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Abstract. We show how a pseudorandom generator can provide a bit-commitment 
protocol. We also analyze the number of bits communicated when parties commit 
to many bits simultaneously, and show that the assumption of the existence of 
pseudorandom generators suffices to assure amortized O(1) bits of communication 
per bit commitment. 
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1. Introduction 

A bit-commitment protocol is a basic component of many cryptographic protocols. 
One party, Alice, commits to the other party, Bob, a bit b, in such a way that Bob 
has no idea what b is. At a later stage Alice can reveal the bit b and Bob can verify 
that this is indeed the value to which Alice committed. A good way to think about 
it is as if Alice writes the bit and puts it in a locked box to which only she has the 
key. She gives the box to Bob (the commit stage) and when the time is ripe she opens 
it. Bob knows that the contents were not tampered with, since the box was in his 
possession. 

Bit commitment has been used for zero-knowledge protocols [GMWl] ,  [BCC], 
identification schemes [FS], and multiparty protocols [GMW2], [CDG], and it 
can implement Blum's coin flipping over the phone [B]. 

A current research program in cryptography is to base security of protocols on 
as general assumptions as possible. Past successes of the program had been in 
establishing various primitives on the existence of one-way functions or permuta- 
tions or on the existence of trapdoor functions. The most general (computational 
complexity) assumption under which bit commitment was known to be possible is 
that one-way permutations exist [GMW1]. In this paper we show that given any 
pseudorandom generator, a bit-commitment protocol can be constructed. This is a 
weaker condition, since Yao [Y] has shown that pseudorandom generators can be 
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based on one-way permutations. A pseudorandom generator is a function that maps 
a string (the seed) to a longer one, such that if the seed is chosen at random, then 
the output is indistinguishable from a truly random distribution for all polynomial- 
time machines. Impagliazzo et al. JILL] have shown that given any one-way 
function (not necessary a permutation), a pseudorandom generator can be con- 
structed (under nonuniform assumptions), and Hastad [H] has shown the same 
under uniform assumptions. On the other hand, Impagliazzo and Luby [IL] have 
argued that the existence of one-way functions is a prerequisite for any protocol 
that must rely on computational complexity. Thus we can conclude that if any 
computational-complexity-based cryptography is possible, then bit-commitment 
protocols exist, and so do the protocols that rely on bit commitment, such as 
zero-knowledge proofs and identification schemes. 

What is the communication complexity of a bit-commitment protocol (i.e., how 
many bits must be transferred during the execution of the protocol)? It cannot be 
the case that only a fixed number of bits will be exchanged during the execution of 
the protocol. If this were the case, then after the commit stage Bob could guess with 
nonnegligible probability what Alice would send in the revealing stage, and can 
verify that the guess is consistent with what she sent so far and deduce the value of 
the bit. However, in many applications Alice wants to commit to a collection of bits 
b l ,  b 2 . . . . .  b m and they are to be revealed at the same time. These applications include 
coin flipping over the phone and zero-knowledge protocols as in [IY]. Furthermore, 
Kilian et al. [KMO] have shown that many of the known zero-knowledge protocols 
can be converted to ones that have this property. Therefore it is desirable to 
amortize the communication complexity of bit commitment. We show that if m is 
large enough, at least linear in the security parameter n, then Alice can commit to 
bl, b2, . . . ,  b,~ while exchanging only O(1) bits per bit commitment. The total 
computational complexity of the protocol is the same as the complexity of the 
protocol for committing to one bit. 

In the next section we give formal definitions of the problem and the assumptions. 
In Section 3 we show how the commit can be implemented using a pseudorandom 
generator. Section 4 shows how to get the amortized communication complexity 
down to O(1) per bit. 

2. Definitions 

A bit-commitment protocol consists of two stages: 

�9 The commit stage: Alice has a bit b which she wishes to commit to Bob. She 
and Bob exchange messages. At the end of this stage, Bob has some information 
that represents b. 

�9 The reveal stage: At the end of this stage, Bob knows b. 

The protocol must obey the following: For all probabilistic polynomial-time 
Bobs, for all polynomials p and for large enough security parameter n: 

1. After the commit stage Bob cannot guess b with probability greater than 
�89 + 1/p(n). 
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2. Alice can reveal only one possible value. If she tries to reveal a different value 
she is caught with probability at least 1 - Up(n). 

In defining the properties a bit-commitment protocol must obey, we have assumed 
a scenario where Bob cannot guess b with probability greater than 1/2 prior to the 
execution of the commit protocol. In the more general case, Bob has some auxiliary 
input that might allow him to guess b with probability q > �89 In this case, the result 
of the commit stage is that Bob gains less than 1/p(n) advantage in guessing b. All 
the results of this paper hold for the general case. 

