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Noisy bistable dynamics in gene regulation can underlie stochastic switching and is demonstrated

to be beneficial under fluctuating environments. It is not known, however, if fluctuating selection

alone can result in bistable dynamics. Using a stochastic model of simple feedback networks, we

apply fluctuating selection on gene expression and run in silico evolutionary simulations. We find

that independent of the specific nature of the environment–fitness relationship, themain outcome of

fluctuating selection is the evolution of increased evolvability in the network; system parameters

evolve toward a nonlinear regime where phenotypic diversity is increased and small changes in

genotype cause large changes in expression level. In the presence of noise, the evolution of increased

nonlinearity results in the emergence and maintenance of bistability. Our results provide the first

direct evidence that bistability and stochastic switching in a gene regulatory network can emerge as

a mechanism to cope with fluctuating environments. They strongly suggest that such emergence

occurs as a byproduct of evolution of evolvability and exploitation of noise by evolution.
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Subject Categories: metabolic and regulatory networks; simulation and data analysis

Keywords: environmental fluctuations; gene regulatory network; noise; phenotypic variability;

stochastic switching

Introduction

Organisms are able to display diverse phenotypes under a given

environment. This ability is first described in higher organisms

as a bet-hedging strategy (Cohen, 1966; Philippi, 1993), but is

increasingly found to be commonat the cellular level, where it is

underlined by stochastic switching among different phenotypic

states (Rao et al, 2002; Raser and O’Shea, 2005; Samoilov et al,

2006; Losick and Desplan, 2008; López-Maury et al, 2008; Raj

and van Oudenaarden, 2008). Inmicrobes, stochastic switching

is demonstrated in several phenotypic traits including persis-

tence to antibiotics (Balaban et al, 2004) and lactose metabo-

lism (Novick and Weiner, 1957; Ozbudak et al, 2004; Robert

et al, 2010) in Escherichia coli, sporulation (Veening et al, 2008)

and DNA uptake competence (Maamar et al, 2007) in Bacillus

subtilis, and galactosemetabolism in yeast (Acar et al, 2005). By

allowing a certain fraction of the population to display a distinct

phenotype, stochastic switching can allow populations to

survive environmental changes (Balaban et al, 2004; Visco

et al, 2010) and adapt faster to a new environment (Blake et al,

2006; Kashiwagi et al, 2006; Acar et al, 2008). On the other

hand, the heterogeneity in the population can incur a fitness

cost as some fraction of its members would always be

maladaptive in a given environment. Theoretical studies have

shown that such potential fitness costs can be balanced under

environmental fluctuations, resulting in a net fitness gain from

stochastic switching under a range of fluctuation rates and

fitness costs (Thattai and van Oudenaarden, 2004; Salathé et al,

2009; Gaál et al, 2010; Liberman et al, 2011). Further, switching

rates can evolve to be in tune with environmental fluctuation

rates so as to optimize the associated fitness tradeoffs (Kussell

and Leibler, 2005; Kussell et al, 2005). In line with these

theoretical findings, experimental evolution implementing

different environmental fluctuation rates can be used to select

for higher or lower rates of stochastic switching (Stomp et al,

2008; Beaumont et al, 2009).

Despite these findings, evolution of molecular mechanisms

leading to stochastic switching remains unexplained. Theore-

tical studies to date presume the existence of stochastic

switching and focus on the evolution of the rate of switching

between maladapted and adapted states either directly

(Thattai and van Oudenaarden, 2004; Kussell and Leibler,

2005; Salathé et al, 2009; Gaál et al, 2010; Visco et al, 2010;

Liberman et al, 2011) or thorough mutations affecting

noise levels (Ribeiro, 2008). Thus, it is not clear if and how

fluctuating selection alone could drive the emergence of

molecular implementation of stochastic switching at the single

cell level. It is generally believed that stochastic switching
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requires the interplay of noise and bistable dynamics in a gene

regulatory network (Dubnau and Losick, 2006); bistability

gives rise to two distinct states of gene expression, and noise in

gene expression can then lead some cells to be tipped to one

state from the other. Theoretical and experimental studies

indicate that such bistable dynamics underlie the phenotypic

switching seen in E. coli persister cell formation (Rotem et al,

2010) and lactose metabolism (Ozbudak et al, 2004; Robert

et al, 2010), B. subtilis DNAuptake competence (Maamar et al,

2007) and sporulation (Fujita et al, 2005), and yeast galactose

metabolism (Acar et al, 2005). Further, a specific synthetic

implementation of a bistable gene network in E. coli is shown

to display stochastic switching, and enables an adaptive

response to environmental changes (Kashiwagi et al, 2006).

Here, we analyze the molecular evolution of bistability and

noise in simple gene regulatory networks incorporating

feedback loops and capable of displaying bistability. Starting

with parameters that result in a monostable system without

feedback, we run evolutionary simulations under fluctuating

environments that select for different optimal gene expression

levels. We find that such fluctuating selection results in the

emergence and maintenance of bistability only in presence of

noise and under a limited range of environmental fluctuation

rates. We show that bistability emerges due to selection for

increased nonlinearity, which renders the system more

evolvable and allows faster adaptation to fluctuating environ-

ments. In the absence of noise, the system still evolves higher

evolvability by attaining nonlinear dynamics near the bistable

regime; however, the evolution of bistability is not observed.

These findings suggest that bistability and consequent

stochastic switching in gene regulatory networks allowing

for feedback loops, evolves only in the presence of noise and as

a byproduct of selection for increased evolvability.

