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We study wave transmission through one-dimensional random nonlinear structures and predict a novel

effect resulting from an interplay of nonlinearity and disorder. We reveal that, while weak nonlinearity

does not change the typical exponentially small transmission in the regime of the Anderson localization, it

affects dramatically the disorder-induced localized states excited inside the medium leading to bistable

and nonreciprocal resonant transmission. Our numerical modeling shows an excellent agreement with

theoretical predictions based on the concept of a high-Q resonator associated with each localized state.

This offers a new way for all-optical light control employing statistically homogeneous random media

without regular cavities.
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The localization of waves in disordered media, also

known as Anderson localization, is a universal phenome-

non predicted and observed in a variety of classical and

quantum wave systems [1]. Recent renewed interest in this

phenomenon is driven by a series of experimental demon-

strations in optics [2] and Bose-Einstein condensates [3].

One of the important issues that has arisen in these studies

is that the disordered systems can be inherently nonlinear,

so that an intriguing interplay of nonlinearity and disorder

could be studied experimentally.

Nonlinear interaction between the propagating waves

and disorder can significantly change the interference ef-

fects, thus fundamentally affecting localization [4,5].

However, most of the studies of the localization in random

nonlinear media deal with the ensemble-averaged charac-

teristics of the field, such as the mean field and intensity,

correlation functions, etc. These quantities describe the

averaged, typical behavior of the field, but they do not

contain information about individual localized modes

(resonances), which exist in the localized regime in each

realization of the random sample [6–9]. These modes are

randomly located in both real space and frequency domain

and are associated with the exponential concentration of

energy and resonant tunneling. In contrast to regular reso-

nant cavities, the Anderson modes occur in a statistically

homogeneous media because of the interference of the

multiply scattered random fields. Although the disorder-

induced resonances in linear random samples have been

the subject of studies for decades, the resonant properties

of nonlinear disordered media have not been explored thus

far.

In this Letter we study the effect of nonlinearity on the

Anderson localized states in a one-dimensional random

medium. As a result of interplay of nonlinearity and dis-

order, bistability and nonreciprocity appear upon resonant

wave tunneling and excitation of disorder-induced local-

ized modes in a manner similar to that for regular cavity

modes. At the same time, weak nonlinearity has practically

no affect on the averaged localization background.

First, we consider a stationary problem of the trans-

mission of a monochromatic wave through a one-

dimensional random medium with Kerr nonlinearity. The

problem can be reduced to the equation

d2c

dx2
þ k2½n2 � �jc j2�c ¼ 0; (1)

where c is wave field, x is coordinate, k is wave number in

the vacuum, n ¼ nðxÞ is the refractive index of the me-

dium, and �� is the Kerr coefficient.

In the linear regime, �jc j2 ¼ 0, the multiple scattering

of the wave on the random inhomogeneity n2ðxÞ brings

about Anderson localization. The main signature of the

localization is an exponential decay of the wave intensity,

I ¼ jc j2, deep into the sample and, thus, an exponentially

small transmission [1,10]: I
ðtypÞ
out � Iin expð�2L=llocÞ � 1.

Here L is the length of the sample and lloc is the localiza-
tion length which is the only spatial scale of Anderson

localization. Along with the typical wave transmission,

there is an anomalous, resonant transmission, which ac-

companies excitation of the Anderson localized states in-

side the sample and occurs at random resonant wave

numbers k ¼ kres0 [6–9]. In this case, the intensity distri-

bution in the sample is characterized by an exponentially

localized high-intensity peak inside the sample, Ipeak �
Iin, and a transmittance much higher than the typical one:

IðresÞout � I
ðtypÞ
out (see Fig. 1).

Excitation of each localized mode inside the random

sample can be associated with an effective resonator cavity

located in the area of field localization and characterized
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by high quality factor Q � 1 [11]. According to this

model, the transmittance spectrum TðkÞ in the vicinity of

a resonant wavelength, jk� kres0j � kres0, is given by the

Lorentzian dependence [7,12]:

TðkÞ ¼ Tres

1þ ½2Qðk=kres0 � 1Þ�2 ; (2)

where Tres ¼ Tðkres0Þ.
Let us account now for the effect of weak nonlinearity:

j�c 2j � 1. The nonlinearity becomes noticeable, first of

all, at the resonant intensity peaks Ipeak inside the sample. It

is physically clear that the Kerr term in Eq. (1) changes the

effective refractive index of the medium leading to the

intensity-dependent shift of the resonant wave number:

kres0 ! kresðIpeakÞ. Since the values of Ipeak and Iout are

unambiguously connected, the resonant wave number is a

function of the output intensity, which in the case of weak

nonlinearity takes the form

kresðIoutÞ ’ kres0 þ
dkres
dIout

�

�

�

�

�

�

�

�Iout¼0

Iout: (3)

