with BP
treatment. Furthermore, based on our current knowledge, it is
not possible to determine accurately the optimal level of bone
turnover suppression, the ideal duration of treatment and the
sufficient length of recovery time for bone remodelling to return
to the pretreatment levels following withdrawal. In addition,
each BP has different effects on the time to onset of action,
duration of effects, BMD and level of bone turnover
suppression; some of these individual characteristics could be
clinically relevant.4,40 It has been reported, for example, that the
onset41 and recovery of bone turnover suppression appeared
earlier with risedronate as compared with alendronate.42 Also,
in a head-to-head clinical trial, an earlier effect of risedronate
was observed on the time course to non-vertebral fracture-risk
reduction compared with alendronate.43

It is estimated that 80% of fractures are non-vertebral and
occur predominantly at cortical sites.44,45 The coalescence of
BMUs increases cortical pore diameter, increasing the cortical
surface area available for remodelling and subsequent removal
of bone tissue. In women over the age of 65 years, cortical
porosity increases markedly over time.46 In old age, as with
osteoporosis, Haversian canals in cortical bone can enlarge due
to confluent remodelling of BMUs, leading to trabecularization

and thinning of the cortex with a subsequent increase in surface
area.46,47 Trabecular bone also changes; surface area initially
increases (due to perforation of plates) and then consequently
decreases as trabeculae are lost.48–50 Therefore, differences in
the distribution and penetration of BPs4 could be of clinical
importance, particularly in the cortical bone in which the low
surface-to-volume ratio is remodelled at considerably lower
rates than in the trabecular bone.

BMD changes only account for part of the reduction in fracture
risk following BP administration, as the increases in BMD are not
linearly proportional to the fracture-risk reductions.51,52 More
recently,however, therehavebeenpublicationssuggestingamore
robust relationship between zoledronic acid-induced increases in
BMD and fracture-risk reduction as well as an independent strong
relationship between the magnitude of suppression in bone
turnover markers and fracture-risk reduction.53

Bone densitometry does not provide information on the
structural characteristics of the skeleton, although images of
the shape of the scanned bones or estimates of their size, and
hip axis length (which could affect the distribution of bone mass)
could be obtained.54 Other noninvasive imaging techniques,
however, such as micro-computed tomography (CT), peripheral
high-resolution quantitative CT and high-resolution magnetic
resonance imaging offer, in many aspects, insights on the bone
micro-architecture that are even superior to those obtained
from standard histomorphometry of iliac crest bone samples.55

Both animal and clinical studies have assessed the effect
of the four most commonly used nitrogen-containing BPs
(alendronate, risedronate, ibandronate and zoledronate) on
bone micro-architecture by evaluating standard histo-
morphometric measurements from bone biopsies.15,56–59

A significant decrease in osteoclast activation frequency was
observed, which is consistent with a reduction in overall bone
turnover. Furthermore, changes in cortical pore area were
examined in bone biopsies at baseline and after 5 years of
risedronate or placebo treatment in patients with established
osteoporosis.50 Although pore area was unchanged in the
placebo group, an 18–25% reduction was observed in the
risedronate group. Similarly, histomorphometric data from
transiliac bone biopsies (24 in total) obtained from post-
menopausal osteoporotic women also suggested that porosity
in the iliac crest of the cortical bone was reduced significantly
after 2–3 years of 10 mg per day alendronate treatment
compared with the placebo group.60 It is established that
cortical bone porosity has profound effects on bone strength,
which varies inversely with increasing porosity.61,62

