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Abstract—Bistatic synthetic aperture radar (SAR) uses a sep-
arated transmitter and receiver flying on different platforms to
achieve benefits like exploitation of additional information con-
tained in the bistatic reflectivity of targets, reduced vulnera-
bility for military applications, forward-looking SAR imaging,
or increased radar cross section. Besides technical problems such
as synchronization of the oscillators, involved adjustment of trans-
mit pulse versus receive gate timing, antenna pointing, flight coor-
dination, and motion compensation, the development of a bistatic
focusing algorithm is still in progress and not sufficiently solved.
As a step to a numerically efficient processor, this paper presents
a bistatic range migration algorithm for the translationally in-
variant case, where transmitter and receiver have equal velocity
vectors. In this paper, the algorithm was successfully applied
to simulated and real bistatic data. The real bistatic data have
been acquired with the Forschungsgesellschaft für Angewandte
Naturwissenschaften (FGAN)’s X-band SAR systems, namely the
Airborne Experimental Radar II and the Phased Array Multi-
functional Imaging Radar, in October 2003.

Index Terms—Bistatic SAR, bistatic SAR experiments, range
migration algorithm, synthetic aperture radar (SAR).

I. INTRODUCTION

THE INTEREST in bistatic synthetic aperture radar (SAR)
has rapidly increased in the last years. This is based

on the specific advantages of bistatic SAR configurations in
comparison with monostatic systems like the increased infor-
mation content of bistatic SAR data with regard to feature
extraction and classification. This could be worthwhile, e.g.,
for topographic features, surficial deposits, and drainage, to
show the relationships that occur between forest, vegetation,
and soils. This provides important information for land classifi-
cation and land-use management. Also, agriculture monitoring,
soils mapping, and archaeological investigations could benefit
from bistatic SAR imaging.

Even for objects that show a low radar cross section (RCS) in
monostatic SAR images, one can find distinct bistatic angles to
increase their RCS to make these objects visible in the final
SAR image. On the other hand, especially urban areas are
affected by strong reflections due to the dihedral and polyhedral
effects, which can be reduced by using different positions
for the transmitter and receiver, which means a bistatic SAR
constellation. The result is a more homogeneous SAR image in
contrast to the monostatic case.
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Remote sensing with bistatic SAR systems can be real-
ized with different platform pairs. For example, future bistatic
SAR applications could use small “receive-only” SAR systems
mounted on airplanes, unmanned aerial vehicles (UAVs), or
mountains in conjunction with a satellite as transmitter, or both
the transmitter and receiver could be mounted on airplanes like
in the bistatic experiments described in this paper. In any a
case, the space–time synchronization of the antenna footprints
is a big problem. The key element to achieve an overlap of the
footprints is the electronically steerable phased array antennas.
The advantage of these antennas is the possibility to track the
antenna beam very quickly.

This paper presents a bistatic range migration algorithm for
the special case of equal velocity vectors of transmitter and
receiver. A first approach was introduced in [1] for a two-
dimensional (2-D) geometry. In [2], another bistatic range
migration algorithm for a three-dimensional (3-D) geometry
was proposed, where the SAR image is directly reconstructed in
the ground plane. The processor is not optimum in the sense of
the monostatic range migration processor, but the degradation
is negligible for wide ranges of geometrical parameters. The
advantage of such a Fourier-based processor is its numerically
efficiency.

A further approach of a range migration processor [3] is
very similar to [2] and [4], but it uses a physical reference and
approximates the linear phase term by a Taylor series.

Another type of a bistatic SAR processor is presented in [5]
and [6]. In both approaches, the bistatic processing will be done
by quasi-monostatic processing after initially convolving the
raw data with a bistatic deformation term.

