
J. Cryptology (1991) 4:151-158
Journal of Cryptology
�9 1991 International Association for
Cryptologic Research

Bit Commitment Using Pseudorandomness 1

Moni Naor
IBM Almaden Research Center, 650 Harry Road,

San Jose, CA 95120, U.S.A.

Abstract. We show how a pseudorandom generator can provide a bit-commitment
protocol. We also analyze the number of bits communicated when parties commit
to many bits simultaneously, and show that the assumption of the existence of
pseudorandom generators suffices to assure amortized O(1) bits of communication
per bit commitment.

Key words. Cryptographic protocols, Pseudorandomness, Zero-knowledge proof
systems.

1. Introduction

A bit-commitment protocol is a basic component of many cryptographic protocols.
One party, Alice, commits to the other party, Bob, a bit b, in such a way that Bob
has no idea what b is. At a later stage Alice can reveal the bit b and Bob can verify
that this is indeed the value to which Alice committed. A good way to think about
it is as if Alice writes the bit and puts it in a locked box to which only she has the
key. She gives the box to Bob (the commit stage) and when the time is ripe she opens
it. Bob knows that the contents were not tampered with, since the box was in his
possession.

Bit commitment has been used for zero-knowledge protocols [GMWl] , [BCC],
identification schemes [FS], and multiparty protocols [GMW2], [CDG], and it
can implement Blum's coin flipping over the phone [B].

A current research program in cryptography is to base security of protocols on
as general assumptions as possible. Past successes of the program had been in
establishing various primitives on the existence of one-way functions or permuta-
tions or on the existence of trapdoor functions. The most general (computational
complexity) assumption under which bit commitment was known to be possible is
that one-way permutations exist [GMW1]. In this paper we show that given any
pseudorandom generator, a bit-commitment protocol can be constructed. This is a
weaker condition, since Yao [Y] has shown that pseudorandom generators can be

1 Date received: October 31, 1989. Date revised: May 9, 1990. Part of this work was done while the
author was at the University of California at Berkeley. This research was supported by NSF Grant CCR
88-13632.

151

152 M. Naor

based on one-way permutations. A pseudorandom generator is a function that maps
a string (the seed) to a longer one, such that if the seed is chosen at random, then
the output is indistinguishable from a truly random distribution for all polynomial-
time machines. Impagliazzo et al. JILL] have shown that given any one-way
function (not necessary a permutation), a pseudorandom generator can be con-
structed (under nonuniform assumptions), and Hastad [H] has shown the same
under uniform assumptions. On the other hand, Impagliazzo and Luby [IL] have
argued that the existence of one-way functions is a prerequisite for any protocol
that must rely on computational complexity. Thus we can conclude that if any
computational-complexity-based cryptography is possible, then bit-commitment
protocols exist, and so do the protocols that rely on bit commitment, such as
zero-knowledge proofs and identification schemes.

What is the communication complexity of a bit-commitment protocol (i.e., how
many bits must be transferred during the execution of the protocol)? It cannot be
the case that only a fixed number of bits will be exchanged during the execution of
the protocol. If this were the case, then after the commit stage Bob could guess with
nonnegligible probability what Alice would send in the revealing stage, and can
verify that the guess is consistent with what she sent so far and deduce the value of
the bit. However, in many applications Alice wants to commit to a collection of bits
b l , b 2 b m and they are to be revealed at the same time. These applications include
coin flipping over the phone and zero-knowledge protocols as in [IY]. Furthermore,
Kilian et al. [KMO] have shown that many of the known zero-knowledge protocols
can be converted to ones that have this property. Therefore it is desirable to
amortize the communication complexity of bit commitment. We show that if m is
large enough, at least linear in the security parameter n, then Alice can commit to
bl, b2, . . . , b,~ while exchanging only O(1) bits per bit commitment. The total
computational complexity of the protocol is the same as the complexity of the
protocol for committing to one bit.

In the next section we give formal definitions of the problem and the assumptions.
In Section 3 we show how the commit can be implemented using a pseudorandom
generator. Section 4 shows how to get the amortized communication complexity
down to O(1) per bit.

