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Abstract—We report about the first X-band spaceborne–
airborne bistatic synthetic aperture radar (SAR) experiment,
conducted early November 2007, using the German satellite
TerraSAR-X as transmitter and the German Aerospace Cen-
ter’s (DLR) new airborne radar system F-SAR as receiver. The
importance of the experiment resides in both its pioneering char-
acter and its potential to serve as a test bed for the validation of
nonstationary bistatic acquisitions, novel calibration and synchro-
nization algorithms, and advanced imaging techniques. Due to the
independent operation of the transmitter and receiver, an accu-
rate synchronization procedure was needed during processing to
make high-resolution imaging feasible. Precise phase-preserving
bistatic focusing can only be achieved if time and phase syn-
chronization exist. The synchronization approach, based on the
evaluation of the range histories of several reference targets, was
verified through a separate analysis of the range and Doppler
contributions. After successful synchronization, nonstationary fo-
cusing was performed using a bistatic backprojection algorithm.
During the campaign, stand-alone TerraSAR-X monostatic as
well as interoperated TerraSAR-X/F-SAR bistatic data sets were
recorded. As expected, the bistatic image shows a space-variant
behavior in spatial resolution and in signal-to-noise ratio. Due
to the selected configuration, the bistatic image outperforms its
monostatic counterpart in almost the complete imaged scene. A
detailed comparison between monostatic and bistatic images is
given, illustrating the complementarity of both measurements in
terms of backscatter and Doppler information. The results are of
fundamental importance for the development of future nonsyn-
chronized bistatic SAR systems.

Index Terms—Bistatic radar, bistatic SAR processing, synchro-
nization algorithms, synthetic aperture radar (SAR).

I. INTRODUCTION

THE FIRST published results of a bistatic synthetic aper-

ture radar (SAR) experiment date back to the mid-1980s

[1]. The innovative bistatic radar consisted of two X-band

airborne systems flying in parallel trajectories with an azimuth-

invariant configuration. This experiment sparked the interest

in inherent bistatic SAR issues like basic clock and antenna-

footprint synchronization, performance prediction, or focus-

Manuscript received September 22, 2008; revised March 16, 2009 and
June 15, 2009. First published October 30, 2009; current version published
January 20, 2010.

The authors are with the Microwaves and Radar Institute, German Aerospace
Center (DLR), 82234 Oberpfaffenhofen, Germany (e-mail: marc.rodriguez@
dlr.de; stefan.baumgartner@dlr.de; gerhard.krieger@dlr.de; alberto.moreira@
dlr.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2009.2029984

ing, arising as new and challenging research topics. The next

relevant experiments, packed in a series of C- and L-band

acquisitions involving ERS-1 and SIR-C as transmitters and

a radar mounted on a NASA DC-8 as receiver, did not take

place until the late 1990s and demonstrated the feasibility of

a more complex acquisition scenario [2]. Valid bistatic data

recording was ensured by detecting the energy of the direct

signal received from the satellite. The innovative nature of

the experiments described in [1] and [2] is rather obvious.

However, the published results revealed a greater effort in

the development of the campaign plannings than in the full

analysis of the acquired bistatic data, and only low-resolution

quick-look images of both experiments were published [2], [3].

From late 2002 onward, several bistatic X-band airborne SAR

experiments were conducted in Europe showing the capabilities

of bistatic SAR as a high-resolution imaging system [4]–[6]. In

particular, the DLR-ONERA bistatic experiment pushed further

the bistatic processing standard and stands as the first (and only,

so far) demonstration of airborne cross-platform bistatic SAR

interferometry [7]–[10]. Interferometric applications, for which

accurate focusing is essential, constitute the basis of future

operational spaceborne bistatic SAR missions like TanDEM-X

[11]. The interest on bistatic SAR has rapidly increased in

the last years, and several bistatic experiments with very dif-

ferent sensors and configurations have been conducted lately

[12]–[15].

The advantages and disadvantages of bistatic SAR are a

consequence of the spatial separation between transmitter and

receiver. The disadvantages are mainly of technical nature and

related to the increased complexity of system operation and

data processing. The advantages include higher operational ver-

satility, system design flexibility, and increased performance.

In the case of hybrid spaceborne–airborne observations, the

bistatic SAR system is more robust to jamming than both the

spaceborne and the airborne systems operated monostatically.

In addition, it delivers, for equivalent synthetic apertures, a

better performance in terms of signal-to-noise ratio (SNR) and

spatial resolution with respect to the monostatic spaceborne

SAR. This paper presents the design, analysis, processing, and

results of the first X-band spaceborne–airborne bistatic SAR

experiment using TerraSAR-X as transmitter and the DLR’s

new airborne radar F-SAR as receiver [16], [17]. The experi-

ment was proposed by the authors to the TerraSAR-X scientific

coordination board in 2005 and was successfully conducted

early November 2007. The flexibility of both radar systems,
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operated in nonnominal modes, turned out to be an essential

advantage in the fast preparation of the campaign, ensuring the

recording of bistatic data without significant hardware modifi-

cations. The experiment was carried out during the TerraSAR-X

commissioning phase, and it served as a valuable input for

testing the suitability of TerraSAR-X to produce high-quality

bistatic images. The investigations made during campaign plan-

ning and data evaluation were essential in the validation of the

whole processing chain for nonsynchronized short-time bistatic

acquisitions, including calibration, synchronization, and high-

resolution focusing techniques.

The technical content of this paper is divided into four parts.

Section II describes the bistatic configuration and acquisition.