In the next section, we introduce the bistatic geometry
and the bistatic slant range histories. In Section III, a signal
model for bistatic received signals is presented. Then, the
bistatic range migration algorithm will be explained in detail in
Section IV. A slightly different approach for a bistatic range
migration algorithm based on [3] is presented in Section V.
The minor differences to the approach in Section IV will be
pointed out. In Section VI, the validity of the algorithm is
checked with simulated bistatic data, and in Section VII, we
test the algorithm with real bistatic data from an airborne SAR
experiment with X-band SAR systems, namely the Airborne
Experimental Radar II (AER-II) and the Phased Array Mul-
tifunctional Imaging Radar (PAMIR). Also, a bistatic image
processed by a time-domain processor will be presented at the
end of this paper. Such a processor can be used for general
bistatic constellations and offers the best focusing results but
suffers from its large computational load.

II. GEOMETRICAL RELATIONS

The complexity of bistatic geometrical constellations varies
from the special case of a monostatic geometry, where
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Fig. 1. Bistatic geometry.

transmitter and receiver are located at the same position, to
a general bistatic constellation, where transmitter and receiver
have arbitrary velocity vectors. In this paper, we restrict to the
so-called spatial invariant case, in which the velocity vectors of
transmitter and receiver are equal (see Fig. 1). There are two
special cases for such a configuration: 1) the “tandem config-
uration,” in which the transmitter and receiver are travelling
along the same path with constant and equal velocities, and
2) the “across-track configuration,” in which the transmitter and
receiver are travelling along different but parallel tracks, where
the coordinates in the direction of motion coincide.

In the direction of motion, the received signals are Nyquist
sampled, so that no Doppler ambiguities are expected, and the
range swath width was adapted in such a way that no range
ambiguities occur. Because the PRF is higher than the Nyquist
sampling rate, we prefer to use a continuous signal model
instead of discrete values.

The scene coordinate system in Fig. 1 is arranged in such a
way that the common velocity vector v points to the direction
of the x axis. The positions of the transmit (index 1) and receive
(index 2) antenna phase centers are denoted by R1(ξ) and
R2(ξ), where ξ is a path parameter in spatial units. The position
of the antenna phase centers can then be expressed by the
following vector equation of a straight line parallel to the x axis:

Ri(ξ) = R(0)
i + (ξ, 0, 0)t (1)

where R(0)
i is the vector to the sensor position at ξ = 0.

Furthermore, we regard an arbitrary point scatterer in the
xy plane at the position r = (x, y, 0)t. Then, the bistatic range
history is defined by the sum of the transmit R1(ξ; r) and
receive range history R2(ξ; r), i.e.,

R(ξ; r) =R1(ξ; r) + R2(ξ; r)

= |R1(ξ) − r| + |R2(ξ) − r| . (2)

The bistatic range history loses its hyperbolic form, which
is known of the monostatic case, because the sum of two
hyperbolas is no longer a hyperbola. The shape is flattened, and
therefore, we speak of a so-called flat-top parabola.

Throughout this paper, we use the exact expression (2) for
the bistatic range history, and we will not restrict to range
approximations because we intend to apply the processor for
high-resolution imaging with large processing angles and large

relative swath width for which range approximations, for in-
stance by a polynomial of order two, are no longer valid.

III. SIGNAL MODEL

Let the transmit RF signal be denoted by st(t) and its
spectrum by St(f), which covers a certain frequency band
[f1, . . . , f2] corresponding to a band of range wavenumbers
[kr,1, . . . , kr,2] with kr = 2πf/c, where c is the velocity of
light. The receive RF signal sr(ξ, t; r) from a point scatterer
at position r and platform position ξ is a time-delayed version
of the transmit RF signal st(t), i.e.,

sr(ξ, t; r) = a(r)st(t− t0)w(ξ; r) (3)

where a(r) is the complex reflectivity of a point scatterer, t0 =
R(ξ; r)/c is the signal time delay with respect to the bistatic
range, and w(ξ; r) is a window function, which comprises
the effects of the two antenna patterns and the bistatic radar
equation. In (3), we are implicitly making the “start–stop”
approximation, i.e., we are assuming that the transmit and
receive antenna are stationary while the pulse is transmitted
and received. This is a good approximation because the antenna
speed is so much slower than the speed of propagation of the
electromagnetic signals.

