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I. Introduction

The bisphosphonates have been known to chemists since
the middle of the 19th century, when the first synthesis

occurred in 1865 in Germany (1). Etidronate, the first
bisphosphonate to be used to treat a human disease (2), was
synthesized exactly 100 yr ago (3). Bisphosphonates were
used in industry, mainly as corrosion inhibitors or as com-
plexing agents in the textile, fertilizer, and oil industries.
Their ability to inhibit calcium carbonate precipitation, sim-
ilar to polyphosphates, was put to good use in the prevention
of scaling (4). Only in the past three decades have bisphos-
phonates been developed as drugs for use in various diseases
of bone, tooth, and calcium metabolism.

Our knowledge of the biological characteristics of bisphos-
phonates dates back 30 yr. The first report was done by the
author’s group and published in 1968 (5). The concept was
derived from our earlier studies on inorganic pyrophos-
phate. We had found that plasma and urine contained com-
pounds that inhibit calcium phosphate precipitation and that
part of this inhibitory activity was due to inorganic pyro-
phosphate, a compound that had not been described previ-
ously in the scientific literature (6). Pyrophosphate was then
shown to impair in vitro the formation and dissolution of
calcium phosphate crystals. This effect was therefore similar
to that on calcium carbonate and, for this reason, had been
used in washing powders. Since pyrophosphate was able to
inhibit ectopic calcification in vivo, it was suggested that it
might act as a physiological regulator of calcification and

perhaps also of decalcification in vivo, its local concentration
being determined by the activity of local pyrophosphatases
(7).

Because of its failure to act when given orally and its rapid
hydrolysis when given parenterally, pyrophosphate was
used therapeutically only in scintigraphy and against dental
calculus. This prompted us to search for analogs that showed
similar physicochemical activity but resisted enzymatic hy-
drolysis and, therefore, would not be degraded metaboli-
cally. The bisphosphonates fulfilled these conditions.

This review will deal with the mechanisms of action of
these compounds. In vitro results, as well as results both in
animals and humans, will be integrated in an attempt to
deduce the current state of the art. Various reviews have been
published recently on bisphosphonates and may be con-
sulted also for information on other aspects (8–14). Since the
literature in this field is plentiful, selective citation was nec-
essary. Priority is given to papers dealing with the mecha-
nisms of action. Since many papers often deal with the same
finding, in most cases only the first ones are quoted. Subse-
quent papers are quoted only if they convey new knowledge.

II. Chemistry

Bisphosphonates, erroneously called diphosphonates in
the past, are compounds characterized by two C-P bonds. If
the two bonds are located on the same carbon atom, the
compounds are called geminal bisphosphonates and are an-
alogs of pyrophosphate, containing an oxygen instead of a
carbon atom (Fig. 1). In the literature these compounds are
usually called bisphosphonates. Although this is not entirely
correct since nongeminal bisphosphonates are also bisphos-
phonates, we shall nevertheless adopt this nomenclature for
simplicity’s sake.

The P-C-P structure allows a great number of possible vari-
ations, either by changing the two lateral chains on the carbon
or by esterifying the phosphate groups. The bisphosphonates
described in Fig. 2 have been investigated in humans with
respect to their effects on bone. Six of them are commercially
available today for treatment of bone disease (Fig. 2).

Each bisphosphonate has its own chemical, physicochem-
ical, and biological characteristics, which implies that it is not
possible to extrapolate from the results of one compound to
others with respect to its actions.

III. Effects in Vivo

The bisphosphonates have two fundamental biological ef-
fects: inhibition of calcification, when given at high doses,
and inhibition of bone resorption.
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A. Inhibition of calcification

The first rationale for the search for analogs of polypho-
sphates was to find compounds that would inhibit the for-
mation of calcium phosphate salts without being destroyed
by enzymes, therefore making them useful in treating dis-
eases with ectopic mineralization. One possible application
was to administer the compounds systemically in diseases
such as atherosclerosis; another application was as an addi-
tion to toothpastes to fight against dental calculus.

1. Ectopic mineralization and ossification.
a. In animals: Bisphosphonates can efficiently inhibit ec-

topic calcification in vivo. Thus, among others, they prevent
experimentally induced calcification of many soft tissues
when given both parenterally and orally (15, 16). In contrast
to pyrophosphate, which acts only when given parenterally,
they are also active when administered orally. They decrease
not only mineral deposits but also the accumulation of cho-
lesterol, elastin, and collagen in the arteries (17, 18).

Bisphosphonates can also inhibit the calcification of bio-
prosthetic heart valves. Thus, etidronate administered sub-
cutaneously inhibits the calcification of aortic valves im-
planted subcutaneously in rats (19). The bisphosphonate is
also active when it is released locally from various matrices
(20, 21). Certain results suggest that the bisphosphonates can
be bound covalently to the valves (22). These results open an
interesting field of application in heart surgery.

Bisphosphonates also decrease the formation of experi-
mental urinary stones (23). Unfortunately, the dose has to be
such that normal mineralization is impaired, as well.

As originally hypothesized, topical administration can
lead to a decreased formation of dental calculus (24). This
effect is currently used to prevent tartar formation in humans
by the addition of bisphosphonates to toothpastes.

Finally, certain bisphosphonates also inhibit ectopic ossi-
fication when given systemically (25) or locally (26). It ap-
pears that the process is mainly an impairment of the calci-
fication process because the deposition of matrix is not
impaired, at least in the beginning.

b. In humans: One of the bisphosphonates, etidronate, has
been used in humans to prevent ectopic calcification and
ossification. Unfortunately, with respect to calcification, the
results so far have been disappointing. In conditions such as
scleroderma, dermatomyositis, and calcinosis universalis, re-
sults are inconclusive (27). In urolithiasis, the dose that might
be effective is such that normal mineralization is inhibited
(28). Better effects are seen with topical applications to pre-
vent dental calculus (29, 30), and toothpastes containing

bisphosphonates are marketed in some countries. More pub-
lished reports are available in ectopic ossification, especially
fibrodysplasia ossificans progressiva (31), and ossification
after spinal cord injury, cranial trauma, and especially after
total hip replacement (32, 33). However, the efficacy of
etidronate has still not been proven beyond a doubt,
although the results are promising (34).

2. Normal mineralization. The results cited above raised the
hope that bisphosphonates might indeed be used clinically
to inhibit various types of calcifications. Unfortunately, how-
ever, when administered in doses approximating those that
inhibit soft tissue calcification, bisphosphonates can impair
the mineralization of normal calcified tissues such as bone
and cartilage (35–37) and, when given in higher amounts,
also dentine (38), enamel (39, 40), and cementum (41). In the
latter case, their administration can lead to a reduction of the
extraction force.

While the different compounds vary greatly in their ac-
tivity in bone resorption, they do not vary greatly in the
inhibition of mineralization. For most species the effective
daily dose is on the order of 5–20 mg of compound phos-
phorus per kg, administered parenterally. Interestingly, clo-
dronate inhibits normal mineralization to a lesser degree
than etidronate. The inhibition is eventually reversed after
discontinuation of the drug (37). The inhibition of mineral-
ization can lead to impaired fracture healing (42).

Since the inhibition is not corrected by 1,25-(OH)2D3 or
24,25-(OH)2D3 (43), it shows that the defect is not due to a
decrease in this hormone. The decrease in calcitriol, which is
sometimes observed when large amounts of etidronate are
given (44, 45), and which is accompanied by a decrease in
intestinal calcium absorption (46), is most probably second-
ary to the inhibition of mineralization. The decrease repre-
sents a homeostatic mechanism that adapts intestinal cal-
cium absorption to the needs of the organism to maintain
calcium homeostasis (47). When bisphosphonates are given
in amounts small enough to decrease bone resorption with-
out inhibiting mineralization, an increase in both plasma
calcitriol and intestinal calcium absorption is observed (48).

Bisphosphonates also inhibit calcification of bone in hu-
mans when given in larger amounts (49–52) (see Section VI).

The propensity to inhibit the calcification of normal bone
has hampered the therapeutic use of bisphosphonates in
ectopic calcification.

B. Inhibition of bone resorption

Bisphosphonates can be very powerful inhibitors of bone
resorption, their potency varying according to their struc-
ture. This was shown in vitro in cell and organ culture, as well
as in vivo in both animals and humans. The effect is present
in normal animals as well as in experimental conditions in
which resorption is increased. Similarly, bone resorption is
decreased in normal individuals as well as in patients af-
flicted with a series of conditions accompanied by increased
bone resorption, such as Paget’s disease, tumoral osteolysis,
hyperparathyroidism, and osteoporosis.