2. Definitions

A bit-commitment protocol consists of two stages:

�9 The commit stage: Alice has a bit b which she wishes to commit to Bob. She
and Bob exchange messages. At the end of this stage, Bob has some information
that represents b.

�9 The reveal stage: At the end of this stage, Bob knows b.

The protocol must obey the following: For all probabilistic polynomial-time
Bobs, for all polynomials p and for large enough security parameter n:

1. After the commit stage Bob cannot guess b with probability greater than
�89 + 1/p(n).

Bit Commitment Using Pseudorandomness 153

2. Alice can reveal only one possible value. If she tries to reveal a different value
she is caught with probability at least 1 - Up(n).

In defining the properties a bit-commitment protocol must obey, we have assumed
a scenario where Bob cannot guess b with probability greater than 1/2 prior to the
execution of the commit protocol. In the more general case, Bob has some auxiliary
input that might allow him to guess b with probability q > �89 In this case, the result
of the commit stage is that Bob gains less than 1/p(n) advantage in guessing b. All
the results of this paper hold for the general case.

A commitment to many bits protocol consists of two stages:

�9 The commit stage: Alice has a sequence of bits D = b 1, b 2 bm which she
wishes to commit to Bob. She and Bob exchange messages. At the end of this
stage, Bob has some information that represents D.

�9 The reveal stage: At the end of this stage, Bob knows D.

The protocol must obey the following: For all probabilistic polynomial-time
Bobs, for all polynomials p and for large enough security parameter n:

1. For any two sequences D = b 1, b2 bm and D' = b' 1, b~ b" selected by
Bob, following the commit stage Bob cannot guess whether D or D' was
committed with probability greater than 21-+ 1/p(n).

2. Alice can reveal only one possible sequence of bits. If she tries to reveal a
different sequence of bits, then she is caught with probability at least 1 - 1/p(n).

Pseudorandom Generators

Let m(n) be some function such that m(n) > n. G: {0, 1}n~--~ {0, 1} m~n~ is a pseudo-
random generator if, for all polynomials p and all probabilistic polynomial-time
machines A that attempt to distinguish between outputs of the generator and truly
random sequences, except for finitely many n's,

1
IPr[A(y) = 1] - Pr[A(G(s))= 1]1 < - -

p(n)'

where the probabilities are taken over y ~ {0, 1} m~") and s e {0, 1}" chosen uniformly
at random.

Remark. We could have defined pseudorandom generators relative to polynomial-
sized circuits. The results in this paper would change appropriately, i.e., the bit-
commitment protocol would be secure against polynomial-sized circuits.

It is known that if pseudorandom generators exist for any m(n) > n, then they
exists for all m polynomial in n [GGM]. We can treat the pseudorandom generator
as outputting a sequence of unspecified length, of which we can examine only a fixed
prefix (whose length is polynomial in n, the seed length).

In the rest of the paper we assume some psuedorandom generator G. Let n be a
security parameter which is assumed to have been chosen so that no feasible
machine can break the pseudorandom generator for seeds of length n. We use Gl(s)
to denote the first I bits of the pseudorandom sequence on seed s ~ {0, 1 }~. Bi(s) is
used to denote the itit bit of the pseudorandom sequence on seed s.

154 M. Naor

3. The Bit Commitment

Pseudorandom sequences have the unpredictability of the next bit property: Given
the first m bits of a pseudorandom sequence, any polynomial-time algorithm that
tries to predict the next bit in the sequence has success probability smaller than
�89 + Up(n) for any polynomial p(n). (In fact, Blum and Micali IBM] used this
property to define pseudorandomness and Yao [Y] has shown that the two defini-
tions are equivalent.) It is natural to try to apply this property to achieve bit
commitment.

As a first attempt, consider the following protocol:

�9 Commit stage--Alice selects seed s ~ {0, 1}" and sends Gm(s) and Bm+l(s) ~) b.
(b is the bit Alice is committed to.)

�9 Reveal stage--Alice sends s, Bob verifies that Gm(s) is what Alice send him
before and computes b = Bm+l (s) ~ (Bm+l (s) O) b).