The effects of BPs on trabecular bone micro-architecture
beyond the classical histomorphometrical assessment
have been explored in animal studies. In ovariectomized
nonhuman primates, alendronate treatment decreased acti-
vation frequency and indices of bone formation to control levels
(low dose) or below (high dose); indices of mineralisation did not
change.63 In ovariectomized aged rats, ibandronate treatment
for 12 months resulted in a dose-dependent increase in
trabecular bone volume, load to failure (Fmax) and yield load
in long bones and vertebrae.64 Risedronate treatment for
18 months compared with no treatment prevented trabecular
bone loss in the vertebrae of ovariectomized mini pigs.
A 4% difference in bone volume between the groups was also
reported.65 In clinical studies, non-osteoporotic menopausal
women (6–60 months after menopause) underwent a bone
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biopsy at baseline and after they had been treated daily with
risedronate 5 mg or with placebo for 1 year.48 micro-CT
evaluation revealed decreases in bone volume, trabecular
thickness and trabecular number, and increases in percent
plate, trabecular separation and marrow star volume
(a measure of trabecular porosity) in the placebo compared with
the risedronate group. Similar findings were reported in
postmenopausal osteoporotic women treated daily with 5 mg of
risedronate or placebo for 3 years. Paired bone biopsies were
performed at the beginning and at the end of treatment. The
deterioration observed in a subgroup of high bone turnover
untreated patients (trabecular thinning with its structure
becoming more rod-like, and the size of the holes in the bone
maze increasing) was prevented in those treated with
risedronate.49 In both, the non-osteoporotic and osteoporotic
risedronate studies, standard histomorphometry supported the
micro-CT findings. Similarly, single transilial biopsies obtained
at the completion of clinical trials in women treated with
alendronate for 2 or 3 years yielded comparable results marked
by greater bone volume and trabecular thickness and
decreased trabecular spacing.59 Also, trabecular micro-
architecture was better preserved in patients receiving iban-
donate orally (2.5 mg daily or 20 mg every other day for 12 doses
every 3 months) compared with those on placebo when bone
biopsies were assessed by histomorphometry or micro-CT.66

In the appendicular skeleton, however, the effects of BP
treatment are less pronounced, following assessment with
high-resolution quantitative CT. One-year treatment with a
monthly administration of 150 mg ibandronate to post-
menopausal women with either osteopenia or osteoporosis had
some beneficial effects on the cortical thickness of the distal
tibia but not on the distal radius where BV/TV and trabecular
separation (the primary end points of the study) were similar in
both the treatment and placebo groups.67 Similar results were
reported in a study with postmenopausal, osteopenic women
treated with the same ibandronate regimen for 2 years.68

Alendronate, administered weekly (70 mg) for 2 years in
postmenopausal osteoporotic women, improved trabecular
number and separation in the distal tibia but had no effects on
the distal radius.69 When compared with placebo, weekly
alendronate treatment in osteopenic women resulted in a
longitudinal increase in the volumetric BMD of the tibia, but,
again, not of the radius.11,70

The difference in the response to BP treatment between these
two peripheral sites is interesting and could be explained by
their different structures. At least in patients with history of an
osteoporotic fracture, this could be due to a difference in the
pattern of their micro-architectural destruction at these sites.71

At the radius, the pattern is more consistent with trabecular loss
characterised by profound reductions in trabecular number and
increased network inhomogeneity. At the tibia, however, the
cortical losses are predominant with cortical density being more
severely affected, whereas the number of trabeculae is mostly
preserved.

BP Effects on Bone as a Structural Material

Type I collagen is the predominant building block of bone and to
a great extent determines its structural and biomechanical
features. It is modified by intermolecular crosslinking that
provides the visco-elasticity necessary for effective stress

distribution. This property supports the bone’s tensile strength
and allows it to resist both traction and shearing forces.72,73

The addition of mineral crystals creates a bio-composite that is
also able to withstand compression. Newly synthesised,
crosslinked collagen differs in maturity when compared
with older matrix. Furthermore, the properties of collagen may
differ between osteoporotic and healthy individuals.74

Crosslinking could affect the mineralisation process and,
if defective, could predispose to the formation of micro-
cracks.75 This is evidenced by the fact that osteoporotic
bone has a reduced mineral content and increased crystallinity.

BPs may directly affect the structural integrity of bone,
altering both the matrix proteins and the mineral crystals. BP
treatment has been demonstrated to reduce collagen crosslink
ratio to premenopausal levels, and possibly reduce crystal size
in bone-formation areas.76 As these changes were found in
areas of new bone formation, it is probable that they affect only a
small amount of bone over time. Although small, this effect
should not be ignored for osteoporotic bone with thin
trabeculae constantly undergoing remodelling, the volume of
newly formed bone can constitute a large percentage of the
total bone volume. The mechanical behaviour of these thin
trabeculae could therefore be substantially altered by BP
treatment. In bones mainly consisting of trabecular bone and
where the cortex has thinned to the size of trabecular struts, this
effect on the material properties may be even more important.
Their impact accumulates over time with each deposition of
new bone.