1. Effects in vivo. Bisphosphonates inhibit bone resorption
both in intact animals and in those with experimentally in-
creased resorption.

FIG. 1. Chemical structure of pyrophosphate and bisphosphonates.
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a. Intact animals: In growing intact rats, the bisphospho-
nates block the degradation of both bone and cartilage, thus
arresting the remodeling of the metaphysis, which becomes
club-shaped and radiologically denser than normal (36). This
is similar to observations in animals with congenital osteo-
petrosis (53). These various changes are all secondary to the
inhibition of bone resorption. This effect is used as a model
with which to study the potency of new compounds (54).

The inhibition of endogenous bone resorption has also
been documented by 45Ca kinetic studies (55, 56) and by

markers of bone resorption (55). The effect occurs within
24–48 h (57) and is therefore slower than that of calcitonin.

In view of the accumulation of the bisphosphonates in
bone, it is of great clinical interest that the inhibition of bone
resorption reaches a certain steady level even when the com-
pounds are given continuously (58). This level depends on
the administered dose. This has also been described in hu-
mans (59). These results show that there is no accumulation
of effect with time and suggest that the bisphosphonate bur-
ied in the bone is inactive, at least as long as it remains buried

FIG. 2. Chemical structure of the bisphosphonates investigated for their effects in humans. *, Commercially available. [From H. Fleisch (14).]
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there. They also show that, at the therapeutic dosage, there
is no danger of a continuous decrease in bone turnover in the
long run, coupled with an increase in bone fragility, as seen
in osteopetrosis.

The decrease in resorption is accompanied by an increase
in calcium balance (55, 56) and in mineral content of bone.
This is possible because of an increase in intestinal absorption
of calcium (55, 56) consequent to an elevation of 1,25-(OH)2
vitamin D. This increased balance is the reason for admin-
istering these compounds to humans suffering from osteo-
porosis. However, the increase is smaller than predicted,
considering the dramatic decreases in bone resorption and
bone formation (55, 56), possibly due to the so-called “cou-
pling” between formation and resorption. This will be dis-
cussed in a later section.

Similar results are found in humans. Bisphosphonates de-
crease both resorption and formation, as described in nu-
merous studies (for reviews, see Refs. 12 and 14).

b. Animals with experimentally increased resorption including
osteoporosis: Bisphosphonates can also prevent experimen-
tally induced increases in bone resorption. They impair re-
sorption induced by agents such as PTH (60, 61), 1,25-(OH)2
vitamin D, and retinoids. The effect on retinoid-induced hy-

percalcaemia has been used to develop a powerful and rapid
screening assay for new compounds (62).

The bisphosphonates are also effective in preventing bone
destruction in a number of disease models.

i. Osteoporosis. Many osteoporosis models have been in-
vestigated, including sciatic nerve section [which was the
first model investigated (63)], spinal cord section, hypoki-
nesis, ovariectomy (64, 65), orchidectomy (66), heparin, lac-
tation (67), low calcium diet, and corticosteroids (68). All
bisphosphonates investigated, i.e., alendronate, clodronate,
etidronate, ibandronate, incadronate, olpadronate, pami-
dronate, risedronate, tiludronate, and YH 529, have been
effective.

Bisphosphonates also decrease bone loss and actually in-
crease bone mineral density in humans with postmenopausal
osteoporosis (69–74) and corticosteroid-induced bone loss
(75). Alendronate and tiludronate also prevent bone loss in
healthy postmenopausal women (76, 77).

The effect of bisphosphonates upon the mechanical prop-
erties of the skeleton has been addressed only recently. This
issue is important since longlasting, strong inhibition of bone
resorption can lead to increased bone fragility and, therefore,
to fractures caused by an inability to replace old bone by

FIG. 2. Continued
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young bone and to repair microcracks. Such an effect of
bisphosphonates is present when very large amounts of
bisphosphonates are administered to animals. Thus, mice
given such a treatment from birth develop a radiological and
morphological bone appearance similar to that seen in con-
genital osteopetrosis (53). Dogs develop an increase in frac-
tures if given very large amounts of etidronate or clodronate
over a year (37). In contrast, doses of risedronate 5 and 20
times the anticipated clinical dose did not induce any in-
crease in microdamage of the bones of dogs, despite the fact
that the activation frequency, an index of bone turnover, was
decreased between 53% and 94% (78).

It is now clear that, if not given in excess, bisphosphonates
improve biomechanical properties both in normal animals
and in experimental models of osteoporosis. This is the case
with alendronate, clodronate, etidronate, incadronate,
neridronate, olpadronate, pamidronate, tiludronate, and YH
529. This effect is seen in various animals such as the rat, the
chick, and the baboon (65, 79–82). Note, however, that the
effect is more ambiguous with etidronate, since at higher
doses it is obscured by an inhibition of mineralization.

Recent human data show that alendronate actually de-
creases the incidence of both vertebral and nonvertebral frac-
tures (72, 83). However, it will always be prudent to admin-
ister a dose that does not induce too profound an inhibition
of turnover. In treating osteoporosis, the general aim is to
attain levels that correspond to those observed before the
menopause. This is obtained, for example, with 10 mg daily
of alendronate (59).

ii. Tumor bone disease. Bisphosphonates partially or entirely
correct the increase in bone resorption in experimental tumor
bone disease. Etidronate and clodronate inhibit the bone
resorption induced by supernatants of tumor cultures in vitro
(84, 85). In vivo, various bisphosphonates partially correct the
hypercalcemia induced in rats by subcutaneously implanted
Walker 256 carcinomas (86, 87) or Leydig tumors (88). For
calciuria, the effect is generally more pronounced than for
calcemia. This is explained by the fact that hypercalcaemia is
often due to the systemic production of PTH-related peptide,
which increases both bone resorption and tubular reabsorp-
tion of calcium (89), with bisphosphonates acting only on the
former. Bone resorption secondary to actual tumor invasion
is also retarded, as shown by numerous models using dif-
ferent tumor cells. The bisphosphonates shown to be active
were, among others, clodronate, etidronate, incadronate,
pamidronate, and risedronate (for review see Ref. 90). Of
great clinical interest is the fact that not only osseous me-
tastases but also tumor burden is decreased, at least with
risedronate (91). On the other hand, an increase in the burden
has been described with a different bisphosphonate and an-
other type of cell (92). The mechanism of the decrease in
tumor burden is still debated. The decrease may be due to the
diminished release of growth factors that are present in bone
matrix and may stimulate tumor cell growth during bone
resorption (93). Another possibility would be less space in
bone, which might prevent the tumor cells from developing.

In humans, bisphosphonates inhibit tumor-induced bone
resorption, correct hypercalcemia, reduce pain, prevent de-
velopment of new osteolytic lesions, prevent the occurrence
of fractures and, consequently, improve the quality of life

(94–99). They are now the treatment of choice in hypercal-
cemia of malignancy.

iii. Periodontal disease. Another interesting future use is in
alveolar bone resorption. Bisphosphonates have been shown
to decrease the bone destruction in various animal models
(100–102).

2. Effects in organ and cell culture. Bisphosphonates block bone
resorption induced by various means in organ culture (60, 61,
103, 104). For many years it was not possible to obtain a good
correlation between the results obtained in vitro and those
found in vivo. Recently, however, such a correlation was
obtained using the mouse calvaria system (105).

An inhibition can also be found when the effect of isolated
osteoclasts on various mineralized matrices is investigated in
vitro (106–108). Under bisphosphonate treatment, the oste-
oclasts form fewer erosion cavities, which are of smaller size.
However, only certain models show the same sequence of
potency as that found in vivo (109).

3. Potency of various bisphosphonates on bone resorption. One of
the aims of bisphosphonate research has been to develop
compounds with a more powerful antiresorptive activity but
without a higher inhibition of mineralization. This is possible
since the activity of bisphosphonates on bone resorption
varies greatly from compound to compound. Compounds
have now been developed that are 5,000–10,000 times more
powerful than etidronate in inhibiting bone resorption. The
gradation of potency evaluated in the rat corresponds quite
well with that found in humans (Table 1).

