
����������
�������

Citation: Bi, Z.; Xu, G.; Xu, G.; Wang,

C.; Zhang, S. Bit-Level Automotive

Controller Area Network Message

Reverse Framework Based on Linear

Regression. Sensors 2022, 22, 981.

https://doi.org/10.3390/s22030981

Academic Editors: Leandros

Maglaras, Helge Janicke and

Mohamed Amine Ferrag

Received: 9 December 2021

Accepted: 24 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Bit-Level Automotive Controller Area Network Message
Reverse Framework Based on Linear Regression
Zixiang Bi , Guoai Xu *, Guosheng Xu , Chenyu Wang and Sutao Zhang

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
bzx@bupt.edu.cn (Z.B.); guoshengxu@bupt.edu.cn (G.X.); wangchenyu@bupt.edu.cn (C.W.);
lunter-zst@bupt.edu.cn (S.Z.)
* Correspondence: xga@bupt.edu.cn

Abstract: Modern intelligent and networked vehicles are increasingly equipped with electronic
control units (ECUs) with increased computing power. These electronic devices form an in-vehicle
network via the Controller Area Network (CAN) bus, the de facto standard for modern vehicles.
Although many ECUs provide convenience to drivers and passengers, they also increase the potential
for cyber security threats in motor vehicles. Numerous attacks on vehicles have been reported, and
the commonality among these attacks is that they inject malicious messages into the CAN network.
To close the security holes of CAN, original equipment manufacturers (OEMs) keep the Database
CAN (DBC) file describing the content of CAN messages, confidential. This policy is ineffective
against cyberattacks but limits in-depth investigation of CAN messages and hinders the development
of in-vehicle intrusion detection systems (IDS) and CAN fuzz testing. Current research reverses
CAN messages through tokenization, machine learning, and diagnostic information matching to
obtain details of CAN messages. However, the results of these algorithms yield only a fraction of the
information specified in the DBC file regarding CAN messages, such as field boundaries and message
IDs associated with specific functions. In this study, we propose multiple linear regression-based
frameworks for bit-level inversion of CAN messages that can approximate the inversion of DBC files.
The framework builds a multiple linear regression model for vehicle behavior and CAN traffic, filters
the candidate messages based on the decision coefficients, and finally locates the bits describing the
vehicle behavior to obtain the data length and alignment based on the model parameters. Moreover,
this work shows that the system has high reversion accuracy and outperforms existing systems in
boundary delineation and filtering relevant messages in actual vehicles.

Keywords: Controller Area Network; electronic control units; database CAN; reverse; multiple linear
regression; bit-level; vehicle behavior

1. Introduction

The increasingly diverse features in today’s vehicles offer drivers and passengers a
more relaxed driving experience and greater convenience. Vehicle connectivity provides
real-time information and a variety of entertainment options. In addition, vehicle support
features such as advanced driver assistance systems (ADAS), reduce driving stress and
make driving safer. These capabilities have multiplied due to the increasing number of elec-
tronic control units (ECUs) and higher computing power. Current vehicles are equipped
with up to 150 ECUs [1], that need to communicate in a unified network that requires
the vehicles to provide sophisticated real-time performance, sufficient data transmission
volume, and adequate reliability. Control Area Network (CAN), a technology that meets
these requirements, became the international standard for intra-vehicle network communi-
cation in 1993 [2]. However, since CAN uses broadcast communication and lacks security
mechanisms such as encryption and authentication, it increases the probability that the
vehicle will be attacked [3–6].

Sensors 2022, 22, 981. https://doi.org/10.3390/s22030981 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8458-029X
https://orcid.org/0000-0002-3310-926X
https://doi.org/10.3390/s22030981
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030981?type=check_update&version=2

Sensors 2022, 22, 981 2 of 30

Many examples of attacks on vehicles have confirmed that it is possible to attack the
vehicle and perform negative control [7–9]. The most typical attack case is the attack by
Miller et al. on a Jeep Cherokee that was driving on the highway and used a CAN bus-
connected entertainment system and ECU firmware, that resulted in acceleration and brake
failures [10]. More recently, Keen Labs in China exploited vulnerabilities in Tesla’s assisted
driving system to drive the vehicle into the reverse lane and even remotely control the
vehicle’s steering with a gamepad [11]. Regardless of the type of vulnerability, the common
denominator of the attack is the need to inject information into the CAN bus to cause the
vehicle to behave dangerously [12]. To prevent the CAN bus from being infiltrated with
targeted attacks, original equipment manufacturers (OEMs) privatize the database CAN
(DBC) file. The DBC file defines the structure, content, and meaning of each message in
the CAN network [13,14]. Even the DBC file is different for different models of the same
brand. It is very time-consuming for an attacker to work reverse before implementing
CAN bus attacks. For security researchers, private DBC files are a massive obstacle to CAN
security research. The most affected area is the automotive intrusion detection system
(IDS), a crucial research element in automotive security. CAN intrusion detection systems
have been proposed to detect anomalies by analyzing CAN traffic [15–23], but these studies
are based on message transmission characteristics that are practically irrelevant to the
behavior and status of the vehicle. Therefore, the existing IDSs for the CAN are not very
powerful. Another hindered study is the fuzzy test on the CAN bus, which is often used
to automatically test and discover unknown vulnerabilities in ECUs [24–28]. Since the
DBC files are hidden, which causes the fuzzy test intelligence to construct data blindly,
brute force and random data make the test inefficient. In addition, the lack of DBC files
with detailed descriptions of CAN messages hinders automotive aftermarket development.
Without effective access to vehicle status, automotive driver assistance systems and status
display tools become meaningless.

The detailed specification of CAN messages is crucial for CAN network intrusion
detection, fuzz testing, and automotive aftermarket products. To obtain the CAN message
description in the DBC document, the security research field has proposed CAN bus
reversion methods such as CAN message tokenization algorithm, machine learning-based
inversion method, and onboard diagnostics II (OBD-II) diagnostic information matching.
The earliest CAN message tokenization algorithm was the FBCA algorithm proposed by
Markovitz et al. in 2017 [29], followed by the READ algorithm proposed by Marchetii and
Stabili in 2018 [30]. The automatic CAN message translator LibreCAN was proposed by
Pesé et al. in 2019 [31]. Recently, the ReCAN [32] dataset was published by Zago et al.
in 2020 using a similar approach to READ. However, they are limited to classifying and
subdividing data changes, such as constants, multiple values, counters, sensors. These
cannot obtain specific information, such as the meaning and alignment of each tagged data.
It is of minimal help for IDS research and aftermarket. The most typical of the machine
learning-based CAN message reversal methods are Jaynes et al. proposed a method
for efficient identification of sending ECUs, which identifies CAN frame by analyzing a
similarity construction model describing uniform vehicle state information [33]. A data-
driven CAN bus reversion method proposed by Buscemi et al. used already available
open-source DBC files to train a machine learning model to identify unknown CAN
message contents [34], a scheme similar to the unsupervised machine learning-based
scheme proposed by Ezeobi et al. [35]. The accuracy of this type of solution depends
entirely on the coverage of the training set. Since each vehicle is configured with a unique
DBC file, it is almost impossible for the training set of such algorithms to cover all vehicle
models. These approaches have been validated only on simulated data and are practically
infeasible. Methods based on matching OBD-II diagnostic information describe the vehicle
status in CAN information by comparing and matching OBD-II responses. Song and Kim
et al. first proposed to create windows before and after the OBD-II response information to
find candidate information that exactly duplicates the response data and repeat it several
times to determine the information describing the response [36]. Blaauwendraad proposed

Sensors 2022, 22, 981 3 of 30

a matching method using correlation coefficients based on Song’s method [37]. While these
methods can yield some inversion results, they can only identify specific vehicle behavior
in CAN messages. The insufficient number of supported vehicle behaviors for per-vehicle
diagnostics limits the application of this scheme. Additionally, the CANHUNTER [38]
proposed by Wen et al. in 2020 reverses the CAN message by disassembling the control APP
that interacts with the car. Although this is a novel idea, this method can only obtain what
is specified in the APP, and the scheme will be completely invalid once the APP commands
are escaped at the server-side. In addition, since such APPs are only valid for the specified
car model, this scheme also receives the limitation of the car model. In summary, existing
CAN message reversal techniques are limited in their implementation by the number of
available DBC files and vehicle models, and their results are unsatisfactory. Solutions that
are not limited by vehicle models and can achieve close to the DBC file reversal results are
urgently needed.

The CAN frame data tags alone do not reveal any valuable information, and one
needs to have DBC files to decode them. However, the DBC files are hidden and usually
different for each model. Reverse engineering solutions for CAN information that are
not constrained by the vehicle model and can access critical information in the DBC files
are urgently needed. To achieve CAN message reversal close to the DBC file, this study
innovatively proposes a multiple linear regression model after an in-depth analysis of the
way the DBC file specifies the vehicle behavior. The model is built using each bit of the
CAN message data field as the independent variable and the vehicle behavior data as the
dependent variable. As the input of our framework additionally includes sensor data,
our framework needs to be very useful. First, the framework uses the R2 of the model to
filter the candidate messages related to vehicle behavior, which has an excellent filtering
result on related messages compared to existing schemes. In addition, the framework
outperforms existing systems in terms of data boundary delineation by locating the bits
describing the vehicle behavior and obtaining the details of field functions, starting bits,
field lengths, and alignment formats in the DBC file based on the β value of each model.
Finally, since commercially available vehicles must be configured with a standard CAN
data interface and the vehicle behavior can be captured by commonly used sensors, the
inverse framework proposed in this study is independent of the vehicle model and brand.

The structure of this study is as follows. Section 2 introduces the CAN bus, DBC file,
multiple linear regression models preliminary introductions and describes the feasibility
of the study’s ideas. Section 3 describes the design and implementation ideas of the
framework. Section 4 evaluates the performance of the CAN reverse framework in actual
vehicles, the reverse accuracy, the time required, the advantages over existing solutions,
and the applicability of the framework. Section 5 concludes the study.

2. Background and Feasibility
2.1. CAN Bus Overview

The CAN bus is a serial communication bus originally developed by Bosch [39]. Later
the international standards organization (ISO) issued the international standard ISO11898
for CAN in 1993 [40]. CANs have become one of the most widely used fieldbuses globally
due to their high transmission rate and high real-time characteristics.