The indirect effects of BP treatment on bone mineralisation
are related to a reduction in bone turnover, which leads to an
increase in the mean age of bone. New matrix begins to
mineralise 5–10 days after deposition and the rate of this
primary mineralisation can be measured in vivo using double
tetracycline labelling. After completion of the cortical osteons or
trabecular packets, the slower, ongoing process of secondary
mineralisation begins. Therefore, the older the bone package,
the higher the degree of mineralisation.

The degree of mineralisation and its distribution is fairly
consistent across species, suggesting that normal miner-
alisation of bone is optimised to deal with the loads
encountered.60 The trabecular bone of osteoporotic patients is
hypo-mineralised, with an increase in BMD distribution,
probably due to increased turnover.77,78 Risedronate treatment
increased overall mineralisation and reduced BMD distribution
to normal premenopausal levels.76 Further turnover is
suppressed as the overall tissue ages and the the degree of
mineralisation increases. After 2–3 years of alendronate
treatment, mineralisation in iliac crest biopsies was significantly
higher and more uniform than with placebo.60 It is important,
however, to mention that BP treatment may not lead to
hyper-mineralisation of the bone tissue. Instead, a greater
number of BMUs achieve their full mineralisation potential
allowing for an increase in overall tissue mineralisation and BMD
at an organ level.79

BPs and Micro-crack Formation

Micro-cracks are a natural functional adaptation, occurring in
bone under normal loading forces. The elastic properties of
bone enable energy absorption but cracks occur if the material
fails. Osteocyte cell processes form an extensive network that
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runs within canaliculi throughout the bone matrix. A micro-crack
in the bone will inevitably rupture one or more osteocyte cellular
processes, causing the apoptosis of the osteocyte.80 This is
thought to release cytokines to attract the cells involved in
creating a new BMU, thus leading to targeted remodelling.
Treatment with BPs could be detrimental by affecting two
different stages of the repair process. First, they could prevent
the apoptosis of osteocytes and thus the signalling pathway for
targeted remodelling could be disrupted. Second, BPs reduce
osteoclast activity and so indirectly reduce the number of new
BMUs. It has been reported that in mature female beagle dogs,
BP treatment increases the total number of micro-cracks,
whereas other anti-resorptive agents such as raloxifene, which
are significantly weaker inhibitors of osteoclast activity,
increase the length of micro-cracks instead.81 However, greater
damage accumulation could occur after BP treatment than by
other anti-resorptive agents, because of a nonlinear relationship
with the degree of suppression by BPs.82

Micro-cracks can occur at any skeletal site but are more
frequently seen in the trabecular bone, and in particular in the
lumbar spine. In a healthy skeleton, crack deflection and
uncracked bone-ligament bridging occur to toughen cortical
bone, preserving the geometry of the bone and preventing
micro-cracks from growing large enough to lead to catastrophic
failure. Interestingly, in prolonged suppression of bone
remodelling during treatment with a BP, there is evidence that
micro-damage accumulation and repair reach a new level
of balance that prevents damaged areas from extending
further.83,84

There is also the possibility that changes in the bone material
properties following treatment with BPs will make the bone
more susceptible to micro-damage. BPs allow for the formation
and accumulation of advanced glycation end products,85,86

which are associated with more brittle bones.87,88 Advanced
glycation end products increased by up to 50% after 1 year of
BP treatment in an animal model, but it is not clear whether this
large increase occurs only in the fraction of the bone that is
replaced each year, or within the pre-existing bone matrix that is
not replaced.89 Another possible contributor could be the
increased mineralisation that follows BP treatment, leading to
stiffer tissue but whose deterioration may increase micro-crack
initiation. The extent to which BPs reduce toughness (the ability
of the material to absorb energy) varies with the individual BP
structure, bone distribution, dose and duration of treatment.
Alendronate, for example, allows for more mineralisation than
risedronate. An increased rate of micro-cracks was demon-
strated in vertebrae from beagles treated with alendronate
when they were loaded in cyclic fatigue. Risedronate treatment
resulted in micro-damage similar to saline administration.90