4. Structure-activity relationship. To date, no clear-cut rela-
tionship between structure and activity could be perceived.
The length of the aliphatic carbon is important since activity
increases up to a certain length and decreases thereafter.
Adding a hydroxyl group to the carbon atom at position 1
increases potency (110). Derivatives with an amino group at
the end of the side chain are very active. The first of these
compounds to be described was pamidronate (58, 111).
Again, the length of the side chain is relevant, the highest
activity being found where there is a backbone of four car-
bons, as in alendronate (54). A primary amine is not neces-
sary for this activity since dimethylation of the amino nitro-
gen of pamidronate, as seen in olpadronate, increases
efficacy (112). Activity is still further increased when other
groups are added to the nitrogen, as seen in the extremely
active ibandronate (113). Cyclic geminal bisphosphonates
are also very potent, especially those, such as risedronate,
that contain a nitrogen atom in the ring. The most active
compounds described so far, zoledronate (105) and YH 529,
belong to this class. This intriguing effect of nitrogen is not
yet explained. A three-dimensional structural requirement
appears to be involved. Indeed, stereoisomers of the same
chemical structure have shown a 10-fold difference in activ-
ity (114). This opens the possibility of a binding to some kind
of “receptor,” or “active” sites.

Until recently it was thought that only geminal com-
pounds (i.e., compounds with only one carbon between the
two P atoms) were effective. In 1995 it was reported that
longer chain compounds could be made effective both on the
inhibition of calcification in vitro and in vivo, as well as on
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bone resorption, if a keto group in the a-positions near the
phosphoric functions was added (115). Again, as for the
bisphosphonates, the chain length is important. These
bisacylphosphonates might be of interest in the future.

C. Effects on bone formation

Until recently, bisphosphonates were considered not to
affect bone formation directly but to increase bone balance
merely by inhibiting bone resorption. However, new results
suggest that this may not be entirely true. Morphological
data on the basic structural unit suggest a possible increase
in formation in the bone multicellular unit (BMU), implying
that some stimulating effect on bone formation might be
present (see Section IV.B.1.) (65, 116, 117).

It is noteworthy that incadronate administered at toxic
doses orally for 13 weeks was found to produce intramem-
branous intramedullary bone formation (118). No explana-
tion has yet been found for this unique phenomenon.

At the cellular level bisphosphonates have been shown to
increase in vitro the proliferation of osteoblasts (119, 120) and
cartilage cells (121), as well as the biosynthesis of collagen
and osteocalcin by bone cells (119, 122, 123) and proteogly-
cans by cartilage cells (124). The effect on collagen may be
partially due to impaired intracellular collagenolysis (125).
Alendronate can increase colony formation of osteoblasts
(119) and the formation of mineralized nodules in human cell
cultures in vitro, a phenomenon that is accompanied by an
increased formation of basic fibroblast growth factor (126). It
has been suggested that some of these effects may be me-
diated through protein-tyrosine phosphatases (120).

Thus it is possible that bisphosphonates could, under cer-
tain circumstances, also act by increasing bone formation.
This possibility, although far from being established, is of
enough potential interest to deserve a thorough investiga-
tion.

D. Effects on noncalcified tissues

Bisphosphonates also have some effects in vivo that are not
necessarily related to the effects on bone. Often, however,
these effects occur after very large doses, so that any rele-
vance to pharmacological doses is doubtful. The effects on
the immune system are discussed in Section IV.B.5.b. Of pos-
sible clinical interest is an increase in plasma high-density
lipoproteins. This, and the fact that bisphosphonates and
phosphonosulfonates linked to an isoprene chain are potent
inhibitors of squalene synthase and hence cholesterol-low-
ering agents in animals (127) may open some interesting new
therapeutic applications for these drugs.

A clinically important effect, the mechanism of which is
not yet understood, is their influence on mucosa. It has been

known for a long time that bisphosphonates can induce
gastrointestinal disturbances (128). These appeared to be
more pronounced for the aminobisphosphonates. It is now
known that pamidronate (129), as well as alendronate (130),
can, when given orally, induce serious adverse esophageal
effects such as esophagitis, erosions, and ulcerations.

IV. Mechanisms of Action

A. Calcification

The mechanism of the inhibition of both normal and ec-
topic mineralization is most likely due, in part if not entirely,
to a physicochemical mechanism. There is a close relation-
ship between the ability of an individual bisphosphonate to
inhibit calcium phosphate in vitro and its effectiveness on
calcification in vivo (15, 47, 131); therefore, the mechanism is
likely to be a physicochemical one. It is of interest that, in
contrast to what occurs in bone resorption, the bisphospho-
nate must be continuously present to exert this effect both in
vitro (131) and in vivo (36, 132).

The physicochemical effects of most of the bisphospho-
nates are very similar to those of pyrophosphate. Thus, they
inhibit the formation and aggregation of calcium phosphate
crystals from clear solutions, even at very low concentrations
(15), block the transformation of amorphous calcium phos-
phate into hydroxyapatite (133, 134), and delay the aggre-
gation of apatite crystals (135).

Bisphosphonates also delay the dissolution of calcium
phosphate crystals (60, 61, 136). This effect was one of the
reasons for investigating the action of these compounds on
bone resorption in vivo. While they indeed proved to be good
inhibitors of bone resorption, the mechanism is now thought
not to be physicochemical but rather biological.

All of these effects appear to be related to the marked
affinity of these compounds for the surface of solid-phase
calcium phosphate where they bind onto the calcium by
chemisorption (137), presumably chiefly at screw disloca-
tions and kink sites of growth, and then act as a crystal poison
on both growth and dissolution. The binding can be of two
types (138, 139): bidentate or tridentate. In bidentate binding,
an oxygen atom from each phosphonate group binds onto a
calcium of the hydroxyapatite. Clodronate is an example of
this type of binding. Most of the bisphosphonates that are
now used clinically are tridentate. They bind at a third lo-
cation, such as the oxygen of a hydroxyl group on the central
carbon. This tridentate binding displays a better binding
strength, which explains why clodronate is relatively less
bound. A nitrogen atom can take the place of the hydroxyl
group, as in incadronate. There is a positive relation between
the binding of various bisphosphonates and their inhibitory
effect on crystallization (131), giving strong support to the

TABLE 1. Potency of the major bisphosphonates to inhibit bone resorption in the rat

;13 ;103 ;1003 .100–,10003 .1000–,10,00003 .10,0003
Etidronate Clodronate Pamidronate Alendronate Ibandronate YH 529

Tiludronate Neridronate EB-1053 Risedronate Zoledronate
Incadronate
Olpadronate

[From H. Fleisch (14).]
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theory that the inhibition of mineralization in vivo is due to
a physicochemical mechanism.

To date, there is no indication that the bisphosphonates are
incorporated into the crystal lattice of hydroxyapatite. They
are, however, incorporated into the bone because the crys-
tals, along with bisphosphonate, on their surface become
trapped by new crystals formed on top of them.

Bisphosphonates also inhibit the formation (23, 140) and
the aggregation (141) of calcium oxalate crystals. These ef-
fects on calcium phosphate and oxalate crystal formation
raised the hope that bisphosphonates might be used to pre-
vent urinary lithiasis. This proved not to be possible since the
dose necessary to inhibit crystallization in urine also induces
an inhibition of normal mineralization, leading to the de-
velopment of osteomalacia (28).

While these results point to a physicochemical mechanism
in the inhibition of calcification, an effect on matrix formation
cannot be totally excluded. When etidronate is given in doses
that produce mineralization defects, changes in glycosami-
noglycan synthesis are seen in teeth (142) and growth plate
cartilage (143). Furthermore, collagen synthesis seems to be
effected in dentine (38, 144, 145) and heterotopic bone (25,
146). These changes, as well as those observed in arteries (17,
18), could be a consequence of the inhibition of mineraliza-
tion. However, it is interesting that changes are seen also in
nonmineralized tissues such as articular cartilage (147).

B. Bone resorption

First of all, it must be stressed that, while the effects on
calcification are probably explained by a physicochemical
mechanism on the crystals, this is not the case for bone
resorption. The inhibition of bone resorption can actually be
explained largely, if not entirely, by cellular mechanisms.
The latter can be considered at three levels: tissue, cellular,
and molecular. The effect may be directly on the osteoclasts
and may be mediated, at least partially, by other cells such
as osteoblastic lineage cells and macrophages.

1. Physical chemistry. The earliest hypothesis for the action of
bisphosphonates on bone proposed physicochemical effects
on mineral dissolution. Bisphosphonates, like pyrophos-
phate, do indeed inhibit mineral dissolution (7, 60, 61, 136).
However, the concentrations of bisphosphonates required to
inhibit bone resorption with the newer, more potent com-
pounds are so low that they are unlikely to have a significant
impact on mineral dissolution. Moreover, structure/activity
studies on a large array of compounds showed no correlation
between the inhibition of mineral dissolution in vitro and the
pharmacological activity on bone resorption in vitro (131) or
in vivo (110). It is therefore accepted by most investigators
that the effect on bone resorption is essentially cellular.