Section III presents the performance analysis of the bistatic

system, showing the expected values of ground-range and

along-track resolutions, as well as predictions of the noise-

equivalent sigma zero (NESZ). The influence of the nonsta-

tionary antenna pattern modulation on the resolution and the

SNR is discussed and quantified. Section IV describes the

processing of the acquired data. Given the acquisition sce-

nario, data processing must undergo a three-step procedure:

1) channel balancing; 2) data synchronization; and 3) azimuth-

variant bistatic SAR focusing. The bistatic image is presented

and analyzed in Section V. The evaluation includes a point

response and residual phase error analysis. A comparison be-

tween monostatic and bistatic images is also presented at the

end of this section. Section VI summarizes the results.

II. DESCRIPTION OF THE EXPERIMENT

A. Bistatic Configuration

The trajectory of F-SAR was designed to be nearly parallel

to the nadir track of TerraSAR-X to maximize footprint over-

lapping time. Bistatic side-looking operation was preferred to

guarantee a good ground-range resolution. F-SAR was operated

as a receiver and flew at a height of 2180 m above ground

with a mean velocity of 90 m/s. TerraSAR-X transmitted on

a 514-km orbit with a velocity of 7600 m/s. The TerraSAR-X

antenna was steered in high-resolution (sliding) spotlight mode.

Two crucial details distinguished the acquisition from a nom-

inal TerraSAR-X high-resolution spotlight: 1) The transmit-

ted bandwidth was reduced from 300 to 100 MHz, and

2) the pulse repetition frequency (PRF) was optimized only

for the bistatic acquisition. Fig. 1 shows the geometry of

the bistatic TerraSAR-X/F-SAR acquisition, with 51◦ and 45◦

being the off-nadir angles of transmitter and receiver, respec-

tively. The onground depicted footprint coincides with the

instantaneous one-way 3-dB footprint of F-SAR. The previous

off-nadir angles correspond to nominal midbeam incident an-

gles of 55.63◦ for TerraSAR-X and 45◦ for F-SAR. Due to

the effect of the curved path of the satellite, the equivalent

velocity in monostatic midrange was 7408 m/s. The bistatic

experiment was performed in Germany near the Kaufbeuren

airfield, which is used as a calibration test site by the DLR

Microwaves and Radar Institute. In order to avoid conflicts

with other acquisitions and tests performed over Kaufbeuren

during the TerraSAR-X commissioning phase, the satellite was

exceptionally operated in left-looking mode.

Fig. 1. Bistatic configuration in the TerraSAR-X/F-SAR spaceborne–airborne
SAR experiment.

B. Bistatic Acquisition

The quasi-continuous data-acquisition capability of F-SAR is

a prominent advantage of using it as a receiver [18]. This feature

simplified the campaign preparation and avoided the need for

sophisticated echo-window synchronization. Due to data-rate

constraints, two analog-to-digital converters (ADCs) (cf. Fig. 2)

had to be switched alternately to enable quasi-continuous data

recording [16], [17]. To avoid any hardware modification on

the F-SAR X-band receiver chain, not only two different ADCs

but also two different receiver chains were used. Switching

between both channels produced a sampling blank interval

of 1.6 µs and was performed with a 7693.25-Hz cadence.

The maximum real sampling rate using this configuration was

250 MHz, and the selected transmitted chirp bandwidth was

100 MHz. The down-converting reference frequency in the

receiver was matched to the nominal value of the TerraSAR-X

carrier (9.65 GHz). Chirp duration was 33.189 µs, and the

transmitted peak power was 2.01 kW. As stated in the pre-

vious section, the TerraSAR-X antenna beam was steered in

azimuth to perform a high-resolution spotlight illumination of

the scene so that footprint overlapping time was maximized.

The F-SAR received in regular stripmap mode. A high transmit

PRF of 5920.59 Hz was chosen to guarantee a high along-track

oversampling rate of the bistatic data. Since the joint antenna

footprint is limited by the F-SAR antenna pattern, no range

ambiguities are expected in the bistatic image. However, range

ambiguities arise in the monostatic image, adversely affected by

the atypically shallow look angle of the satellite. We would like

to stress that the range ambiguities expected in the monosta-

tic image are a consequence of the non-monostatic-optimized

setup defined for the acquisition. In a nominal TerraSAR-X

monostatic high-resolution spotlight image, the expected range

ambiguity-to-signal ratio will be significantly better than the

one obtained in the monostatic image of Section V.

Fig. 2 shows the block diagram of the bistatic radar

used for the spaceborne–airborne acquisition. The first main
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Fig. 2. Bistatic radar block diagram of the spaceborne–airborne TerraSAR-X/F-SAR experiment. The left part shows the transmitter (TerraSAR-X), and the right
part shows the receiver (F-SAR) with its two different channels.

Fig. 3. Bistatic scene dimensions in the TerraSAR-X/F-SAR bistatic exper-
iment. Dimensions are defined by the motion of the F-SAR 3-dB one-way
antenna footprint during the bistatic acquisition.

difference with respect to a monostatic configuration is the

use of two different clocks working independently, f0,TSX and

f0,F−SAR, where the subscript TSX stands for TerraSAR-X.

The left part of the plot shows the TerraSAR-X transmitter

with its active antenna, and the right part shows the two

receiving channels of F-SAR. Taking account of the differences

in transmitted power, antennas, and free-space losses of this

bistatic acquisition compared with a pure airborne monostatic

case, the F-SAR receiving gain was increased by about 22 dB

with respect to the monostatic operation mode. Three X-band

transponders already used for the TerraSAR-X calibration were

placed as reference targets. Their exact positions were mea-

sured with a GPS. These reference targets were essential not

only to quantify the quality of the focused image, but also to

precisely synchronize the data, as explained in Section IV.

