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One of the major challenges in the postgenomic era is to

understand how biological behavior emerges from the

organization of regulatory proteins into cascades and

networks [1,2]. These signaling pathways interact with

one another to form complex networks that allow the

cell to receive, process and respond to information [3].

One of the main mechanisms by which signals flow

along pathways is the covalent modification of proteins

by other proteins. Goldbeter & Koshland showed that

this multienzymatic mechanism could display ultrasen-

sitive responses, i.e. strong variations in some system

variables, to minor changes in the effector controlling

either of the modifying enzymes [4,5]. In the same

way, a double modification cycle represents an alter-

native mechanism that enhances switch-like responses

[6,7]. However, it has been reported that, in systems

where covalent modification is catalyzed by the same

bifunctional enzyme rather than by two independent
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Previous studies have suggested that positive feedback loops and ultrasensi-

tivity are prerequisites for bistability in covalent modification cascades.

However, it was recently shown that bistability and hysteresis can also arise

solely from multisite phosphorylation. Here we analytically demonstrate

that double phosphorylation of a protein (or other covalent modification)

generates bistability only if: (a) the two phosphorylation (or the two de-

phosphorylation) reactions are catalyzed by the same enzyme; (b) the kinet-

ics operate at least partly in the zero-order region; and (c) the ratio of the

catalytic constants of the phosphorylation and dephosphorylation steps in

the first modification cycle is less than this ratio in the second cycle. We

also show that multisite phosphorylation enlarges the region of kinetic

parameter values in which bistability appears, but does not generate multi-

stability. In addition, we conclude that a cascade of phosphorylation ⁄
dephosphorylation cycles generates multiple steady states in the absence of

feedback or feedforward loops. Our results show that bistable behavior in

covalent modification cascades relies not only on the structure and regula-

tory pattern of feedback ⁄ feedforward loops, but also on the kinetic charac-

teristics of their component proteins.

Abbreviation

M-M, Michaelis–Menten.

FEBS Journal 273 (2006) 3915–3926 ª 2006 The Authors Journal compilation ª 2006 FEBS 3915



proteins, this modification cycle does not generate

large responses. The adenylylation ⁄deadenylylation of

glutamine synthetase catalysed by adenylyltransferase

is an example [8].

Switch-like behavior, often displayed by cellular

pathways in response to a transient or graded stimulus,

can be either ultrasensitive [4] or true switches between

alternate states of a bistable system [9]. It has been

posited that bistability contributes to processes such as

differentiation and cell cycle progression [1,10]. It may

also produce dichotomous responses and a type of bio-

chemical memory [1,9]. Bistability may arise from the

way the signal transducers are organized into signaling

circuits. Indeed, feedback in various forms (i.e. positive

feedback, double-negative feedback or autocatalysis)

has been described as a necessary element for bistabili-

ty, although it does not guarantee this [11–15].

The question arises as to whether bistability can be

generated by mechanisms other than those already des-

cribed in the literature. Recently, it has been shown

that in two-step modification enzyme cycles, in which

the two modification steps or the two demodification

steps are catalyzed by the same enzyme, bistability can

be generated [16]. However, an analytic study of the

conditions that the parameters must fulfill in order to

obtain bistability behavior is still lacking.

The present article analytically demonstrates that

both dual and multisite modification cycles can display

bistability and hysteresis. We work out the key quanti-

tative relationships that the kinetic parameters must

fulfill in order to display a true switch behavior. First,

we analyze a two-step modification cycle with a non-

processive, distributive mechanism for the modifier and

demodifier enzymes and obtain analytically the kinetic

constraints that result in bistable behavior as well as

the region of kinetic parameter values in which two sta-

ble steady states can coexist. Second, we show that a

multimodification cycle of the same protein does not

introduce more complex behavior, but rather enlarges

the kinetic parameter values region in which bistability

appears. We also show that multistability can arise

from modification cycles organized hierarchically with-

out the existence of any feedback or feedforward loop,

i.e. when the double-modified protein catalyzes the

double modification of the second-level protein.

Finally, using the quantitative kinetic relationships

explained in the present article, we identify the MAP-

KK1-p74raf-1 unit in the MAPK cascade as a candi-

date for generating bistable behavior in a signal

transduction network, in agreement with the kinetic

characteristics reported in the literature [17].

The mathematical model described here has been

submitted to the Online Cellular Systems Modelling

Database and can be accessed free of charge at http://

jjj.biochem.sun.ac.za/database/Ortega/index.html

1. Two-step modification cycles

Initially, let us consider a generic protein W, which is

covalently modified on two residues in a modification

cycle that occurs through a distributive mechanism. For

the sake of simplicity, we investigate the case in which

the order of the modifications is compulsory (ordered).

Figure 1 shows a two-step modification enzyme cycle

in which both modifier and demodifier enzymes, e1
and e2, follow a strictly ordered mechanism. As illus-

trated, the interconvertible protein W only exists in

three forms: unmodified (Wa), with one modified resi-

due (Wb) and with two modified residues (Wc). The

four arrows represent the interconversion between

these three different forms: Wa fi Wb (step 1),

Wb fi Wa (step 2), Wb fi Wc (step 3) and Wc fi Wb

(step 4). In order to simplify the analysis, it is also

assumed that each of the four interconversions follows

a Michaelis–Menten (M-M) mechanism [18]:

Ws þ e �! �kai

kdi
eWs!

ki
WP þ e

where kai, kdi and ki are the association, dissociation and

catalytic constants, respectively, of step i. eWS is the

M-M complex formed by the catalyst, e, and its sub-

strate, WS, to produce the product, WP, where WS and

WP are two forms of the interconvertible protein W. It is

also assumed that the other substrates and products

(for instance, ATP, Pi and ADP in the case of a phos-

phorylation cascade) are present at constant levels and,

consequently, are included in the kinetic constants.