2. Tissue level. At this level, the action of the active bisphos-
phonates appears to be the same for all, i.e., a reduction in
bone turnover. This is shown by a decrease in both bone
resorption and bone formation, as assessed in animals as and
humans by calcium-45 kinetics (55, 56), biochemical markers
(59), and morphology (36, 65, 116, 117).

Under normal conditions, destroyed bone is replaced by
bone formation. In adults this occurs mostly at the sites of

remodeling in both the trabeculae and the cortex. The mor-
phological dynamic unit of the turnover is the BMU. The
remodeling process in this unit starts with the erosion of a
certain amount of bone through osteoclasts on the surface of
the trabeculae, as well as on the surface or the interior of the
cortex. The resorption follows a linear path, forming a canal
within the cortex and a trench on the surface. The destruction
is followed by a refilling of the excavation by the osteoblasts
within a tight temporal sequence. This explains why every
decrease in resorption is accompanied by a secondary de-
crease in formation, since there is less need for a bone defect
to be replenished. The final morphological entity is called the
bone structural unit (BSU). It corresponds to an osteon within
the cortex and has of late been termed a hemiosteon when it
is at the surface of the bone (148). The total bone resorption
and formation will therefore depend upon the number of
BMUs present at any time which, in turn, will depend upon
both the number of BMUs formed and the length of time they
are active (for reviews, see Refs. 148–150).

Under normal conditions, the amount of bone formed in
each BMU equals the amount destroyed, so that the balance
is zero. In osteoporosis, however, a greater amount of bone
is resorbed than formed, leading to a negative balance. Thus,
while a change in turnover has no influence on the total
calcium balance in normal people, there is a local negative
bone balance in osteoporosis because more bone is destroyed
than formed. Therefore, in this disease a decrease in turnover
per se will slow down the total bone loss. This is why a high
turnover after menopause, when such imbalance is present,
is a good indicator for bone loss and the occurrence of os-
teoporosis in the future. This is also why all inhibitors of
turnover, including bisphosphonates, will diminish bone
loss in osteoporosis. In the case of bisphosphonates, it is
probably the main mode of action in all types of osteoporosis.
However, it must be stressed that there are conditions in
which an increase in bone turnover is not necessarily ac-
companied by a negative balance. The growing animal is an
obvious example, as well as certain cases of Paget’s disease
in humans.

In addition, the bisphosphonates also act at the individual
BMU level by decreasing the depth of the resorption site (65,
116, 117). Since the amount of new bone formed in the BMU
is not decreased, but possibly even increased (65, 116, 117),
the local and consequently the whole body bone balance will
be less negative or might even be positive.

The effect both on the general turnover and the local bal-
ance will lead to less trabecular thinning, a decreased number
of trabecular perforations, a decreased reduction in connec-
tivity (151), and a smaller erosion of the cortex, thus slowing
down the decrease in bone strength and the occurrence of
fractures.

Of crucial importance in the final effect is the behavior of
the formation. As mentioned above, the total amount of bone
formed is decreased because of the decrease in turnover, as
shown by calcium45 kinetics, biochemical markers such as
serum alkaline phosphatase and osteocalcin, and by a re-
duction in the bone formation surface assessed morpholog-
ically (55, 65, 116, 117). This reduction reflects reduced re-
modeling only. There is no evidence for reduced osteoblastic
activity at individual bone formation sites, as judged by the
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amount of bone produced per unit time. On the contrary, the
amount of bone formed at each individual basic structural
unit (BSU), as measured by the thickness of the newly formed
bone, is, if anything, increased (65, 116, 117). This effect is
modest and needs to be confirmed. If present, however, such
an effect could not be detected by any current technique
measuring total bone formation in the body, such as biome-
chanical markers, since it would be obscured by the decrease
in remodeling.

It is now generally accepted that bisphosphonates can lead
to a positive calcium and bone balance, both in animals (55,
56) and in humans (69–77, 152). There are several explana-
tions for this gain. One is inherent to bone turnover. There-
fore, a decrease in bone resorption is not immediately fol-
lowed by the diminution of formation, so that a temporary
increase in balance through a reduction in the so-called re-
modeling space occurs. The second explanation is that, after
the decrease in turnover, the new BSU formed will be re-
modeled later than it would be normally. It therefore has
more time to finish the lengthy process of mineralization.
This will lead to a higher calcium content and, therefore, a
higher bone mineral density and content. However, it will
not lead to an increase in actual bone mass, a fact that is often
forgotten. Third, if the decrease in resorption depth at indi-
vidual remodeling sites is not matched by a decrease in
formation in the individual BMU, which seems to be the case,
the local bone balance in the BMU will be positive. The last
possibility is an increase in the amount formed at the level
of the BMU (Fig. 3).

One of the important questions in connection with the
clinical treatment of osteoporosis has been whether bone-

forming substances would still be effective during bisphos-
phonate use. Except for one study (153), this seems to be the
case for various stimulators of bone formation, such as PTH
(154) and prostaglandins (155). Furthermore, bisphospho-
nates do prevent the loss of bone gained under the various
stimulators of formation, which would otherwise occur
(155–158).

Another question has been whether bisphosphonates
could display an additive effect together with another in-
hibitor of bone resorption. One report suggests this to be the
case with estrogen in humans (159).

3. Cellular level. There is now general agreement that the final
target of bisphosphonate action is the osteoclast. Four mech-
anisms appear to be involved: 1) inhibition of osteoclast
recruitment; 2) inhibition of osteoclastic adhesion; 3) short-
ening of the life span of osteoclasts; and 4) inhibition of
osteoclast activity. The first three mechanisms will lead to a
decrease in the number of osteoclasts, which is observed in
humans and often, although not always, in animals. All four
effects could be due either to a direct action on the osteoclast
or its precursors or indirectly through action on cells that
modulate the osteoclast.

1. Several bisphosphonates inhibit osteoclast differentia-
tion in various culture systems of both cells (160) and bones
(104, 112). Bisphosphonates are also powerful inhibitors of
macrophage proliferation, cells that are of the same lineage
as osteoclasts (161). In the hemopoietic series, the effect ap-
pears to be specific, or at least specially pronounced, for the
mononuclear phagocyte lineage (162). Furthermore, the po-
tency rank of bisphosphonates, when assessed in vitro, cor-

FIG. 3. Possible effect of bisphospho-
nates at the level of the individual
BMU. [From H. Fleisch (14).]
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relates with effects in vivo only when systems are used that
detect osteoclast recruitment and not activity alone (104, 112).
Some experiments suggest that the effect occurs at the ter-
minal step of the differentiation process (163). Other recent
results (109, 164) also support the effect on differentiation.
Thus, a correlation between the number of osteoclasts and
osteoclastic cavity formation, on one hand, and the effect in
vivo, on the other hand, occurs only if other cells, probably
osteoblasts but not osteoclasts, are exposed to the bisphos-
phonates (see Section IV.B.5.a). Finally, when a system in-
volving osteoclast differentiation is used (104, 112), the dose
necessary to inhibit resorption is low only for aminobisphos-
phonates, but not for etidronate and clodronate, which are
less powerful inhibitors of resorption. This suggests that two
mechanisms may be operating, one on osteoclast recruitment
and one with a direct effect on osteoclast activity.

2. The second possibility would be a decreased osteoclastic
adhesion to the mineralized matrix. Whether this takes place
is still uncertain since the results are ambiguous. One recent
study reports such an effect (165). However, there is now
excellent evidence that bisphosphonates can inhibit the ad-
hesion of some cells, mainly tumor cells, in vitro (166).

3. The third possibility is a shortening of the lifespan of the
osteoclast. It has been proposed that this might be due to a
toxic effect, but the results were obtained at very high con-
centrations. Recently it was reported that bisphosphonates
induce osteoclast programmed cell death (apoptosis), both in
vitro and in vivo, and both in normal mice and in mice with
increased bone resorption (167). The ranking of effectiveness
of clodronate, pamidronate, and risedronate was the same as
seen in vivo. The effect was not due to toxic cell death.
Whether this is a direct effect on osteoclasts, or an indirect
one through the effect on other cells, is not known. A similar
effect occurs in macrophage-like cells in vitro and is nitric
oxide independent (168).

4. The last possibility is an inhibition of osteoclast activity
after the bisphosphonate has been taken up by the oste-
oclasts. Indeed, several facts suggest that the inhibition of
recruitment is not the only mode of action of bisphospho-
nates in vivo. Thus, after bisphosphonate administration, the
number of multinucleated osteoclasts on the bone surface
often increases initially, despite a reduced bone resorption
(36, 169, 170); however, the cells appear inactive (36). It is only
later, after chronic administration, that the osteoclast number
decreases. The cause for the initial increase is unknown. One
possibility is that it could reflect a stimulation of osteoclast
formation to compensate for the decrease in osteoclast ac-
tivity.