Results

In order to study the evolution of molecular mechanisms

underpinning stochastic switching in microbes, we first

develop a model of the simplest genetic regulatory network

that can display bistability (seeMaterials andmethods). In this

system, a single gene G regulates its own expression by acting

as a transcription factor binding to its own cis-regulatory

module (Figure 1A). As experimentally shown (Becskei et al,

2001; Isaacs et al, 2003; Kaufmann et al, 2007), the resulting

nonlinearity from such feedback regulation can exhibit

bistability, that is, two distinct and stable states of expression

levels separated by an unstable state acting as a threshold

(Figure 1B, open circle). Noise in gene expression can then

result in protein levels stochastically reaching above the

threshold of the bistable system. When this happens, the

feedback regulation ensures that protein levels converge to a

high value (the ON state). In contrast, when protein levels drop

below threshold, protein levels can converge to a low value

(OFF state). Under the right conditions, in particular when the

expression level in the OFF state is close to the threshold,

noise-enabled stochastic switching could maintain a hetero-

geneous population of cells in the ON and OFF states. This

would translate to phenotypic diversity when these two states

correspond to distinct phenotypes (e.g., gene G encodes for a

master transcription regulator controlling downstream genes).

To explore the evolution of stochastic switching and

bistability under fluctuating environments, we evolve an

asexual population of virtual unicellular organisms, each

embedding a stochastic model of the system (stochastic

phenotype from now on) shown in Figure 1 (see Materials

and methods). To understand the role of noise in the evolution

of bistability, we also run evolutionary simulations where cells

implement a deterministic version of this model (deterministic

phenotype from now on). In each case, the parameters of the

system that are subject to mutation are a, the scaling factor for

the rate of transcription, b, the average number of proteins

produced per transcript (i.e., the average size of protein

bursts), N, the parameter controlling the strength of the auto-

regulatory feedback and KD, the parameter controlling the

threshold level of the dynamics resulting from this feedback.

Changes in these parameters are biologically plausible and can

result from point mutations in promoter regions and/or
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Figure 1 (A) Cartoon representation of the model incorporating a single gene auto-regulatory network. (B) Steady-state analysis of the system showing the production
(fp, in black) and degradation (fd, in blue) curves for G. The dashed and solid black lines correspond to parameter values a¼1.0, b¼1, KD¼50 and N¼0 (the starting
condition for evolutionary simulations) and a¼0.31, b¼4.7, KD¼52 and N¼5 (mean parameters resulting form one of the simulations under v¼0.05), respectively. The
solid and open circles indicate the stable and unstable steady states of the system.
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transcription factors regulating gene expression (Blake et al,

2006; Murphy et al, 2007). Fitness of individuals is determined

according to the environment. For our main simulations, we

consider a binary relationship between environment and

fitness, where either low (in low environment, Elow) or high (in

high environment, Ehigh) level of expression results in optimal

fitness (see Equation 6). This scenario could arise whenever G

encodes a protein that conveys high fitness in a certain

environment, but whose activity is detrimental or highly costly

in another. In additional simulations, discussed below, we also

consider variations on the modeling of the simple feedback

network, an alternative feedback circuit and alternative

environment–fitness couplings. In the main simulations, we

consider that the environment switches stochastically at a

certain probability v per generation. At the start of the simu-

lation, the population is homogenous with initial system

parameters set to give amonostable system that lacks the auto-

regulatory feedback loop (see Materials and methods).

Under all the environmental fluctuation rates we consider,

we find that evolution leads to significant improvements over

the initial fitness and results both in an increase in the mean of

population fitness averaged over 5000 generations, mw and a

decrease in its variance, sw (Figure 2). The extent of these

fitness improvements depends closely on the mutation rate

and the rate of environmental fluctuations. Interestingly, the

presence of noise (i.e., stochastic versus deterministic pheno-

types) only improves fitness under intermediate ranges

of environmental fluctuation rates with the exact range

depending also on the mutation rate. To better understand

this general trend in the improvement of fitness and its

molecular basis, we quantify steady-state system behavior,

resulting from the mean parameter values from the individual

evolved populations (see Equation 5). Summarized in Figure 3

and Supplementary Figure S1, this analysis suggest evolution

of three different strategies under three representative fluctua-

tion rates (slow, intermediate and fast). Under slowly switch-

ing environments (v¼0.001), the system evolves monostable

dynamics with steady-state level of G being either very high or

very low (Supplementary Figure S1C). This is because the

system spends a relatively long time in either Ehigh or Elow and

behaves as if it is under stable selection to adapt to one of

these environments. When environments fluctuate very fast

(v¼0.5), the period of selection under Ehigh or Elow is so short

that the best strategy seems to be to set G at a level that

corresponds to a reasonable fitness value in both environ-

ments. For the particular fitness function used in the

simulations shown in Figure 3, this corresponds to G¼50

(see Equation 6) and all simulations have evolved parameters

that gave a steady-state value close to this (Supplementary

Figure S1A). These two strategies that evolved for dealing with

slow and fast environmental fluctuations are interestingly

independent of the presence or absence of noise in the system.

In other words, evolution under these environmental fluctua-

tion rates neither exploited nor was affected by noise.