For the metabolic scheme depicted in Fig. 1, steps 1

and 3 are catalyzed by the modifying enzyme (e1),

whereas the second and fourth steps are catalyzed by

WγWβWα

Step 4Step 2

Step 3Step 1

Fig. 1. Kinetic diagram, in which a protein W has three different

forms Wa, Wb and Wc. The four arrows show the interconversion

between the different forms: Wa fi Wb (step 1); Wb fi Wa (step

2); Wb fi Wc (step 3); and Wc fi Wb (step 4). Steps 1 and 3 are

catalyzed by the same enzyme (e1), and steps 2 and 4 are cata-

lyzed by another enzyme (e2).
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the demodifying enzyme (e2). Under the steady-state

assumption, the rate equations (vi) have the following

form for the four steps (see Appendix A):

v1 ¼
Vm1

a
KS1

1þ a
KS1
þ b

KS3

v3 ¼
Vm3

b
KS3

1þ a
KS1
þ b

KS3

v2 ¼
Vm2

b
KS2

1þ c
KS4
þ b

KS2

v4 ¼
Vm4

c
KS4

1þ c
KS4
þ b

KS2

ð1Þ

where a ¼ [Wa]/WT, b ¼ [Wb]/WT and c ¼ [Wc]/WT

are the dimensionless concentrations of species Wa,

Wb and Wc, and WT is the total concentration of the

interconvertible protein W; KSi ¼ Kmi ⁄WT, where

Kmi [(kdi + ki) ⁄kai] is the Michaelis constant and

Vmi (kiejT, i ¼ 1, 4) is the maximal rate of step i where

j ¼ 1 for i ¼ 1, 3 and j ¼ 2 for i ¼ 2, 4. For conveni-

ence, we define: r31 ¼ Vm3 ⁄Vm1 ¼ k3 ⁄k1, r24 ¼ Vm2 ⁄
Vm4 ¼ k2 ⁄k4 and v14 ¼ Vm1 ⁄Vm4 ¼ (k1 ⁄k4)(e1T ⁄ e2T) ¼
r14T12. Note that r31 and r24 are the ratios of the cata-

lytic constants for the modification and demodification

processes, respectively, and are therefore independent

of the enzyme concentrations. In contrast, the ratio v14
depends on the enzyme concentrations ratio (T12 ¼
e1T ⁄ e2T) and the ratio of the catalytic constants r14 of

the first modification and the first demodification steps,

i.e. the ratio between maximal activities of the first and

fourth steps.

2. Bistability in double modification
cycles

The differential equations that govern the time evolu-

tion of the system shown in Fig. 1 are:

dWa

dt
¼WT

da
dt
¼ v2 � v1

dWb

dt
¼WT

db
dt
¼ v1 � v2 � v3 þ v4 ð2Þ

dWc

dt
¼WT

dc
dt
¼ v3 � v4

Assuming the pseudo-steady state for the enzyme-con-

taining complexes, these equations together with the

conservation relationships (see Appendix A) and the

initial conditions allow us to determine the concentra-

tions of all forms of the interconvertible protein as

functions of time. In the system’s steady state, v1 ¼
v2 ” j1 and v3 ¼ v4 ” j3.

In order to derive analytically the set of parameter

values at which the system qualitatively changes its

dynamic behavior from one to three steady states, we

first analyze a plot of the mole fraction a at steady state

as a function of the ratio v14 for two different values of

the product of r31r24 at fixed KS values (Fig. 2). This

product is called the asymmetric factor (H) and is the

ratio of the product of the catalytic constants of the

steps that consume (k3k2) and the steps that produce

the species Wb (k1k4). At low H value, there is a single

stable steady state for any value of v14 (curve (A) in

Fig. 2). However, for a larger value of asymmetric fac-

tor (H), there is a range of v14 values at which three

steady states are possible, two of which are stable and

one unstable (shown by the dashed line in curve (B) of

Fig. 2). Thus, this model can present three steady states

for the same set of parameters, even in the absence of

allosteric mechanisms such as a positive feedback loop.

In the following, a critical set of parameter values that

induces a transition from one to three steady states (i.e.

bifurcation point) will be determined.

To obtain the steady state, Eqn (2) was equated to

zero. Since the denominators of Eqn (1) are equal, the

relationship v1 ⁄ v3 ¼ v2 ⁄ v4 yields:

KS2KS3

KS1KS4

a c

b2 ¼ r31r24 � H ð3Þ

This relationship imposes strong restrictions on the val-

ues of the molar fractions a, b and c at the steady state.

For the sake of simplicity, we consider initially that

the total concentration of the interconvertible protein,

WT, is much larger than eT1 and eT2 and that,

consequently, the M-M complexes can be ignored.