C. Imaged Scene

With respect to F-SAR (0.2 m in azimuth and 0.046 m in ele-

vation), the TerraSAR-X antenna size (4.784 m in azimuth and

0.7 m in elevation) is larger, but its footprint on the ground is

wider due to longer slant ranges. The bistatic footprint thus co-

incided with the F-SAR footprint during the time TerraSAR-X

illuminated the scene. The footprint overlapping time was

limited by the standard duration of TerraSAR-X high-resolution

spotlight acquisitions. Bistatic data were recorded for approx-

imately 3.5 s. Within the 3-dB region of the one-way F-SAR

antenna pattern, the ground-range dimension of the imaged

scene was 2520 m. During the 3.5 s of the acquisition, the

along-track size of the scene varied between 662 and 916 m

for near and far ranges, respectively. Fig. 3 shows how the

3-dB instantaneous footprint of F-SAR moved during the ac-

TABLE I
SIMULATION PARAMETERS FOR PERFORMANCE ANALYSIS

quisition, resulting in the expected dimensions of the bistatic

scene. However, since the bistatic range was shorter than the

satellite monostatic range, the attenuation due to the receive

antenna pattern was partially compensated by the better SNR

values of the bistatic image. Thus, a larger processed scene

can be considered. The dimensions of the scene used for the

performance analysis are 7680 m in ground range and 2560 m in

azimuth. They coincide with those of the bistatic image shown

in Section V. For targets placed at the along-track edges of the

image, a significant portion of the integration is performed well

outside the 3-dB range of the receive antenna. This effect has

a direct impact on the along-track resolution and SNR of the

bistatic image as discussed in Section III.

III. PERFORMANCE ANALYSIS

Due to the variance of this bistatic SAR acquisition,

conventional performance analysis no longer holds. For the

computation of the expected performance, a simplified form

of the bistatic configuration is assumed, with a spherical Earth

model and both platforms reaching zero-azimuth time at the

same instant. The midrange incident angles are 55◦ and 45◦

for transmitter and receiver, respectively, and both antennas

are pointing exactly at the same scene center. The parameters

used in the simulations are presented in Table I. Furthermore,

spotlight processing of the whole scene is considered. The

scene dimensions are 7680 m in ground range and 2560 m in

azimuth. The coordinates origin coincides with the 45◦ incident

angle of F-SAR. In addition to the particularities of bistatic

imaging, the nonnegligible amplitude modulation introduced

by the bistatic azimuth antenna pattern has to be taken into

account in the derivation of azimuth resolution and SNR.
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A. SNR and NESZ

The expression in [19] is a valid approximation for the NESZ

at the center of the image, where the joint antenna pattern is

substituted by a constant gain factor GTx · GRx over the whole

aperture. The NESZ of the bistatic system is approximated as

NESZ ≈
(4π)3 · r2

0,Tx · r2
0,Rx · k · Tn · FRx

PTx · GTx · GRx · λ2 · Acell · Tint

(1)

where Acell is the area of the resolution cell of the bistatic

image. The NESZ takes on values around −43 dB at the

center of the scene, which is more than 20 dB better than the

monostatic TerraSAR-X requirement. This increase in SNR is

mainly due to the much shorter range from the bistatic receiver

to the imaged area. The bistatic image is thus expected to have a

far better sensitivity than its monostatic counterpart. However,

the amplitude modulation introduced by the antenna patterns

cannot be neglected in SNR and NESZ computations. Conse-

quently, a key question to address is how the antenna pattern

modulation modifies the signal and noise power distributions

over the SAR image. In other words, it has to be established,

for any given pixel, how much energy is due to the signal and

how much is due to noise.

In our case, noise power presents a spatially uniform distri-

bution in raw and range-compressed data. Due to the spotlight

processing, the same number of samples is used in the computa-

tion of any image pixel. Since noise and signal are uncorrelated,

SAR processing does not change the noise-power distribution

in the SAR image. Assuming (1), the pixel noise power density

after SAR focusing can be expressed as

N ≈
k · Tn · FRx

Acell · Tint

. (2)

Using similar approximations to those leading to (1), the signal

power for a target area centered at coordinates (r0,Tx, r0,Rx, x0)
can be expressed as

S(x0) ≈
PTx · GTx · GRx · λ2

(4π)3 · r2
0,Tx · r2

0,Rx

·

∣

∣

∣

∣
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(3)

where σ(x0) describes the normalized scattering coefficient of

the considered target area, ta is azimuth (or slow) time, and

wRx(ta; r0,Rx, x0) is the normalized receive antenna pattern

seen by the target. The SNR for the bistatic image can be

obtained by combining (2) and (3)

SNR(x0) =
S(x0)

N

≈
PTx · GTx · GRx · λ2 · Acell

(4π)3 · r2
0,Tx · r2

0,Rx · k · Tn · FRx · Tint

·

∣

∣

∣

∣

∣

∣

∫

Tint

√

σ(x0) · wRx(ta; r0,Rx, x0) · dta

∣

∣

∣

∣

∣

∣

2

. (4)

Fig. 4. Expected NESZ map for the bistatic image. Values above−20 dB have
been clipped to reduce the dynamic range of the plot.

The dependence on σ(x0) accounts for the actual information

of the target, which is of little importance in NESZ computa-

tions. The NESZ is consequently the inverse of (4) after the

removal of factor
√

σ(x0). Fig. 4 shows the expected NESZ

distribution of the processed image. Values above −20 dB

have been clipped to reduce the dynamic range of the plot. The

elevation antenna pattern is directly projected on the ground. If

on one side, the SNR is high at the center of the bistatic image;

on the other hand, there are regions where almost no signal is

present due to the attenuation of the receive antenna pattern.