If the received signal is transformed to spectral domain and
inversely filtered over the signal bandwidth, we obtain the
spectrum of the normalized compressed range signal at azimuth
position ξ, i.e.,

Sr(ξ, f ; r) = a(r)e−j2πft0w(ξ; r). (4)

For reasons of clearness, we have skipped the derivation of the
normalized compressed range signal. These transformations are
common practice and can be looked up, for instance, in [7].

In a next step, the range frequency variable f is substituted
by the range wavenumber kr, i.e.,

Sr(ξ, kr; r) = a(r)e−jkrR(ξ;r)w(ξ; r). (5)

Now, we look for a signal model with a reflectivity distrib-
ution a(r), which is assumed to be restricted to the xy plane.
Then, we obtain the final signal model by the superposition of
the individual contributions of (5), i.e.,

Z(ξ, kr) =
∫∫

e−jkrR(ξ;x,y)w(ξ;x, y)a(x, y)dx dy. (6)

IV. BISTATIC RANGE MIGRATION ALGORITHM

A. Outline of the Algorithm

A flowchart of the bistatic range migration processor is pre-
sented in Fig. 2. In the preprocessing step, the range compres-
sion is performed. For this, the knowledge of the transmitted
waveform is necessary. There are different possibilities to ob-
tain the transmitted signal: 1) you can use the waveform, which
is generated at the transmitter; 2) you can use the received direct
signal from the transmitter if the receiver platform is within the
transmit beam; or 3) you can extract the waveform from the
raw data if strong point reflectors are available. Furthermore,
an azimuth resampling of the data from the (T, kr) domain to
the (ξ, kr) domain is necessary if ξ is not a linear function
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Fig. 2. Range migration algorithm.

of the slow time T . Then, a Fourier transform to the (kξ, kr)
domain follows. The next two steps are a kind of a generalized
Stolt interpolation: 1) the data will be resampled to the (kξ, kq)
domain, where the meaning of kq will be explained later; and
2) the data will be multiplied by a phasor. It follows a 2-D
inverse Fourier transform to the (ξ, q) domain, and finally, we
have to resample the image to the xy plane.

B. Variable Transformation

Due to the assumption of translational invariant configura-
tions, the range history R(ξ;x, y) and the radar signal depend
only on ξ′ = ξ − x. Furthermore, the spatial variable y is
expressed by a new variable q. The mapping is done by a
strict monotonic continuous bijective function f : y = f(q).
Our aim is to reconstruct the reflectivity in dependence on the
new variable q : ã(x, q) = a(x, f(q)). The range and window
function are replaced by the following expressions:

R̃(ξ′; q) :=R (ξ;x, f(q)) (7)
w̃(ξ′; q) :=w (ξ;x, f(q)) . (8)

By means of these new variables, the signal model is given by

Z(ξ, kr) =
∫∫

e−jkrR̃(ξ′;q)w̃(ξ′; q)ã(x, q)dx dq. (9)

C. Fourier Transform in Flight Direction

After applying a Fourier transform to the first variable of
Z(ξ, kr), where ξ = x + ξ′, we obtain

Z(kξ, kr) =
∫∫∫

e−jkrR̃(ξ′;q)−jkξ(x+ξ′)

· w̃(ξ′; q)ã(x, q)dx dq dξ′ (10)

=
∫∫∫

e−jkrR̃(ξ′;q)−jkξξ
′

· e−jkξxw̃(ξ′; q)ã(x, q)dx dq dξ′. (11)

This equation can be simplified as follows:

Z(kξ, kr)=
∫∫

e−jkrR̃(ξ′;q)−jkξξ
′
w̃(ξ′; q)Ã(kξ, q)dq dξ′ (12)

where

Ã(kξ, q) =
∫

ã(x, q)e−jkξx dx (13)

is the Fourier transform of the reflectivity distribution ã(x, q) in
the first dimension.