A direct effect on the osteoclasts is supported by the find-
ing that, under bisphosphonates, osteoclasts can show
changes in morphology both in vitro (107, 170) and in vivo (36,
132, 169). These include changes in the cytoskeleton, espe-
cially actin (107, 171, 172) and vinculin (172), and the ruffled
border (132, 169, 173). One study (171) showed that the mor-
phological changes occurred only when the cells were ac-
tively resorbing the calcified matrix, or if the bisphosphonate
was injected into the cells. No changes occurred when the
osteoclasts were not active, showing that they have to be
taken up with the resorbed mineral. As mentioned earlier,
bisphosphonates inhibit the formation of resorption cavities

by isolated osteoclasts deposited on calcified matrices in vitro
(106–108). A direct action on osteoclasts is also supported by
the fact that, under certain conditions, bisphosphonates can
enter cells (174), particularly those of the macrophage lin-
eage. The concentration of the bisphosphonate can also attain
very high values under the osteoclasts, probably 100 mm or
more, partly because they deposit preferentially under these
cells (173, 175) and are then released from the mineral at the
acid pH prevailing at this location.

4. Molecular level. The events leading to either osteoclast in-
activation or diminished osteoclast formation by bisphos-
phonates have not yet been fully elucidated. It may be worth
introducing this section by reiterating some general facts.

The circulating levels of pharmacologically active bis-
phosphonates are usually extremely low. This implies that
uniform circulating levels are not necessary for continu-
ous activity. This is supported by the fact that a single ad-
ministration of these compounds can lead to a sustained
inhibition of bone resorption which, e.g., in patients with
Paget’s disease, can last over years. This suggests either that
some cells are affected over a long time or, more likely, that
the bisphosphonate taken up by the bone is released in very
low amounts over time at areas of high turnover, thus af-
fecting resorption locally. The latter would explain the high
efficacy of these compounds in diseases with focal resorp-
tion, such as Paget’s disease or metastases.

The other interesting fact is the low concentrations nec-
essary for activity, which suggests either some sort of “re-
ceptor” or some cellular binding site, which induces a cel-
lular transduction mechanism. Until now no such active
receptor or binding site has been identified. However, the
fact that osteoblasts exposed for only 5 min to very low
concentrations of bisphosphonates are being stimulated into
augmenting the release of an osteoblast recruitment inhibitor
(100, 154) speaks in favor of their presence as a linking site.
Since bisphosphonates enter the cell via fluid pinocytosis or
adsorptive pinocytosis, the latter could be within the cell and
might be an enzyme, a pump, or some other intracellular
protein involved in the signaling cascade.

It has long been known that bisphosphonates decrease
acid production of various cells (121) and of calvaria (176).
In 1990, it was reported that bisphosphonates decrease the
proton accumulation and the protein synthesis by osteoclasts
in vitro (177). More recently, bisphosphonates were shown to
decrease the extrusion of acid through a sodium-indepen-
dent mechanism by true osteoclasts (178). Possibly part of
this effect is due to the decrease of the proton transport by
the vacuolar-type proton ATPase, which is inhibited by ti-
ludronate, but surprisingly not by other bisphosphonates
(179). However, until now no correlation between the effect
in vitro on acid production and in vivo on bone resorption was
evident. Some bisphosphonates, such as pamidronate or
long-chain bisphosphonates, actually increase lactic acid
production, possibly due to a toxic action (110, 180).

Various bisphosphonates, especially clodronate, inhibit ly-
sosomal enzymes in vitro (181), in cultured calvaria (176, 182),
or in vivo (180). Certain bisphosphonates, such as clodronate
and etidronate, also inhibit prostaglandin synthesis by bone
cells or calvaria, both in vitro and in vivo (183, 184). Since
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prostaglandins are involved in bone resorption, this inhibi-
tion may play a role in the resorption process.

Some data indicate that still other mechanisms may come
into play. Thus, both in osteoporosis and in Paget’s disease,
bisphosphonates induce a decrease in urinary cross-links.
This reflects the decrease in bone resorption. Surprisingly, in
opposition to what occurs with estrogens, the effect is almost
solely on peptide-bound collagen cross-links and not on free
cross-links (185). This suggests that the bisphosphonates
might influence the degradation process of collagen.

In view of the homology between pyrophosphate and
bisphosphonates, various enzymes involving pyrophosphate
or ATP have been examined. Phosphatases and pyrophos-
phatases were influenced only at relatively high concentrations
(181, 186) or not influenced at all (187). However, PTPe, a pro-
tein-tyrosine phosphatase present in osteoclasts, is inhibited in
vitro by alendronate with an IC50 of only 3 mm, while etidronate
is active at 2 mm (187). Another protein-tyrosine phosphatase,
PTPs, which is present both in osteoclasts and osteoblasts, is
also inhibited by alendronate and etidronate with an IC50 of 0.5
mm and 0.2 mm, respectively (120). Other protein-tyrosine phos-
phatases such as CD45 are also inhibited. These effects might be
relevant since protein-tyrosine phosphorylation is important in
the signal transduction pathways that control cell growth, dif-
ferentiation, and activity. Furthermore, not only the bisphos-
phonates but also orthovanadate and phenylarsine oxide in-
hibit PTPs at very low concentrations and inhibit the formation
of osteoclasts in vitro (187). Unfortunately, the potency to inhibit
the PTPs of various bisphosphonates tested so far has no rela-
tionship to their pharmacological potency, since alendronate is
about 1000 times more effective than etidronate on bone re-
sorption in vivo, while their potency in vitro was of similar
magnitude.

It was shown recently that various bisphosphonates, ex-
cluding clodronate, inhibit posttranslational modification of
proteins, including the GTP-binding protein Ras, with far-
nesyl or geranylgeranyl isoprenoid groups in J774 macro-
phages. Furthermore, alendronate-induced apoptosis could
be prevented in these cells by farnesylpyrophosphate or
geranylgeranylpyrophosphate (M. J. Rogers, S. P. Luckman,
F. P. Coxon, and R. G. G. Russell, submitted). This suggests
that at least some bisphosphonates cause apoptosis through
a mechanism involving prenylation of proteins. Whether this
is true for osteoclasts must still be proven.

Another interesting observation is that both macrophage-

like cells and human MG63 osteosarcoma cells metabolize
primary clodronate to a nonhydrolysable ATP analog, aden-
osine 59-(b,g-dichloromethylene)triphosphate (189). This is
not the case for other bisphosphonates. It has been suggested,
therefore, that clodronate might act through this mechanism
to induce apoptosis and necrotic cell death and therefore to
inhibit bone resorption.

One of the conclusions based on the various biochemical
results is that no single individual mechanism shows a good
correlation with the potency in vivo when different bisphos-
phonates of various potencies are investigated. This suggests
that, if any of the above mechanisms is relevant for bone
resorption, it is not relevant for all bisphosphonates.

The various cellular modes of action are summarized in
Table 2.

5. Effect through other cells. It appears more and more likely
that the inhibitory effect is partly mediated through other
cells, e.g., one of the osteoblast-lineage cell.

a. Osteoblast-lineage cells: It is now generally accepted that
cells of osteoblastic lineage control the recruitment and ac-
tivity of osteoclasts under physiological and pathological
conditions. This control was proposed to be due to the pro-
duction of an as yet unknown activity, generated by osteo-
blast-lineage cells, and modulating bone resorption (190),
and this modulation was thought to be an activation of re-
sorption (191–194).

It has been shown that bisphosphonates may also act
through the modulation of the osteoclast-osteoblast interre-
lation. It has been known for quite some time that, when
assessed in vitro, various bisphosphonates can inhibit the
destruction of the mineralized matrix, but that all those
tested have a similar activity despite the fact that in vivo their
antiresorbing effect varies from 1 to 1000 (107). This result
suggests that the conditions created did not represent those
operating in vivo. It was then discovered that this lack of
correlation is only present when the bisphosphonates are
added to the mineral before the osteoclasts, but not when the
cell population containing the osteoclasts added to the matrix
are treated for a time as short as 5 min, at concentrations as
low as 10211 m, before allowing them to adhere to the ivory
(109). When doing this, five different bisphosphonates with
potencies ranging from 1 to 10,000 showed a stringent cor-
relation between the results in vitro and in vivo (109). There-
fore, the best conditions are not when the bisphosphonates
are on the mineral, as a direct effect on osteoclasts would
imply, but when they are in contact with the cells.