Within the black stripes of the NESZ map, the monostatic

TerraSAR-X image has equal or better SNR than the bistatic

image. Nevertheless, most of the bistatic image shows better

NESZ values than those expected for the monostatic case.

B. Range Resolution

Slant range resolution can, of course, be described as c/Br.

However, and particularly in a bistatic scenario, its meaning is

more clearly identified once projected on a flat scene. The on-

ground range resolution is computed using the formula given

in [19]

δr ≈
c

Br

·
1

‖∇rbi‖
=

c

Br

·
1

sin θTx + sin θRx

(5)

where rbi is the instantaneous bistatic range to the imaged

scene history and θTx and θRx are the respective transmitter

and receiver incident angles. Within the 3-dB elevation range

of the F-SAR antenna footprint, the values for the ground range

resolution vary between 2.26 and 1.77 m for near and far ranges,

respectively. Within the bistatic footprint, the TerraSAR-X

monostatic image has an almost constant ground-range reso-

lution of 1.81 m. The monostatic airborne F-SAR image would

have ground range resolutions between 1.73 m in far and 3 m

in near range.

C. Along-Track Resolution

1) Conventional Approach: Assuming there is no signif-

icant amplitude modulation in the target response and the
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processing is done mainly on the lower order portion of the

bistatic range history, the formula presented in [19] approxi-

mates well the along-track resolution

δx ≈
1

Tint

·
1

‖∇fDop‖
≈

λ

Tint

·

(

vTx

r0,Tx

+
vRx

r0,Rx

)−1

(6)

where fDop is the Doppler frequency history and r0,Tx and

r0,Rx are transmitter and receiver monostatic zero-Doppler

ranges, respectively. Since spotlight processing has been as-

sumed, Tint remains constant for all targets, and r0,Tx and r0,Rx

are constant for a constant range line (assuming a flat scene).

Under these assumptions, the along-track resolution is only

range dependent. Equation (6) works well for targets located

at the center of the scene. The resolution values obtained for an

integration time of 2.77 s are 0.25 and 0.58 m for near and far

ranges, respectively.

2) Extended Approach: The amplitude modulation caused

by the bistatic joint antenna pattern for targets placed toward

the scene edges has an impact on the maximum achievable

along-track resolution, given by (6). To quantify its effect,

it is assumed that the considered targets are seen over an

angular extent of less than one lobe and outside the 3-dB

region of the receive antenna pattern [where (6) does not hold].

These assumptions, valid for the TerraSAR-X/F-SAR bistatic

experiment, are needed to approximate the receive antenna

pattern by its harmonic part with small error, as explained

in the Appendix. Knowing that the data are focused using a

nonweighted version of the bistatic backprojection algorithm,

the along-track resolution can be approximated as

δxext ≈

⎛

⎜

⎜

⎝

λ

Tint

+
LRx · r2

0,Rx · vRx
√

(

r2
0,Rx + x2

0

)3

⎞

⎟

⎟

⎠

·

(

vTx

r0,Tx

+
vRx

r0,Rx

)−1

(7)

where the subscript ext stands for extended and LRx is the az-

imuth length of the Rx antenna. Equation (7) can be expressed

as a function of (6) in the following manner:

δxext ≈ δx · (1 + αres) (8)

where αres represents the resolution degradation factor caused

by the receive antenna pattern, i.e.,

αres =
Tint

λ
·

LRx · r2
0,Rx · vRx

√

(

r2
0,Rx + x2

0

)3
. (9)

The analytical derivation of (7)–(9) is presented in the

Appendix. Fig. 5 shows the numerically computed along-track-

resolution map of the bistatic image. As expected, the along-

track resolution worsens in across track and along track with

respect to the values given by (6), only achieved at the center

of the scene. In order to quantify the error in the resolution

estimate yielded by (6) for targets placed toward the scene

edges, Fig. 6 shows the difference (in percent) between the

values of Fig. 5 and those obtained using (6). For simplicity,

only the right-hand side of the scene integrated outside the 3 dB

Fig. 5. Numerically computed along-track resolution map for the bistatic
image.

Fig. 6. Error in resolution estimate yielded by (6) for the right-hand part of
the scene integrated outside the 3-dB footprint of the receive-antenna pattern.

range of the receive pattern is plotted. The portions of the

image with good SNR (cf. Fig. 4) show errors in the estimated

resolution below 50%. However, these errors are significantly

increased for targets placed near the integrated nulls of the

receive antenna, with a maximum value of about 220%. If,

on the contrary, we compare Fig. 5 with the estimates yielded

by (7) (the difference is shown in Fig. 7), we will notice that

the error in the estimated resolution is notably reduced, taking

values of less than 5% for almost the complete scene imaged

with good SNR. We conclude that, for the parts of the bistatic

image seen with a significant amplitude modulation due to the

receive antenna pattern (scene edges), (7) approximates better

than (6) the actual along-track resolution of the bistatic image.

D. Topography Impact on Bistatic Image

Since target phase histories are a function of transmitter

and receiver zero-Doppler ranges, bistatic SAR focusing de-

pends intrinsically on the actual target heights [20]. This effect

is shown in Fig. 8, where targets A and B are placed at

heights hB + ∆h and hB, respectively. Note that the sepa-

ration between the aircraft and the edge of the isorange el-

lipse is exaggerated to avoid excessive line crossings. Clearly,
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Fig. 7. Error in resolution estimate yielded by (7) for the right-hand part of
the scene integrated outside the 3-dB footprint of the receive-antenna pattern.