A commitment to many bits protocol consists of two stages: 

�9 The commit stage: Alice has a sequence of bits D = b 1, b 2 . . . . .  bm which she 
wishes to commit to Bob. She and Bob exchange messages. At the end of this 
stage, Bob has some information that represents D. 

�9 The reveal stage: At the end of this stage, Bob knows D. 

The protocol must obey the following: For  all probabilistic polynomial-time 
Bobs, for all polynomials p and for large enough security parameter n: 

1. For  any two sequences D = b 1, b2 . . . . .  bm and D' = b' 1, b~ . . . . .  b" selected by 
Bob, following the commit stage Bob cannot guess whether D or D' was 
committed with probability greater than 21-+ 1/p(n). 

2. Alice can reveal only one possible sequence of bits. If she tries to reveal a 
different sequence of bits, then she is caught with probability at least 1 - 1/p(n). 

Pseudorandom Generators 

Let m(n) be some function such that m(n) > n. G: {0, 1}n~--~ {0, 1} m~n~ is a pseudo- 
random generator if, for all polynomials p and all probabilistic polynomial-time 
machines A that attempt to distinguish between outputs of the generator and truly 
random sequences, except for finitely many n's, 

1 
IPr[A(y) = 1] - Pr[A(G(s))= 1]1 < - -  

p(n)' 

where the probabilities are taken over y ~ {0, 1} m~") and s e {0, 1}" chosen uniformly 
at random. 

Remark. We could have defined pseudorandom generators relative to polynomial- 
sized circuits. The results in this paper would change appropriately, i.e., the bit- 
commitment protocol would be secure against polynomial-sized circuits. 

It is known that if pseudorandom generators exist for any m(n) > n, then they 
exists for all m polynomial in n [GGM].  We can treat the pseudorandom generator 
as outputting a sequence of unspecified length, of which we can examine only a fixed 
prefix (whose length is polynomial in n, the seed length). 

In the rest of the paper we assume some psuedorandom generator G. Let n be a 
security parameter which is assumed to have been chosen so that no feasible 
machine can break the pseudorandom generator for seeds of length n. We use Gl(s ) 
to denote the first I bits of the pseudorandom sequence on seed s ~ {0, 1 }~. Bi(s) is 
used to denote the itit bit of the pseudorandom sequence on seed s. 
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3. The Bit Commitment 

Pseudorandom sequences have the unpredictability of the next bit property: Given 
the first m bits of a pseudorandom sequence, any polynomial-time algorithm that 
tries to predict the next bit in the sequence has success probability smaller than 
�89 + Up(n) for any polynomial p(n). (In fact, Blum and Micali IBM] used this 
property to define pseudorandomness and Yao [Y] has shown that the two defini- 
tions are equivalent.) It is natural to try to apply this property to achieve bit 
commitment. 

As a first attempt, consider the following protocol: 

�9 Commit stage--Alice selects seed s ~ {0, 1}" and sends Gm(s ) and Bm+l(s) ~) b. 
(b is the bit Alice is committed to.) 

�9 Reveal stage--Alice sends s, Bob verifies that Gm(s ) is what Alice send him 
before and computes b = Bm+l (s ) ~ (Bm+l (s) O) b). 

This protocol has the property that Bob cannot guess the bit that Alice commits 
to before the revealing stage, except with probability smaller than �89 + 1/poly(n), 
because he does not have the power to predict the pseudorandom sequence. On the 
other hand, Alice might be able to cheat: if she finds two seeds Sl and s2 such that 
G m ( s l )  --" Gin(s2) , but B m + l ( S l )  :7/: Brn+l(S2),  then she can reveal any bit she wishes (by 
sending Sl or s2). There is nothing in the definition of pseudorandom generators 
that forbids the existence of such pairs. Furthermore, given any pseudorandom 
generator G, another pseudorandom generator G' that has such pairs can be 
constructed. 

There is no way to force Alice to stick to one seed, since there may be two seeds 
that yield the same sequence. However, what the following protocol does is to force 
Alice to stick to the same pseudorandom sequence, or she will be caught with high 
probability. 

Bit-Commitment Protocol. 

�9 Commit s tage--  
1. Bob selects a random vector R = (ri, r 2, r3n ) where r i ~ {0, 1} for 1 < i < 3n 

and sends it to Alice. 
2. Alice selects a seed s ~ {0, 1} n and sends to Bob the vector D = (dl, d2 . . . . .  d3n) 

where 
SBi(s) if ri = O, 

di 
(Bi(s) 0 b if r i = 1. 