FIG. 4. Indirect effect of the bisphosphonates on the osteoclasts me-
diated by the osteoblasts. [From H. Fleisch (14).]

TABLE 2. Possible biochemical action of bisphosphonates on the
osteoclast

Binding to apatite crystals
Local release during bone resorption

Preferential accumulation under osteoclasts
2

Decrease in osteoclast activity
2Altered cytoskeleton
2Ruffled border2
2Acid extrusion2
2Enzyme activity2

Decrease in osteoclast number
Apoptosis1

[From H. Fleisch (14).]
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This effect appears to be due to the osteoblasts present in
the unpurified osteoclastic cell population. Thus, pretreating
pure osteoblastic cell populations for 5 min with the bisphos-
phonates alendronate and ibandronate, and then coculturing
the osteoblasts with the osteoclasts, prevented the usual in-
crease in resorption (109). In contrast, adding osteoblastic
cells to osteoclasts pretreated with the bisphosphonate had
no effect. This result is supported by previous findings that,
when assayed in a coculture of bone and osteoclast precur-
sors, the bisphosphonates do not act directly on the precur-
sors, but need the presence of a cell in the bone (104).

The inhibitory effect is not due to a decrease in the oste-
oclast-stimulating activity, but to the synthesis by the osteo-
blasts into the culture medium of an inhibitor of osteoclastic
resorption. The latter is labile to heat and proteinase and has
a molecular mass of approximately 3–4 kDa (164). The in-
hibitor has not been characterized, so that it is not possible
to speculate as to what family it belongs.

The resorption cavities are reduced parallel to the reduc-
tion of the number of tartrate-resistant acid phosphatase-
positive multi- and mononuclear cells, which are thought to
be osteoclasts and their precursors. In contrast, the mean area
resorbed by cavity remains unchanged, suggesting that the
inhibitor affects osteoclast formation but not osteoclast ac-
tivity (164). Other cells such as fibroblasts and preosteoblasts
do not produce such an inhibitor. The question of which cells
of the osteoblastic lineage are able to mediate this effect has
not yet been answered. Recently, it has been postulated that
lining cells play a role in the osteoblast-osteoclast relation
(195) (Fig. 4).

It is interesting to note that 17b-estradiol also stimulates
the synthesis of an osteoblast-derived osteoclastic inhibitor
(196). However, this inhibitor appears to be different from
that induced by bisphosphonate since it is entirely matrix-
associated and, unlike the latter, does not go into the super-
natant. This mechanism through the osteoblasts has been
confirmed by various groups. Thus, pretreatment of UMR-
106 osteoblast-like cells with bisphosphonates also induced
a decrease in resorption cavities when they were cocultured
with osteoclasts (197). The same result occurred when the
osteoclasts were treated with the supernatant of treated UMR
cells. The only difference from the above mentioned studies
was that no effect was seen on the number of TRAP-positive
cells, i.e., of osteoclasts and their precursors, so that the effect
was thought to be on osteoclast activity and not formation
(197). Of interest is the finding that with ibandronate, the
inhibitory factor was secreted into the supernatant, while
with clodronate it remained attached to, or within, the os-
teoblast. In another study, incadronate also led osteoblasts to
secrete an inhibitor, again of osteoclast formation, into the
supernatant (198).

b. Cells of the mononuclear phagocyte and immune systems: The
other possible candidates are the cells of the mononuclear
phagocyte system and of the immune system. Since they
produce a variety of bone-resorbing cytokines, it is possible
that they may play a role in the cascade involved in the
inhibition of bone resorption induced by a bisphosphonate.

There are numerous reports on the effect of bisphospho-
nates on these cells, both in vitro and in vivo. Unfortunately,
these studies are often performed with high concentrations,

so that the described effects might be secondary only to a
toxic action. Low concentrations often give an effect contrary
to that of higher concentrations, which might also reflect
toxicity. Thus it is not possible at this time to state whether
or not they are implied in the inhibition of bone resorption
by bisphosphonates.

i. In vitro. It seems clear that the cells of the mononuclear
phagocytic lineage are specially sensitive to bisphosphonates
since other marrow populations are either much less or not
at all influenced, at least in vitro (161, 162). The multiplication
(161, 162) as well as the activity (199, 200) are both decreased.
In addition, bisphosphonates have been reported to depress
accessory function of monocytes (111), inhibit the action of
mitogens on mononuclear function and on the lymphoblastic
response (201), influence the effect of antilymphocyte serum
on T lymphocytes (202), and inhibit migratory activities of
macrophages (200). They also inhibit the proliferation of
human peripheral blood mononuclear cells induced by var-
ious means. It has been suggested that this effect is mediated
by the antigen-presenting cells (203).

With respect to cytokine production, clodronate inhibits
lipopolysaccharide-induced interleukin (IL)-1b, IL-6, and tu-
mor necrosis factor-a (TNFa) production by a macrophage-
like cell line (RAW 264) (204, 205). Alendronate inhibits, in
a dose-dependent fashion, the production of these three cy-
tokines by activated human monocytes (203). Pamidronate,
however, increases the production of IL-6 (205). Clodronate
and pamidronate, but not alendronate, also decrease the
production of nitric oxide and the expression of inducible
nitric oxide synthase in the RAW 264 cells (206). When clo-
dronate is encapsulated into liposomes, its effect is increased
while that of pamidronate is decreased.

ii. In vivo. The following effects on the immune system
have been described: decrease in the formation of antibody-
secreting cells and impaired delayed and immediate hyper-
sensitivity (207); inhibition of passive cutaneous anaphylaxis
(208); atrophy of the thymus (209); disappearance of certain
thymus-dependent macrophages (210); disappearance of
natural killer cells (211); and diminished response of the T
lymphocytes to mitogens (209) in newborn mice. All these
effects were obtained at very high dosages, some of which led
to an osteopetrotic condition, so that the relevance to what
occurs with clinical regimens is far from being proven. In-
deed, none of these effects have been seen in humans.

The sensitivity of macrophages to bisphosphonates, espe-
cially to clodronate, has been made use of to selectively
destroy macrophages in vivo. Thus, if bisphosphonates are
administered encapsulated in liposomes, they are taken up
by the macrophages mostly in the spleen and the liver, and
the macrophages are then destroyed within 2 days (212). This
technique has been used to study repopulating kinetics of
macrophages and the role of macrophages in the organism.

An effect on macrophages, or possibly on other cells, might
be the explanation for the acute phase response in humans.
Thus, some patients who receive an amino-bisphospho-
nate intravenously for the first time show a transient pyr-
exia of 1–2 degrees C, sometimes more, accompanied by
flu-like symptoms (111, 213). This episode is accompanied
by a decrease in peripheral lymphocytes, especially the
CD31 T cells (214), an increase in C-reactive protein, and
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a decrease in serum zinc. Interestingly, this reaction occurs
only once in a lifetime, even if the treatment is discontin-
ued and restarted later. This raises the possibility, among
others, that a specific cell population involved in the de-
velopment of the acute phase reaction is influenced over
longer periods. Recently, the pyrexia was shown to be
accompanied by an increase in circulating IL-6 bioactivity
(215). Furthermore, olpadronate but not clodronate stim-
ulated the release in vitro of IL-6 from fetal mouse explants.
In addition to IL-6, TNFa is also increased in the blood
after treatment with pamidronate but not clodronate (216).
The effect is not seen with etidronate, clodronate, or ti-
ludronate. It is not known why only compounds that are
potent inhibitors of bone resorption and contain a nitrogen
atom in their structure show this effect.

Of clinical interest is that some bisphosphonates, including
etidronate, clodronate, tiludronate, risedronate, and zole-
dronate, inhibit local bone and cartilage resorption, preserve
the joint architecture, and decrease the inflammatory reac-
tion in experimental arthritis induced by Freund’s adjuvant,
carrageenin and, to a smaller extent, collagen (217–221). The
effect on the joints is especially pronounced when the
bisphosphonates are encapsulated in liposomes (222, 223).
The fact that not only bone resorption, but also the inflam-
matory reaction in the joint and in the paw itself, is dimin-
ished (223, 224) suggests that mechanisms other than those
in bone, possibly involving the mononuclear phagocyte sys-
tem, are operating. These results open the exciting possibility
of using bisphosphonates in inflammatory arthritis, given
either systemically or locally, possibly encapsulated in lipo-
somes.

c. Tumor cells: As described in Section III.B.1.b.ii, bisphos-
phonates inhibit the bone resorption induced by various
tumors both in animals (84 – 88, 91, 94) and in humans
(96 –99, 225–227). This is generally explained by the inhi-
bition of bone resorption. The inhibited development of
metastases can have various causes. One is that, since less
bone has been destroyed, the place for tumoral expansion
is limited. Another explanation is that, as a consequence
to a decrease in bone resorption, the release of matrix or
osteoclastic cytokines that would stimulate the multipli-
cation of tumor cells may be decreased (91). In contrast, the
bisphosphonates do not seem to inhibit directly the mul-
tiplication of tumor cells. Furthermore, there is now ex-
cellent evidence that bisphosphonates can inhibit the ad-
hesion of tumor cells in vitro (166). The effect is specific for
mineralized matrices, and the potency of various bisphos-
phonates is well correlated with the potency to inhibit
bone resorption in vivo. It might explain in part the
bisphosphonate-induced decrease in the development of
tumor burden in animals (91).