This protocol has the property that Bob cannot guess the bit that Alice commits
to before the revealing stage, except with probability smaller than �89 + 1/poly(n),
because he does not have the power to predict the pseudorandom sequence. On the
other hand, Alice might be able to cheat: if she finds two seeds Sl and s2 such that
G m (s l) --" Gin(s2) , but B m + l (S l) :7/: Brn+l(S2), then she can reveal any bit she wishes (by
sending Sl or s2). There is nothing in the definition of pseudorandom generators
that forbids the existence of such pairs. Furthermore, given any pseudorandom
generator G, another pseudorandom generator G' that has such pairs can be
constructed.

There is no way to force Alice to stick to one seed, since there may be two seeds
that yield the same sequence. However, what the following protocol does is to force
Alice to stick to the same pseudorandom sequence, or she will be caught with high
probability.

Bit-Commitment Protocol.

�9 Commit s tage--
1. Bob selects a random vector R = (ri, r 2, r3n) where r i ~ {0, 1} for 1 < i < 3n

and sends it to Alice.
2. Alice selects a seed s ~ {0, 1} n and sends to Bob the vector D = (dl, d2 d3n)

where
SBi(s) if ri = O,

di
(Bi(s) 0 b if r i = 1.

�9 Reveal stage--Alice sends s and Bob verifies that, for all 1 < i < 3n, if r i = 0,
then di = Bi(s), and if ri = 1, then dl = Bi(s) G b.

This protocal maintains the property that Bob learns nothing about the bit b.
Otherwise Bob would have the power to distinguish between outputs of the pseudo-
random generator and truly random strings: If Alice had chosen a truly random
sequence instead of a pseudorandom sequence, then Bob would not have learned
anything about b, since all vectors D are equally likely, no matter what b is. (This

Bit Commitment Using Pseudorandomness 155

is still true even in the general case where Bob has some auxiliary input that allows
him to guess b with probability q > 1/2.) If there exists a probabilistic polynomial-
time Bob (call him Bob') that can learn something about b when Alice uses a
pseudorandom sequence, then Bob' can be used to construct a distinguisher between
outputs of G and truly random sequences. Given a sequence x, run the commit stage
of the protocol with Alice and Bob', where Alice commits to a random b and instead
of creating a pseudorandom sequence uses x. Let Bob' guess b. If he guesses correctly
decide that x is pseudorandom, otherwise decide that x is truly random. The
difference in the probability of deciding that the sequence is pseudorandom between
a random sequence and a pseudorandom sequence is equal to the advantage Bob'
has of guessing b in case x is a pseudorandom sequence.

How can Alice cheat? Her only chance to cheat is if there exist two seeds s 1 and
s 2 such that G3n(sl) and G3.(s2) agree in all positions i where r i = 0, and totally
disagree in all positions i where ri = 1. We say that such a pair fools R.

Claim 3.1. The probability that there exists a pair of seeds s 1 and s 2 that fools R is
at most 2-", where the probability is taken over the choices of R.

Proof. I f a pair sl, $2 fools R, then we know that ri = Bi(sx) O) ni(s2). Therefore, a
pair s~ and s2 fools exactly one R. There are 22" pairs of seeds and 2 3" vectors R.
Hence the probabili ty that there exists a pair that can fool the R that Bob chose is
at most 22"/23" = 2-". []

We can summarize by

Theorem 3.1. I f G is a pseudorandom generator, then the bit-commitment protocol
presented obeys the following: For all polynomials p and for large enough security
parameter n:

1. Following the commit stage, no probabilistic polynomial-time Bob can guess b
with probability greater than �89 + 1/p(n).

2. Alice can reveal only one possible bit, except with probability less than 2-".

4. Efficient Commitment to Many Bits

The protocol given in the previous section has a communication cost of O(n)
bits. If Alice wants to commit to many bits b t, b 2 b m which she will reveal
simultaneously, then she can do better. The idea is to use many bits to force Alice
to stick to one pseudorandom sequence and use that sequence to commit to many
bits.