�9 Reveal stage--Alice sends s and Bob verifies that, for all 1 < i < 3n, if r i = 0, 
then di = Bi(s), and if ri = 1, then dl = Bi(s) G b. 

This protocal maintains the property that Bob learns nothing about the bit b. 
Otherwise Bob would have the power to distinguish between outputs of the pseudo- 
random generator and truly random strings: If Alice had chosen a truly random 
sequence instead of a pseudorandom sequence, then Bob would not have learned 
anything about b, since all vectors D are equally likely, no matter what b is. (This 
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is still true even in the general case where Bob has some auxiliary input that allows 
him to guess b with probability q > 1/2.) If there exists a probabilistic polynomial- 
time Bob (call him Bob') that can learn something about  b when Alice uses a 
pseudorandom sequence, then Bob' can be used to construct a distinguisher between 
outputs of G and truly random sequences. Given a sequence x, run the commit stage 
of the protocol with Alice and Bob', where Alice commits to a random b and instead 
of creating a pseudorandom sequence uses x. Let Bob' guess b. If  he guesses correctly 
decide that x is pseudorandom, otherwise decide that x is truly random. The 
difference in the probability of deciding that the sequence is pseudorandom between 
a random sequence and a pseudorandom sequence is equal to the advantage Bob' 
has of guessing b in case x is a pseudorandom sequence. 

How can Alice cheat? Her only chance to cheat is if there exist two seeds s 1 and 
s 2 such that G3n(sl) and G3.(s2) agree in all positions i where r i = 0, and totally 
disagree in all positions i where ri = 1. We say that such a pair fools R. 

Claim 3.1. The probability that there exists a pair of seeds s 1 and s 2 that fools R is 
at most 2-", where the probability is taken over the choices of R. 

Proof. I f a  pair sl,  $2 fools R, then we know that ri = Bi(sx) O) ni(s2). Therefore, a 
pair s~ and s2 fools exactly one R. There are 22" pairs of seeds and 2 3" vectors R. 
Hence the probabili ty that there exists a pair that can fool the R that Bob chose is 
at most  22"/23" = 2-". []  

We can summarize by 

Theorem 3.1. I f  G is a pseudorandom generator, then the bit-commitment protocol 
presented obeys the following: For all polynomials p and for large enough security 
parameter n: 

1. Following the commit stage, no probabilistic polynomial-time Bob can guess b 
with probability greater than �89 + 1/p(n). 

2. Alice can reveal only one possible bit, except with probability less than 2-". 

4. Efficient Commitment to Many Bits 

The protocol given in the previous section has a communication cost of O(n) 
bits. If  Alice wants to commit  to many bits b t, b 2 . . . . .  b m which she will reveal 
simultaneously, then she can do better. The idea is to use many bits to force Alice 
to stick to one pseudorandom sequence and use that sequence to commit to many 
bits. 

Suppose we implement a protocol similar to the one in the previous section, but 
Bob, instead of requesting to see part  of the pseudorandom sequence Xored with 
b, asks to see its bit-wise Xor with b 1, b 2 . . . . .  bin. (We assume here that m = ~n and 
that R contains exactly ~n ones.) Alice might be able to alter one of the bi's, since it 
is enough that there exists a pair of seeds that agree on all the bits but one. 

We prevent this form happening by using error-correcting codes with a large 
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distance between code words. Let C = {0, 1} q be a code of  2" words such that the 
hamming  distance between any c~, c2 e C is at least e'q.  We also require that there 
be an efficiently computable  function E: {0, 1}"~--, {0, 1} q for mapping  words in 
{0, 1}" to C. 

What  is required of  the code? As we shall see, q .log(2/(2 - e)) must  be at least 
3n, and we want  q/m to be a fixed constant.  Such codes exist, and specifically the 
Justesen code is a constructive example [J].  For  the amort izat ion to work it is 
sufficient that  m be linear in n. 

For  a vector R = (r~, r 2 . . . . .  rk) with r~ �9 {0, 1 } and with exactly q indices i such 
that ri = 1, let GR(s) denote the vector A = (al, a2, . . . ,  aq) where a i = Bj(o(s ) andj( i )  
is the index of  the ith 1 in R. If el, e2 e {0, 1} q, then e~ q) e 2 denotes the bitwise Xor  
of el and e2. 

Commitment to Many Bits Protocol. Alice commits  to b 1, b 2 . . . . .  bm. 