Fig. 8. Effect of topography on target range histories of two different targets,
A and B. Targets A and B are placed at different heights and have identical
closest bistatic ranges but clearly different range histories.

r0,Rx(A) < r0,Rx(B), which necessarily means r0,Tx(A) >
r0,Tx(B), since both targets have the same bistatic range. The

difference between the receiver range history curvatures of A
and B is larger than the difference between the transmitter range

history curvatures, which remain almost constant. As a result,

targets A and B, sharing the same bistatic range, have different

range histories. Hence, processing both targets with a common

azimuth reference function induces defocusing. The analyti-

cal derivation of the topography impact on the target phase

response is cumbersome and exceeds the scope of this paper.

However, it is interesting to estimate the topography variations

which can be tolerated without introducing a significant defo-

cusing in the final image. Considering Fig. 8, both the height

difference ∆h and the reference height of the target used for

focusing hB can modify the bistatic range history. Fig. 9 shows

an example of the tolerable height difference so that the phase-

history error for a near-range target (placed at the azimuth scene

center) is kept below π/2. The abscissa corresponds to the ref-

erence height of the target (used for focusing), and the ordinate

Fig. 9. Allowable topography error for a maximum phase error of π/2 in
near-range target phase history placed at the azimuth scene center.

shows the tolerable height difference. Within a topography span

of 200 m, the allowable height variation is smaller than ±7.5 m.

The tolerable height variation increases for increasing ranges,

reaching values of 50 m and 200 m for mid- and far-range

targets, respectively. The Kaufbeuren airfield area is rather flat,

with a ground topography variation of about 40 m (not con-

sidering vertical structures like trees or buildings). Therefore,

processing the bistatic image without a digital elevation model

will not introduce significant defocusing in mid and far range,

but care has to be taken in choosing the correct reference height,

particularly for accurate focusing in near range.

IV. DATA PROCESSING

Considering the characteristics of the acquisition, with data

recorded with two different channels and no dedicated synchro-

nization link between TerraSAR-X and F-SAR clocks, the data

processing of this bistatic acquisition must necessarily follow a

three-step approach:

1) channel balancing;

2) data synchronization;

3) azimuth-variant bistatic focusing.

Fig. 10 shows a diagram of the different processing blocks,

with corresponding plots of data amplitudes on the right-hand

side. Channel balancing, the first two top blocks of the diagram,

is necessary due to the need of coherently combining the data

acquired with two different channels. The second step, data syn-

chronization, is split into two parts: 1) the block “reformatting,”

where only the nominal TerraSAR-X PRF is used and 2) the

“fine synchronization” block after range compression, where

the precise frequency offset between the TerraSAR-X and

F-SAR clocks is estimated and corrected. After this second

block, the bistatic data have reliable range and Doppler refer-

ences. Once the data are equalized and synchronized, conven-

tional azimuth-variant bistatic SAR focusing is performed.

A. Channel Balancing

The use of two different channels (each with its own ADC)

switched at a higher frequency than the TerraSAR-X PRF
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Fig. 10. Block diagram of bistatic processing for TerraSAR-X/F-SAR bistatic
acquisition. Illustrative plots of data amplitudes are depicted on the right-
hand side.

Fig. 11. Effect in (left) phase history and (right) focused response of combin-
ing data acquired with two different receiving channels.

induces a quasi pulse-to-pulse modulation on the bistatic data,

as shown in Fig. 11. Focusing these data without previous

correction yields azimuth ghost targets. The causes of this

modulation are the following: 1) different ADCs, 2) differ-

ent receiver transfer functions, and 3) different electrical path

lengths. The first two (pure amplitude effects) can be averaged

and corrected using the raw data. The difference in electrical-

path lengths causes a constant phase offset between channels 1

and 2. This offset was estimated by computing the signal

energy found in adjacent ghosts after correcting with a constant

sweeping phase for one of the channels and was found to be

227.5◦. A quick-look of the bistatic image was computed to

verify the effect of this channel balancing. The results can be

seen in Fig. 12. The images show the computed quick-looks for

unbalanced (top) and balanced (bottom) data sets. The along-

track ghosts are clearly visible in the unbalanced version of the

quick-look image and significantly attenuated in the balanced

image. Note that the use of a second receiver only increased

channel unbalance. Sampling the data with two different ADCs

would have also produced ghost targets as those shown in

Fig. 11, if not previously corrected.

Fig. 12. Quick-looks for (top) nonbalanced and (bottom) balanced data sets.
Azimuth ghosts are visible in the nonbalanced quick-looks. These ghosts are
significantly reduced in the balanced image. The bright points on the left side
(near range) correspond to the direct signal and respective ghosts.

B. Data Synchronization

Precise bistatic data synchronization, already addressed in

[7] and [13], is a necessary step for transforming the acquired

bistatic data into quasi-error-free bistatic data. The TerraSAR-X

nominal PRF measured by the F-SAR clock is approximated by

detecting the first nonzero peak of the autocorrelation function

of the radar data. A peak at sample 21 113 yields a coarse PRF

estimate of 5920.52 Hz. This value is used for reformatting

the raw data matrix with 21 113 range bins per range line.

However, the resulting raw data clearly lack a precise range and

Doppler synchronization, which are essential to guarantee high-

resolution SAR imaging.