D. Application of the Principle of Stationary Phase

To simplify (12), we apply the principle of stationary phase.
The phase function is given by

ϕ(kr, kξ; ξ, q) = − krR̃(ξ; q) − kξξ

= − kr

(
R̃(ξ; q) − Cξ

)
(14)

where C = −kξ/kr. Because only the term in brackets depends
on ξ, we only need to determine the points of stationary phase
of the function F (ξ, C, q), i.e.,

F (ξ, C, q) = R̃(ξ; q) − Cξ. (15)

Since ∂/∂ξ R(ξ, q) is a strict monotonic and continuous func-
tion in ξ, we will find for each C and q a unique ξ∗(C, q) with

∂

∂ξ
F (ξ, C, q)

∣∣∣∣
ξ=ξ∗(C,q)

= 0. (16)

The points of stationary phase will be calculated by

ξ∗(C, q) =

[
∂R̃(ξ; q)

∂ξ

]−1

(C). (17)

In the next step, these points of stationary phase ξ∗(C, q) are
inserted into (15). Then, the stationary phase term is given by

Ψ(kr, C, q) = −krG(C, q) (18)

where G(C, q) = F (ξ∗, C, q). Now, we can simplify (12) by
applying the principle of stationary phase and obtain

Z(kξ, kr) =
∫

e−jkrG(C,q)w̄ (ξ∗(C, q); q) Ã(kξ; q)dq (19)

where w̄(ξ∗(C, q); q) = αw̃(ξ∗(C, q); q). The amplitude factor
α results from the integration in ξ.

E. Factorization

The properties of G(C, q) determine whether the approxi-
mated kernel can be used to transform the imaging equations to
a Fourier-based processor. We call the spatial invariant bistatic
processing task separable if G(C, q) is linear in q : G(C, q) =
g(C) + qh(C). If the task turns out to be separable, (19) can be
further evaluated as follows:

Z(kξ, kr) =
∫

e−jkr(g(C)+h(C)q)w̄(C, q)Ã(kξ; q)dq

= e−jkrg(C)

∫
e−jkrh(C)qw̄(C, q)Ã(kξ; q)dq. (20)
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The integral in (20) can be considered as the Fourier transform
of Ã(kξ; q) in the second variable including the window func-
tion w̄(C, q). The new defined wavenumber variable is

kq = krh(C). (21)

Then, we obtain from (20)

Z(kξ, kr) = e−jkrg(C)Ã(kξ, kq). (22)

Solving (22) to the 2-D Fourier transform of the windowed data
Ã(kξ, kq) and replacing C, we have

Ã(kξ, kq) = ejkrg(−kξ/kr)Z

(
kξ,

kq
h(−kξ/kr)

)
. (23)

This means that the 2-D Fourier transform of the windowed
data Ã(kξ, kq) can be recovered by interpolation of Z(kξ, kr)
in the second variable and by multiplication with a phasor to
remove the phase introduced by g(C). In the last two steps,
the reflectivity itself is reconstructed by the application of a
2-D inverse Fourier transform followed by resampling to the
original xy domain.

F. Linear Approximation

A general linearization of G(C, q) is not possible. In other
words, an exact bistatic range migration processor as defined
before does not exist even for the special case of an arbi-
trary spatial invariant problem. The stationary phase has to
be evaluated numerically, and the function G(C, q) has to be
approximated by a linear fit.

One method to approximate G by a linear function is
sketched in the following. First, we have to determine the
mapping y = f(q) in such a way that G(C∗, q) is linear in q for
a central C∗. This can be done by defining the function γ(y) =
G0(C∗, y) in the original y domain and setting f(q) = γ−1(q).
Then, G(C∗, q) = G0(C∗, f(q)) = q, and the linearization for
this fixed C∗ is perfect with g(C∗) = 0 and h(C∗) = 1. Finally,
for each other C, we have to interpolate G0(C, y) in the original
y domain at the new points f(q), so that we have G0(C, f(q))
and fit this function by a straight line over the interesting q area.
The results of the linear fits are the functions g(C) and h(C)
depending on C.