The standard format of a CAN message is shown in Figure 1. It begins with the start of
frame (SOF), followed by an 11-bit identifier (ID) and a remote transmission request (RTR).
The ID defines the meaning and type of the message and is also used to filter irrelevant
messages when the node receives the messages. The ID is also used for arbitration when
multiple nodes send data simultaneously; the smaller the ID is, the higher the priority
is. RTR is used to distinguish the type of message. A six-bit control field follows this:
identifier extension (IDE) and r0 specify the length of the frame, and the data length code
(DLC) specifies the number of bytes in the data field. The data field is the core of the CAN
message and is 64 bits long. It contains the vehicle control commands, the status data, and
any other data to be transmitted (e.g., counters, checksum values, etc.). This is followed by

Sensors 2022, 22, 981 4 of 30

the Circular Check Code (CRC), the Acknowledgement Field (ACK), and the end of frame
(EOF), respectively.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 30

any other data to be transmitted (e.g., counters, checksum values, etc.). This is followed
by the Circular Check Code (CRC), the Acknowledgement Field (ACK), and the end of
frame (EOF), respectively.

Figure 1. Standard CAN message frame.

For CAN message reversal work, the main targets of the reversal are the identifier
(ID) and the data fields. When reversing CAN messages, the relevant message ID is usu-
ally locked first, and then the data fields are analyzed to obtain specific bit fields that
characterize the vehicle behavior.

2.2. DBC File
The form and content of each type of CAN message are defined in the DBC file, so

each OEM keeps it private to avoid leakage from the data source and prevent negative
control and modification of the car. However, all CAN messages must be fully translated
using the DBC file as a table, making sense for CAN reverse work. The contents defined
in the DBC file are listed in Table 1. The Name, ID, Cycle Time, and Length describe the
entire message. The Function specifies one or more vehicle behaviors in the message data
fields. Byte Order, Start Byte, Start Bit, Bit Length, Units, Precision, and Offset specify how
the message describes the specific behavior. Typically, the data fields of a message contain
multiple functions.

The message with ID 0x198 is used to explain the correspondence between the DBC
file and the CAN message content. As shown in Figure 2a, the DBC file defines the name
of the message as angle, the message sending period is 10 ms, the message length is 64
bits, and it contains 3 vehicle behaviors: steering angle, brake pedal angle, and gas pedal
angle. The steering angle is arranged in Motorola (LSB) form from bit 0 to bit 15 with a
resolution of 0.01. Similarly, the gas pedal and brake pedal angles are arranged in bits 16–
23 and 48–55 of the data field, respectively. The alignment is Intel (MSB) and Motorola.
When capturing any message with ID 0x198, its data can be decoded according to the
provisions of the DBC file. According to the definition of DBC, the message shown in
Figure 2b describes the angle information of the vehicle at this moment, where the brake
pedal angle is (2 + 2 + 2 + 2) × 0.1 = 19.1° , the steering angle is (2 + 2 + 2 +2) × 0.01 = 1.77°, and the throttle angle is 0.

In summary, the DBC file is vital to study the CAN messages in-depth, which makes
the DBC file a realistic target for reverse work.

Table 1. DBC file content definition

Field Name Definition
Name The overall function of this message (e.g., body, speed, etc.)

ID The identifier of this message
Cycle time The sending period of this message

Length The length of this message
Function The specific function contained in this message (e.g., angel change)

Byte order The arrangement of the specific function
Start byte The starting byte of the specific function
Start bit The starting bit in first byte

Bit length The length of the function
Unit The unit of the function

Resolution The resolution of the function
Offset The offset of the function

SOF
1 bit

Identifier
11 bits

RTR
1 bit

IDE
1 bit

r0
1 bit

DLC Data Field
64 bits

CRC
16 bits

ACKField
2 bits

EOF
7 bit4 bits

Figure 1. Standard CAN message frame.

For CAN message reversal work, the main targets of the reversal are the identifier
(ID) and the data fields. When reversing CAN messages, the relevant message ID is
usually locked first, and then the data fields are analyzed to obtain specific bit fields that
characterize the vehicle behavior.

2.2. DBC File

The form and content of each type of CAN message are defined in the DBC file, so
each OEM keeps it private to avoid leakage from the data source and prevent negative
control and modification of the car. However, all CAN messages must be fully translated
using the DBC file as a table, making sense for CAN reverse work. The contents defined
in the DBC file are listed in Table 1. The Name, ID, Cycle Time, and Length describe the
entire message. The Function specifies one or more vehicle behaviors in the message data
fields. Byte Order, Start Byte, Start Bit, Bit Length, Units, Precision, and Offset specify how
the message describes the specific behavior. Typically, the data fields of a message contain
multiple functions.

Table 1. DBC file content definition

Field Name Definition

Name The overall function of this message (e.g., body, speed, etc.)
ID The identifier of this message

Cycle time The sending period of this message
Length The length of this message

Function The specific function contained in this message (e.g., angel change)
Byte order The arrangement of the specific function
Start byte The starting byte of the specific function
Start bit The starting bit in first byte

Bit length The length of the function
Unit The unit of the function

Resolution The resolution of the function
Offset The offset of the function

The message with ID 0x198 is used to explain the correspondence between the DBC
file and the CAN message content. As shown in Figure 2a, the DBC file defines the name of
the message as angle, the message sending period is 10 ms, the message length is 64 bits,
and it contains 3 vehicle behaviors: steering angle, brake pedal angle, and gas pedal angle.
The steering angle is arranged in Motorola (LSB) form from bit 0 to bit 15 with a resolution
of 0.01. Similarly, the gas pedal and brake pedal angles are arranged in bits 16–23 and
48–55 of the data field, respectively. The alignment is Intel (MSB) and Motorola. When
capturing any message with ID 0x198, its data can be decoded according to the provisions
of the DBC file. According to the definition of DBC, the message shown in Figure 2b
describes the angle information of the vehicle at this moment, where the brake pedal angle
is
(
22 + 24 + 25 + 27)× 0.1 = 19.1◦, the steering angle is

(
20 + 24 + 25 + 27)× 0.01 = 1.77◦,

and the throttle angle is 0.

Sensors 2022, 22, 981 5 of 30Sensors 2022, 22, x FOR PEER REVIEW 5 of 30

(a)

(b)

Figure 2. Correspondence diagram between DBC file and CAN messages: (a) 0x198 Message defi-
nition in DBC; (b) Message data decoded according to DBC.

2.3. Linear Regression Preliminary
In statistics, the multiple linear regression model describes the linear relationship

[41,42] between the scalar dependent variable 𝑦 and several explanatory variables de-
fined as 𝑋 = (𝑥 , 𝑥 , … , 𝑥) and the model function is shown in Equation (1), where 𝛽 =(𝛽 , … . . . , 𝛽) is an unknown model parameter that can be estimated by giving sample set
of 𝑦 and 𝑋. The ordinary least squares method is the most commonly used method for
parameter estimation. For a given sample set 𝑦 (see Equation (2)) and 𝑋 (see Equation
(3)), the ordinary least squares method first creates a new matrix Ω, as shown in Equation
(4). 𝑦 = 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 + ⋯ … + 𝛽 𝑥 (1)

𝑦 = 𝑦𝑦⋮𝑦 (2)

𝑋 = 𝑥 … 𝑥𝑥 … 𝑥⋮ ⋱ ⋮𝑥 … 𝑥 (3)

Ω = 1 𝑥 … 𝑥1 𝑥 … 𝑥⋮ ⋮ ⋱ ⋮1 𝑥 … 𝑥 (4)

The estimation 𝛽 can be obtained from Equation (5), where Ω is the transpose of Ω. The determination coefficient 𝑅2 indicates how well the samples fit the linear model
created with 𝛽 and is calculated by Equation (6), where 𝑦 = 𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 is
the 𝑦 estimated with the linear model and 𝑦 is the mean of 𝑦 . The value of 𝑅2 is in
the range 0,1 , and 1.0 is the best fit. 𝛽 = (Ω Ω) Ω 𝑦 (5)

𝑅 = 1 − (𝑦 − 𝑦)∑ (𝑦 − 𝑦) (6)

Name ID Cycle time Length Function Byte order Start
byte

Start
bit Bit length Unit Resolution Offset

Angel 0x198 10 64
Steer angle Motorola 0 0 16 deg 0.01 0
Brake angle Intel 2 0 8 deg 0.1 0

Acceleration angle Motorola 6 0 8 deg 1 0

Figure 2. Correspondence diagram between DBC file and CAN messages: (a) 0x198 Message
definition in DBC; (b) Message data decoded according to DBC.

In summary, the DBC file is vital to study the CAN messages in-depth, which makes
the DBC file a realistic target for reverse work.

2.3. Linear Regression Preliminary

In statistics, the multiple linear regression model describes the linear relationship [41,42]
between the scalar dependent variable y and several explanatory variables defined as
X = (x1, x2, . . . , xk) and the model function is shown in Equation (1), where β = (β0, . . . , βk)
is an unknown model parameter that can be estimated by giving sample set of y and X. The
ordinary least squares method is the most commonly used method for parameter estimation.
For a given sample set ye (see Equation (2)) and Xe (see Equation (3)), the ordinary least
squares method first creates a new matrix Ω, as shown in Equation (4).

y = β0 + β1x1 + β2x2 + . . . + βkxk (1)

ye =

y1
y2
...

ym

 (2)

Xe =

x11 . . . x1k
x21 . . . x2k

...
. . .

...
xm1 . . . xmk

 (3)

Ω =

1 x11 . . . x1k
1 x21 . . . x2k
...

...
. . .

...
1 xm1 . . . xmk

 (4)

The estimation β̂ can be obtained from Equation (5), where ΩT is the transpose of
Ω. The determination coefficient R2 indicates how well the samples fit the linear model
created with β̂ and is calculated by Equation (6), where ŷi = β̂0 + β̂1xi1 + . . . + β̂ixik is the
yi estimated with the linear model and yi is the mean of ye. The value of R2 is in the range
[0, 1], and 1.0 is the best fit.

β̂ =
(

ΩTΩ
)−1

ΩTye (5)

R2 = 1− ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − yi)

2 (6)

Sensors 2022, 22, 981 6 of 30

2.4. Feasibility

Based on the way the CAN messages are defined in the DBC file and the characteristics
of the multiple linear regression model, this section presents the feasibility of a bit-level
inverse CAN message.