Under intermediary fluctuation rates (v¼0.05) system

parameters mostly evolved to values that resulted in an

intermediary level of G, especially in those simulations that

resulted in high fitness (Figure 3 and Supplementary Figure

S1B). In the hypothetical fluctuation-free deterministic phe-

notype, this seems to be achieved by system dynamics that is

underpinned by a non-zero N and that places steady-state

expression on a ridge in the phase plane that is roughly

equidistant to both low and high levels of G (black circles in

Figure 3). Simulations with the stochastic phenotype took this

approach of ‘being at the edge’ one step further and have

predominantly evolved system parameters resulting in bist-

ability (black triangles in Figure 3). It is important to note that

in both simulations with the deterministic and stochastic

phenotypes, simulations resulting in the highest fitness

values (blue outliers in Figure 2A) have evolved non-zero N

corresponding to nonlinearity in protein production (Supple-

mentary Figure S1B). In the stochastic case, this nonlinearity

was more pronounced and resulted in bistability.

While suggestive, these analyses based on the population

average of systems parameters over generations might give

misleading conclusions about systems dynamics of genotypes

in each generation. Further, they do not provide detailed

insight on the evolutionary dynamics, raising the question

about why these simulations resulted in the evolution of

nonlinearity and bistability in gene expression dynamics.

A possible explanation comes from considering the selection

process under such intermediary fluctuation rates. Cells

experience long enough selection periods under Ehigh and Elow
but also frequent environmental change, such that they need

to be capable of quickly shifting their steady-state expression

level. In the absence of signaling and other feedback mecha-

nisms, such as those seen spatial epigenetic control (Kelemen

et al, 2010), this can only be achieved through muta-

tions. Thus, cells evolving under intermediary rates of

environmental fluctuations are under selection for achieving

abrupt changes in expression levels as fast as possible, that is,

with fewest number of mutations. Such ability of a system

Figure 2 Mean fitness of the population averaged over the last 5000
generations of the evolutionary simulations, mw, versus its variance, sw. Open
circles and triangles represent results from simulations embedding a
deterministic and stochastic phenotype, respectively. Simulations with different
environmental fluctuation rates, v, are color coded as indicated by the legend.
Results from additional simulations with smaller and higher values of v are
omitted to achieve clarity. (A–C) Results from simulations run with mutation rate
set to 0.01, 0.001 and 0.0001, respectively.
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to maximize its rate of adaptation either by decreasing

number of mutations needed for adaptation or by increasing

their beneficial effects is broadly referred to as evolvability

(Wagner and Altenberg, 1996). Thus, we can hypothesize

that the seeming evolution of nonlinearity in the dynamics of

the system depicted in Figure 1 confers on it an increased

evolvability.

To test this hypothesis and gain a better insight on the

evolutionary dynamics, we run additional simulations under

a deterministically switching environment and monitored

evolvability and the distribution of parameters over indi-

viduals in the population. We concentrated this analysis on

the intermediary environmental fluctuation rates, where

stochastic and deterministic phenotypes gave different results

(v¼0.05), and run simulations with an environmental epoch

duration of 20 generations.We defined evolvability as the ratio

of the normalized fitness change (i.e., adaptation) over the

sum of relative changes in parameters (i.e., genetic shift) (see

Materials andmethods and Equation 8).We also considered an

alternative approach and quantified adaptation time as a

proxy for evolvability (see Materials and methods).

In line with the analysis of average parameter values, these

simulations showed evolution of larger values of N both in

simulations with deterministic and stochastic phenotypes.

Interestingly, we found that such evolution of higher values of

N are associated with an increase in evolvability (Figure 4A;

Supplementary Figure S2) and a decrease in adaptation time

(Supplementary Figures S3A and S4). Importantly, this effect is

visible in simulations with the stochastic phenotype well

before the emergence of bistability (Figure 4). These findings

suggest that evolution of higher N is selected for its ability to

confer higher evolvability (i.e., faster adaptation) in environ-

ments with intermediary fluctuation rates. To further support

this finding, we run additional simulations with fixed N. We

found that increasing values of N allow populations to adapt

faster to environmental fluctuations (Figure 5; Supplementary

Figure S5). Importantly, this trend ismostly independent of the

presence or absence of noise and is visible before the bistable

regime, indicating that it is mainly the increasing nonlinearity

in system dynamics that confers a higher evolvability to the

system.

To better understand howhigherN is linked to an increase in

evolvability, we performed a systematic study of phenotypic

effects of mutations in other parameters under different values

of N. This analysis revealed that increasing N results in an

increase in the diversity of gene expression level, and in the

phenotypic effects of mutations in a, b and KD (Figure 6). The

latter effect was also evident in systems encoded by the

average parameters obtained from our original simulations.