C. Other effects

A great number of other cellular or biochemical effects
have been described. They are confusing and can sometimes
go in opposite directions with different compounds, or even
with the same compound at different concentrations. With
one or two exceptions, there is no indication that they are
involved in bone resorption, and those most likely to play a

role in the inhibition of bone resorption have been described
earlier in this article. These other effects include the follow-
ing: increase of fatty acid oxidation (228) and amino acid
oxidation (180); stimulation of the citric acid cycle (180);
increase in cellular content of glycogen (229); increase in
production of alkaline phosphatase (230); inhibition of the
1,25-(OH)2D3-induced production of osteocalcin in vivo (231);
contradictory effects on cAMP production (232, 233); de-
crease or increase in cellular multiplication (121, 234); inhi-
bition of DNA polymerase (235); and inhibition of amoebal
phosphofructokinase (236). A few results point to an effect on
cellular calcium handling, e.g., reduced release of calcium
from kidney mitochondria in vitro (237) and increase in cal-
cium of mitochondria in vivo (238); inhibition in vitro of
calcium-induced contraction of smooth muscle, possibly
through inhibition of intracellular Ca mobilization and influx
of extracellular Ca (239); protection of the kidney from isch-
emic damage, possibly by preventing intracellular Ca accu-
mulation (240). Considering this, it is interesting that non-
geminal bisphosphonates act in a manner similar to Ca
channel blockers (241). Finally, squalene synthase is inhib-
ited (127).

It is interesting that bisphosphonates inhibit the growth of
the slime mold amoeba Dictyostelium discoideum, and that
some of them can form nonhydrolyzable methylene analogs
of ATP (242, 243). The effect on growth of these organisms
is of interest because of the presence of a remarkable corre-
lation with a great number of different bisphosphonates be-
tween the effects found on this system using the growth of
a slime mold and the bone resorption in vivo (244, 245). It
suggests that this system might give us further insight in
what occurs in bone resorption, which is supported by the
fact that human cells can also perform such a transformation
(189).

V. Pharmacokinetics

Bisphosphonates can enter mammalian cells. This has been
confirmed by studies in vitro both for etidronate and clodr-
onate (121, 174). The cellular uptake is mostly in the cytosol,
and the concentration expressed in terms of cellular water
can be several fold higher than in the medium (174). Cells
with phagocytic properties display special avidity if the com-
pounds are bound to apatite crystals (199).

Nevertheless, the bisphosphonates have a very low bio-
availability, from a few percent for clodronate, etidronate,
and tiludronate, which are given in larger amounts, to below
1% for the newer ones, which are given in low quantities.
This is partly explained by their low lipophilicity, which
hampers transcellular transport, and their high negative
charge, which hampers paracellular transport. Furthermore,
they are probably partly in an insoluble form in the gut, due
to chelation to calcium. It is thought that the absorption in the
intestine follows mainly a paracellular route (246). The latter
is under the influence of calcium, which tightens the junc-
tional complex. This explains why the administration of
EDTA, a strong calcium chelator, increases the absorption of
bisphosphonate (247) and why high doses of bisphospho-
nates, which also chelate calcium, will lead to an increase in
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their own absorption (248). Why a higher intestinal pH in-
creases absorption while orange juice and coffee decrease it
(249) is not known.

Some uncertainty still exists as to the state of bisphospho-
nates in the circulation. They are indeed only partially ul-
trafilterable in aqueous solutions as well as in plasma (250),
possibly because of the formation of polynuclear aggregate
complexes (251–253). In plasma they are bound to proteins,
whereby this binding varies between compounds and be-
tween animals (254). The binding is pH and calcium depen-
dent, whereby calcium and increasing pH augment it (255).
There are also displacers of the binding in the plasma of, for
instance, the dog (254). The role this binding could have on
the action and the pharmacokinetics of bisphosphonates has
never been investigated despite the fact that it may be con-
spicuous. For example, the assumption that bisphosphonates
are not actively secreted in the kidney is probably wrong.
Indeed, most renal studies were not corrected for the binding
so that the filtered load was overestimated. If a correction is
done, the results point to a secretory mechanism (256, 257).

Once in the blood, bisphosphonates disappear very rap-
idly, mostly to bone (258). This might be explained by the fact
that they are characterized by a rapid and strong binding to
the hydroxyapatite crystals (137). The rate of entry into bone
is very fast, similar to that of calcium and phosphate. It has
been calculated that the bone clearance is compatible with a
complete extraction from the skeleton after the first passage
(258), so that skeletal uptake might be determined above all
by the vascularization of the bone. Consequently, soft tissues
are exposed to these compounds for only short periods,
explaining their bone-specific effects and their low toxicity.

The various bisphosphonates display some differences in
their affinity for the hydroxyapatite surface. This reflects
itself in the binding of bisphosphonates to bone in vivo. Thus,
at least 50% of most of the hydroxylbisphosphonates dis-
tribute themselves to bone (259), whereas in the case of clo-
dronate (260, 261) it is only about 20–40%. Their preferred
location in the skeleton is bone with a high turnover, namely
trabecular bone.

The binding of polyphosphates and bisphosphonates to
calcified tissues is the basis for the use of these compounds
as skeletal markers in nuclear medicine when linked to
99mtechnetium. However, it is important to note that the
handling of the technetium-labeled compounds is not iden-
tical with that of the bisphosphonates (262), so that caution
must be given in extrapolating data from one to the other.

It was generally thought that the bisphosphonates deposit
in those locations within the bone where new bone is formed.
Recently, however, they were found to deposit under the
osteoclasts as well (173). The distribution of the amount
deposited at bone formation and bone resorption sites de-
pends upon the amount of bisphosphonate administered
(263). When small amounts are given, they deposit mostly
under the osteoclasts while larger amounts go to both bone-
forming and bone-resorbing sites. This would explain the
results with 99mtechnetium-labeled compounds, thought to
go to formation sites, since larger amounts are usually in-
jected. However, the fact that the erosion locations seen in
multiple myeloma do not take up any visible radioactive

99mtechnetium-labeled bisphosphonates has not yet been ex-
plained.

The fact that bisphosphonates are targeted to bone may be
used in the future to administer drugs to the skeleton. Initial
results with methotrexate in rats are encouraging (264).

Usually bisphosphonates do not deposit in soft tissues.
However, some of them, especially pamidronate, can at times
deposit in other organs such as the stomach (265), liver, and
spleen (266–268), the deposition being proportionally greater
when large amounts of compounds are given. Part of this
extraosseous deposition appears to be due to the formation
of complexes with iron (hemolysis) and calcium because of
too high and too rapid an intravenous injection. The insol-
uble aggregate is then phagocytized by the macrophages of
the reticuloendothelial system. Thus, results obtained with
large amounts of labeled compounds given rapidly intrave-
nously must be interpreted with caution. The danger of too
rapid an infusion of large amounts of bisphosphonate exists
also in humans where this procedure has led to renal failure
(269) because of the formation of insoluble calcium aggre-
gates in the blood.

Once the bisphosphonates are buried in the skeleton, they
will be released only when the bone is destroyed in the course
of the turnover. The skeletal half-life of various bisphospho-
nates is between 3 months and 1 yr for mice and rats (266–
268) and is much longer, sometimes more than 10 yr, for
humans (270).

The bisphosphonates are not metabolized in vivo. This is
due to the stability of their P-C-P bond to heat and most
chemical reagents, as well as to their resistance to hydrolysis
by the enzymes found in the body. To date, all the bisphos-
phonates investigated were excreted unaltered. However, it
is quite possible in the future that some compounds will be
metabolized in their side chain, especially in the gut, so that
it cannot be generally stated that bisphosphonates are not
metabolized in vivo.