According to the definition of the DBC file, the vehicle behavior in the CAN message
is expressed as a binary serial number of bits, and there is also a resolution and an offset
between the actual vehicle behavior data and this value. As shown in Figure 3, the
relationship between the actual vehicle behavior and the corresponding bits in the CAN
message is linear, and the adjacent linear coefficients satisfy the two-fold relationship. A
multiple linear regression model of sensor data and each bit in the CAN message can be
constructed when sensors are used to obtain vehicle behavior data. If the adjacent regression
coefficients β satisfy the doubling relationship, the consecutive bits corresponding to the
coefficients describe the vehicle behavior. In addition, the length, boundary, and alignment
of the data can be determined based on the β that satisfies the condition.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 30

2.4. Feasibility
Based on the way the CAN messages are defined in the DBC file and the characteris-

tics of the multiple linear regression model, this section presents the feasibility of a bit-
level inverse CAN message.

According to the definition of the DBC file, the vehicle behavior in the CAN message
is expressed as a binary serial number of bits, and there is also a resolution and an offset
between the actual vehicle behavior data and this value. As shown in Figure 3, the rela-
tionship between the actual vehicle behavior and the corresponding bits in the CAN mes-
sage is linear, and the adjacent linear coefficients satisfy the two-fold relationship. A mul-
tiple linear regression model of sensor data and each bit in the CAN message can be con-
structed when sensors are used to obtain vehicle behavior data. If the adjacent regression
coefficients 𝛽 satisfy the doubling relationship, the consecutive bits corresponding to the
coefficients describe the vehicle behavior. In addition, the length, boundary, and align-
ment of the data can be determined based on the 𝛽 that satisfies the condition.

Figure 3. Reverse feasibility based on linear regression.

3. Framework Design
According to the previous description, the DBC file defines the detailed content and

form of each message, which is critical for both the research and aftermarket communities.
For the scientific field, obtaining the specific meaning of CAN messages facilitates the
construction of better Intrusion Detection Prevention Systems (IDPS), instead of just find-
ing anomalies based on data variation patterns. In addition, fuzzy testing can also im-
prove efficiency by performing more targeted data injections based on the content of CAN
messages. For aftermarket manufacturers, DBC files can help produce more driver assis-
tance products, such as head-up displays and driver assistance devices. However, for con-
fidentiality and security reasons, OEMs keep DBC files private. In addition, most of the
existing CAN message reversal solutions are focused on sorting and ID filtering of data
fields. The current CAN message reversal results are limited, obtaining the tags of the data
types, data boundaries, and the message IDs associated with some car behaviors.

In this study, a bit-level automotive CAN message reverse framework is proposed
by building a multiple linear regression model for CAN message data fields and actual
physical measurements of the vehicle. Based on the optimal model parameters, the mes-
sages related to vehicle behavior are filtered. The data content, data boundary, encoding
format, and linear relationship of CAN messages are extracted to maximize the recovery

Figure 3. Reverse feasibility based on linear regression.

3. Framework Design

According to the previous description, the DBC file defines the detailed content and
form of each message, which is critical for both the research and aftermarket communi-
ties. For the scientific field, obtaining the specific meaning of CAN messages facilitates
the construction of better Intrusion Detection Prevention Systems (IDPS), instead of just
finding anomalies based on data variation patterns. In addition, fuzzy testing can also
improve efficiency by performing more targeted data injections based on the content of
CAN messages. For aftermarket manufacturers, DBC files can help produce more driver
assistance products, such as head-up displays and driver assistance devices. However, for
confidentiality and security reasons, OEMs keep DBC files private. In addition, most of the
existing CAN message reversal solutions are focused on sorting and ID filtering of data
fields. The current CAN message reversal results are limited, obtaining the tags of the data
types, data boundaries, and the message IDs associated with some car behaviors.

In this study, a bit-level automotive CAN message reverse framework is proposed by
building a multiple linear regression model for CAN message data fields and actual physical
measurements of the vehicle. Based on the optimal model parameters, the messages related
to vehicle behavior are filtered. The data content, data boundary, encoding format, and

Sensors 2022, 22, 981 7 of 30

linear relationship of CAN messages are extracted to maximize the recovery of the DBC
file. Figure 4 provides an overview of the framework in three phases: data collection and
processing, related message filtering, and bit-level message reverse. The variables used in
each phase are defined below.

• X: the raw CAN dataset of the vehicle obtained from the OBD-II interface, containing
the entire behavioral trajectory of the vehicle.

• Y: the sensor dataset, containing the complete set of measurable vehicle behavior
measurements, collected simultaneously with X.

• Yr: the raw set of measurements of a particular vehicle behavior collected using the
sensor. r is the particular vehicle behavior that includes speed, acceleration, steering
wheel steering angle, brake pedal angle, accelerator pedal angle, gear angle, and
switches angle.

• Ys: a more detailed vehicle behavior dataset obtained after processing Yr, where s
represents more detailed vehicle behavior.

• Xi: the dataset containing data fields of messages with ID i in X, and
i ∈ (id0, id1, . . . , idn).

• Ysi: the result of resampling of Ys according to the frequency of Xi.
• R2

si: the coefficient of determination of a multiple linear regression model between Xi
and Ysi.

• βsi: the regression coefficient set of the multiple linear regression model between Xi
and Ysi.

• ∆s the threshold value used for the message filter.
• mi the CAN message with ID i.
• Tβ: the threshold used for filtering the β.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 30

of the DBC file. Figure 4 provides an overview of the framework in three phases: data
collection and processing, related message filtering, and bit-level message reverse. The
variables used in each phase are defined below.

Figure 4. Overview of the framework.

 𝑋 : the raw CAN dataset of the vehicle obtained from the OBD-II interface, containing the en-
tire behavioral trajectory of the vehicle.

 𝑌: the sensor dataset, containing the complete set of measurable vehicle behavior measure-
ments, collected simultaneously with 𝑋.

 𝑌 : the raw set of measurements of a particular vehicle behavior collected using the sensor. 𝑟
is the particular vehicle behavior that includes speed, acceleration, steering wheel steering an-
gle, brake pedal angle, accelerator pedal angle, gear angle, and switches angle.

 𝑌 : a more detailed vehicle behavior dataset obtained after processing 𝑌 , where 𝑠 represents
more detailed vehicle behavior.

 𝑋 : the dataset containing data fields of messages with ID 𝑖 in 𝑋, and 𝑖 ∈ (𝑖𝑑 , 𝑖𝑑 , . . . , 𝑖𝑑).
 𝑌 : the result of resampling of 𝑌 according to the frequency of 𝑋 .
 𝑅 : the coefficient of determination of a multiple linear regression model between 𝑋 and 𝑌 .
 𝛽 : the regression coefficient set of the multiple linear regression model between 𝑋 and 𝑌 .
 ∆ ：the threshold value used for the message filter.
 𝑚 ：the CAN message with ID 𝑖.
 𝑇 : the threshold used for filtering the 𝛽.

3.1. Data Collection and Processing
This phase aims to acquire and process vehicle behavior measurements, as well as

in-vehicle CAN traffic. The flowchart of this phase is shown in Figure 5, which is mainly
divided into data acquisition, data processing, and data resampling.

Figure 4. Overview of the framework.

Sensors 2022, 22, 981 8 of 30

3.1. Data Collection and Processing

This phase aims to acquire and process vehicle behavior measurements, as well as
in-vehicle CAN traffic. The flowchart of this phase is shown in Figure 5, which is mainly
divided into data acquisition, data processing, and data resampling.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 30

Figure 5. Data collection and processing flow.

3.1.1. Data Collection
The basic data needed to execute the message reverse framework are the in-vehicle

CAN bus traces, 𝑋, and the raw physical measurements, 𝑌 . Where 𝑌 is the original sen-
sor data for a particular behavior of the vehicle and 𝑋 is the CAN trajectory obtained
when the vehicle performs that behavior. The current phase requires the simultaneous
acquisition of 𝑋 and 𝑌 to reduce errors in linear regression modeling. Therefore, the
data acquisition device shown in Figure 6 is used in this phase, using the same timestamp
for synchronization. The CAN trace acquisition device is shown in Figure 6a. This device
is a combined cable consisting of an OBD-II to DB9 diagnostic cable and a PCAN-USB FD
adapter. The cable connects from the OBD-II port of the vehicle to the USB port on the
side of the computer to allow the real-time collection of CAN traffic. The behavioral meas-
urements of the vehicle are collected using the sensor device shown in Figure 6b. The
device consists of a global positioning system (GPS) antenna, a universal serial bus (USB)
interface, and a gyroscope angle sensor with a 0–200 Hz sampling frequency. Although
the device is only $78.56 [43], it has a speed sampling accuracy of 0.001 km/h and an angle
sampling accuracy of 0.1°. To reduce the error of the sensor sampling, the sampling device
should be installed in such a way that the direction of sample change is consistent with
the direction of either axis of the sensor. For example, the Y-axis of the sensor is aligned
with the head direction when collecting vehicle speed, and the X-axis of the sensor is
aligned with the angle change direction when collecting angle data. To represent the be-
havior and condition of the vehicle as completely as possible, the location of the sensor
deployment and the collected data are listed in Table 2. The synchronous work of the
above two devices provide the raw data for the reverse framework.

Table 2. Sensor locations and associated physical value.

Location Physical Characteristics
Bodywork Speed, Acceleration

Steering wheel Steering angle
Brake pedal Pedal angle

Accelerator pedal Pedal angle
Gear knob Gear angle

Wiper switch Switch angle

Figure 5. Data collection and processing flow.

3.1.1. Data Collection

The basic data needed to execute the message reverse framework are the in-vehicle
CAN bus traces, X, and the raw physical measurements, Yr. Where Yr is the original
sensor data for a particular behavior of the vehicle and X is the CAN trajectory obtained
when the vehicle performs that behavior. The current phase requires the simultaneous
acquisition of X and Yr to reduce errors in linear regression modeling. Therefore, the data
acquisition device shown in Figure 6 is used in this phase, using the same timestamp for
synchronization. The CAN trace acquisition device is shown in Figure 6a. This device
is a combined cable consisting of an OBD-II to DB9 diagnostic cable and a PCAN-USB
FD adapter. The cable connects from the OBD-II port of the vehicle to the USB port on
the side of the computer to allow the real-time collection of CAN traffic. The behavioral
measurements of the vehicle are collected using the sensor device shown in Figure 6b. The
device consists of a global positioning system (GPS) antenna, a universal serial bus (USB)
interface, and a gyroscope angle sensor with a 0–200 Hz sampling frequency. Although the
device is only $78.56 [43], it has a speed sampling accuracy of 0.001 km/h and an angle
sampling accuracy of 0.1◦. To reduce the error of the sensor sampling, the sampling device
should be installed in such a way that the direction of sample change is consistent with the
direction of either axis of the sensor. For example, the Y-axis of the sensor is aligned with
the head direction when collecting vehicle speed, and the X-axis of the sensor is aligned
with the angle change direction when collecting angle data. To represent the behavior and
condition of the vehicle as completely as possible, the location of the sensor deployment
and the collected data are listed in Table 2. The synchronous work of the above two devices
provide the raw data for the reverse framework.