Under this condition, the conservation relations give

b ¼ 1 ) a ) c.
Assuming that the Michaelis constants of the modi-

fier and demodifier enzymes are equal, namely, KS1 ¼
KS3 and KS2 ¼ KS4, and considering Eqn (2) and Eqn

(3), the following mathematical expressions for a, b
and v14 can be expressed as a function of c, the asym-

metric factor (H ¼ r31r24), KS1 and KS2:

Fig. 2. Effect of the asymmetric factor H (r31r24) on the steady-

state molar fraction a as a function of v14 for a fixed KS ¼ 10)2 for

the model. The parameters considered are: H ¼ 1 (r31 ¼ r24 ¼ 1)

and 36 (r31 ¼ r24 ¼ 6) for curves (A) and (B), respectively.
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a ¼ ð�c þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4 c H � 4 c2C H

p
Þ2

4c H

b ¼ �cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4cH� 4c2H

p
2H

ð4Þ

v14 ¼
b cþ b2Hþ cKS1

b r31ðbþ cþKS2Þ

This last equation shows how v14 depends on c and per-

mits us to calculate the bifurcation point. When the

system displays a single steady state, the v14 value

increases monotonically with c, i.e. ¶c/¶v14>0. In con-

trast, when the system shows bistable behavior, the

slope of this curve has a different sign depending on the

range of c values. Therefore, the curve has two extrema

and an inflection point (Fig. B1 in Appendix B). At the

bifurcation point, a change in the qualitative behavior

of the system occurs and the following constraints are

satisfied (this way of calculating the bifurcation point is

equivalent to linearizing the system defined by Eqn (2)

around the steady state and calculating the set of

parameter values for which one of the eigenvalues is

equal to zero and its derivative with respect to v14 is

positive; this latter condition ensures that any v14
increases provoke the loss of stability of the solution):

@ v14

@ c

� �
¼ 0 and

@2 v14

@ c2

� �
¼ 0 ð5Þ

In the following subsections, we solve the equations

presented above and analyze the consequences derived

from them.

2.1. Bifurcation point analysis in the case of equal

Michaelis constants of modifier and demodifier

enzymes

For the sake of simplicity, let us assume that the

Michaelis constants of both enzymes are equal, namely

KS1 ¼ KS2 ¼ KS. Introducing Eqn (4) into Eqn (5), it

can be shown, after some algebra, that the asymmetric

factor at the bifurcation point must satisfy the follow-

ing equation:

H � r31r24 ¼
k3k2
k1k4

¼ ð1þKSÞ2

ð1� 2KSÞ2
and KS < 1=2 ð6Þ

Thus, for any set of parameters such that H is larger

than the threshold value given in Eqn (6) and KS

lower than 1 ⁄ 2, there is a region of v14 values in which

two stable steady states coexist. However, when H is

lower than the value given by Eqn (6) or when KS is

greater than 1 ⁄2, the system has only one steady state.

The variation of H with KS is shown in Fig. 3. It

should be noted that when KS tends asymptotically to

zero, the value of H needed to satisfy the bifurcation

point condition tends to 1, whereas when KS tends to

1 ⁄ 2, this value tends asymptotically to infinity. In

other words, if the Michaelis constants of modifier

and demodifier are equal, a necessary condition for

the system to display bistability behavior is that the

product of the catalytic constants of the modification

and demodification of the form Wb should be greater

than the product of the catalytic constant of Wa modi-

fication and Wc demodification enzymes.

By substituting Eqn (6) into Eqn (2) and Eqn (4),

analytic expressions for the system variables, a, b and

c are obtained. In particular, at the bifurcation point,

it follows that:

v14 ¼ r24
1� 2KS

1þKS
¼

ffiffiffiffiffiffi
r24
r31

r
ð7Þ

Interestingly, at the bifurcation point, v14 takes a value

that depends on the ratio between the product of the

catalytic constant of cycle 1 (steps 1 and 2) and cycle 2

(steps 3 and 4) (Eqn 7) and the values of a, c and b
only depend on the KS value (Eqn 8). The concentra-

tions of interconvertible forms are:

c ¼ a ¼ 1þKS

3
and b ¼ 1� 2KS

3
ð8Þ

The flux values of cycle 1 and cycle 2 are:

j1 ¼ r24
1� 2KS

1þKS

Vm4

2
¼

ffiffiffiffiffiffi
r24
r31

r
Vm4

2
and j3 ¼

Vm4

2
ð9Þ

Also, at the bifurcation, the a values and c values are

equal. On the other hand, the lower the KS value, the

more a( ¼ c) and b values tend towards 1 ⁄ 3; and as

KS approaches 1 ⁄ 2, a (¼ c) tends to 1 ⁄ 2, whereas b
tends to 0. Thus, the values of the different species of

the interconvertible protein W at the bifurcation point

Fig. 3. Variation of the asymmetric factor H (r31r24) with the Micha-

elis constant (KS1 ¼ KS2 ¼ KS) at the bifurcation point.
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are constrained: a and c only vary between 1 ⁄ 3 and

1 ⁄ 2, whereas b varies between 0 and 1 ⁄ 3.

2.2. Bifurcation point analysis when Michaelis

constants of modifier and demodifier enzymes

differ

Equations (6), (7), (8) and (9) were obtained under the

assumption that all the Michaelis constants of the two

modifier enzymes were equal to KS. Here we consider

the more general situation in which the Michaelis con-

stants of the modifier and demodifier enzymes are dif-

ferent. KS1 and KS2 are the dimensionless Michaelis

constants for the reactions catalyzed by the enzymes e1
and e2, respectively. For this more general case, at the

bifurcation point the analytic expression for H in terms

of KS1 and q ¼ KS2 ⁄KS1 was derived (see supplement-

ary Doc. S1A). From this expression, it turns out that

the value of H is always higher than 1. The dependence

of H on KS1 and q is displayed in Fig. 4, showing that

two regions can be defined in the space of kinetic

parameters (q, KS1), one resulting in bistable behavior

and the other resulting in a single stable steady state.