During ibandronate treatment, the bone retains its capacity for
repair and bone mineralisation is not adversely affected.91 It has
been suggested that alendronate reduces the threshold for the
initiation of new micro-cracks as a possible explanation. In
summary, micro-damage accumulation occurs in conditions of
significantly reduced bone remodelling, including treatment
with BPs, and is more pronounced in trabecular than cortical
bone structures. Although BPs are associated with a decline in
bone toughness, it is thought that micro-damage is not a
cause.89

Interestingly, in bone exposed to BP treatment, neither a
relationship between reduced toughness and changes in micro-

damage, mineralisation or collagen crosslinking has been
demonstrated nor have any changes in toughness or micro-
crack accumulation in BP-treated patients been confirmed.89

Furthermore, in animal models, despite increased micro-
damage density relative to controls,84 both the whole-bone
strength and the stiffness (a property of a structure referring to
its rigidity) were increased.92 These positive effects of BP
treatment have been attributed to increased tissue miner-
alisation, and maintenance of bone mass and architecture
including trabecular number, thickness and connectivity.92

BP Effects on Bone Biomechanics

Study of the biomechanics of bone is hampered by metho-
dological difficulties. Bone biopsies from patients treated with
BPs are difficult to obtain and biomechanical testing destroys
valuable specimens. Estimates of human bone strength have
been reported on the basis of finite element analysis of
quantitative CT and recently on biomechanical CT (BCT).
BCT could be described as the fusion of clinical CT imaging,
biomechanics and the technique of finite element analysis. It
provides estimates of femoral and vertebral strength that are far
superior to those provided by quantitative CTalone.93 In clinical
studies, alendronate increased vertebral strength in post-
menopausal Japanese women at 3 months94 and at 6 months in
anothergroup of osteoporotic postmenopausal women of white
or Hispanic origin.95 Femoral strength was increased in
postmenopausal osteoporotic women after 2 years of treatment
with alendronate.96 Similar results were found in both the hip
and spine of predominantly white osteopenic/osteoporotic
patients after a monthly administration of oral ibandronate for a
year.97

Bone indentation testing provides the opportunity for direct
in vivo measurements of the mechanical properties of bone
tissue.98 Nano-indentation testing in rats showed that rise-
dronate treatment increased significantly the structural bone
strength.99 In an ovine model of osteoporosis, zoledronate
increased indentation modulus (a measure of tissue stiffness)
and hardness (a measure of inelastic properties).100 In humans,
transiliac bone biopsies obtained from 32 postmenopausal
osteoporotic women treated with oral alendronate (10 mg daily
or 70 mg weekly) for 6.4±2.0 years and 22 age-matched
untreated postmenopausal osteoporotic women were
assessed by Vickers indentation tests. Cortical and trabecular
micro-hardness and crystallinity were lower in the untreated
patients. Also, after 3 years of treatment, the changes in material
properties were not dependent on the duration of the treatment.
However, the decrease in local mechanical properties may not
be specific to alendronate.101 Lately, a micro-indentation
technique applied in the cortical bone of tibia allows direct
estimation of bone material strength in patients. Initial findings
suggest that it is superior to bone densitometry. When it was
used in 27 women with osteoporosis-related fractures and in
eight controls of comparable ages, the discrimination between
case and controls was precise.75

In a number of studies, in alendronate-treated animals, both
bone volume and bone strength were no different from those in
the controls. In normal mature non-osteopenic male and female
beagle dogs, a 3-year alendronate administration at doses up to
fivefold the clinical dose recommended for osteoporosis
treatment did not alter bone strength.102 Bone strength was also
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preserved in growing female mini pigs treated with alendronate
for a year.103 In adult female ovariectomized baboons, a 2-year
treatment with alendronate increased the bone strength.63