Sensors 2022, 22, 981 9 of 30Sensors 2022, 22, x FOR PEER REVIEW 9 of 30

(a) (b)

Figure 6. Data acquisition equipment: (a) OBD-II data collection equipment; (b) Vehicle behavior
sensor.

3.1.2. Data Processing and Resampling
Since the raw data collected by the sensors is limited and does not provide a good

picture of the various vehicle states, the collected 𝑌𝑟 must be processed to reveal more
vehicle-related state information. Integral, derivative, and discretization processes are
performed on the obtained 𝑌𝑟 to get more information. Based on the vehicle behavior in
each 𝑌𝑟, the rate of behavior change is obtained by derivative, the total amount of change
is obtained by integral, and the discrete behavioral states are obtained based on a thresh-
old value. Take speed as an example, the acceleration of the vehicle could be obtained by
calculating its derivative to time, and the mileage is obtained by calculating its integral for
time. Based on the vehicle speed and the threshold of 1 km/h, the vehicle can be classified
into two discrete states of stationary and driving. The data processing methods and results
are shown in Table 3. After the extension, there are 13 types of vehicle behaviors. The
output after data processing is 𝑌𝑠, which contains more detailed vehicle states.

When processing the raw CAN data collected through the OBD-II port, this frame-
work classifies the raw CAN messages based on the ID and removes the constant data
field CAN messages. Since the ID identifies the type of the CAN message, 𝑋 is first de-
termined by grouping by the ID during processing to facilitate the subsequent modeling
of the messages for each ID. Since the framework proposed in this study is based on ve-
hicle behavior to reverse CAN messages, constant CAN messages during sensor acquisi-
tion of vehicle behavior do not describe any vehicle behavior and are therefore considered
as noise. This noisy data is defined as constant data in READ and LibreCAN, CAN mes-
sage with constant data fields. Noisy messages can be removed to reduce the number of
resamples and subsequent modeling, thus reducing the overall time required.

The next step of data processing is to synchronize the CAN messages with the vehicle
behavior. In this study, the CAN messages in 𝑋𝑖 are selected synchronously with the time
interval of the beginning and the end of the vehicle behavior described by 𝑌𝑠. Synchro-
nizing the data ensures that the CAN messages in 𝑋𝑖 and the behavior described by 𝑌𝑠
have the same vehicle behavior and state during this time interval.

Table 3. Methods and results of raw data processing.

Raw Data (𝒓) Operation Detailed Vehicle Behavior (𝒔)

Speed
- Speed

Integrals Mileage
Judgment by threshold Drive/Parking

Brake Pedal Angle
- Brake pedal angle

Differential Angle change rate
Judgment by threshold Brake or not

OBD II to DB9 PCAN-USB FD GPS antenna

Sensor

USB

Figure 6. Data acquisition equipment: (a) OBD-II data collection equipment; (b) Vehicle
behavior sensor.

Table 2. Sensor locations and associated physical value.

Location Physical Characteristics

Bodywork Speed, Acceleration
Steering wheel Steering angle

Brake pedal Pedal angle
Accelerator pedal Pedal angle

Gear knob Gear angle
Wiper switch Switch angle

3.1.2. Data Processing and Resampling

Since the raw data collected by the sensors is limited and does not provide a good
picture of the various vehicle states, the collected Yr must be processed to reveal more
vehicle-related state information. Integral, derivative, and discretization processes are
performed on the obtained Yr to get more information. Based on the vehicle behavior in
each Yr, the rate of behavior change is obtained by derivative, the total amount of change is
obtained by integral, and the discrete behavioral states are obtained based on a threshold
value. Take speed as an example, the acceleration of the vehicle could be obtained by
calculating its derivative to time, and the mileage is obtained by calculating its integral for
time. Based on the vehicle speed and the threshold of 1 km/h, the vehicle can be classified
into two discrete states of stationary and driving. The data processing methods and results
are shown in Table 3. After the extension, there are 13 types of vehicle behaviors. The
output after data processing is Ys, which contains more detailed vehicle states.

When processing the raw CAN data collected through the OBD-II port, this framework
classifies the raw CAN messages based on the ID and removes the constant data field CAN
messages. Since the ID identifies the type of the CAN message, Xi is first determined
by grouping by the ID during processing to facilitate the subsequent modeling of the
messages for each ID. Since the framework proposed in this study is based on vehicle
behavior to reverse CAN messages, constant CAN messages during sensor acquisition of
vehicle behavior do not describe any vehicle behavior and are therefore considered as noise.
This noisy data is defined as constant data in READ and LibreCAN, CAN message with
constant data fields. Noisy messages can be removed to reduce the number of resamples
and subsequent modeling, thus reducing the overall time required.

Sensors 2022, 22, 981 10 of 30

Table 3. Methods and results of raw data processing.

Raw Data (r) Operation Detailed Vehicle Behavior (s)

Speed
- Speed

Integrals Mileage
Judgment by threshold Drive/Parking

Brake Pedal Angle
- Brake pedal angle

Differential Angle change rate
Judgment by threshold Brake or not

Accelerator Pedal Angle
- Accelerator pedal angle

Differential Angle change rate
Judgment by threshold Accelerate or not

Gear Angle - Gear angle
Judgment by threshold P/R/N/D

Wiper Switch Angle - Wiper switch angle
Judgment by threshold Stop or frequency

The next step of data processing is to synchronize the CAN messages with the vehicle
behavior. In this study, the CAN messages in Xi are selected synchronously with the time
interval of the beginning and the end of the vehicle behavior described by Ys. Synchronizing
the data ensures that the CAN messages in Xi and the behavior described by Ys have the
same vehicle behavior and state during this time interval.

Finally, multiple linear regression described in Section 2.2 is a method for modeling the
dependent and explanatory variables in the same dimension. However, since the messages
for each ID appear at a different frequency than the sampling rate of the sensor device,
Ys, must be resampled based on the frequency of Xi to ensure that the two have the same
dimensionality [44]. In the data resampling process, this study uses the resampling method
of time series in Python to resample each vehicle state Ys according to the frequency of each
Xi to facilitate subsequent modeling. The resampled data is Ysi with the same dimensions
as Xi. In this step, a separate resampling must be performed for each Ys based on the
frequency of each Xi to obtain 13× n Ysi.

3.2. Related Messages Filter

Based on the results of data processing and resampling, the purpose of this stage is to
build a linear regression model with Ysi as the dependent variable and each bit of the data
field in Xi as the independent variable. Based on the R2 of the model, the messages that are
most relevant to the dependent variable are filtered out.

To obtain the relationship between each bit of the data field and the vehicle behavior,
this step starts by expanding the data field in Xi in bit form, which is an l × 64 matrix,
where l is the number of messages with ID i. The dependent variable Ysi, which is an
l × 1 matrix, is defined to represent the vehicle state data resampled according to the
message dimension, where s represents the different vehicle states, s ∈ (s1, s2, . . . , s13). A
threshold ∆s is defined to filter out the best model. The outputs of this stage are messages
and linear regression models that are highly correlated with the individual vehicle behavior
data. The flow of this phase is shown in Figure 7. The detailed process is shown below.

• Step 1: After processing, select a resampled vehicle behavior data Ysi and a data set Xi
with ID i in the CAN bus trajectory.

• Step 2: Build a multiple linear regression model with Ysi as the dependent variable
and Xi as the independent variable and calculate the model parameters R2 and β.

• Step 3: Select the R2 obtained in step 2 corresponding to ∆s, and keep only the R2

greater than ∆s.
• Step 4: Iterate through each Xi and repeat step 1 to step 3. According to the filtering

result, obtain the most relevant messages and the corresponding models with the
vehicle behavior s.

Sensors 2022, 22, 981 11 of 30

• Step 5: Execute step 1 to step 4 for all s to obtain the candidate messages and the
corresponding models for each vehicle behavior.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 30

Figure 7. Message selection based on 𝛽.

3.3. Bit-Level Message Reverse
After the related message filtering phase, the most relevant candidate messages for

the particular vehicle behavior and the corresponding linear regression models are deter-
mined. The linear regression models of 𝑌𝑠𝑖 and 𝑋𝑖 are shown in Equation (7). This result
clearly shows the relationship between the vehicle behavior and the data fields of 𝑚𝑖,
where 𝛽 = (𝛽 , 𝛽 , … , 𝛽) represents the linear relationship between this vehicle behav-
ior data and each bit of the message. 𝑌 = 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 +. +𝛽 𝑥 (7)

In this stage, the specific details of how the data fields of candidate CAN messages
describe the behavior of the vehicle are determined by analyzing the regression coefficient 𝛽. As shown in Figure 8, the flow of the bit-level reverse for the candidate messages pro-
ceeds as follows.
 Iterate through each 𝛽 in 𝛽 = (𝛽 , 𝛽 , … , 𝛽), keeping only those 𝛽 that are not

less than the threshold value. If the value of 𝛽 is less than the threshold, it means
that the 𝑥th bit of the data field is not related to the specific vehicle behavior. Other-
wise, this bit may represent how the behavior of the vehicle is recorded in the CAN
messages. The result after threshold filtering is 𝛽 .

 If the filtered 𝛽 is discrete, the corresponding discrete bit likely represents the state
of vehicle. If the filtered 𝛽 is continuous, then analyze whether Equation (8) or
Equation (9) is satisfied between 𝛽 . If satisfied, the bits of the CAN message data
field corresponding to the continuous 𝛽 describe the modeled vehicle behavior 𝑠.

Figure 7. Message selection based on β.

3.3. Bit-Level Message Reverse

After the related message filtering phase, the most relevant candidate messages for the
particular vehicle behavior and the corresponding linear regression models are determined.
The linear regression models of Ysi and Xi are shown in Equation (7). This result clearly
shows the relationship between the vehicle behavior and the data fields of mi, where
β = (β0, β1, . . . , β64) represents the linear relationship between this vehicle behavior data
and each bit of the message.