Substituting Eq. (3) into Eq. (2) yields

Tðk; IoutÞ �
Iout
Iin

¼ Tres

1þ ½A�Iout þ ��2 : (4)

Here we introduced two dimensionless parameters A and

�, which characterize, respectively, the strength of the

nonlinear feedback and the detuning from the resonant

wave number:

A ¼ 2Q

�

d lnkres
dIout

�

�

�

�

�

�

�

�Iout¼0

; � ¼ 2Q

�

1� k

kres0

�

: (5)

Equation (4) establishes a relation between the input and

output wave intensities, which is cubic with respect to Iout.
It has a universal form typical for nonlinear resonators

possessing optical bistability [13]. From Eq. (5) it follows

that in the region of parameters,

A� < 0; �2 > 3; j�jIin >
8

3
ffiffiffi

3
p 1

jAjTres

; (6)

the dependence IoutðIinÞ is of the S type and the stationary

transmission spectrum TðkÞ is a three-valued function. In

most cases, one of the solutions is unstable, whereas the

other two form a hysteresis loop in the IoutðIinÞ dependence
(see Figs. 2 and 3).

It is important to emphasize two features of Eqs. (4) and

(5), describing the nonlinear resonant transmission through

a localized state. First, they have been derived without any

approximations apart from the natural smallness of the

nonlinearity and Lorentzian shape of the spectral line.

Second, although the resonant transmission, the effect of

nonlinearity, and bistability owe their origin to the excita-

tion of the Anderson localized mode inside the sample,

Eqs. (4) and (5) contain only quantities which can be found

via outside measurements. Indeed, Tres, kres0, and Q are

determined from the transmission spectrum in the linear

regime, Eq. (2), while the derivative d lnkres=dIoutjIout¼0 can

be retrieved from the shift of the spectral line when the

intensity is changed. This enables one to obtain the whole

dependence IoutðIin; kÞ for any given resonance performing

external measurements of TðkÞ at only two different in-

tensities of the incident wave.

To verify theoretical predictions, we numerically model

the transmission of light incident from x ¼ 0 through a

random sample consisting of N ¼ 19 alternating layers

with dielectric constants n21 ¼ 1 and n22 ¼ 10 and random

widths uniformly distributed in the range ð0:12; 1:08Þ �m;
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FIG. 1 (color online). Excitation of localized modes in the

linear regime: (a) normalized intensity of the field, I=Iin (log

scale), versus the wavelength and position in the sample and

(b) the transmission spectrum.

FIG. 2 (color online). Nonlinear deformations of the trans-

mission spectra of the resonances 1 and 2 from Fig. 1 at different

intensities of the incident wave: numerical simulations of Eq. (1)

(curves) and theoretical Eq. (4) (symbols). Light gray stripes

indicate three-valued regions for the high-intensity curves, where

only two of them (corresponding to the lower and upper

branches) are stable.
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Fig. 1. This corresponds to lloc ¼ 3:53 �m. Figure 2 shows

nonlinear deformations of the resonant transmission spec-

tra TðkÞ for different values of �Iin > 0, which exhibit

transitions to bistability. The analytical dependence TðkÞ
given by Eqs. (4) and (5) with the parameters Tres,Q, and A
found from the numerical experiments are in excellent

agreement with the direct numerical solutions of Eq. (1).

In numerical simulations of stationary regime we used the

standard 4th order Runge-Kutta method. We note that the

incident field amplitude is a single-valued function of the

transmitted field. Thus, we solve the second-order ordinary

differential equation [Eq. (1)] using transmitted field as the

initial condition for the equation.

The dimensionless parameters Tres, and Q from Eqs. (4)

and (5), can also be estimated from a simple resonator

model of the Anderson localized states [7,8,11]:

Tres ¼
4T1T2

ðT1 þ T2Þ2
; Q�1 � T1 þ T2

4kres0lloc
; (7)

where

T1 � exp½�2xres=lloc�; T2 � exp½�2ðL� xresÞ=lloc�
(8)

are the transmission coefficients of the two barriers that

form the effective resonator, xres is the coordinate of the

center of the area of field localization, lloc is the localiza-

tion length, and L is the length of the sample.

Introducing a weak Kerr nonlinearity into the resonator

model, one can also estimate the nonlinear feedback pa-

rameter A,

A�Q=T2 �n
2; (9)

where �n2 is the mean value of n2ðxÞ.
It is important to note that each disorder-induced reso-

nance is associated with its own effective cavity, so that the

disordered sample can be considered as a chain of ran-

domly located coupled resonators [14].