Due to the short time of the bistatic acquisition and the high

short-term stability of the TerraSAR-X and F-SAR clocks, no

fast relative variation of the clocks is expected. Therefore, a

constant frequency offset model is assumed. The bistatic data

have a constant Doppler shift of ∆f0 = f0,TSX − f0,F−SAR

and an echo-window shift proportional to ∆f0/f0,TSX, [21].

The latter causes defocusing, since azimuth-matched filtering

(strictly dependent on bistatic range) requires precise knowl-

edge of the range sampling vector. Considering only the lower

order portion of the range history, ∆f0 produces a shift of the

focused target. For azimuth-variant acquisitions, this azimuth

shift in the target position is azimuth dependent. Thus, not

correcting the carrier offset causes a nonuniform distortion of

the final image. Since both effects are proportional to ∆f0 and

can be measured independently, the assumption of a constant

offset clock model can be validated. By analyzing the phase

of the direct signal and the response of one reference target,

a carrier offset of 2841.14 Hz is estimated within the chosen

PRF. Once this frequency offset is corrected in the raw data,

the timing of the bistatic data set is finely synchronized using

a linear shift so that the phase center of the direct signal coin-

cides with its closest approach. The PRF offset measured after

this linear correction is 0.01278715 Hz, which corresponds to

20.842 kHz scaled onto the carrier frequency. After unwrapping

the first carrier offset estimate by four times the PRF, the

difference with the second estimate reduces to around 1 Hz.

This result substantiates the consistency of the bistatic data

synchronization procedure.
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C. Focusing

Focusing is carried out using a spotlight bistatic back-
projection algorithm [22]. Backprojection has the advantage
of perfect motion compensation for arbitrary configurations,
which is essential for ensuring that no additional phase errors
are introduced by the focusing algorithm. A grid laid at a
constant height on a spherical Earth is used as output image. No
significant phase errors due to topography changes are expected
since the whole scene is virtually flat (cf. Section III-D). The
spatial sampling is constant and sufficient to avoid aliasing. The
synchronized motion data of the satellite and the airplane are
available, and no further assumptions on the configuration need
be made. For the reference targets, the residual phase error is
kept below π/2.

V. RESULTS

A. Bistatic Image

Fig. 13 shows the full-bandwidth bistatic spotlight image
without any antenna pattern compensation (cf. Fig. 14). The im-
age shows Kaufbeuren city and airfield, surrounded by forested
areas and fields. The vertical side corresponds to ground-range,
from (top) near to (bottom) far. The effect of the F-SAR azimuth
antenna pattern is clearly visible (cf. Section III-A). The three
X-band transponders (cf. Section II-B) can be seen below
the airfield runway. The interpolated response of the central
transponder is shown in Fig. 15. The monostatic (dotted),
actual bistatic (solid), and ideal bistatic (dashed) along-track re-
sponses are shown. The resolutions are 0.76, 0.49, and 0.36 m,
respectively. The loss in resolution and the increase of sidelobe
energy are caused by uncompensated residual phase errors in
the image. Fig. 16 shows a smoothed version of these residual
phase errors (after motion removal) of the direct signal (solid),
the third (dotted), and the second transponders (dashed), the
three only point-like targets which can be extracted for the
whole acquisition time. Residual phase errors have, for this
bistatic experiment, two independent sources: 1) residual mo-
tion errors of F-SAR and 2) residual differential clock errors.
Consequently, the residual phase error of a given target can be
expressed as

∆φresidual(ta, i] =
2π

λ
· ∆rmotion(ta, i] + ∆φclock(ta) (10)

where subindex i corresponds to the different independent mea-
sures of this residual phase error. Equation (10) is nonlinear,
has four unknowns, and neglects the intrinsic noisy character
of ∆φresidual(ta, i] measurement. For the TerraSAR-X/F-SAR
bistatic experiment, only three independent residual phase error
(cf. Fig. 16) measurements are available, clearly not enough
for separating the different error contributions. We can, how-
ever, draw some conclusions of the expected errors by con-
sidering the values of phase noise and short-term stability of
TerraSAR-X and F-SAR clocks (comparable with VECTRON
OCXO CO-705 SB19 WL2) and the nominal position accuracy
of F-SAR motion unit (around 10 cm). Using the results of
[21], we conclude that the phase error caused by the clocks
is expected to be significantly lower (around factors of two to
four) than the error caused by the motion of the airplane, yet
not completely negligible.

Fig. 13. Bistatic spotlight TerraSAR-X/F-SAR image. 7680 m in ground-
range, 2560 m in azimuth. Radar illumination from top.
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Fig. 14. Bistatic TerraSAR-X/F-SAR image after antenna pattern correction.
7680 m in ground-range, 2560 m in azimuth. Radar illumination from top.

Fig. 15. (Dotted) Monostatic, (solid) bistatic, and (dashed) ideal bistatic-
transponder responses.

Fig. 16. Phase error measured on different point targets of the bistatic scene.
(Solid) Direct signal phase, (dotted) third transponder, and (dashed) second
transponder.

B. Pattern Correction

As previously discussed, the antenna pattern is not directly

measurable using the focused image. However, the amplitude

modulation induced by the antenna patterns can be compen-

sated using the method presented in Section III-A. Correct-

ing the image with the NESZ map shown in Fig. 4 yields

a calibrated bistatic image, which can be seen in Fig. 14.

As expected, the amplitude modulation caused by the bistatic

joint pattern disappears (even though the SNR pattern remains

unchanged).