Ysi = β0 + β1xi1 + β2xi2 + . . . + β64xi64 (7)

In this stage, the specific details of how the data fields of candidate CAN messages
describe the behavior of the vehicle are determined by analyzing the regression coefficient β.
As shown in Figure 8, the flow of the bit-level reverse for the candidate messages proceeds
as follows.

• Iterate through each βx in β = (β0, β1, . . . , β64), keeping only those βx that are not less
than the threshold value. If the value of βx is less than the threshold, it means that the
xth bit of the data field is not related to the specific vehicle behavior. Otherwise, this
bit may represent how the behavior of the vehicle is recorded in the CAN messages.
The result after threshold filtering is β′.

Sensors 2022, 22, 981 12 of 30

• If the filtered β′ is discrete, the corresponding discrete bit likely represents the state
of vehicle. If the filtered β′ is continuous, then analyze whether Equation (8) or
Equation (9) is satisfied between β′. If satisfied, the bits of the CAN message data field
corresponding to the continuous β′ describe the modeled vehicle behavior s. More-
over, the bits satisfying Equation (8) are in Motorola alignment, and those satisfying
Equation (9) are in Intel alignment. When not satisfied, the CAN message has no
relation to the vehicle’s behavior.

• Analyzing the discrete β′ values and the vehicle state data, the correspondence be-
tween the discrete bits and the vehicle state can be obtained reverse. For continuous β′,
the data length, the alignment form, and the linear relationship describing the vehicle
behavior can be gained.

βi = 2× βi+1 = 4× βi+2 = . . . 2n × βi+n (8)

βi =
1
2
× βi+1 =

1
4
× βi+2 = . . .

1
2n × βi+n (9)

Sensors 2022, 22, x FOR PEER REVIEW 12 of 30

Moreover, the bits satisfying Equation (8) are in Motorola alignment, and those sat-
isfying Equation (9) are in Intel alignment. When not satisfied, the CAN message has
no relation to the vehicle’s behavior.

 Analyzing the discrete 𝛽 values and the vehicle state data, the correspondence be-
tween the discrete bits and the vehicle state can be obtained reverse. For continuous 𝛽 , the data length, the alignment form, and the linear relationship describing the
vehicle behavior can be gained. 𝛽 = 2 × 𝛽 = 4 × 𝛽 =. 2 × 𝛽 (8)

𝛽 = 12 × 𝛽 = 14 × 𝛽 =. 12 × 𝛽 (9)

Figure 8. Diagram of bit-level reverse.

4. Performance Evaluation
To evaluate the proposed bit-level CAN bus reverse framework, this study imple-

ments it on an actual vehicle and obtains specific details of the vehicle CAN message data
fields depicting the vehicle behavior for that vehicle. Using the reverse results, the accu-
racy of the algorithm is evaluated for practical applications based on the available DBC
files [45]. In addition, this section evaluates the execution performance of the framework
and compares the advantages of the algorithm over other reverse methods. Finally, the
advantages of the algorithm in applications are discussed, and an example is given for
reversing other vehicle messages when DBC files are not available.

4.1. Performance in Real Vehicle
4.1.1. Device Description and Data Processing

For the evaluation a 2017 Japanese B-Class sedan was used, whose internal network
implements the standard CAN protocol and whose functionality is representative. A DBC
file for this model has been obtained, which is used as ground truth for the reverse frame-
work evaluation. To better represent the vehicle behavior, sensors are placed on the body,
steering wheel, brake pedal, gas pedal, gear knob, and wiper switch to collect the behav-
ioral data of the vehicle components, which are structured as shown in Figure 9. The CAN
data is collected through the OBD-II interface using the combination cable synchronously
when collecting vehicle data. The collected CAN data is written to a log file using the
upper computer program, containing the ID, type, length, data field, and timestamp of
CAN messages. For accuracy evaluation, more than 3,661,000 consecutive CAN bus mes-

Figure 8. Diagram of bit-level reverse.

4. Performance Evaluation

To evaluate the proposed bit-level CAN bus reverse framework, this study implements
it on an actual vehicle and obtains specific details of the vehicle CAN message data fields
depicting the vehicle behavior for that vehicle. Using the reverse results, the accuracy of the
algorithm is evaluated for practical applications based on the available DBC files [45]. In
addition, this section evaluates the execution performance of the framework and compares
the advantages of the algorithm over other reverse methods. Finally, the advantages of
the algorithm in applications are discussed, and an example is given for reversing other
vehicle messages when DBC files are not available.

4.1. Performance in Real Vehicle
4.1.1. Device Description and Data Processing

For the evaluation a 2017 Japanese B-Class sedan was used, whose internal network
implements the standard CAN protocol and whose functionality is representative. A
DBC file for this model has been obtained, which is used as ground truth for the reverse
framework evaluation. To better represent the vehicle behavior, sensors are placed on the
body, steering wheel, brake pedal, gas pedal, gear knob, and wiper switch to collect the
behavioral data of the vehicle components, which are structured as shown in Figure 9.

Sensors 2022, 22, 981 13 of 30

The CAN data is collected through the OBD-II interface using the combination cable
synchronously when collecting vehicle data. The collected CAN data is written to a log
file using the upper computer program, containing the ID, type, length, data field, and
timestamp of CAN messages. For accuracy evaluation, more than 3,661,000 consecutive
CAN bus messages were collected, and more than 5,000,000 vehicle behavior sensor data
were sequentially collected in the same period. The dataset (The dataset is partially open
source and can be accessed at http://49.232.218.41:8000/data.zip accessed on 23 January
2022) is quantitatively described in Table 4, which describes the measurements and CAN
data collected synchronously for each vehicle behavior.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 30

sages were collected, and more than 5,000,000 vehicle behavior sensor data were sequen-
tially collected in the same period. The dataset (The dataset is partially open source and
can be accessed at http://49.232.218.41:8000/data.zip accessed on accessed on 23 January
2022) is quantitatively described in Table 4, which describes the measurements and CAN
data collected synchronously for each vehicle behavior.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. Sensor Acquisition Setup: (a) Gear angle; (b) Steering wheel angle; (c) Brake pedal angle;
(d) Gas pedal angle; (e) Wiper switch angle; (f) Vehicle speed.

Table 4. Number of vehicle behaviors and CAN messages.

Vehicle Behavior Number of Sensor Record Number of CAN Messages
Bodywork 298,649 1,769,768

Steering Wheel 16,148 132,122
Brake Pedal 7961 57,399

Accelerator Pedal 6364 60,772
Gear Handle 13,105 113,001
Wiper Switch 12,876 118,095

By analyzing the collected CAN traces, the frequency distribution of the messages is
shown in Figure 10. This result shows that the number of IDs collected from the test vehi-
cle is 82, which means that there are 82 types of messages in the CAN network. For each
type of CAN message, we analyze whether the data field of this CAN message changes
and eliminate the messages with unchanged data fields. Based on the analysis and pro-
cessing of CAN traces, the vehicle behavior data collected in Table 3 is resampled 82 times
to obtain 𝑌𝑠𝑖. A multiple linear regression model is built between 𝑌𝑠𝑖 and 𝑋𝑖 according
to the message filtering process.

Gear Knob Steering Wheel

Brake Pedal

Gas pedal
Wipe Switch

Bodywork

Figure 9. Sensor Acquisition Setup: (a) Gear angle; (b) Steering wheel angle; (c) Brake pedal angle;
(d) Gas pedal angle; (e) Wiper switch angle; (f) Vehicle speed.

Table 4. Number of vehicle behaviors and CAN messages.

Vehicle Behavior Number of Sensor Record Number of CAN Messages

Bodywork 298,649 1,769,768
Steering Wheel 16,148 132,122

Brake Pedal 7961 57,399
Accelerator Pedal 6364 60,772

Gear Handle 13,105 113,001
Wiper Switch 12,876 118,095

By analyzing the collected CAN traces, the frequency distribution of the messages is
shown in Figure 10. This result shows that the number of IDs collected from the test vehicle
is 82, which means that there are 82 types of messages in the CAN network. For each type
of CAN message, we analyze whether the data field of this CAN message changes and
eliminate the messages with unchanged data fields. Based on the analysis and processing
of CAN traces, the vehicle behavior data collected in Table 3 is resampled 82 times to obtain
Ysi. A multiple linear regression model is built between Ysi and Xi according to the message
filtering process.

http://49.232.218.41:8000/data.zip

Sensors 2022, 22, 981 14 of 30Sensors 2022, 22, x FOR PEER REVIEW 14 of 30

Figure 10. CAN message frequency distribution.

4.1.2. Message Filter Results
The results of the multivariate linear regression of the collected continuous vehicle

behavior with each type of message are shown in Figure 11. The 𝑥-axis is the determina-
tion coefficient 𝑅 of the multiple linear regression model, and the 𝑦-axis is the effective
ID distribution.

For the linear regression results of vehicle speed and CAN trace, according to the
threshold value 0.6, three types of messages can be filtered out that directly record vehicle
speed information with IDs 0x202, 0x215, and 0x217, as shown in Figure 11a. In addition,
in this result, there are some 𝑅2 values close to the threshold, such as 0x130, 0x165, 0x167
and 0x200. This is because they may describe information such as RPM, throttle, etc., that
correlate with the vehicle speed, which explains their larger 𝑅2. However, since these
types of vehicle data cannot be collected by sensors, they cannot determine their exact
meaning. As shown in Figure 11b, with a 𝑅2 of 0.1 as the dividing line, the messages IDs
strongly correlated with steering wheel angle are 0x086, 0x082, and 0x240. These messages
may contain data describing steering wheel torque and steering rate in addition to the
information directly representing steering angle. In the same way, messages related to the
accelerator pedal are filtered out including messages with IDs 0x165, 0x167, 0x202, 0xFD,
and 0x21F, with 0.2 as the divisor, as shown in Figure 11c. Messages with IDs 0x78, 0x202,
and 0x165 are categorized as related to brake pedal angle with a threshold of 0.18 as shown
in Figure 11d. The results of filtering information related to wiper switch and gear angle
are shown in Figure 11e,f. With a threshold of 0.6, the message IDs related to the wiper
are 0x9A, and the message IDs related to the gear are 0x165 and 0x228, respectively.