The border between these two regions corresponds to

the following curve (see supplementary Doc. S1A):

q ¼ � 1þ KS1

KS1ð1� 8 KS1Þ
ð10Þ

3. Double modification cycles:
numerical examples

In the previous section, we analyzed the necessary con-

ditions for bistability. In this section, the same system

is studied for different sets of parameters, resulting in

(a) a single steady state and (b) bistable behavior.

3.1. Parameter restrictions for a stable steady

state

To analyze monostable behavior, we chose a set of

parameter values KS ¼ KS1 ¼ KS2, r31 and r24, such

that the asymmetric factor obeys the restriction

H < (1 + KS)
2 ⁄ (1 ) 2KS)

2, and KS < 1 ⁄ 2. As sensi-

tivity is enhanced with the decrease of KS in an inter-

convertible protein system [4], a value of KS ¼ 10)2

was selected. The corresponding value of the asymmet-

ric factor, calculated using Eqn (6), is 1.06 at the bifur-

cation point.

Figure 5 shows the dependence of a, b, c and the

cycle fluxes on the v14 for the same KS, but different

values of the asymmetric factor. From the curves dis-

played in Fig. 5A,B, ultrasensitivity clearly depends

not only on the KS value but also on the asymmetric

factor. The closer the H value to the value given by

Eqn (6), the steeper the change in the molar fraction

value of a and c with respect to v14. In particular, for

H ¼ 1 there is an abrupt decrease of a in parallel with

an increase in c and flux through cycle 2. b and flux

through cycle 1 increase and then abruptly decrease in

parallel with the decrease in a (Fig. 5C,D,E).

b attains its maximal value (bmax) at v14 ¼
�(r24 ⁄ r31), and bmax depends only on the asymmetric

factor bmax ¼ 1 ⁄ (1 + 2�H). At bmax the concentra-

tions of the other forms a and c are as follows: a ¼
c ¼ �H/(1 + 2�H) (see supplementary Doc. S1B for

their derivation).

3.2. Parameter restrictions that allow bistability

For the bistable case, we chose a set of parameter val-

ues, KS, r31 and r24, such that the asymmetric factor

satisfies the restriction H > (1 + KS)
2 ⁄ (1 ) 2KS)

2, and

KS < 1 ⁄ 2. For all the values of H that obey the above

inequalities, there exists an interval of v14 values in

which two stable steady states coexist together with an

unstable steady state, as shown in Fig. 6 for KS ¼ 10)2

and various H values.

It should be noted that the unstable steady state for

a and c always lies in between the two stable states,

whereas the unstable steady state for b is always higher

than the two stable steady states (Fig. 6A–C). Applica-

tion of the same reasoning as in the previous section

demonstrates that bmax, which always corresponds to

the unstable steady state, decreases with the increase of

the asymmetric factor and occurs at v14 ¼ �(r24 ⁄ r31)
(see also supplementary Doc. S1B). Note that in

Fig. 4. Dependence of the asymmetric factor (H) at the bifurcation

point on KS1 and q (¼ KS2 ⁄ KS1).

F. Ortega et al. Bistability requirements in signaling

FEBS Journal 273 (2006) 3915–3926 ª 2006 The Authors Journal compilation ª 2006 FEBS 3919



Fig. 6C the maximum of the three curves appears at

the same position because for the three curves

r24 ⁄ r31 ¼ 1.

Figure 6D,E shows that at the unstable steady-state

cycle, the fluxes of cycle 1 and 2 are comparable,

whereas the two stable steady-state fluxes correspond

to two extreme situations, in which only one of the

cycles is active and practically no flux goes through

the other cycle.

Finally, we analyzed how the asymmetric factor

and parameter values determine the range of v14 val-

ues that correspond to the bistability domain. The

dependence of v14 on c gives two extrema points.

The difference between them determines the range of

bistable behavior. The dependence of this interval on

H and r24 follows a complex explicit expression. The

variation of the amplitude of this interval with the

asymmetric factor at different values of r24 is shown

in Fig. 7. For each value of r24 there is a value of H
that maximizes the bistability interval; this maximum

value increases when r24 increases. In addition, this

range increases monotonically when KS decreases

(data not shown).

An approximate expression for the bistability inter-

val in terms of the main enzyme’s kinetic parameters

can be obtained. When the molar fraction a is close

to 1, the stationary flux of cycle 1 varies linearly with

v14, because the enzyme of step 1 is saturated (see

Fig. 5. The effect of the ratios of the catalytic constants (r31 ¼ k3 ⁄ k1 and r24 ¼ k2 ⁄ k4) on the variation of the steady-state variable profiles

with v14, at a fixed KS value (KS ¼ 10)2). (A), (B) and (C) show the molar fractions a ([Wa] ⁄ WT), b ([Wb] ⁄ WT) and c ([Wc] ⁄ WT) as a function of

v14, respectively. (D) and (E) show the steady-state fluxes of cycles 1 and 2 as a function of v14. The kinetic parameter values considered,

indicated in the plots, correspond to asymmetric factor values H ¼ r31r24 ¼ 0.5 and 1. Note that H ¼ 0.5 corresponds to two different

cases: r31 ¼ 0.5, r24 ¼ 1 and r31 ¼ 1, r24 ¼ 0.5.