Suppose we implement a protocol similar to the one in the previous section, but
Bob, instead of requesting to see part of the pseudorandom sequence Xored with
b, asks to see its bit-wise Xor with b 1, b 2 bin. (We assume here that m = ~n and
that R contains exactly ~n ones.) Alice might be able to alter one of the bi's, since it
is enough that there exists a pair of seeds that agree on all the bits but one.

We prevent this form happening by using error-correcting codes with a large

156 M. Naor

distance between code words. Let C = {0, 1} q be a code of 2" words such that the
hamming distance between any c~, c2 e C is at least e'q. We also require that there
be an efficiently computable function E: {0, 1}"~--, {0, 1} q for mapping words in
{0, 1}" to C.

What is required of the code? As we shall see, q .log(2/(2 - e)) must be at least
3n, and we want q/m to be a fixed constant. Such codes exist, and specifically the
Justesen code is a constructive example [J]. For the amort izat ion to work it is
sufficient that m be linear in n.

For a vector R = (r~, r 2 rk) with r~ �9 {0, 1 } and with exactly q indices i such
that ri = 1, let GR(s) denote the vector A = (al, a2, . . . , aq) where a i = Bj(o(s) andj(i)
is the index of the ith 1 in R. If el, e2 e {0, 1} q, then e~ q) e 2 denotes the bitwise Xor
of el and e2.

Commitment to Many Bits Protocol. Alice commits to b 1, b 2 bm.

�9 Commit s t a g e - -
1. Bob selects a r a m d o m vector R = (r 1, r 2 r2q) where r i �9 {0, 1} for 1 _<

i _< 2q and exactly q of the ri's are 1 and sends it to Alice
2. Alice computes c = E(b 1, b2 , b"). Alice selects a seed s �9 {0, 1} n and

sends to Bob e = c • GR(s) (the bitwise Xor of GR(s) and c), and for each
1 < i < 2q such that r i = 0 she sends Bi(s).

�9 Reveal s tage-Alice sends s and b 1 , b 2 b". Bob verifies that for all 1 _< i _< 2q
such that ri = 0 Alice had sent the correct Bg(s), computes c = E(b 1, b 2 b")
and GR(s), and verifies that e = c G Ga(s)

As in the previous section, Bob can learn nothing about any of the bi's:

Claim 4.1. For any two different sequences D = b 1, b 2 , b m and D' = b[, b [, . . . , b"
that Bob selects, for any polynomial p, following the commit stage Bob cannot decide
with probability greater than �89 + 1/p(n) to which sequence Alice has committed.

Proof. If instead o f a pseudorandom sequence Alice uses a truly r andom sequence,
then the distribution that Bob sees is identical no matter what sequence of bits is
being commit ted to. Thus if he can find two sequences of bits D and D' for which
he can distinguish between D and D', then he has a distinguisher to the pseudo-
r andom generator. []

How can Alice cheat? She can cheat if there exists a pair of seeds s 1 and s 2 that
agree on all the indices that R has a 0, and there exist two different sequences
b 1, b 2 b" and b~, b[. b~, such that Gk(sl) t~ E(bl, bE bin) = GR(S2) q)
E(b'l, b'2 b'm). We say that s 1 and s 2 fool R in this case.

Claim 4.2. For any pair o f seeds s 1 and s2, the probability that it fools R is at most
(1 - e/2) q, where the probability is taken over the choices o f R.

Proof. I fs t and s 2 can fool some R, then the hamming distance between G2q(Sl) and
G2q(s2) m u s t be at least eq, since G R (s l) q) e = c 1 and G R (S E) (~ e - - c 2 for two

Bit Commitment Using Pseudorandomness 157

different code words cl and c2 whose distance is at least eq. Therefore, the prob-
ability that the indices i for which r i = 0 will hit only the indices where GEq(S 1) and
G2q(s2) agree is at most ((2q - eq)/2q) q = (1 - e/2) ~. []

If(1 - e/2) ~ < 2 -3n, i.e., q.log(2/(2 - e)) > 3n, then for at most 2 -n of the vectors
R e {0, 1} 2q there is a pair of seeds sl and s2 that fools R. Therefore, the probability
that Alice can alter any bit without being caught is at most 2-".