As can be seen from the results of the message filtering, the 𝑅2 and threshold values
for messages related to steering angle, acceleration, and brake pedal are generally small.
This result is due to the slight variations in vehicle behavior when collecting these data.
For example, the pedal is unlikely to be located at the lowest position when collecting the
gas pedal angle while driving. In addition, the results for vehicle speed, gas pedal, and
brake pedal show that a certain number of messages have an 𝑅2 value that is below the
threshold, but very close to it. Although these messages do not directly describe the state
of the vehicle speed, gas pedal, and brake pedal, they do describe vehicle behavior corre-
lated with the state. For example, the near-threshold telegrams in the throttle results de-
scribe the vehicle’s speed, torque, and acceleration, among other things. However, since
these messages do not directly describe the vehicle speed, they are classified as irrelevant
messages by the threshold. Also, as shown in Figure 11e,f, the 𝑅2 of the messages related
to wiper and gears are clearly distinguished from others. Since the vehicle behavior (gear
angle and wiper angle) data and the related CAN messages are all discrete, they can be
clearly distinguished from the other messages when the linear regression modeling is per-
formed.

0

10

20

30

40

50

60

70

80

90

100

110

21
5 75 76 20
2

16
5 86 24
0 82 21
E 78 21
7

21
1 79 22
8

25
E

13
1

21
F

16
7

20
0

13
0

20
3

0F
D

49
1

45
B

16
6

4D
9

42
B

4D
A

09
A

41
5

43
6

47
B 91 09
E

49
2

47
7

4D
E

49
C

48
E

4F
2

48
2

4F
D

34
0

48
B

42
5

40
A 50 27
4

4F
3

4F
E

09
D

4D
C

42
E

4F
A

42
0

4D
7

4F
B

4D
4

4D
5

4D
6

4D
1

4D
B

45
C

45
A

4F
7

09
F

44
5

3D
0

3D
1

3D
2

43
E

09
B

4F
0

59
1

4F
8

59
6

5C
7

5A
0

5B
0

45
4

58
8

58
1

O
cc

ur
re

nc
e f

re
qu

en
cy

(H
z)

Distribution of the collected message IDs

Figure 10. CAN message frequency distribution.

4.1.2. Message Filter Results

The results of the multivariate linear regression of the collected continuous vehicle
behavior with each type of message are shown in Figure 11. The x-axis is the determina-
tion coefficient R2 of the multiple linear regression model, and the y-axis is the effective
ID distribution.

For the linear regression results of vehicle speed and CAN trace, according to the
threshold value 0.6, three types of messages can be filtered out that directly record vehicle
speed information with IDs 0x202, 0x215, and 0x217, as shown in Figure 11a. In addition,
in this result, there are some R2 values close to the threshold, such as 0x130, 0x165, 0x167
and 0x200. This is because they may describe information such as RPM, throttle, etc., that
correlate with the vehicle speed, which explains their larger R2. However, since these
types of vehicle data cannot be collected by sensors, they cannot determine their exact
meaning. As shown in Figure 11b, with a R2 of 0.1 as the dividing line, the messages IDs
strongly correlated with steering wheel angle are 0x086, 0x082, and 0x240. These messages
may contain data describing steering wheel torque and steering rate in addition to the
information directly representing steering angle. In the same way, messages related to the
accelerator pedal are filtered out including messages with IDs 0x165, 0x167, 0x202, 0xFD,
and 0x21F, with 0.2 as the divisor, as shown in Figure 11c. Messages with IDs 0x78, 0x202,
and 0x165 are categorized as related to brake pedal angle with a threshold of 0.18 as shown
in Figure 11d. The results of filtering information related to wiper switch and gear angle
are shown in Figure 11e,f. With a threshold of 0.6, the message IDs related to the wiper are
0x9A, and the message IDs related to the gear are 0x165 and 0x228, respectively.

As can be seen from the results of the message filtering, the R2 and threshold values
for messages related to steering angle, acceleration, and brake pedal are generally small.
This result is due to the slight variations in vehicle behavior when collecting these data. For
example, the pedal is unlikely to be located at the lowest position when collecting the gas
pedal angle while driving. In addition, the results for vehicle speed, gas pedal, and brake
pedal show that a certain number of messages have an R2 value that is below the threshold,
but very close to it. Although these messages do not directly describe the state of the vehicle
speed, gas pedal, and brake pedal, they do describe vehicle behavior correlated with the
state. For example, the near-threshold telegrams in the throttle results describe the vehicle’s
speed, torque, and acceleration, among other things. However, since these messages do
not directly describe the vehicle speed, they are classified as irrelevant messages by the
threshold. Also, as shown in Figure 11e,f, the R2 of the messages related to wiper and gears
are clearly distinguished from others. Since the vehicle behavior (gear angle and wiper
angle) data and the related CAN messages are all discrete, they can be clearly distinguished
from the other messages when the linear regression modeling is performed.

Sensors 2022, 22, 981 15 of 30Sensors 2022, 22, x FOR PEER REVIEW 15 of 30

(a)

(b)

(c)

(d)

0.00 0.25 0.50 0.75

4FE
4FD
4FB
4FA
4F7

4DA
4D9
4D7
4D6
4D5
4D4
47B
477
45C
45B
45A
43E
42B
420
415
40A
340
240
228
21F
217
215
211
203
202
200
167
165
131
130

0FD
09F
09E
09D
09B
09A

91
86
82
79
78
76
75
50

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

0 0.05 0.1 0.15 0.2 0.25 0.3

4FE
4FD
4FB
4FA
4D7
4D6
45C
45B
45A
43E
42B
40A
21F
0FD
09F
09E
09D
436
420
415
340
240
217
211
203
202
200
167
165
130

91
86
82
79
78
76
75

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

0.00 0.10 0.20 0.30 0.40

4FE
4FD
4FB
4FA
4D7
4D6
45C
45B
45A
43E
42B
40A
21F
0FD
09F
09E
09D
436
420
415
340
240
217
211
203
202
200
167
165
130
91
86
82
79
78
76
75

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

0 0.1 0.2 0.3 0.4

4FA
0FD
415
165
167

4FB
211
21F
200
40A
4FD
217
203
202

4FE
75
76
91

09F
45A
45C

79
09D

86
09E

78
45B
130

82
240
4D6
420
4D7
436
43E
340
42B

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

Figure 11. Cont.

Sensors 2022, 22, 981 16 of 30Sensors 2022, 22, x FOR PEER REVIEW 16 of 30

(e)

(f)

Figure 11. Real vehicle messages filter results: (a) speed-related messages; (b) steer angle-related
messages; (c) gas pedal-related messages; (d) brake pedal-related messages; (e) gear-related mes-
sages; (f) wiper related-messages.

4.1.3. Bit-Level Reverse Results
By analyzing the linear regression result of the filtered messages, it is possible to re-

verse the portrayal of the vehicle behavior by the individual bits of the message.
The reverse result for the speed-related messages is shown in Figure 12. There is a

two-fold relationship between the messages with IDs 0x202, 0x215, and 0x217 and the 𝛽
of the vehicle speed. As shown in Figure 12a, bits 34 to 42 in the message with ID 0x202
indicate the vehicle’s speed, arranged in the format of Motorola. For the message with ID
0x215, according to Figure 12b, bits 0 to 12, bits 16 to 28, bits 32 to 44, and bits 48 to 60
represent the vehicle speed information and the arrangement format is Motorola. The
value for the 𝛽 with ID 0x217 is shown in Figure 12c, and the bits describing the vehicle
speed are 34 to 46, and the arrangement format is also Motorola.

(a)

(b)

0 0.2 0.4 0.6 0.8 1

4FE
4FD
4FB
4FA
4D7
4D6
4D5
45C
45B
45A
43E
42B
40A
21F
0FD
09F
09E
09D
09A
477
445
436
420
415
340
240
228
217
211
203
202
200
167
165
131
130
91
86
82
79
78
76
75
50

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

4FE
4FD
4FB
4FA
4D7
4D6
4D5
45C
45B
45A
43E
42B
40A
21F
0FD
09F
09E
09D
09A
477
445
436
420
415
340
240
228
217
211
203
202
200
167
165
131
130

91
86
82
79
78
76
75
50

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

7 6 5 4 3 2 1 0

7 3357801971 −1628217732 −1.665294136 2.955850113 0.991322644 −0.289907624 −0.302687847 0.171739344

6 0.889935594 −0.412378188 0.151430476 0.126843613 0.01788121 −1655665397 1.686479037 1.5102

5 −519702221 4.603181641 4.782656932 0.928475752 1.453727623 −0.018194993 0.395604057 0.133305646

4 −0.004974229 0.019429916 0.534827322 0 0 0 0 0

3 3747208386 −666716471.7 −4093665735 18.80890454 7.041814705 33. 087412692 15.94559698 7.694356925

2 3.82222913 2.052452633 0.733454925 0.39026707 0.18976073 0.095002291 −0.084735874 −0.09862176

1 0 0 0 1.52496 1.52496 0 0 1.52496

0 −0.229847605 0.392528104 0.10481122 −0.329716681 0.168024533 0.253546692 −0.028310573 0.053638706

Bit No.

Byte No.

Figure 11. Real vehicle messages filter results: (a) speed-related messages; (b) steer angle-related
messages; (c) gas pedal-related messages; (d) brake pedal-related messages; (e) gear-related messages;
(f) wiper related-messages.

4.1.3. Bit-Level Reverse Results

By analyzing the linear regression result of the filtered messages, it is possible to
reverse the portrayal of the vehicle behavior by the individual bits of the message.

The reverse result for the speed-related messages is shown in Figure 12. There is a
two-fold relationship between the messages with IDs 0x202, 0x215, and 0x217 and the β
of the vehicle speed. As shown in Figure 12a, bits 34 to 42 in the message with ID 0x202
indicate the vehicle’s speed, arranged in the format of Motorola. For the message with
ID 0x215, according to Figure 12b, bits 0 to 12, bits 16 to 28, bits 32 to 44, and bits 48 to
60 represent the vehicle speed information and the arrangement format is Motorola. The
value for the β with ID 0x217 is shown in Figure 12c, and the bits describing the vehicle
speed are 34 to 46, and the arrangement format is also Motorola.

The reverse results of the steering-related messages are shown in Figure 13. Bits 22 to
31 in the message with ID 0x82 describe the steering angle arranged in Motorola. In the
corresponding message with 0x86, the steering angle is specified in bits 3 to 13 and 28 to 36,
respectively. The message with ID 0x240 does not describe the steering angle directly, but
because its R2 is greater than the threshold, it is related to the change in steering.

Sensors 2022, 22, 981 17 of 30

Sensors 2022, 22, x FOR PEER REVIEW 16 of 30

(e)

(f)

Figure 11. Real vehicle messages filter results: (a) speed-related messages; (b) steer angle-related
messages; (c) gas pedal-related messages; (d) brake pedal-related messages; (e) gear-related mes-
sages; (f) wiper related-messages.