C. Monostatic Versus Bistatic Images

Fig. 17 shows a part of the previous image with the mono-

static TerraSAR-X image (red) laid over the calibrated bistatic

TerraSAR-X/F-SAR image (gray). The differences between

the images are apparent at first sight. Once again, we would

like to recall that TerraSAR-X was not operated in nominal

high-resolution spotlight mode: The transmitted bandwidth was

reduced from 300 to 100 MHz, and the PRF was not optimized

for the monostatic acquisition. Range ambiguities arise due to

the high PRF and appear as vertical red lines on the monostatic

image. The low-SNR sections of the bistatic image can be

distinguished by the higher contrast of the red image. This

effect is particularly important in near range due to the elevation
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Fig. 17. (Red) Monostatic TerraSAR-X image combined with (gray) the bistatic TerraSAR-X/F-SAR image. Range increases from right to left.

null of the receiver pattern (cf. Section III). In addition to

the different along-track resolutions expected in both images

(better for most of the bistatic image) and the absence of range

ambiguities in the bistatic case, the differences between bistatic

and monostatic images can be divided into four classes:

1) signal-to-noise ratio;

2) geometric mapping;

3) scattering mechanisms;

4) Doppler information.

All four effects are noticeable in Fig. 17. The comparison is

done using zoomed areas of the monostatic and bistatic images,

with the additional help of an optical image of Kaufbeuren.

Fig. 18 shows an enlargement of an area bearing evidence

of the SNR difference between both images. The Track and

Field facility seen in the bistatic (middle) and optical (right)

images is not visible in the monostatic image (left). The two

range ambiguities present in the monostatic image (appearing

as vertical bright lines) may reduce the dynamic range, but the

contrast between the track and the surrounding area appears

much more attenuated than in the bistatic counterpart.

The differences in the illumination geometry and scattering

mechanisms are a direct consequence of the different incident

angles seen by transmitter and receiver. For the presented

image, the TerraSAR-X incident angles remain almost constant

around 55◦, whereas the F-SAR incident angles vary from 15◦
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Fig. 18. Track and Field facility next to Kaufbeuren airfield. (Left) Mono-
static, (middle) bistatic, and (right) optical images. Note that the monostatic
image performance in terms of range resolution and range ambiguity-to-signal
ratio does not correspond to the nominal values of TerraSAR-X due to the
particularities of the acquisition for the bistatic experiment.

Fig. 19. Forest area near Kaufbeuren: (left) monostatic and (right) bistatic
images.

Fig. 20. Buildings and solar panels field: (left) monostatic, (middle) bistatic,
and (right) optical images.

to 75◦ for near and far range, respectively. One example of

the different illumination geometries is shown in Fig. 19. The

image shows a forested area near Kaufbeuren in monostatic

(left) and bistatic (right) modes. For the left part of both images,

the shadows of the trees are clearly larger in the bistatic image.

The ratio of the shadow lengths is proportional to the ratio of the

tangents of transmitter and receiver incident angles. The

receiver incident angle for this part of the image varies be-

tween 66◦ and 70◦. Once again, the difference in radiometric

resolution is noticeable. Another interesting example revealing

the differences between monostatic and bistatic scattering can

be seen in Fig. 20. Monostatic (left), bistatic (middle) and

optical (right) images of the same area, some buildings near

the airport, are shown. Although the image background is

clearly darker in the monostatic image, the buildings appear

significantly brighter. A second difference can be noticed be-

tween the two main groups of buildings, in what appears to be

a metallic fence enclosing two buildings and the access road.

This metallic fence, very bright in the monostatic zoom, is

absent in the bistatic image. The fence appears bright in the

monostatic image probably due to a double-bounce scattering

Fig. 21. Transponder responses in bistatic image.

mechanism. Because of the different incident angles in the

bistatic case, the double-bounce is invisible to the bistatic

radar, and, consequently, the fence disappears in the bistatic

image. The third interesting point can be seen at the bottom

of the images, featuring a solar-panel field. Very bright in the

monostatic image due to the orientation of the panels, the area

appears much darker in the bistatic image.

The last example shown in Fig. 21 helps in illustrating the

differences in Doppler components of both images. Due to the

azimuth-variance of this bistatic configuration, the view angles

of the targets change with their azimuth position. This means

that the frequency content of the targets also changes with

azimuth position. The three images show the three different

transponders in the bistatic image. Due to the different spectral

information of each transponder and due to the different equiv-

alent squint angles, the sidelobes in the range and azimuth of

the first (top) and second (middle) transponders are no longer

orthogonal.

VI. SUMMARY

This paper has given a comprehensive report of the

TerraSAR-X/F-SAR bistatic SAR experiment including de-

scription, performance estimation, data processing, and results.

The experiment was the first X-band bistatic spaceborne–

airborne acquisition and the first including full synchro-

nization (performed in processing steps) and high-resolution

imaging. The proposed processing method portrays a gen-

eral approach for any kind of nonsynchronized bistatic SAR

system with clocks having a stable relative behavior (e.g.,

short acquisition times or systems with dedicated synchro-

nization links). The performance analysis presented for this

azimuth-variant acquisition has been validated, including the

quantitative analysis of the effects of antenna patterns on the

along-track resolution and SNR. Finally, a comparison of

the monostatic TerraSAR-X and bistatic TerraSAR-X/F-SAR

images has shown some interesting properties. The bistatic

image has an advantage in terms of resolution and SNR and

in the complete absence of range ambiguities (highly dependent

on configuration and acquisition). On the other hand, the mono-

static image shows a more homogeneous behavior in terms

of SNR. These effects, as well as the described differences in
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scattering mechanisms and information content of the images,

demonstrate the capabilities of bistatic SAR to be a valuable

complement to existing monostatic systems.