The remaining errors can be controlled by dividing the
frequency data into several separately processed segments. One
way to perform such a multi-k segment processing is described
in [2].

G. Monostatic Case

In the monostatic case, the linearization can be performed
analytically. If h is the flight altitude, the range function is

R(ξ; y) = 2
√

ξ2 + h2 + y2. (24)

With f(q) =
√

q2 − h2, the phase function F yields

F (ξ, C, q) = 2
√

ξ2 + q2 − Cξ (25)

and the point of stationary phase can be resolved to

ξ∗(C, q) = q
C√

4 − C2
. (26)

Inserting (26) in (25), we have

G(C, q) = q
√

4 − C2. (27)

With g(C) = 0 and h(C) =
√

4 − C2 =
√

4 − (k2
ξ/k

2
r), the

linearization in the monostatic case is proved.
If we proceed with the way described in the previous para-

graph and choose C∗ = 0, we have γ(y) = 2
√

h2 + y2 and

f(q) = γ−1(q) =

√(q

2

)2

− h2. (28)

With G0(C, y) =
√

y2 + h2
√

4 − C2 in the original y domain,
we have

G(C, q) = G0 (C, f(q)) = q

√
1 −

(
C

2

)2

(29)

which again proves to be a successful linearization.

V. RANGE MIGRATION BY USING A

PHYSICAL REFERENCE

In the previous approach, our aim was to reconstruct the re-
flectivity in dependence on the new variable q by the numerical
linearization of G(C, q) in q. G(C, q) was fitted by a straight
line over the interesting q area.

For the spatial invariant case, it is also possible to use a
physical reference to create an image [3]. Now, the variable q
(in the following γ) gets the meaning of the bistatic semidis-
tance. The new signal model is very similar to (10), i.e.,

Z(kξ, kr) =
∫∫∫

e−jkr(R1(ξ
′;γ)+R2(ξ

′;γ))−jkξ(x+ξ′)

· a(x, γ) dξ′ dx dγ (30)

where γ is the semibistatic distance, i.e.,

γ =
R′

1 + R′
2

2
. (31)

In this model, a point scatterer is referenced by elliptical co-
ordinates r = (x, γ, θ). The geometry is sketched in Fig. 3. For
the further calculations and the application of the principle of
stationary phase, we have to express R1 and R2 in (x, γ, θ), i.e.,

R2
1 =R

′2
1 + (ξ − x− xI)2

R2
2 =R

′2
2 + (ξ − x + xI)2 (32)

and

R
′2
1 =(γ + γI)2

R
′2
2 =(γ − γI)2 (33)

with γI = (xI/γ)r cos θ, which can be approximated by the
coordinates of the swath center γ0, θ0 and r0. Then, γI can be
calculated by γI ≈ (xI/γ0)r0 cos θ0.
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Fig. 3. Bistatic geometry for the approach in Section V.

Now, we want to solve the inner integral

I(kξ, kr;x, γ)=
∫
e−jkr(R1(ξ

′;γ)+R2(ξ
′;γ))−jkξ(x+ξ′)dξ′ (34)

by applying the principle of stationary phase. For this, we
rewrite this integral and use again the substitution C =
−kξ/kr. Equation (34) becomes

I(kξ, kr;x, γ) =
∫

e−jkr(R1(ξ
′;γ)+R2(ξ

′;γ)−Cξ′−Cx)dξ′

=
∫

e−jkr(F (ξ′,C,γ)−Cx)dξ′ (35)

where

F (ξ′, C, γ) = R1(ξ′; γ) + R2(ξ′; γ) − Cξ′. (36)

In the next step, we have to find the point of stationary phase
numerically similar to (16) by using (32) and (33). If ξ′∗ is the
point of stationary phase, (35) can be simplified and is given by

I(kξ, kr;x, γ) =αe−jkr(F (ξ′∗,C,γ)−Cx)