These display significant phenotypic shift with as few as two

mutations (Supplementary Figure S6). We note that the

relation of increasing N and increasing mutational effects is a

direct result of how N changes the shape of the production

curve fp (e.g., see Supplementary Figure S1). The former effect

of increasing diversity with increasing N can be understood in

light of a positive correlation between noise and nonlinearity

that is also shown to exist in certain signaling motifs (Shibata

and Fujimoto, 2005). To better understand how increasing

noise results from increasing N in the feedback circuit, we

derived an analytical expression for the protein level (see

Supplementary information). This showed that, up until

bistability emerges, increasing N (while keeping all other

parameters of the model fixed) does not strongly affect the

peak of the steady-state distribution of the protein levels, but

results in a widening of it (Supplementary Figure S7A). Thus,

increasing N results in higher noise level (Supplementary

Figure S7B), while the mean protein level remains mostly

unaltered. Exploiting this uncoupling between the effects of N

on noise and on the mean protein level, we then asked if solely

the increase in noise can provide a fitness advantage in either

of the two environments. Fixing all other parameters of the

model, we calculated the fitness of the resulting genetic system

in both environments for increasing levels of noise through an

increase in N (see Supplementary information). We found that

increasing noise levels, while the mean protein level remains

mostly unchanged, is beneficial under the fitness scheme

Figure 3 The steady-state behavior of the system with the mean values of
parameters as averaged over the last 5000 generations of the evolutionary
simulations. The different panels give the phase plane of the system (i.e., steady-
state level of G versus system parameters N, a and b) for different values of the
parameter KD as shown on each panel. On each panel, the level of G is color
coded, where locations with split colors indicate bistable regime with two distinct
steady-states levels of G. Solid circles and triangles correspond to results from
simulations embedding a deterministic and stochastic phenotype, respectively.
Results shown are from simulations with v¼0.05 and mutation rate set to 0.01.
Note that to achieve the mapping of the results on the phase plane, the mean
value of KD obtained from each simulation is rounded to the nearest tenth.
Only results with a KD value rounded to the interval 40–60 are shown for clarity
and are representative of results with other KD values (in particular, with respect
to values of N).
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given in Equation (6) and in the ‘low’ (‘high’) environment

when mean protein levels are below (above) 50 (Supplemen-

tary Figure S8). This result also extends to an alternative

scheme for coupling fitness and protein levels (see below and

Supplementary Figure S16). Taken together, these results

indicate that increasing N (and thus noise) is beneficial for

adaptation when mean protein levels are far from optimal.

This finding is in line with previous findings, which showed

a beneficial effect of noise under a convex fitness function

(Zhang et al, 2009).

These analyses strongly suggest that increasing N is selected

for in our simulations, due to its positive fitness effects that

arise from an increased noise (i.e., increased heterogeneity in

the population) and increased effects of mutations. We have

observed both of these effects in the evolutionary simulations

with stochastic and deterministic phenotypes (Figure 4B;

Supplementary Figure S3B). First, we find that as large values

of N evolve, adaptation to a new environment occurs very fast

and with few mutations (Figure 4B, generations 2100–2160).

Furthermore, simulations with the deterministic phenotype

show a clear pattern of increased phenotypic movement with

mutations after the evolution of larger N; while expression

level of G stays close to 50 and shifting slightly above and

below it with every environmental epoch, it moves to more

extreme values (achieving higher fitness) after the evolution of

largerN (Supplementary Figure S3B, generations 0–300 versus

generations 400–1000). Second, as N evolves to larger values,

we observe a general increase in the phenotypic diversity in

the population (Figure 4B, generations before versus after

generation 2100). This increase in diversity adds on top of that

resulting from the mutational diversity around the wild type

(i.e., quasi species), which is evident in both the runs with the

stochastic and deterministic phenotypes and is mainly driven

by changes in the parameter b (e.g., see corresponding panels

Figure 4 (A) Evolvability and population mean of N over environmental epochs for a sample simulation with stochastic phenotype and implementing deterministic
environmental fluctuations. The environment switches every 20 generations and mutation rate is set to 0.01. Evolvability is defined as the ratio of the normalized fitness
change (i.e., adaptation) over the sum of relative changes in parameters (i.e., genetic shift). The red points show the actual evolvability data, calculated for each epoch,
while the black line gives its moving average over epochs. The blue dotted line gives population average of N over epochs. (B) The distribution of individual parameters,
fitness and expression level of G over the population and over generations. Each row on each panel encodes a distribution for a specific quantity (as indicated at the
bottom of the panel) and for the specific generation shown on the y axis. The distributions are shown as a heat map ranging from red (highest density) to blue (lowest
density). Environments Elow and Ehigh are indicated as black and white bars on the y axis of the left-most panel.

Figure 5 Boxplots showing a summary of the distribution of evolvability from
10 simulation runs for each fixed value of N as shown on the x axis. Note that at
N¼2.5, we have a bistable system. In these simulations, the other parameters of
the system were free to evolve as before. The environment is deterministic and
switches every 20 generations. Mutation rate is set to 0.01. Evolvability is defined
as the ratio of the normalized fitness change (i.e., adaptation) over the sum of
relative changes in parameters (i.e., genetic shift). (A) Results from simulations
with stochastic phenotype. (B) Results from simulations with deterministic
phenotype.
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in Figure 4B and Supplementary Figure S3B). We note,

however, that mutational diversity in all parameters is lost in

the stochastic phenotype after the emergence of bistability.

This is because bistability mostly alleviates the need for

diversity by resulting in stochastic switching; two distinct

phenotypes expressed from the same genotype (see Figure 4B,

generations42400). Subsequent mutations can then tune the

noise level and the size of basins of attractions in the bistable

system to achieve maximal fitness and minimal adaptation

time. The former process can be seen to a certain extent in

Figure 4B.

While we observed evolution of larger N in all simulations

under intermediary rates of environmental fluctuations, we

also observed—mainly in simulations with the deterministic

phenotype—that a large value of N can also be lost again after

its emergence (Supplementary Figures S2 and S4). Such loss

of nonlinearity could be explained by the fact that in the

deterministic phenotype, the effect of increasingN is limited to

only a change of phenotypic effects of mutations in other

parameters, and that mutations in N themselves also change

the expression level of G even slightly. In particular, every

time the environment switches so to favor lower G, mutations

that decrease N can increase in frequency. In contrast, in the

stochastic phenotype, the associated phenotypic diversity with

higher N ensures that the population can move to a lower G

level without necessarily drifting out of the nonlinear regime.