Bistability requirements in signaling F. Ortega et al.
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Fig. 6D). Thus, from Eqn (1), this flux can be approxi-

mated by j1 � Vm1 � Vm2b ⁄ (KS + b), since a>> b
and c is negligible while cycle 1 controls the flux.

On rearranging the above expression, a relationship

between v14 and b is obtained: b¼ KS v14 ⁄ (r24 ) v14).
Conversely, when the molar fraction a is close to

0, the approximate expression obtained is b� KS ⁄
(H v14 ⁄ r24 ) 1). Since the molar fraction b must be

between 0 and its maximum value (Eqn 8), the above

expressions give an estimate for the extrema points.

Then, an estimate of the range of bistability

can be given by r24 (1+KS) ⁄ [H (1 ) 2 KS)] < v14 <
r24 (1 ) 2 KS) ⁄ (1 + KS), which yields a wider range

than the exact calculation.

4. Bistability and multistability in
systems of multimodified proteins

This section analyzes the minimal structural changes

that need to be introduced into a two-step modifica-

tion enzyme cycle in order to generate multistability,

assuming simple M-M mechanisms. We consider two

types of structural change: (a) an increase in the num-

ber of cycles, and (b) the introduction of a hierarchical

organization, as in MAP kinase cascades.

It might seem, a priori, that if a two-step modifica-

tion enzyme cycle can generate bistability, an inter-

convertible protein with multisite modification will

generate multistability when the modifier or demodifier

Fig. 6. The effect of the value of the asymmetric factor (H) on the variation of the steady-state variable profiles with v14, at a fixed KS value

(KS ¼ 10)2) and r31 ¼ r24. (A), (B) and (C) show the molar fractions a ([Wa] ⁄ WT), b ([Wb] ⁄ WT) and c ([Wc] ⁄ WT) as functions of v14, respect-

ively. (D) and (E) show the steady-state fluxes of cycles 1 and 2 as a function of v14. As r31 ¼ r24, the v14 value at which b rises to its maxi-

mum value (bmax) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r24=r31

p
¼ 1 ¼ 1 (see Section 3.1).
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steps are catalyzed by the same enzyme (Fig. 8A). As

shown below, this assumption is not true: additional

modification steps catalyzed by the same enzyme do

not lead to multistability. Therefore, we considered the

addition of cycles at different levels of an enzyme cas-

cade. For example, a couple of two-step modifier ⁄
demodifier cycles can be organized such that the modi-

fication steps of the first interconvertible protein (W)

are catalyzed by the same enzyme, and its double-

modified form (Wc) catalyzes the modification steps of

a second interconvertible enzyme (Z) (Fig. 8B).

4.1. More than two consecutive modifications of

a multisite interconvertible protein

We consider an interconvertible protein (W) that can

exist in four different modification forms, Wa, Wb, Wc

and Wd (e.g. different phosphorylation states). The

modification and demodification steps are catalyzed by

the enzymes e1 and e2, respectively (Fig. 8A). The rate

equations are derived in a similar way to the double

modification case (Appendix A). The molar fractions

of the different forms of the interconvertible

protein are a, b, c and d. For convenience, we intro-

duce the five following combinations of param-

eters: r31 ¼ Vm3 ⁄Vm1 ¼ k3 ⁄k1, r53 ¼ Vm5 ⁄Vm3 ¼ k5 ⁄k3,
r24 ¼ Vm2 ⁄Vm4 ¼ k2 ⁄k4, r46 ¼ Vm4 ⁄Vm6 ¼ k4 ⁄k6 and

v16 ¼ Vm1 ⁄Vm6 ¼ (k1 ⁄k6)(e1T ⁄ e2T) ¼ r16T12, where the

ki values with i ¼ 1–6 are the different catalytic con-

stants of the respective steps, and eT1 and eT2 are

the total concentrations of the modifier ⁄demodifier

enzymes, respectively. For this interconvertible protein,

analytic expressions for the bifurcation points, using

the same methodology applied in Section 2, were not

found. Numerical simulations that were conducted for

a broad set of parameter values for the relationships

r31, r53, r24 and r46 showed that the system does not

present more than two stable steady states for a given

v16 (result not shown). In a particular case, i.e. when

the Michaelis constants are equal and the relationship

r31r24 ¼ r53r46 holds, an analytic expression for the

bifurcation point can be found. Using the same meth-

odology developed in Section 2, the bifurcation point

occurs at:

H ¼ r31r24 ¼
1þKs

1�Ks
and Ks < 1 ð11Þ

Consequently, for a given value of KS lower than 1,

the system has bistable and hysteresis behavior if the

asymmetric factor is greater than the one given by

Eqn (11) [H > (1 + KS) ⁄ (1 ) KS)]. Moreover, the

Wδ δ 

6   p e t S 

e 2 

Wβ β Wα α Wγ γ 

2   p e t S 

5   p e t S 
e 1 

1   p e t S 
e 1 

3   p e t S 
e 1 

e 2 

4   p e t S 

e 2 

A

B

2   p e t S 

Wβ β Wα α Wγ γ 

e 1 e 1 

e 2 e 2 

3   p e t S 1   p e t S 

4   p e t S 

Zβ β Zα α Zγ γ 

e 3 e 3 

5   p e t S 7   p e t S 

6   p e t S 8   p e t S 

Fig. 8. (A) Diagram with four different protein W forms, Wa, Wb,

Wc and Wd. The arrows show the interconversion between the

forms: Wa fi Wb (step 1); Wb fi Wa (step 2); Wb fi Wc (step 3);

Wc fi Wb (step 4); Wc fi Wd (step 5); and Wd fi Wc (step 6).