APPENDIX

The steps leading to (7) are described and discussed in this

Appendix. The assumptions and values used in Section III

remain valid for the following derivation. The perfectly syn-

chronized bistatic baseband SAR response of one target placed

at azimuth position x0 can be written as

sraw(ta;x0) = gbi · wbi(ta;x0) · exp

[

−j ·
2π

λ
· rbi(ta;x0)

]

(11)

where wbi models the bistatic joint pattern as a product of the

normalized transmitter and receiver contributions, wbi = wTx ·
wRx; gbi is a calibration constant proportional to the product

of Tx and Rx antenna gains and rbi(ta;x0) denotes the bistatic

range history of this target. After SAR processing, the focused

response of the same target can be approximated by

sSAR(x) ≈ gbi · exp [j · Φ(x, x0)] · Wbi

(

x − x0

Kbi

)

(12)

with

Kbi = λ ·

(

vTx

r0,Tx

+
vRx

r0,Rx

)−1

where Wbi is the Fourier transform of the bistatic joint pattern.

In addition, ta is transformed into x (along-track coordinate)

using the scaling factor Kbi, a result consistent with (6).

Equation (12) originates from a quadratic expansion of the

bistatic range history and is valid for the following results.

Assuming a sinc-form receive antenna pattern, the bistatic joint

pattern can be approximated by

wbi(ta) ≈ sinc

⎡

⎣

LRx · (vRx · ta − x0)

λ ·
√

r2
0,Rx + (vRx · ta − x0)2

⎤

⎦ · wTx(ta)

(13)

where LRx is the azimuth length of the Rx antenna and

wTx is a smoothly varying function within the interval

[−Tint/2, Tint/2]. The contribution of the sinc function to

the joint pattern can be separated into: 1) a harmonic part

including the sinusoidal term of the receiver pattern and 2) a

smooth modulation proportional to wTx/ta. This second factor

is responsible for small changes in the ideal (sinc-form-like)

impulse response. The harmonic factor sin[LRx · (vRx · ta −

x0)/
(

λ ·
√

r2
0,Rx + (vRx · ta − x0)2

)

] is responsible for the

degradation of the impulse response. Linearizing the argument

of this harmonic function, the resulting focused response can be

approximated by

sSAR(x) ≈ h(x − ∆xant) · exp[j · φant]

−h(x + ∆xant) · exp[−j · φant] (14)

Fig. 22. Along-track impulse responses with increasing values of φant from
(top left) π/2 to (bottom right) π and a constant value of ∆xant 10% of δx.
The resulting impulse response is drawn in solid. The dashed lines show the
shifted nonmodulated impulse responses whose complex addition approximates
the focused signal.

Fig. 23. Along-track impulse responses with decreasing values of ∆xant

from (top left) 25% to (bottom right) 70% of δx and a constant value of φant

of π/2. Impulse responses are computed like in Fig. 22.

where h(x) is the Fourier transform of wTx/ta and constant

0.5 · j has been omitted for compactness. ∆xant and φant are

given by

∆xant ≈
LRx · r2

0,Rx · vRx

2 ·
(

r2
0,Rx + x2

0

)1.5
·

(

vTx

r0,Tx

+
vRx

r0,Rx

)−1

(15)

φant ≈ − π ·
LRx · x0

λ ·
√

r2
0,Rx + x2

0

. (16)

The value of φant mainly depends on the portion of the receiver

antenna pattern seen by the target. Values around π/2 + k · π
(with k an integer) correspond to sidelobe maxima, and values

around k · π correspond to the nulls of the receiver antenna

pattern (except φant = 0, which corresponds to an unsquinted

acquisition). For the experiment, ∆xant takes values varying

from 35% to 25% of the conventional along-track resolution δx
for near-range targets and an almost constant 10% of δx for

far-range targets.
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Fig. 24. Error in along-track resolution-degradation factor, ∆αant, caused by
approximation (17).

To illustrate the effect of varying the value of φant on the

focused impulse response, Fig. 22 shows the results for four

different values of this equivalent phase: π/2 (top left), 2π/3
(top right), 5π/6 (bottom left), and π (bottom right) and a

constant value of ∆xant of 10% of the conventional δx, which

is normalized to unity. In general, the form of the impulse

response improves if φant approaches π/2 (coinciding with the

maxima of the sidelobes), going from the sinc-like form in top-

left of the plot to the two-peak impulse response plotted in the

bottom-right. The target resolution clearly worsens from top-

left to bottom-right. Fig. 23 shows a similar plot for a constant

value of φant = π/2 (sidelobe maximum) and values of ∆xant

of 25%, 35%, 50%, and 70% of δx. The latter two values are

higher than those expected in the bistatic spaceborne–airborne

experiment. They are, however, reported in the following for

illustration purposes. Increasing the values of ∆xant worsen

the resolution and the form of the impulse response. Note

that a two-peak impulse response is also obtained for the case

of ∆xant = 0.7 · δx, although no significant signal energy is

lost in this case. We can assume that, except for the cases

where the target is seen through a null of the receive antenna

(low SNR), the degradation in resolution is mainly caused

by ∆xant. Using (14), the relationship between (6) and (7)

becomes clear

δxext ≈ δx + 2 · ∆xant. (17)

Within the bounds of the approximation, the error introduced

by (17) in the estimation of the degradation factor αres as a

function of φant is shown in Fig. 24. This error is defined as

the difference between the numerically computed degradation

and αres obtained using (9) expressed in present. For 80% of

the targets (seen in the plot with values of φant between π/2
and 0.9 · π), the error of the analytically computed degradation

factor is smaller than 20% and, in the worst case, smaller

than 90% (coinciding with focused targets characterized by low

SNR, cf. Fig. 7).
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