In addition, the presence of noise in the stochastic phenotype

results in a positive fitness effect (Supplementary Figure S8),

and potentially reduces the efficiency of selection (Wang and

Zhang, 2011). Both effects would allow easier maintenance of

larger values of N in the stochastic phenotype model, even

under long stretches of stable environments. In other words,

increased diversity provides a type of robustness against

mutations that decrease N. Eventually, further mutations can

lead N to reach above a certain threshold and result in the

emergence of bistability. This results in stochastic switching

and provides the system with the perfect solution to the

particular fluctuating environment we implement. Such high

fitness associated with the stochastic switching ‘strategy’

under the fluctuating environment then ensures stable

Figure 6 Analysis of mutational effects of parameters on the phenotype (i.e., level of protein G) in genotypes with increasing value of N. This analysis shows that as N
increases, so does (i) the diversity in the expression level of G and (ii) the phenotypic effects of a given mutational increment in other parameters. Rows from top to
bottom show phenotypic effects of mutations in parameters b, a and KD, respectively. Columns from left to right show genotypes with increasing value of N as indicated at
the top. The x axis on each panel gives the level of proteinG, while the y axis gives the deviation in a particular system parameter based on its mutational increment in the
evolutionary simulations (see Materials and methods). The initial parameter is the middle point of the y axis (i.e., zero deviation) and the upper and lower halves of each
panel correspond to mutational deviations from that value. The basal values used on each panel are the same; b¼1.8, a¼0.8 and KD¼50 (different basal values gave
similar qualitative results as those shown). For each value of the parameter given on the y axis, we run 1000 independent simulations for 10 generations and encoded in
color the number of simulations that converged to the corresponding level of G indicated on the x axis. Solid dots correspond to simulations run with the deterministic
phenotype.
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maintenance of largeN and bistable dynamics. In linewith this

view, we find that in evolutionary simulations starting with an

initially large value of N, bistability is maintained under a

broad range of environmental fluctuation and mutation rates

(Supplementary Figure S9).

In summary, these findings strongly indicate that the fitness

benefit of having a larger N (i.e., nonlinear fp) comes from

an increased evolvability, rather than from noise-enabled

stochastic switching per se. Such a key role for selection

for higher evolvability under intermediate fluctuation rates

could also explain the general trend we observe in Figure 2

with regards to fitness difference between simulations with

stochastic and deterministic phenotypes. The fitness differ-

ence between these simulations is significant only when the

best strategy to cope with the environmental fluctuation is to

evolve a nonlinear fp, in which case simulations with the

stochastic phenotype can achieve higher fitness by evolving

bistability. As can be seen from Figure 2, this situation arises

not only for a specific range of environmental fluctuation rates

but rather for a specific combination of mutation rate and

environmental fluctuation rate. This is in line with the

previous findings on the evolution of evolvability (Meyers

et al, 2005; Stomp et al, 2008; Tsuda and Kawata, 2010), and is

amanifestation of the fact that selection for higher evolvability

only becomes significant when generation of mutations and

their time to fixation are in line with the duration of selection

under a specific environment. Population genetic models of

simple systems suggest that both higher mutation rate and

higher rates of fluctuating selection can decrease the time to

fixation of beneficial and neutral mutants (Ota and Kimura,

1972; Kimura, 1980), thus potentially allowing for selection of

systems that can generate more of these types of mutations

(Tsuda and Kawata, 2010). In our simulations, and in nature,

these effects of mutation rate and fluctuating selection have to

be in balance for the evolution of evolvability as suggested

before (Meyers et al, 2005).

How general are these findings? In particular, could selection

for incremental increase in N operate in other feedback

circuits, under different modeling choices or under other

environment–fitness relationships? To address this question,

we run several additional simulations. First, we confirmed the

robustness of the above results for a variety of alternative

modeling choices in our original feedback model. We found

that higher N and consequently higher evolvability evolves

when we allow all of the model parameters to evolve, when

feedback is modeled with an alternative form to that given in

Equation (1), and finally when we consider a coupling

between gene expression dynamics and growth (see Supple-

mentary information and Supplementary Figure S10). Of these

alternative modeling choices, the last one is particularly

interesting as both protein and mRNA levels in bacteria are

found to relate to growth rate in intricate ways (Klumpp et al,

2009). While such a coupling can itself lead to bistable gene

expression when a constitutively expressed gene has a direct

effect on growth rate (Klumpp et al, 2009), our simulations

indicate that it might not have a bearing on the evolution of

higher nonlinearity in a feedback-based gene regulatory

system under fluctuating environments. It can be envisioned,

however, that a constitutively expressed gene that alters

growth under certain environments could act as the precursor

to the feedback motif we consider here, by providing a

primary increase in heterogeneity (and thus potentially in

evolvability).

Second, we run additional simulations with a model that

captures another commonly observed gene regulatory motif;

the double negative feedback loop. This regulatory motif is

well studied in the l phage, where it underlies the lysis-

lysogeny decision (Ptashne, 2004), and an engineered version

of it is experimentally shown to display bistability in bacteria

(Gardner et al, 2000). We developed a mathematical model

of this system using the same approach as in the original

model (see Supplementary information and Supplementary

Figure S11A). Using this double negative feedback model,

we run five evolutionary simulations for 5000 generations

under a deterministically switching environment switching

every 20 generations (same conditions as above). All of these

simulations resulted in the evolution of bistability under-

pinned by higher values of N in the two feedback loops. In all

these simulations, we confirmed the positive relation between

nonlinearity and evolvability (Supplementary Figure S11B and

C). This suggests that this positive relation could be a generic

feature in a diverse set of gene regulatory motifs that involve

feedback loops.