Steps 1, 3 and 5 are catalyzed by the same enzyme (e1). The sec-

ond, fourth and sixth steps are catalyzed by another enzyme (e2).

(B) Network diagram with two interconvertible proteins W and Z.

Each protein has three different forms, Wa, Wb, Wc, and Za, Zb, Zc,

respectively. The modification and demodification steps of protein

W are catalyzed by e1 and e2, respectively. The modification steps

of protein Z are catalyzed by the active form of the protein W (Wc),

and the demodification steps are catalyzed by the enzyme e3.

Fig. 7. Existence of an optimal r31 value for a given set of parame-

ters r24 and KS, which maximizes the range of bistability. The value

of the parameters considered are r24 ¼ 4, 10, 20 and KS ¼ 10)2.
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concentrations of the different species of the inter-

convertible protein W at the bifurcation point are:

a¼d¼1þKs

4
; b¼c¼1�Ks

4
and v16¼ r31r24 ð12Þ

To compare this particular case with the two-step

modification cycle (Section 2.1), we assume that r31 ¼
r24. In this case, the bifurcation point expressions for

the triple and double covalent modification systems

are r31 ¼ (1 + KS) ⁄ (1 ) 2KS) and r31 ¼ �(1 + KS) ⁄
(1 ) KS), respectively. These expressions show that the

triple cycle (Fig. 8A) requires less restrictive con-

straints on parameter values than the double cycle

(Fig. 1). Thus, at the same KS value, bistability is

achieved in the triple cycle at a lower r31 value than in

the double cycle. Moreover, the interval at which

bistability appears is longer for the triple cycle system

than for the double cycle system.

4.2. A cascade of two modifier/demodifier cycles

can generate multistable behavior

As shown in the previous section, the modification of

multiple sites of a protein by the same enzyme does not

generate more complex behavior than bistability. Here,

we explore the possibility that a cascade of two double

modification cycles, following simple M-M kinetics,

generates multistability. We consider a system of two

modifier ⁄demodifier cycles (Fig. 8B), such that the dou-

ble modification of the first interconvertible protein (W)

is catalyzed by the same enzyme, and the double modi-

fied form (Wc) catalyzes the double modification of a

second interconvertible enzyme (Z). We assume that the

double-modified protein (Wc) is the only form of the

interconvertible enzyme W that has catalytic activity.

The demodifications of the interconvertible proteins W

and Z are catalyzed by independent and constitutively

active enzymes e2 and e3, respectively. In the appropri-

ate range of kinetic parameters and interconvertible

protein concentrations, this system can generate up to

five different steady states, three of which are stable

and the other two unstable (see supplementary Fig. S1).

The system has five steady states only if each double

modification cycle operates in the same range in which

it individually displays bistable behavior.

5. Discussion

The recognition that bistable switching mechanisms

trigger crucial cellular events, such as cell cycle progres-

sion, apoptosis or cell differentiation, has led to a resur-

gence of interest in theoretical studies to establish the

conditions under which bistability arises. Earlier theor-

etical studies identified two properties of signal trans-

duction cascades as prerequisites for bistability: the

existence of positive feedback loops and the cascade’s

intrinsic ultrasensitivity, which establishes a threshold

for the activation of the feedback loop [12]. Here we

analytically demonstrate that a double modification of

a protein can generate bistability per se and we derive

the necessary kinetic conditions to ensure that bistable

behavior will be generated. Thus, analytic expressions

for the bifurcation point as a function of the catalytic

constants and Michaelis constants are given.

As a practical recipe and in summary, the presence of

a double covalent modification enzyme cycle in a signal

transduction network generates, per se, bistable behav-

ior if the following prerequisites are satisfied: (a) one of

the modifier enzymes catalyzes the two modification

reactions or the two demodification reactions; (b) the

ratio of the catalytic constants of the modification and

demodification steps in the first modification cycle is less

than this ratio in the second cycle; (c) the kinetics oper-

ate, at least in part, in the zero-order region. Thus, at

least the enzyme that catalyzes the first step should be

saturated by its substrate; for example, in step 1, e1
should be saturated by a (Fig. 5D). This last condition

is that which confers ultrasensitivity [4].

A double interconvertible cycle, which satisfies the

three conditions described above, presents hysteresis.