In rats, alendronate treatment for 6 months (started 4 months
after ovariectomy) preserved the compressive strength of
lumbar vertebrae.104 Furthermore, alendronate administered
throughout skeletal growth, maturation and ageing in male and
female rats, increased the bone mechanical properties.105

Ovariectomized mini pigs were studied following treatment with
risedronate or placebo. The vertebral normalised maximum
load (strength) and normalised stiffness were both significantly
higher in the high-dose risedronate (2.5 mg per kg) group as
compared with the placebo group.65 Bone volume measured by
micro-CT alone explained 76% of the variability of the bone
strength, and the combination of bone volume and architectural
variables explained 490% of the strength. These findings
showed that risedronate preserved vertebral trabecular
architecture in this animal model, and that bone strength was
tightly coupled to bone mass and architecture. Also, following
1 year of treatment with alendronate or risedronate in a dog
model, the ultimate load106 and stiffness107 of the vertebrae
were significantly higher in the BP-treated groups compared
with controls. Finally, in aged ovariectomized rats, high dose of
risedronate or ibandronate improved strength (bone mass and
architecture as well) but not tissue material properties.108

Relatively small increases in bone volume have an important
impact on bone strength because when trabeculae are thin
the resorbing activity of the BMU, likened to excavating a
trench across the bone surface, can have two important
biomechanical consequences. If the resorption depth is greater
than the diameter of the trabecular strut, the strut will be
perforated or disconnected. This has implications for the
strength of the network to which the strut was connected,
because the buckling load is inversely related to the effective
length of the support. If the resorption depth does not result in
disconnection, the existence of the resorption pit itself results in
an increase in the stress on adjacent bone; a phenomenon
known as the stress-riser effect.109 Thus, reducing turnover of
osteoporotic or thin trabecular bone adds only a tiny amount of
bone, but is likely to result in a relatively large improvement in
biomechanical function.

The contribution of trabecular bone-to-bone strength is
clearly dependent on the amount of trabecular bone at specific
locations, and the role of the trabecular micro-architecture
probably increases in importance with progressive bone loss.
Vertebrae have high trabecular bone content, and in end-stage
osteoporosis, the cortex can become as thin as trabeculae.
Bone loss can affect the structure differentially, depending on
the amount of bone present. The change in trabecular bone
structure is dependent on bone volume in a non-linear manner.
At low bone volumes, for example, trabecular thickness and
separation change at much greater rates than at higher bone
volumes. This suggests that the structural integrity of trabecular
bone may become rapidly compromised when bone volume
falls below a critical value.110 The impact of micro-architecture
preservation during BP treatment is therefore dependent on the
quality of the trabecular bone at the start of treatment.

The contribution of changes in cortical bone to whole-bone
strength is also difficult to study and depends on cortical
thickness and on the amount and distribution of porosity,
neither of which are uniform. A 4% rise in porosity increases

crack propagation through bone by 84%. An increase in
porosity from 4 to 10% more than halves the peak stress that
can be tolerated by bone before fracture, and an increase in
porosity from 4 to 20% results in a threefold reduction in the
ability of bone to deform without cracking. Both porosity and
pore size are significantly related to tensile and shear fracture
strength, and there is a nonlinear relationship between porosity
and pore size for tensile fracture toughness.111 The reduction in
cortical porosity observed in the iliac crest biopsies of women
treated with alendronate and risedronate,50,60 therefore, is likely
to have a positive effect on the biomechanics of cortical bone
at the iliac crest, although cortical bone from the iliac crest
provides only limited information on the biomechanics of
cortical bone in the hip.

Summary

BPs are effective in reducing the risk of osteoporotic fractures.
They prevent further deterioration of the bone micro-
architecture and preserve the bone strength despite the fact
that they increase mineralisation and reduce the ability
to absorb energy, which could result in accumulation of
micro-cracks. There are recognisable differences between the
different BP compounds, including but not limited to bone
affinity/detachment, distribution and potency, which deter-
mines the degree of suppression of bone turnover. The clinical
significance of these differences remains to be established.
However, a clearer understanding of these differences among
clinicians will help in tailoring treatment for individual patients.
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