VI. Animal Toxicology and Human Adverse Events

A. Animal toxicology

Published animal toxicological data are scant. Acute, sub-
acute, and chronic administration of bisphosphonates has in
general revealed little toxicity. This is explained by their
rapid incorporation into calcified tissue and hence their short
presence in the circulation.

Acute toxicity is mostly due to hypocalcemia, which is
induced by the formation of complexes or aggregates with
calcium, leading to a decrease in ionized calcium.

The nonacute, nonskeletal toxicity is usually manifested,
as is the case with many phosphates and polyphosphate, first
in the kidney (271, 272). This occurs, however, only at doses
substantially larger than those administered in humans. At
still higher doses, other organs can show cellular alterations.
The mechanisms leading to these changes are not known. In
the skeleton and in teeth an inhibition of normal mineral-
ization occurs, as mentioned earlier, usually at parenteral
doses of approximately 10 mg/kg daily (35–41). As dis-
cussed earlier, this inhibition is explained by a physicochem-
ical impairment of crystal growth. Large doses of bisphos-
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phonates can inhibit mineralization to such a level, which by
itself can lead to an increased fragility and fractures (37).
Finally, very large doses of bisphosphonates can lead to fetal
abnormality of the skeleton and the kidney (273).

B. Human adverse events

As in animals, studies in humans have revealed only a few
significant adverse events. Caution must be taken with all
intravenous administrations of large amounts of bisphos-
phonates since rapid injection has led to renal failure (269),
probably because the bisphosphonate is forming a solid
phase in the blood, which is then retained in the kidney. No
such events have occurred since care is taken to administer
all bisphosphonates in large amounts by slow infusion in
plenty of fluids.

The oral administration of bisphosphonates, especially
those with a primary amine, can be accompanied by esoph-
ageal and gastrointestinal side effects such as nausea, dys-
pepsia, vomiting, gastric pain, and diarrhea, and sometimes
even ulceration (129, 130, 274). These adverse events have
decreased since patients began ingesting the drug with ad-
equate water and without reclining after its intake to mini-
mize esophageal reflux.

As seen in animals, etidronate, when given at daily oral
doses of 400–800 mg, can produce an inhibition of normal
skeletal mineralization, leading to a clinical and histological
picture of osteomalacia. This condition regresses after dis-
continuation of therapy (31, 49, 50). Similar results have been
seen with pamidronate in Paget’s disease when given intra-
venously at doses equal to or higher than 180 mg per year
(51, 52).

The last commonly seen effect, which has been mentioned
earlier in this paper, is observed after intravenous adminis-
tration of more potent bisphosphonates containing a nitro-
gen atom. This is not observed with etidronate, clodronate,
or tiludronate. After intravenous administration, a transient
pyrexia of usually 1–2°C, sometimes more, accompanied by
flu-like symptoms, may occur. It is maximal within 24–48 h
and disappears after approximately 3 days, in spite of con-
tinued treatment. It is usually observed only once, even if
treatment is continued and restarted later (213). The mech-
anism of these changes, which resemble an acute phase re-
sponse, seems to involve the stimulation of macrophages to
release IL-6 and TNFa (215, 216), both of which increase in
plasma.

Most of the other adverse events are seen only occasion-
ally, and it is not certain to what extent they are actually
related to the drugs.

VII. Conclusion

Since the discovery of their effects on biological tissues in
1968, much progress has been made in our understanding of
the mechanisms of action of the bisphosphonates. While the
effects on mineralization appear to be physicochemical by
inhibiting crystal growth, those on resorption are cellular.
However, we still do not know the molecular mechanisms
leading to the inhibition of resorption. The consensus is that
the final effect is through the osteoclasts, but we do not know

how much is via the inhibition of their activity and how much
is due to a decrease in their number. It is also unknown how
much of the effect is direct or indirect through other cells,
such as the osteoblasts. It is agreed that the bisphosphonates
need the P-C-P bond to target themselves to the mineral;
however, the effect on cells occurs in part even when no
mineral is present while they are exposed to the drug. Thus,
the cells may be modulated by the bisphosphonate liberated
from the mineral, their potency being determined by the
structure of the lateral chain. Finally, we have practically no
knowledge as to which part of the molecule is responsible for
the effect, nor what the optimal structure of a compound for
this effect is. The latter is regrettable since such knowledge
would not only allow us to synthesize new and better in-
hibitors, but also give us an insight into the mechanisms of
bone resorption in general. Further research in this direction
is therefore desirable.

Current clinical applications for the inhibition of bone
resorption are Paget’s disease, tumor bone disease, and os-
teoporosis. Future applications could be, among others,
Sudeck’s atrophy, fibrous dysplasia, loosening of bone im-
plants, and alveolar resorption. As to their property of in-
hibiting calcification, only etidronate is currently used with
variable success for ectopic calcification and ossification.
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tions Médecine et Hygiène, Genèva, pp 386–389
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L, Löwik C, Papapoulos S 1996 Bisphosphonates inhibit the ad-
hesion of breast cancer cells to bone matrices in vitro. J Clin Invest
98:698–705

167. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman
GD, Mundy GR, Boyce BF 1995 Bisphosphonates promote apo-
ptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res
10:1478–1487

168. Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S,
Russell RGG 1996 Bisphosphonates induce apoptosis in mouse
macrophage-like cells in vitro by a nitric oxide-independent mech-
anism. J Bone Miner Res 11:1482–1491

169. Miller SC, Jee WSS 1979 The effect of dichloromethylenediphos-
phonate, a pyrophosphate analog, on bone and bone cell structure
in the growing rat. Anat Rec 193:439–462

170. Endo Y, Nakamura M, Kikuchi T, Shinoda H, Takeda Y, Nitta Y,
Kumagai K 1993 Aminoalkylbisphosphonates, potent inhibitors of
bone resorption, induce a prolonged stimulation of histamine syn-
thesis and increase macrophages, granulocytes, and osteoclasts in
vivo. Calcif Tissue Int 52:248–254

171. Murakami H, Takahashi N, Sasaki T, Udagawa N, Tanaka S,
Nakamura I, Zhang D, Barbier A, Suda T 1995 A possible mech-
anism of the specific action of bisphosphonates on osteoclasts:
tiludronate preferentially affects polarized osteoclasts having ruf-
fled borders. Bone 17:137–144

172. Selander K, Lehenkari P, Väänänen HK 1994 The effects of
bisphosphonates on the resorption cycle of isolated osteoclasts.
Calcif Tissue Int 55:368–375

173. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson
DD, Golub E, Rodan GA 1991 Bisphosphonate action. Alendr-
onate localization in rat bone and effects on osteoclast ultrastruc-
ture. J Clin Invest 88:2095–2105

February, 1998 BISPHOSPHONATES: MECHANISMS OF ACTION 97

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/19/1/80/2530799 by guest on 16 August 2022



174. Felix R, Guenther HL, Fleisch H 1984 The subcellular distribution
of [14C] dichloromethylenebisphosphonate and [14C] 1-hydroxy-
ethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tis-
sue Int 36:108–113

175. Azuma Y, Sato H, Oue Y, Okabe K, Ohta T, Tsuchimoto M,
Kiyoki M 1995 Alendronate distributed on bone surfaces inhibits
osteoclastic bone resorption in vitro and in experimental hypercal-
cemia models. Bone 16:235–245

176. Morgan DB, Monod A, Russell RGG, Fleisch H 1973 Influence of
dichloromethylene diphosphonate (Cl2 [scap]mDP) and calcitonin
on bone resorption, lactate production and phosphatase and py-
rophosphatase content of mouse calvaria treated with parathyroid
hormone in vitro. Calcif Tissue Res 13:287–294

177. Carano A, Teitelbaum SL, Konsek JD, Schlesinger PH, Blair HC
1990 Bisphosphonates directly inhibit the bone resorption activity
of isolated avian osteoclasts in vitro. J Clin Invest 85:456–461

178. Zimolo Z, Wesolowski G, Rodan GA 1995 Acid extrusion is in-
duced by osteoclast attachment to bone: inhibition by alendronate
and calcitonin. J Clin Invest 96:2277–2283

179. David P, Nguyen H, Barbier A, Baron R 1996 The bisphosphonate
tiludronate is a potent inhibitor of the osteoclast vacuolar H1-
ATPase. J Bone Miner Res 11:1498–1507

180. Ende JJ 1979 Effects of Some Diphosphonates on the Metabolism
of Bone in Vivo and in Vitro. PhD. Thesis, University of Leiden,
Leiden, The Netherlands

181. Felix R, Russell RGG, Fleisch H 1976 The effect of several diphos-
phonates on acid phosphohydrolases and other lysosomal en-
zymes. Biochim Biophys Acta 429:429–438
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