=αe−jkrψ(C,x,γ) (37)

where α is a coefficient that is supposed to be constant. To
compute (30) by a 2-D inverse Fourier transform, we have to
rewrite ψ, i.e.,

ψ(C, x, γ) = hγ(C)γ + hx(C)x + g(C). (38)

Now, we have to evaluate hγ(C), hx(C), and g(C) by devel-
oping the phase ψ about x0 and γ0, the center of swath, i.e.,

ψ(C, x, γ) ≈ ψ(C, x0, γ0) +
∂ψ

∂x
(C, x0, γ0)(x− x0)

+
∂ψ

∂γ
(C, x0, γ0)(γ − γ0). (39)

In [3], it is shown that we have

g(C)=F (ξ′∗(C, γ0), C, γ0) − hγγ0

hx= − C

hγ =
γ0 + γI√

(γ0+γI)2+(ξ′∗−xI)2
+

γ0 − γI√
(γ0−γI)2+(ξ′∗+xI)2

.

(40)

Fig. 4. Simulated scene and processed image with the bistatic range migration
processor.

Finally, we can rewrite (30), so that it can be solved by a 2-D
inverse Fourier transform, i.e.,

Z(kξ, kr) =
∫∫

αa(x, γ)e−jkr(hγ(C)γ−Cx+g(C))dx dγ

=αe−jkrg(C)

∫∫
a(x, γ)e−jkrhγ(C)γ−jkξxdx dγ

=αe−jkrg(C)A (kξ, krhγ(C)) . (41)

VI. SIMULATION

A raw data simulator was written to verify the bistatic range
migration algorithm presented in Section IV. The simulator
is able to produce the raw data for various point targets. A
simulated scene with nine point reflectors and the reconstructed
scene is shown in Fig. 4. The assumed platform parameters
are summarized in Table I. The complete range migration
processing consists of the following steps.

• Transform data to (kξ, kr) domain.
• Determine the mapping y = f(q) in such a way that

G(C∗, q) is linear in q for a central C∗.
• For each C, q, calculate G(C, q) and fit this function by a

straight line in the q variable by g(C) + h(C)q.
• Develop the image in the (kξ, kq) domain by interpolation

and multiplication by a phasor.
• Apply a 2-D inverse Fourier transform to the (kξ, kq)

domain and resample the image to the xy plane.
• Repeat the process for different segments if the introduced

phase error is too large.
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TABLE I
SIMULATION PARAMETERS

Fig. 5. Sensor platforms. (Top) Dornier Do-228 with AER-II and (bottom)
Transall C-160 with PAMIR.

The simulation shows that the range migration algorithm works
very well under ideal conditions. In practice, it is very important
to reproduce the real bistatic range history to obtain the best
results.

VII. FLIGHT EXPERIMENTS

Besides other radar research institutes [8], [9], the
Forschungsgesellschaft für Angewandte Naturwissenschaften
(FGAN) also undertook a bistatic airborne experiment with its
two SARs, namely sensors AER-II and PAMIR, in October
2003 [10], [11].

The X-band SAR system AER-II [12] has been operating
under FGAN since March 1996 onboard a Transall C-160. It
allows to demonstrate several operational modes like moving
target indication (MTI), interferometry, polarimetric SAR, and
spotlight SAR. This is possible due to its active polarimetric
phased array and its four receiving channels. The main an-
tenna consists of (6 × 44) polarimetric patch elements and
16 transmit/receive (T/R) modules. The transmit peak power
is about 80 W, and the signal bandwidth is 160 MHz. For the
bistatic SAR experiments, the AER-II sensor was used only
as transmitter and placed on a Dornier Do-228 (see Fig. 5).
The transmit antenna was mounted in the floor of the aircraft
fuselage. It was possible to rotate the antenna in such a way that
incidence angles from −40◦ to 40◦ were manually adjustable.
The antenna has a 3-dB beamwidth in azimuth of about 3◦

and in elevation of about 15◦. The signal generation unit was
replaced by an arbitrary waveform generator (AWG) to obtain

Fig. 6. Optical image (LVG Bayern) and bistatic SAR image (processed by
the range migration algorithm) of Waltershoven, Germany.