Equations (7)–(9) enable one to estimate the values of

the parameters describing the nonlinear resonant wave

tunneling in Eqs. (4) and (5) by knowing only the basic

parameters of the localization—the localization coordinate

and the localization length. In particular, substituting

Eqs. (7)–(9) into Eq. (6) and taking into account that the

most pronounced transmission peaks correspond to the

localized states with x ’ L=2 and T1 � T2, we estimate

the incident power needed for bistability of localized

states:

j�jIin *
expð�2L=llocÞ

kres0lloc
: (10)

For the parameters used in our simulations this gives a

quite reasonable value j�jIin * 10�5. If we increase the

length of the sample, the Q factors of the resonances grow,

and the incident power needed to observe bistability be-

comes smaller.

To demonstrate temporal dynamics upon the bistable

resonant tunneling, we implemented an explicit iterative

nonlinear finite-difference time-domain (FDTD) scheme

for modeling pulse propagation through the disordered

nonlinear sample. For precise modeling of the spectra of

narrow high-Q resonances, we employed a fourth-order

accurate algorithm, both in space and in time [15], as well

as the Mur boundary conditions to simulate open bounda-

ries and total-field–scattered-field technique for exciting

the incident wave. Sufficient accuracy was achieved by

creating a dense spatial mesh of 300 points per wavelength

(dx ¼ �=300). To assure stability of the method in a non-

linear regime, we used the time step of dt ¼ dx=3c, and
each simulation ran for N ¼ 2� 108 time steps. To com-

pare the results of the FDTD simulations with the steady-

state theory, we consider transmission of long Gaussian

pulses with central frequencies and amplitudes satisfying

conditions (10); see Fig. 3(d). With an appropriate choice

of the signal frequencies, we observe hysteresis loops in

the IoutðIinÞ dependences, which are in excellent agreement

with stationary calculations, as shown in Figs. 3(a)–3(c).

Transitional oscillations typical for bistable nonlinear

structure accompany jumps between two stable branches

[16], and strong reshaping of the transmitted pulse eviden-

ces switching between the two regimes of transmission,

Fig. 3(d). The period of the transitional oscillations is

defined by mismatch between external wave frequency

and nonlinear eigenfrequency, whereas the decay rate is

defined by the Q factor. We note that a different choice of

the signal frequencies near the resonance can lead to
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FIG. 3 (color online). Stationary and FDTD simulations show-

ing hysteresis loops in the output versus input power dependence

for resonances 1,2, and 3 in Fig. 1. Panel (d) shows deformation

of the transmitted Gaussian pulse corresponding to the hysteresis

switching on the resonance 2.
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various other behaviors of output versus input curves, with

transmission either increasing, when nonlinear resonance

frequency shifts towards the signal frequency, or decreas-

ing in the opposite case.

In addition to bistability, the resonant wave tunneling

through a nonlinear disordered structure is nonreciproci-

cal. As is known for regular systems, nonsymmetric and

nonlinear systems may possess nonreciprocal transmission

properties, resembling the operation of a diode. An all-

optical diode is a device that allows unidirectional propa-

gation of a signal at a given wavelength, which may

become useful for many applications [16,17]. A disordered

structure is naturally asymmetric in the generic case, and

one may expect a nonreciprocal resonant transmission in

the nonlinear case. To demonstrate this, we modeled propa-

gation of an electromagnetic pulse impinging the same

sample from different sides and monitored the transmis-

sion characteristics. One case of such nonreciprocical

resonant transmission is shown in Fig. 4. We observe

considerably different transmission properties in opposite

directions with the maximal intensity contrast between two

directions 7:5:1. Moreover, the threshold of bistability is

also significantly different for two directions: there is a

range of incident powers, for which the wave incident from

one side of the sample is bistable, while there is no sign of

bistability for the incidence from the other side. Figure 4(b)

shows the pulse reshaping for incidence from opposite

sides of the structure.

To conclude, we have studied the wave transmission

through a weakly nonlinear statistically homogeneous

one-dimensional random medium and demonstrated novel

manifestations of the interplay between nonlinearity and

disorder. We have shown that even weak nonlinearity

dramatically affects the resonant transmission associated

with the excitation of the Anderson localized states leading

to bistability and nonreciprocity. Despite the random char-

acter of the appearance of Anderson modes, their behavior

and evolution are rather deterministic, and, therefore, these

modes can be used for efficient control of light similar to

regular cavity modes. Numerical modeling shows an ex-

cellent agreement with theoretical analysis based on the

concept of a high-Q resonator associated with each local-

ized state. Our results demonstrate that, unlike infinite

systems, the Anderson localization in finite samples is

not destroyed by weak nonlinearity—instead it exhibits

new intriguing features typical for resonant nonlinear

systems.
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FIG. 4 (color online). (a) Nonreciprocal transmission through

the nonlinear disordered structure, showing different output

powers for identical waves incident from different directions.

(b) Corresponding shape of the incident pulse, and pulses trans-

mitted in different directions.
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