Therefore, the molar fraction variation of the three

forms of the protein with respect to the change in

the ratio of the modifier ⁄demodifier enzymes (T12 ¼

Fig. 9. Hysteresis behavior of the molar fraction a ([Wa] ⁄ WT) with

respect to v14 (r14e1T ⁄ e2T) for a double modification ⁄ demodification

interconvertible protein (Fig. 1). (A) Stable stationary state starting

from eT1 << eT2 (a ¼ 1). (B) Stable stationary state starting from

eT1 >> eT2 (a ¼ 0). The values of the parameters are KS ¼ 0.01 and

r31 ¼ r24 ¼ 2. Note that the range of bistability behavior is (0.66,

1.51), whereas the range from the approximate expression given

in Section 3.2, [r24(1 + KS) ⁄ (H(1 ) 2KS),r24(1 ) 2KS) ⁄ (1 + KS)], is

(0.52, 1.94).
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eT1 ⁄ eT2 ¼ v14 ⁄ r14) varies depending on the initial value

of the enzyme ratio. For example, Fig. 9 shows the vari-

ation of the molar fraction a for two initial conditions,

eT1 << eT2, i.e. a ¼ 1 (curve A) and eT1 >> eT2, i.e.

a¼ 0 (curve B). Starting at eT1 << eT2 (a ¼ 1), the

major flux is carried out by cycle 1 until the maximum

value of eT1 ⁄ eT2 is achieved, before the flux passes to

cycle 2. Conversely, if we start from eT1 >> eT2 (a ¼ 0)

the major flux is in cycle 2 until the minimum value of

eT1 ⁄ eT2 is achieved (see Fig. 6A,D), before the flux pas-

ses to cycle 1. In these two cases, the control of the flux

passes roughly from one cycle to the other when a crit-

ical value of v14 is achieved.
The identification given in this article of the kinetic

requirements necessary for a double modification

enzyme to generate bistability per se offers a valuable

tool to systematically analyze signal transduction net-

works and identify the modules that might generate bi-

stability. Thus, the results reported here confirm that

bistable system behavior can arise from the kinetics of

double covalent modification of protein systems such

as MAPK cascades, without the need to invoke the

presence of any positive or negative feedback loops.

Interestingly, kinetic data reported in the literature for

the MAPK cascade show that some of its individual

signaling elements could satisfy these requirements. In

particular, for the double phosphorylation of MAP-

KK1 by p74raf-1, it has been reported by Alessi et al.

[17] that the phosphorylation of the first site is the

rate-limiting step and the phosphorylation of the sec-

ond site then occurs extremely rapidly (i.e. r31 >> 1),

so ensuring that the asymmetric factor (H ¼ r31r24)

will be higher than 1 even if the two dephosphoryla-

tion steps occur at similar rates (r24 � 1). Thus, this

experimental evidence suggests that the MAPKK1

modification cycle could behave as a bistable switch.

In Section 4 we also explored whether the presence

of proteins that can be modified at more than two sites

leads to the possibility of more complex behavior than

bistability arising. We showed that multiple modifica-

tion of a protein, even that catalyzed by the same

enzyme, usually results in bistable behavior and not in

multistability. However, we showed that the advantage

of proteins with more than two modification sites is

that the kinetic requirements to obtain bistability are

less restrictive. Finally, we showed that the hierarchical

organization of two double modification cycles can

generate multistability per se without the existence of

feedback or feedforward loops. As this hierarchical

organization is ubiquitous in MAPK and other signal

transduction pathways, this article also reports a new

putative mechanism that per se explains multistability

in signal transduction networks in which feedback or

feedforward loops were not found experimentally.

Multistability is linked to multifunction and crosstalk

between signal transduction networks, which explains

how the same signal transduction pathway can be

responsible for the transduction of signals resulting in

several different biological processes (e.g. apoptosis,

cell growth and differentiation).

In conclusion, bistability and multistability can arise

without the existence of feedback or feedforward

loops, provided that some individual signaling ele-

ments are doubly modified proteins and the enzymes

catalyzing these modifications follow a particular set of

kinetic requirements. Therefore, the kinetic properties

of two-step modification cycles, which are ubiquitous

in signaling networks, could have evolved to support

bistability and multistability, providing flexibility in

the interchange between multistable and monostable

modes. This analysis permits an explanation of multi-

stability in systems in which feedback or feedforward

loops were not found experimentally.
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Appendix A: Kinetic derivation

In line with the terms used in the main text, the con-

centration–conservation relationships for the intercon-

version, shown in Fig. 1, are as follows:

WT ¼ ½Wa� þ ½Wb� þ ½Wc� þ ½e1Wa� þ ½e1Wb�
þ ½e2Wc� þ ½e2Wb�;

e1T ¼ ½e1� þ ½e1Wa� þ ½e1Wb�;
e2T ¼ ½e2� þ ½e2Wc� þ ½e2Wb�:

ðA1Þ

where e1Wa, e1Wb, e2Wb and e2Wc are the M-M com-

plexes. WT and eiT are the total concentration of the

interconvertible protein and the total concentration of

the catalyst, respectively. Note that only the formation

of substrate–enzyme complexes, and not product–

enzyme complexes, was considered.

Under the steady-state assumption, the rate equa-

tions (vi) have the following form for the four steps:

v1 ¼
Vm1

Wa½ �
Km1

1þ Wa½ �
Km1
þ ½Wb�

Km3

; v3 ¼
Vm3

½Wb�
Km3

1þ Wa½ �
Km1
þ ½Wb�

Km3

v2 ¼
Vm2

½Wb�
Km2

1þ Wc½ �
Km4
þ ½Wb�

Km2

; v4 ¼
Vm4

Wc½ �
Km4

1þ Wc½ �
Km4
þ ½Wb�

Km2

ðA2Þ

Kmi [(kdi + ki) ⁄kai] is the Michaelis constant and Vmi

(kiejT, i ¼ 1, 4) is the maximal rate of each of the four

steps, where j ¼ 1 for i ¼ 1, 3 and j ¼ 2 for i ¼ 2, 4.