The number of bits exchanged in he protocol is O(q), and when amortized over
m bits it is O(q/m) which is 0(1), since C is a good code. The dominant factor in the
computational complexity of the protocol is that of G. Alice has to produce a
psuedorandom sequence of length 2q which is O(n). This is similar to the complexity
of the commitment to a single bit.

We can summarize by

Theorem 4.1. I f G is a pseudorandom generator, then the many-bit-commitment
protocol presented obeys the following: for all probabilistic polynomial time Bobs, for
all polynomials p and for large enough security parameter n:

1. For any two different sequences D = bl, b 2 brn and D' = b'l, b', b',, that
Bob selects, for any polynomial p, following the commit stage Bob cannot decide
with probability greater than �89 + 1/p(n) to which sequence Alice has committed.

2. Alice can reveal only one possible sequence of bits, except with probability less
than 2-".

3. For m > n, the communication cost is O(m).

Joe Kilian (private communication) has suggested a different method for amortiz-
ing the communication complexity: commit to a seed s by committing to each of its
bits separately and then commit to bl, b2 bm by providing its Xor with the
pseudorandom sequence generated by s. However, in this method the amortization
starts only when m is at least n 2.

5. Conclusions

We have shown how to construct bit-commitment protocols from pseudorandom
generators and have shown how bit commitment to many bits can be implemented
very efficiently. Thus, various zero-knowledge protocols can be implemented with
low complexity under the sole assumption that one-way functions exist.

In both protocols we have presented, Bob selects a random R, and we have argued
that almost all the R's are good. Therefore if there is a trusted party at some point
in time (say the protocol designer), it can choose R and the same R will be used in
all executions of the protocol.

References

[B] M. Blum, Coin flipping by telephone, Proc. 24th IEEE Compcon, 1982, pp. 133-137.
[BM] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-

random bits, SIAM Journal on Computing, Vol. 13 (1984), pp. 850-864.

158 M. Naor

[Bcc]

[CDG]

[FS]
I-GGM]

[GMWl]

FGMW2]

EH]

JILL]

[IL]

EIY]
[J]

FKMO]

[Y]

G. Brassard, D. Chaum, and C. Cr6peau, Minimum disclosure proofs of knowledge, Journal
of Computer and System Sciences, Vol. 37 (1988). pp. 156-189.
D. Chaum, I. Damg~rd, and J. van de Graaf, Multiparty computations ensuring secrecy of
each party's input and correctness of the output, Proc. Crypto '87, p. 462.
A. Fiat and A. Shamir, How to prove yourself, Proc. Crypto '86, pp. 641-654.
O. Goldreich, S. Goldwasser, and M. Micali, How to construct random functions, Journal
of the ACM, Vol. 33 (1986), pp. 792-807.
O. Goldreich, M. Micali, and A. Wigderson, Proofs that yield nothing but their validity and
a methodology of cryptographic protocol design, Proc. 27th IEEE Symposium on Foundations
of Computer Science, 1986, pp. 174-187.
O. Goldreich, M. Micali, and A. Wigderson, How to play any mental game, Proc. 19th ACM
Symposium on Theory of Computing, 1987, pp. 218-229.
J. Hastad, Pseudorandom generators under uniform assumptions, Proc. 22nd ACM Sympo-
sium on Theory of Computing, 1990, pp. 395-404.
I. Impagliazzo, L. Levin, and M. Luby, Pseudorandom generation from one-way functions,
Proc. 21st ACM Symposium on Theory of Computing, 1989, pp. 12-24.
I. Impagliazzo and M. Luby, One-way functions are essential to computational based
cryptography, Proc. 30th IEEE Symposium on Foundations of Computer Science, 1989,
pp. 230-235.
R. Impagliazzo and M. Yung, Direct zero-knowledge protocols, Proc. Crypto '87, pp. 40-51.
J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE Transactions
on Information Theory, Vol. 18 (1972), pp. 652-656.
J. Kilian, S. Micali, and R. Ostrovsky, Minimum resource zero-knowledge proofs, Proc. 30th
IEEE Symposium on Foundations of Computer Science, 1989, pp. 474-479.
A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd Symposium on Founda-
tions of Computer Science, 1982, pp. 80-91.