�9 Commit  s t a g e - -  
1. Bob selects a r a m d o m  vector R = (r 1, r 2 . . . . .  r2q ) where r i �9 {0, 1} for 1 _< 

i _< 2q and exactly q of  the ri's are 1 and sends it to Alice 
2. Alice computes  c = E(b 1, b2 . . . .  , b"). Alice selects a seed s �9 {0, 1} n and 

sends to Bob e = c • GR(s) (the bitwise Xor  of GR(s) and c), and for each 
1 < i < 2q such that  r i = 0 she sends Bi(s ). 

�9 Reveal s tage-Alice sends s and b 1 , b 2 . . . . .  b". Bob verifies that  for all 1 _< i _< 2q 
such that ri = 0 Alice had sent the correct Bg(s), computes  c = E(b 1, b 2 . . . . .  b") 
and GR(s), and verifies that  e = c G Ga(s) 

As in the previous section, Bob can learn nothing about  any of  the bi's: 

Claim 4.1. For any two different sequences D = b 1, b 2 . . . .  , b m and D' = b[, b [ , . . . ,  b" 
that Bob selects, for  any polynomial p, following the commit stage Bob cannot decide 
with probability greater than �89 + 1/p(n) to which sequence Alice has committed. 

Proof. If  instead o f a  pseudorandom sequence Alice uses a truly r andom sequence, 
then the distribution that  Bob sees is identical no matter  what  sequence of  bits is 
being commit ted to. Thus if he can find two sequences of bits D and D' for which 
he can distinguish between D and D', then he has a distinguisher to the pseudo- 
r andom generator. [ ]  

How can Alice cheat? She can cheat if there exists a pair of  seeds s 1 and s 2 that  
agree on all the indices that  R has a 0, and there exist two different sequences 
b 1, b 2 . . . . .  b" and b~, b[ . . . . .  b~, such that  Gk(sl)  t~ E(bl,  bE . . . . .  bin) = GR(S2) q) 
E(b'l, b'2 . . . . .  b'm). We say that  s 1 and s 2 fool R in this case. 

Claim 4.2. For any pair o f  seeds s 1 and s2, the probability that it fools R is at most 
(1 - e/2) q, where the probability is taken over the choices o f  R. 

Proof. I fs  t and s 2 can fool some R, then the hamming distance between G2q(Sl)  and 
G2q(s2) m u s t  be at least eq, since G R ( s l ) q ) e  = c 1 and G R ( S E ) ( ~ e - - c  2 for two 
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different code words cl and c2 whose distance is at least eq. Therefore, the prob- 
ability that the indices i for which r i = 0 will hit only the indices where GEq(S 1 ) and 
G2q(s2) agree is at most ((2q - eq)/2q) q = (1 - e/2) ~. [] 

If(1 - e/2) ~ < 2 -3n, i.e., q.log(2/(2 - e)) > 3n, then for at most 2 -n of the vectors 
R e {0, 1} 2q there is a pair of seeds sl and s2 that fools R. Therefore, the probability 
that Alice can alter any bit without being caught is at most 2-". 

The number of bits exchanged in he protocol is O(q), and when amortized over 
m bits it is O(q/m) which is 0(1), since C is a good code. The dominant factor in the 
computational complexity of the protocol is that of G. Alice has to produce a 
psuedorandom sequence of length 2q which is O(n). This is similar to the complexity 
of the commitment to a single bit. 

We can summarize by 

Theorem 4.1. I f  G is a pseudorandom generator, then the many-bit-commitment 
protocol presented obeys the following: for all probabilistic polynomial time Bobs, for 
all polynomials p and for large enough security parameter n: 

1. For any two different sequences D = bl, b 2 . . . . .  brn and D' = b'l, b', . . . .  b',, that 
Bob selects, for any polynomial p, following the commit stage Bob cannot decide 
with probability greater than �89 + 1/p(n) to which sequence Alice has committed. 

2. Alice can reveal only one possible sequence of bits, except with probability less 
than 2-". 

3. For m > n, the communication cost is O(m). 

Joe Kilian (private communication) has suggested a different method for amortiz- 
ing the communication complexity: commit to a seed s by committing to each of its 
bits separately and then commit to bl, b2 . . . . .  bm by providing its Xor with the 
pseudorandom sequence generated by s. However, in this method the amortization 
starts only when m is at least n 2. 

5. Conclusions 

We have shown how to construct bit-commitment protocols from pseudorandom 
generators and have shown how bit commitment to many bits can be implemented 
very efficiently. Thus, various zero-knowledge protocols can be implemented with 
low complexity under the sole assumption that one-way functions exist. 

In both protocols we have presented, Bob selects a random R, and we have argued 
that almost all the R's are good. Therefore if there is a trusted party at some point 
in time (say the protocol designer), it can choose R and the same R will be used in 
all executions of the protocol. 
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