4.1.3. Bit-Level Reverse Results
By analyzing the linear regression result of the filtered messages, it is possible to re-

verse the portrayal of the vehicle behavior by the individual bits of the message.
The reverse result for the speed-related messages is shown in Figure 12. There is a

two-fold relationship between the messages with IDs 0x202, 0x215, and 0x217 and the 𝛽
of the vehicle speed. As shown in Figure 12a, bits 34 to 42 in the message with ID 0x202
indicate the vehicle’s speed, arranged in the format of Motorola. For the message with ID
0x215, according to Figure 12b, bits 0 to 12, bits 16 to 28, bits 32 to 44, and bits 48 to 60
represent the vehicle speed information and the arrangement format is Motorola. The
value for the 𝛽 with ID 0x217 is shown in Figure 12c, and the bits describing the vehicle
speed are 34 to 46, and the arrangement format is also Motorola.

(a)

(b)

0 0.2 0.4 0.6 0.8 1

4FE
4FD
4FB
4FA
4D7
4D6
4D5
45C
45B
45A
43E
42B
40A
21F
0FD
09F
09E
09D
09A
477
445
436
420
415
340
240
228
217
211
203
202
200
167
165
131
130
91
86
82
79
78
76
75
50

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

4FE
4FD
4FB
4FA
4D7
4D6
4D5
45C
45B
45A
43E
42B
40A
21F
0FD
09F
09E
09D
09A
477
445
436
420
415
340
240
228
217
211
203
202
200
167
165
131
130

91
86
82
79
78
76
75
50

Determination coefficients for linear-regression modeling

V
al

id
 ID

s

7 6 5 4 3 2 1 0

7 3357801971 −1628217732 −1.665294136 2.955850113 0.991322644 −0.289907624 −0.302687847 0.171739344

6 0.889935594 −0.412378188 0.151430476 0.126843613 0.01788121 −1655665397 1.686479037 1.5102

5 −519702221 4.603181641 4.782656932 0.928475752 1.453727623 −0.018194993 0.395604057 0.133305646

4 −0.004974229 0.019429916 0.534827322 0 0 0 0 0

3 3747208386 −666716471.7 −4093665735 18.80890454 7.041814705 33. 087412692 15.94559698 7.694356925

2 3.82222913 2.052452633 0.733454925 0.39026707 0.18976073 0.095002291 −0.084735874 −0.09862176

1 0 0 0 1.52496 1.52496 0 0 1.52496

0 −0.229847605 0.392528104 0.10481122 −0.329716681 0.168024533 0.253546692 −0.028310573 0.053638706

Bit No.

Byte No.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 30

(c)

Figure 12. Speed-related messages reverse result: (a) ID 0x202 reverse result; (b) ID 0x215 reverse
result; (c) ID 0x217 reverse result.

The reverse results of the steering-related messages are shown in Figure 13. Bits 22
to 31 in the message with ID 0x82 describe the steering angle arranged in Motorola. In the
corresponding message with 0x86, the steering angle is specified in bits 3 to 13 and 28 to
36, respectively. The message with ID 0x240 does not describe the steering angle directly,
but because its 𝑅2 is greater than the threshold, it is related to the change in steering.

(a)

(b)

(c)

Figure 13. Steer-related messages reverse result: (a) ID 0x082 reverse result; (b) ID 0x086 reverse
result; (c) ID 0x240 reverse result.

The results of the throttle-related message are shown in Figure 14. There is an ap-
proximate relationship of 2 times in the 𝛽 corresponding to 0xFD, 0x167, and 0x202 in the
results, so based on the 𝛽, we find that bits 49 to 55 in the message with 0xFD describe
the gas pedal angle. As shown in Figure 14b, in the message whose ID is 0x167, bits 0 to 7

7 6 5 4 3 2 1 0

7 −0.2448 −0.1650 0.0102 −0.3607 0.5244 −0.5178 1.9200 0.2832

6 0.7781 −0.0524 0.1434 −0.3971 −0.3533 −0.1758 −0.1719 0.4453

5 0.2646 26.1434 13.2176 7.1642 3.2614 1.7673 0.8613 0.4206

4 0.2501 0.1133 0.0501 0.0265 0.0134 0.0887 1.2222 0.0000

3 0.0000 0.0000 −0.0076 −0.6139 −0.0034 −0.0945 0.7202 −0.0359

2 0.6625 −0.1119 −0.0314 0.1349 −0.4283 −0.0462 −1.8548 4.5949

1 0.0051 0.0000 0.0000 0.0162 0.0029 −0.0084 −0.0140 0.2394

0 −0.2080 −0.3410 0.0069 0.0527 0.0081 −0.0176 −0.0363 −0.0363

Bit No.

Byte No.

7 6 5 4 3 2 1 0

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 −4.5691 3.2343 3.2343 3.2343 −39.6865 27.3546 11.5185 −12.8177

4 24.8477 30.8647 17.9640 6.4265 −2.3840 0.6244 −1.7468 0.0000

3 30.1037 14.1605 7.3889 3.1524 1.9637 1.2133 0.6756 0.3275

2 0.1524 0.0675 −0.4275 −1.1913 0.0000 −1.3348 0.0000 0.0000

1 0.0000 0.0000 0.0000 −85.8317 −4.8072 −0.3888 −5.5472 −6.9460

0 −7.0268 −20.8909 20.7759 3.0168 7.4394 −8.8125 12.4246 19.6513

Byte No.

Bit No.

Figure 12. Speed-related messages reverse result: (a) ID 0x202 reverse result; (b) ID 0x215 reverse
result; (c) ID 0x217 reverse result.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 30

(c)

Figure 12. Speed-related messages reverse result: (a) ID 0x202 reverse result; (b) ID 0x215 reverse
result; (c) ID 0x217 reverse result.

The reverse results of the steering-related messages are shown in Figure 13. Bits 22
to 31 in the message with ID 0x82 describe the steering angle arranged in Motorola. In the
corresponding message with 0x86, the steering angle is specified in bits 3 to 13 and 28 to
36, respectively. The message with ID 0x240 does not describe the steering angle directly,
but because its 𝑅2 is greater than the threshold, it is related to the change in steering.

(a)

(b)

(c)

Figure 13. Steer-related messages reverse result: (a) ID 0x082 reverse result; (b) ID 0x086 reverse
result; (c) ID 0x240 reverse result.

The results of the throttle-related message are shown in Figure 14. There is an ap-
proximate relationship of 2 times in the 𝛽 corresponding to 0xFD, 0x167, and 0x202 in the
results, so based on the 𝛽, we find that bits 49 to 55 in the message with 0xFD describe
the gas pedal angle. As shown in Figure 14b, in the message whose ID is 0x167, bits 0 to 7

7 6 5 4 3 2 1 0

7 −0.2448 −0.1650 0.0102 −0.3607 0.5244 −0.5178 1.9200 0.2832

6 0.7781 −0.0524 0.1434 −0.3971 −0.3533 −0.1758 −0.1719 0.4453

5 0.2646 26.1434 13.2176 7.1642 3.2614 1.7673 0.8613 0.4206

4 0.2501 0.1133 0.0501 0.0265 0.0134 0.0887 1.2222 0.0000

3 0.0000 0.0000 −0.0076 −0.6139 −0.0034 −0.0945 0.7202 −0.0359

2 0.6625 −0.1119 −0.0314 0.1349 −0.4283 −0.0462 −1.8548 4.5949

1 0.0051 0.0000 0.0000 0.0162 0.0029 −0.0084 −0.0140 0.2394

0 −0.2080 −0.3410 0.0069 0.0527 0.0081 −0.0176 −0.0363 −0.0363

Bit No.

Byte No.

7 6 5 4 3 2 1 0

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 −4.5691 3.2343 3.2343 3.2343 −39.6865 27.3546 11.5185 −12.8177

4 24.8477 30.8647 17.9640 6.4265 −2.3840 0.6244 −1.7468 0.0000

3 30.1037 14.1605 7.3889 3.1524 1.9637 1.2133 0.6756 0.3275

2 0.1524 0.0675 −0.4275 −1.1913 0.0000 −1.3348 0.0000 0.0000

1 0.0000 0.0000 0.0000 −85.8317 −4.8072 −0.3888 −5.5472 −6.9460

0 −7.0268 −20.8909 20.7759 3.0168 7.4394 −8.8125 12.4246 19.6513

Byte No.

Bit No.

Figure 13. Steer-related messages reverse result: (a) ID 0x082 reverse result; (b) ID 0x086 reverse
result; (c) ID 0x240 reverse result.

Sensors 2022, 22, 981 18 of 30

The results of the throttle-related message are shown in Figure 14. There is an approxi-
mate relationship of 2 times in the β corresponding to 0xFD, 0x167, and 0x202 in the results,
so based on the β, we find that bits 49 to 55 in the message with 0xFD describe the gas
pedal angle. As shown in Figure 14b, in the message whose ID is 0x167, bits 0 to 7 portray
the angle of the gas pedal. The angle of the gas pedal in 0x202 is represented in bits 39 to
47. For the messages 0x165 and 0x21F, there is no 2x relationship in β. But the bits 40 to
43 of 0x21F indicate the rate of change of the gas pedal angle as shown in Figure 14d. For
0x165, the gas pedal angle is converted to a discrete state using a threshold: accelerated or
not. The result of the discrete value is shown in Figure 14e, from which it can be seen that
bit 29, and bits 22 to 26 of ID 0x165 describe whether the gas pedal is activated or not.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 30

portray the angle of the gas pedal. The angle of the gas pedal in 0x202 is represented in
bits 39 to 47. For the messages 0x165 and 0x21F, there is no 2x relationship in 𝛽. But the
bits 40 to 43 of 0x21F indicate the rate of change of the gas pedal angle as shown in Figure
14d. For 0x165, the gas pedal angle is converted to a discrete state using a threshold: ac-
celerated or not. The result of the discrete value is shown in Figure14e, from which it can
be seen that bit 29, and bits 22 to 26 of ID 0x165 describe whether the gas pedal is activated
or not.

(a)

(b)

(c)

(d)

(e)

Figure 14. Gas-related messages reverse result: (a) ID 0x0FD reverse result; (b) ID 0x167 reverse
result; (c) ID 0x202 reverse result; (d) ID 0x21F reverse result with gas angle change rate; (e) ID 0x165
reverse result with discrete state.