Finally, we considered alternative fitness–environment

couplings and run simulations with the simple feedback

model. We first relaxed the assumption of a highly nonlinear

relation between the level of G and fitness. Using a more

linear relationship (Hill coefficient in Equation (6) set to 2), we

found that the main results remain unaltered (Supplementary

Figure S12). Next, we relaxed the assumption of a sigmoidal

fitness relation altogether and considered that fitness is given

by a normal distribution, where the optimal fitness in a given

environment corresponds to a specific level of G and where

any deviations from this level are detrimental to fitness

(Equation 7). Under such an environment–fitness relation-

ship, we assumed that evolutionary fluctuations correspond to

changes in the optimal level of G (i.e., the mean of the normal

distribution). Biologically, this scenariomight bemore broadly

applicable and simply assumes that each of the different

environments an organism encounters requires a different

optimal level of G. Within this scenario we considered two

types of environmental fluctuations: (i) environments fluctu-

ating between two specific optimal mean values (high and

low) and (ii) environments fluctuating randomly between

optimal mean values in a wide range.

We find that evolutionary simulations under these scenarios

still result in the improvement of fitness (Supplementary

Figure S13) and in the evolution of increased nonlinearity

(Supplementary Figures S14 and S15). Interestingly, we find

that the presence of noise is mostly detrimental under this type

of environment–fitness relationship (Equation 7), resulting in

the deterministic phenotype evolving higher fitness solutions

compared with the stochastic phenotype. This result can be

understood considering the normal distribution of fitness

encoded by Equation (7), which in the presence of noise

inhibits attaining optimal fitness as also observed in theore-

tical analysis of the effects of noise in metabolism (Wang and

Zhang, 2011). Although in our simulations the parameters are

free to evolve tominimize noise, the system cannot do so freely

as it is also under selection to achieve a specific level of
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G. When the normal distribution of fitness has a wider

variance, this detrimental effect of noise and consequently the

difference between the fitness resulting from stochastic and

deterministic phenotypes is reduced (Supplementary Figure

S13). Under the environment–fitness relationship given by

Equation (7), the evolution of bistability is much more limited

and is only observed in few cases under the scenario where

environment fluctuates between two specific optimal values of

G (Supplementary Figure S14).

Both sets of results are in line with the above-described

relation of noise, N and fitness. In our model, increasing

N results in an increase in noise (Supplementary Figure S7),

which then can have a positive effect on noise under a convex

fitness function (Supplementary Figure S8). While reducing

the Hill coefficient in Equation (6) does not alter these

dynamics significantly, using a normal distribution for fitness

(as in Equation 7) results in a fitness function that is concave

near optima. This limits the positive fitness effects of

increasing noise (see Supplementary Figure S16). While the

effect of increasing N on other mutations is maintained, this

can limit the evolution of N to high values and emergence of

bistability as observed in the simulations. Taken together,

these results suggest that evolution of increased evolvability

(through evolution of nonlinear system dynamics), but not

the evolution of bistability, might occur under broad fitness–

environment relationships.

Discussion

This analysis shows that the main and broadly applicable

effect of fluctuating selection on the evolution of gene

regulatory networks that allow for a feedback loop is selection

for specific system dynamics that confer an increased

evolvability. Increased evolvability mainly results from evolu-

tion of system parameters controlling the feedback loop, into a

nonlinear regime, where both phenotypic diversity and the

amount of phenotypic shift caused by individual mutations are

increased. We find that under a specific but biologically

plausible form of fluctuating environment, selection for

having system parameters in such a nonlinear regime results

in the emergence of bistability and the associated stochastic

switching. Under a switch-like environment, bistability offers

immediate adaptation by allowing expression of two distinct

phenotypes from the same genotype and offers additional

‘points of operation’ for evolution, such as the size of basins of

attractions for the steady states.

Under the evolutionary scenario considered here and in the

gene regulatory motifs involving a feedback loop, the

beneficial effects of bistability are realized only under specific

environment–fitness relationships and in the presence of

noise. Consequently, we find that noise is a necessary but not

sufficient condition for the evolution of bistability through

fluctuating selection under these conditions. Once bistability

arises, noise-induced stochastic switching can give rise to

additional fitness benefits, such as survival under advert

conditions (Balaban et al, 2004). Furthermore, the rate of

switching can be tuned to environmental fluctuation rates

(Kussell and Leibler, 2005) via changes altering system

dynamics and/or noise level (Ribeiro, 2008). Noise is an

inevitable feature of cellular systems (Lestas et al, 2010) and

could itself be under positive or negative selection (van Hoek

and Hogeweg, 2007; Tănase-Nicola and ten Wolde, 2008;

Zhang et al, 2009; Wang and Zhang, 2011). Thus, other

selective forces that lead to higher/lower noise might also

enhance/inhibit the evolution of bistability and nonlinearity in

gene regulation as indicated for example in the lactose

metabolism of E. coli (van Hoek and Hogeweg, 2007).

We find that for the gene regulatory networks considered

here, evolution of both evolvability and bistability are limited

to a specific combination of mutation and environmental

fluctuation rates. This is in line with other observations

reporting the evolution of higher evolvability (Meyers et al,

2005; Stomp et al, 2008; Tsuda and Kawata, 2010) and indi-

cates a need for a balance between environmental fluctuation

rate and mutation rate so that the latter can lead to a selection

for higher evolvability (Meyers et al, 2005). In our simulations,

evolvability leads to the emergence of bistability in the gene

regulatory network and interestingly, we find this bistability to

be maintained in subsequent evolution under a broader range

of environmental fluctuation and mutation rates (Supplemen-

tary Figure S9). These findings do not contradict earlier

studies, demonstrating a fitness benefit for stochastic switch-

ing under a wide range of environmental fluctuation rates

(Thattai and van Oudenaarden, 2004; Kussell and Leibler,

2005; Kussell et al, 2005; Salathé et al, 2009; Gaál et al, 2010;

Visco et al, 2010; Liberman et al, 2011), but show that those

results cannot be interpreted as fluctuating selection to be a

general mechanism for leading to molecular evolution of

stochastic switching.