Fig. 7. Bistatic constellations (1, transmitter; 2, receiver) for the SAR images
in Figs. 6 and 8.

a higher signal bandwidth of 300 MHz and a center frequency
close to a PAMIR subband center frequency.

The receiving sensor PAMIR [13], which is the follow-
up system of AER-II, has been operating under FGAN since
August 2002 also onboard a Transall C-160 (see Fig. 5).
PAMIR’s important features are its multimode operation
[strip, squinted strip, spotlight, sliding spotlight, SCAN MTI,
inverse SAR (ISAR), and 3-D interferometric SAR (IfSAR)]
and the ability to obtain SAR images with a very high spatial
resolution. The total bandwidth amounts to 1.8 GHz and can
be split into five subbands with 360 MHz each. Besides the
electronical azimuth beam steering, the antenna has a mechan-
ical elevation beam steering with depression angles up to 40◦.
During the bistatic experiments, PAMIR received the echoes
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Fig. 8. Optical image (LVG Bayern) and bistatic SAR image (processed by a
time-domain algorithm) of Oberndorf, Germany.

from the AER system in one subband and stored the data to a
fiber channel disk array.

A real synchronization of the oscillators was not possible
because no data link between the platforms was installed.
To overcome this problem, we choose a very large receiving
window and a high transmitter PRF, which was a multiple
integer of the receiver PRF of 1250 Hz. Then, the length of
the receiving window was adapted in such a way that at least
the echoes of one pulse were recorded.

In all flight configurations, the two aircrafts flew in a transla-
tional invariant configuration. The overlap of the antenna foot-
prints was only guaranteed by careful flight planning and pilots’
skill. Both sensors use a GPS/differential GPS (DGPS) system
to obtain a precise trajectory of the platforms. Primarily, the
influence of the bistatic angle was explored. For this purpose,
the distance and the altitudes of the airplanes were adjusted,
resulting in bistatic angles of 13◦, 29◦, 51◦, and 76◦. To the
authors’ knowledge, these are the first experiments with such
large bistatic angles and a signal bandwidth of 300 MHz.

Fig. 6 shows a bistatic SAR image processed with the de-
scribed range migration processor. The value of the bistatic
angle was about 51◦, and with considerations of the sensor posi-
tions and the signal bandwidth, we obtain the finest theoretical
ground range resolution of about 1.30 m [14]. The positions of
the platforms are shown in Fig. 7. The image quality can still be
increased by applying motion compensation, which will be the
next step. Fig. 8 shows the result of a time-domain-based image
formation. Here, the inversion of (6) is done by means of a 2-D
space-variant matched filtering, which is an optimal solution
to the given integral equation [15]. Due to nonideal carrier
tracks, a motion compensation step based on phase tracking of
prominent scatterers had to be performed first. This image was
acquired in a bistatic constellation, where the bistatic angle is
about 13◦ and the finest theoretical ground range resolution is
about 0.76 m (see Fig. 7).

VIII. CONCLUSION

In this paper, a bistatic range migration processor for the
translational invariant case was presented. We have shown
two different ways to linearize the phase function. The first
approach is based on a linear fit of an exponential term, and the
second approach uses a Taylor series to linearize the exponen-
tial term. Phase correction and resampling functions have—in
contrary to the monostatic range migration algorithm—to be
calculated numerically. The remaining errors can be controlled
by dividing the frequency data into several separately processed
segments. It should be mentioned that this kind of range migra-
tion processor passes into the optimum processor for any of the
following limits:

• swathwidth-to-range ratio tends to zero;
• relative bandwidth tends to zero;
• bistatic angle tends to zero.

Furthermore, the bistatic range migration algorithm was tested
successfully with simulated and real bistatic data.
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