To simplify the mathematical manipulation, we

make the concentration of the variables Wa, Wb and

Wc dimensionless. The dimensionless concentrations of

the variables are a ¼ [Wa]/WT, b ¼ [Wb]/WT and c ¼
[Wc]/WT. Thus, a, b and c belong to the range 0, 1.

Additionally, we normalize the Michaelis constants

in such a way that KS1 ¼ Km1 ⁄WT, KS2 ¼ Km2 ⁄WT,

KS3 ¼ Km3 ⁄WT and KS4 ¼ Km4 ⁄WT. On introducing

these new dimensionless variables into the previous

rate equations we obtain:

v1 ¼
Vm1

a
KS1

1þ a
KS1
þ b

KS3

v3 ¼
Vm3

b
KS3

1þ a
KS1
þ b

KS3

v2 ¼
Vm2

b
KS2

1þ c
KS4
þ b

KS2

v4 ¼
Vm4

c
KS4

1þ c
KS4
þ b

KS2

ðA3Þ

Appendix B: Visualization of the
bifurcation point

In Section 2, we have shown that the system represen-

ted by Fig. 1 can display bistable behavior. Here, we

describe in detail the procedure for deducing the condi-

tions at which the system changes qualitatively its

behavior from one to two stable steady-states, i.e. the

bifurcation point.

For the sake of simplicity, we assume that the

Michelis constants of both enzymes are equal (KS1 ¼
KS2 ¼ KS). For this case, Eqn (4) is:

v14 ¼
b cþ b2Hþ cKS

b r31ðbþ cþKSÞ
ðA4Þ

This equation explicitly indicates the relationship

between the fraction v14 and the normalized concentra-

tion form c. Using this equation, the variation of v14
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with c for different values of the asymmetric factor

(H ¼ r31 r24) and KS ¼ 10)2 is shown in Fig. B1. Thus,

for H equal to 0.5, this curve increases monotonically

with c, i.e. dc ⁄ dv14 > 0 (curve A). However, for a

higher value of the asymmetric factor, e.g. H ¼ 4, the

sign of the slope depends on the c value, and the curve

displays two extrema points, and then the sign of

the slope curve changes with the c value (curve B).

Between these two types of behavior, there should be

one intermediate condition for a H value in which the

two extremes and the inflection point coincide, i.e.
@v14

@c

� �
¼ 0 and @2v14

@c2

� �
¼ 0 for a given c value (curve C).

Calculating the first derivative we obtain:

@ v14

@c

� �
¼ 2Ksð1þKsÞH2 þ ðH� 1þKsð4H� 1Þ

� c ð2H� 1Þ c� 2Hð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð4Hþ c� 4HcÞ

p
� ðH� 1þKsð4H� 1ÞÞc

Equating this expression to zero, four values of c are

obtained:

c1;2 ¼
1

2
1�

ffiffiffiffiffiffi
Ks

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þKs

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H� 1þKsð4H� 1Þ

p �
ffiffiffiffi
A
p

 !

and

c3;4 ¼
1

2
1þ

ffiffiffiffiffiffi
Ks

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þKs

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H� 1þKsð4H� 1Þ

p �
ffiffiffiffi
A
p

 !

where

A¼
H�1þK2

s ð�4Hþ1Þ�2
ffiffiffiffiffiffi
Ks

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þKs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H�1þKsð4H�1Þ

p
H�1þKsð4H�1Þ

For example, since curve (A) (Fig. B1) is monotonous,

these four roots take imaginary values, i.e. A < 0. On

the contrary, curve (B) presents two turning points; A

should then be greater than 0 and the system presents

two different root values in the range [0, 1], i.e.

0 < c1 < 1 and 0 < c2 < 1; meanwhile, the c3,4-
values have no physical meaning. Curve (C) (Fig. B1)

has one double root (c1 ¼ c2) and then A ¼ 0; the val-

ues of the other roots c3 ¼ c4 acquire a nonsignificant

physical meaning. The parameter value that fulfils

the condition A ¼ 0 is as follows: H ¼ (1 + KS)
2 ⁄

(1 ) 2KS)
2. This H value occurs at the bifurcation

point. At this point, the solutions with physical mean-

ing for c only are c1;2 ¼ 1þKs

3 It can be easily shown

that this condition makes the second derivative
@2v14

@c2

� �
¼ 0. In addition, substituting the expressions

in the equations described above gives a ¼
c ¼ 1þKs

3 and b ¼ 1�2Ks

3 :

Supplementary material

The following supplementary material is available

online:

Doc. S1. (A) Bifurcation point derivation for different

Michaelis constants. (B) Maximum values of some var-

iables assuming equal Michaelis constants. (C) Multi-

stable behaviour in a cascade of two modifier cycles.

Fig. S1. Variation of the steady-state molar fraction of

the interconvertible protein Z, in the form Zc, in terms

of v18 for the model described in Fig. 8b. The parame-

ters are HW (r31r24) ¼ 30 and HZ (r75r68) ¼ 50 for the

first and second double modification cycles, respect-

ively and KS ¼ 10–2.

This material is available as part of the online article

from http://www.blackwell-synergy.com

Fig. B1. Variation of v14 with respect to c for three different values

of the parameters. (A) H ¼ 1 ⁄ 2 and r31 ¼ 1�2. (B) H ¼ 4 and

r31 ¼ 2. (C) H ¼ 1.062 and r31 ¼ 1.031.
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