It is important to emphasize that the increased evolvability

we observe in these simulations is based solely in system

dynamics; a shift into a nonlinear regime results in larger

phenotypic jumps from a given mutation and also to an

increased phenotypic diversity. These two effects can essen-

tially be described as changing the genotype–phenotype

mapping in such a way to increase evolvability and endowing

the system the ability to adapt to environmental shifts quickly.

Similar mechanisms of evolvability, but that draw mainly on

mutational biases and result from structural and sequence-

based features have been described in both gene (Crombach

and Hogeweg, 2008; Tsuda and Kawata, 2010) and logic

circuits (Parter et al, 2008) and also in promiscuous proteins

(Aharoni et al, 2005), viral RNA (Burch and Chao, 2000) and

TATA-box containing genes (Landry et al, 2007). Our results

extend this list of observed evolvability in biological systems

and could explain the observed stochasticity and nonlinearity

in the regulation of genes whose fitness effects are directly

coupled with the environment, including antitoxin–toxin

proteins, metabolic enzymes and master transcriptional

regulators (Ozbudak et al, 2004; Fujita et al, 2005; Robert

et al, 2010; Rotem et al, 2010). We note that interestingly, some

of the epigenetic and genetic mechanisms other than feedback

regulation that control the expression of environmentally

relevant genes in a number of microbes (van Der Woude and

Baumler, 2004) can display high levels of nonlinearity and

bistability (Sedighi and Sengupta, 2007), supporting the

hypothesis that high nonlinearity might be a general strategy

to achieve high evolvability in the regulation of environmental

genes.
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Materials and methods

Single gene positive-feedback loop model

In order to capture the underlying stochasticity of gene regulation, we
constructed a positive-feedback model using the stochastic chemical
kinetic framework (Gillespie, 2007). The model describes the regula-
tion of a geneG by its own protein product G. In particular, we consider
that G can positively regulate the transcription of G by binding to its
cis-regulatory module. This type of regulation is common in biology
and a synthetic implementation of it has experimentally verified its
potential for achieving bistability so to give rise to two distinct steady-
state levels of protein amount (Becskei et al, 2001; Isaacs et al, 2003).
Themodel consists of two species corresponding to the protein (G) and
mRNA (mG) and four reaction processes: transcription, translation,
mRNAdegradation and protein degradation (Figure 1A). Onemolecule
of mG is synthesized from G via the transcription reaction whose
propensity is given by:

r1ðmG;GÞ ¼ a �
k1 þ k2 � ðG=KDÞ

N

1þ ðG=KDÞ
N

 !

ð1Þ

where the parameters k1 and k2 are arbitrarily set to 0.02 and 0.2,
respectively, while parameters a, KD and N are free to evolve. This
production function is based on the equilibrium statistical thermo-
dynamic model of transcriptional regulation (Ackers et al, 1982),
which is used frequently formodeling the dynamics of gene expression
processes. This approach represents transcription dynamics based
on the probabilities of the configuration of the promoter and operator
sites in thermodynamic equilibrium. In the Supplementary informa-
tion, we consider an alternativemodel that uses the Hill function as the
production term.

One molecule of G is synthesized using mG as a template through
the translation reaction while one molecule of mG is removed through
the mRNA degradation reaction. The propensity functions of these
reactions are, respectively, given by:

r2ðmG;GÞ ¼ k3 �mG ð2Þ

r3ðmG;GÞ ¼ k4 �mG ð3Þ

where the parameter k4 is set to 0.1 and parameter k3 is free to evolve.
At the start of evolutionary simulations, we set k3¼0.1 resulting in
b¼k3/k4¼1, which indicates that on average one copy of protein
will be synthesized per transcript. The other reaction process in our
model is the protein degradation where one molecule of G is removed
from the system. The propensity function of this reaction is given by:

r4ðmG;GÞ ¼ k5 � G ð4Þ

where the parameter k5 is set to 0.002. See also Supplementary
information for an alternative implementation of these parameters,
considering their coupling to growth rate (i.e., fitness), and also for
simulations that allow all of the parameters to evolve.

In the continuous-deterministic framework, setting all the kinetic
law functions to zero allows us to solve for the steady-state values of
mG and G. In particular, using the G* notation for the steady-state
value of G, we can derive the following relation at steady state:

b � a �
k1 þ k2 � ðG

�=KDÞ
N

1þ ðG�=KDÞ
N

 !

¼ k1 � G
� ð5Þ

where the left and right sides denote the production (fp) and
degradation (fd) functions for G, respectively. This reveals that, with
an appropriately high value ofN (i.e., a high-binding cooperativity ofG
to the promoter of the gene G), we can have three distinct and unique
steady-state values for G, making the system bistable (Figure 1B).

Evolutionary simulations

We consider a population of 1000 cells, each of which contains the
positive-feedback genetic circuit described above. The evolutionary

simulations start with a homogenous population with initial para-
meters set to a¼1.0, b¼1, KD¼50 and N¼0. Note that this results in
a monostable system that is lacking feedback regulation (Figure 1B).
We simulated the population in a fluctuating environment for 10 000
generations. The initial values of mG and G at the first generation are
both set to zero. For each generation, the stochastic models are
simulated using the direct method implementation of Gillespie’s
stochastic simulation algorithm (Gillespie, 1977) for 2000 time units.
In the deterministic case of the model, we iterate functions fp and fd to
update the amount of G to calculate the steady-state level for each
generation. We assume that the system reached steady state when the
difference between fp and fd becomes less than 1/(k5� c), where
c¼5�105. At the beginning of each succeeding generation, the values
of mG and G are reduced to the largest integers that are smaller than
mG/2 and G/2, respectively, to model cell division. We have also
considered the case of relating fitness to concentration, in which case
we run simulations without the cell division step described above (as
concentrations can be considered to remain constant during cell
division). These simulations resulted in qualitatively the same results
as described in themain text (see Supplementary Figures S17 and S18).

At the end of each generation, a new population is produced from
the current one using random drawing with replacement. A random
individual is picked from the population and is cloned into the new
population if a uniformly distributed random number (from the
interval [0,1]) is below its normalized fitness. Then, it is put back into
the current population and a new draw is made, the process continued
until the new population contains 1000 individuals. During cell
replication, mutations happen at a rate u, and are modeled as small
perturbations to either one of the parameters a, k3, KD and N (with
equal probability). Note that mutating k3 is equivalent to mutating the
burst size, b. Mutations of a, b and KD are captured by adding A(0,
0.22), A(0, 1.02) and A(0, 5.02), respectively, where A(m, s2) is a
normal randomvariablewithmean m and s.d.s. Note that we imposed
the condition that the values of a, b and KD be at least 0.01, 0.01 and
10�20, respectively. The mutation of N is captured by adding 0.5 or
�0.5 at the equal probability, where the value of N is set to beX0. See
also Supplementary information for alternative simulations that allow
all of the model parameters to evolve.

Fitness is determined as a function of the environment and the
amount of G at the end of each generation. For the main simulations,
we consider two environments, where either a low (Elow) or high
(Ehigh) level of the protein is beneficial. The simulations start in Ehigh
and subsequently the environment changes in each generation with a
probability v. The fitness under the two environments is given by
functions whigh and wlow:

whigh ¼
ðGt¼2000=50Þ

5

1þ ðGt¼2000=50Þ
5

wlow ¼ 1�whigh

ð6Þ

where Gt¼2000 corresponds to the amount of G in the cell at the end
of one generation. Note that Equation (6) assumes a symmetric
fitness in the two environments in relation to the level of G, and
assumes that the costs of producingG are negligible. Based on previous
studies, we expect that such a cost, or more broadly, having an
asymmetric fitness for the two environments would reduce selection
for bistability and stochastic switching as indicated previously
(Salathé et al, 2009).

In additional simulations, we considered alternative scenarios for
environmental fluctuations and environment–fitness relations. For
these simulations, fitness was given by;

w ¼ exp
�ðGt¼2000 � xÞ2

2s2

 !

ð7Þ

where Gt¼2000 corresponds to the amount of G in the cell at the end of
one generation as before and x and s determines the level of G corres-
ponding to maximal fitness and the variance of fitness distribu-
tion around that level, respectively. Using this fitness function, we
considered two scenarios for environmental fluctuations: (i) x changes
between two specific optimal mean values corresponding to a ‘low’
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(x¼20) and ‘high’ (x¼80) environment and (ii) x changes randomly in
the interval [0,120].

All evolutionary simulations are coded in the C language. The source
code for simulations that implement the single feedback loopmodel with
all its parameters defined as evolvable and deterministic environmental
switching are made available as Supplementary information. Source
code of the remaining simulations, as described in the main text and the
Supplementary information, can be derived from the provided code or
could be obtained from the authors upon request.

Measuring evolvability

For the evolutionary simulations with a deterministically switching
environment, we quantified the evolvability of a population adapting
to a fluctuating environment as the ratio of the normalized fitness
change over the sumof relative changes in parameters. Thismeasure is
similar to the control coefficient used in the analysis of metabolic
networks (Heinrich and Schuster, 1996). The control coefficient gives
the logarithmic sensitivity as the relative change of a system variable
(e.g., flux) in response to a relative change in a rate. Similarly, we
define evolvability as the sensitivity of the systems’ fitness, and
measure it as a relative change of the average fitness arising from
relative mutational shifting of the parameters over a given epoch (i.e.,
timewindow).We define relative change in fitnesswith respect to final
rather than initial fitness, so to avoid relative change in fitness to
become artificially sensitive to a small value of the initial fitness, and to
account for the experimentally observed saturation in fitness as it
approaches higher values (Schoustra et al, 2009; MacLean et al, 2010).
Thus, evolvability is given as;

evolvability ¼
wnsþd �wns
ð Þ �wnsþd

e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

p

pnsþd�pns
pnsþe1

� �2
r ð8Þ

where wn and pn are the average of the fitness and evolvable para-
meter p over the population at generation n, respectively. ns indicates
the first generation following an environmental switch, while d is the
number of generations between the first and last generation in an
environmental epoch in the evolutionary simulations with a determi-
nistically switching environment (i.e., d¼19 when epoch length is 20).
We use the small correcting factors e1¼10

�10 and e2¼1, to avoid
division by zero. In Equation (8), the nominator gives the gain in the
average fitness in a given epoch scaled by the average fitness of the last
generation in that epoch (i.e., the extent of adaptation), while the
denominator expresses the relative change in evolvable parameters
during that same epoch (i.e., the extent of genetic change).

As an alternative measure for evolvability, we have also monitored
adaptation time defined as the number of generations it takes for the
mean fitness to reach 80% of the maximum possible following an
environmental switching event.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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