The results of the bit reverse for the brakes are shown in Figure 15. Based on the 𝛽
of 0x78, the bits representing the brake pedal are bits 32 to 37, arranged as Motorola. Since
there are no significant features in the 𝛽 of 0x202 and 0x165, the linear regression 𝛽 of

7 6 5 4 3 2 1 0

7 0.0000 0.3918 −0.0540 0.0061 0.4457 −0.3976 0.0773 0.1157

6 0.1405 0.0005 −8.1509 −8.1509 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 −8.1509 −8.1509 0.0000 −8.1509 0.0000 0.0000

4 0.0059 0.0037 0.0132 −0.0031 0.0000 0.0000 0.0000 0.0000

3 0.0000 −5.6113 −2.5396 −2.5396 −0.5518 −0.3847 −0.2282 0.1356

2 0.0401 −0.0890 −0.0185 −8.1509 −8.1509 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 699,609.9052 349,804.9522 174,902.4813 87,451.2317 43,725.6307 21,862.8212 10,931.4122 5,465.7142

Byte No.

Bit No.

7 6 5 4 3 2 1 0

7 −30,722,903.3959 −780,259.2057 95,016.3169 7,016.7500 −103,882.7484 31,071.4599 −71,574.6187 39,885.1065

6 24,35,913.1645 447,637.7878 −416,934.3919 4,525,584.9459 1,243,563.1738 64,975,570.8269 108,015.1117 943,273.2207

5 −245,73,183.4337 0.0000 0.0000 812,245.6660 0.0000 0.6637 0.6834 0.1551

4 −0.0743 0.1130 0.1089 0.0979 0.0000 −0.0829 0.0000 0.0000

3 0.0000 0.0000 2,417,812,245.6660 0.0000 0.0000 2,417,812,245.6660 2,417,812,245.6660 2,417,812,245.6660

2 2,417,812,245.6660 2,417,812,245.6660 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6660

0 0.2248 −0.1436 0.1238 0.0247 −0.0284 −0.0201 0.0747 −0.0004

Byte No.

Bit No.

Figure 14. Gas-related messages reverse result: (a) ID 0x0FD reverse result; (b) ID 0x167 reverse
result; (c) ID 0x202 reverse result; (d) ID 0x21F reverse result with gas angle change rate; (e) ID 0x165
reverse result with discrete state.

Sensors 2022, 22, 981 19 of 30

The results of the bit reverse for the brakes are shown in Figure 15. Based on the β of
0x78, the bits representing the brake pedal are bits 32 to 37, arranged as Motorola. Since
there are no significant features in the β of 0x202 and 0x165, the linear regression β of these
two types of IDs with discrete states of the brake pedal (braked or not) was calculated using
the same method. The results show that in 0x165, bits 0, 1, 3, 7, and 8 indicate whether the
vehicle’s state is accelerated or not. For the message with 0x202 as ID, the results show
that it does not describe the braking behavior but only the vehicle behavior with respect
to braking.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 30

these two types of IDs with discrete states of the brake pedal (braked or not) was calcu-
lated using the same method. The results show that in 0x165, bits 0, 1, 3, 7, and 8 indicate
whether the vehicle’s state is accelerated or not. For the message with 0x202 as ID, the
results show that it does not describe the braking behavior but only the vehicle behavior
with respect to braking.

(a)

(b)

(c)

Figure 15. Brake-related messages reverse result: (a) ID 0x078 reverse result; (b) ID 0x165 reverse
result; (c) ID 0x202 reverse result.

The reverse results for the gears are shown in Figure 16. Since the gear behavior data
is discrete, it is evident from the 𝛽 that the message with 0x228 describes the gear infor-
mation in bits 3, 5 to 7, 10 and 35 to 39, and 0x165 describes the gear in bits 51 to 54. The
reverse result of the wipers is shown in Figure 17. The data describing the wiper speed in
0x9A are bits 37 to 38 and bit 50, And the specific reverse results are shown in Table 5.

(a)

(b)

Figure 16. Gear-related messages reverse result: (a) ID 0x228 reverse result; (b) ID 0x165 reverse
result.

7 6 5 4 3 2 1 0

7 1.02 0.49 0.04 −0.30 −0.03 0.25 −0.18 −0.20

6 0.05 −0.20 0.16 −0.14 −0.02 −0.01 −0.03 0.69

5 −0.17 0.00 0.00 0.34 0.00 1.22 1.34 −0.16

4 0.28 0.22 0.19 −0.42 0.00 1.88 0.00 −0.45

3 −0.15 −0.06 −0.02 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 −0.02 0.06 0.00 35,984,984,372

0 35,984,984,372 0.49 −0.52 0.16 35,984,984,372 0.11 35,984,984,372 35,984,984,372

Bit No.

Byte No.

7 6 5 4 3 2 1 0

7 0.0000 0.0000 −1.5596 −1.0489 −0.4532 0.3652 −0.1251 0.0948

6 0.0823 0.0661 −0.0427 0.0620 0.0033 0.0000 −0.5051 −0.5051

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.1442 −0.4417 −0.4461 −0.2856 0.1556 −0.3119 0.1625

2 −0.0977 −0.1675 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 −0.5051 −0.5051 0.0000 0.0000 −0.5051

0 −0.5546 −0.2084 −0.4710 0.3023 −0.1523 −0.0358 0.0792 0.0284

Bit No.

Byte No.

Figure 15. Brake-related messages reverse result: (a) ID 0x078 reverse result; (b) ID 0x165 reverse
result; (c) ID 0x202 reverse result.

The reverse results for the gears are shown in Figure 16. Since the gear behavior data is
discrete, it is evident from the β that the message with 0x228 describes the gear information
in bits 3, 5 to 7, 10 and 35 to 39, and 0x165 describes the gear in bits 51 to 54. The reverse
result of the wipers is shown in Figure 17. The data describing the wiper speed in 0x9A are
bits 37 to 38 and bit 50, And the specific reverse results are shown in Table 5.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 30

these two types of IDs with discrete states of the brake pedal (braked or not) was calcu-
lated using the same method. The results show that in 0x165, bits 0, 1, 3, 7, and 8 indicate
whether the vehicle’s state is accelerated or not. For the message with 0x202 as ID, the
results show that it does not describe the braking behavior but only the vehicle behavior
with respect to braking.

(a)

(b)

(c)

Figure 15. Brake-related messages reverse result: (a) ID 0x078 reverse result; (b) ID 0x165 reverse
result; (c) ID 0x202 reverse result.

The reverse results for the gears are shown in Figure 16. Since the gear behavior data
is discrete, it is evident from the 𝛽 that the message with 0x228 describes the gear infor-
mation in bits 3, 5 to 7, 10 and 35 to 39, and 0x165 describes the gear in bits 51 to 54. The
reverse result of the wipers is shown in Figure 17. The data describing the wiper speed in
0x9A are bits 37 to 38 and bit 50, And the specific reverse results are shown in Table 5.

(a)

(b)

Figure 16. Gear-related messages reverse result: (a) ID 0x228 reverse result; (b) ID 0x165 reverse
result.

7 6 5 4 3 2 1 0

7 1.02 0.49 0.04 −0.30 −0.03 0.25 −0.18 −0.20

6 0.05 −0.20 0.16 −0.14 −0.02 −0.01 −0.03 0.69

5 −0.17 0.00 0.00 0.34 0.00 1.22 1.34 −0.16

4 0.28 0.22 0.19 −0.42 0.00 1.88 0.00 −0.45

3 −0.15 −0.06 −0.02 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 −0.02 0.06 0.00 35,984,984,372

0 35,984,984,372 0.49 −0.52 0.16 35,984,984,372 0.11 35,984,984,372 35,984,984,372

Bit No.

Byte No.

7 6 5 4 3 2 1 0

7 0.0000 0.0000 −1.5596 −1.0489 −0.4532 0.3652 −0.1251 0.0948

6 0.0823 0.0661 −0.0427 0.0620 0.0033 0.0000 −0.5051 −0.5051

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.1442 −0.4417 −0.4461 −0.2856 0.1556 −0.3119 0.1625

2 −0.0977 −0.1675 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 −0.5051 −0.5051 0.0000 0.0000 −0.5051

0 −0.5546 −0.2084 −0.4710 0.3023 −0.1523 −0.0358 0.0792 0.0284

Bit No.

Byte No.

Figure 16. Gear-related messages reverse result: (a) ID 0x228 reverse result; (b) ID 0x165
reverse result.

Sensors 2022, 22, 981 20 of 30Sensors 2022, 22, x FOR PEER REVIEW 20 of 30

Figure 17. Wiper-related messages reverse result.

Table 5. Results for gears and wipers of bit-level reverse.

Gear

Status
ID 0x165 ID 0x228

Bits 54–51 Bits 39–35 Bit 10 Bits 7–5 Bit 3
P/N 0110 00010 1 110 0
D 1100 10000 1 001 1
R 1101 00010 1 010 1

Wiper

Status
ID 0x09A

Bit 50 Bits 38–37
Auto 1 10
Slow 0 10
Fast 0 01

4.2. Framework Accuracy
The accuracy of the system proposed in this study is evaluated using the inverse re-

sults of the actual vehicles. The accuracy is evaluated using the DBC files of the test vehi-
cle, which were determined to be the truth.

 The accuracy of message filtering is shown in Table 6. All CAN traces are taken from
the OBD-II interface, so the accuracy is expressed using the percentage of filtered quanti-
ties in the OBD-II. Among all the results, only the brake-related messages have an accu-
racy of 66.67 %, while all other messages are filtered at 100%. The false-positive result for
0x202 for brakes is due to the fact the brakes are velocity-dependent to some extent. Ac-
cording to the DBC file, 0x202 does contain velocity information, which causes 𝑅2 to be
higher than the threshold. In addition, message 0x240 in the description of the DBC, de-
scribes the vehicle’s torque information. Although it is a steering-related message, it can-
not be inverted at the bit level because the torque measurement information is not directly
available. It is also worth noting that the messages defined in the DBC file do not fully
appear in the OBD-II interface. This phenomenon is due to a gateway in the vehicle CAN-
bus network, which does not forward all bus traces to OBD-II, but only a portion of the
traffic to the OBD-II interface. The rest of the CAN bus data, especially the traffic related
to assisted driving and vehicle control, flows only within the vehicle and cannot be cap-
tured externally.

The bit-reverse accuracy is shown in Figure 18, which compares the bit reverse results
of this framework with the vehicle behavior defined in the DBC file. Figure 18a shows the
bit-inverse accuracy of the speed-dependent messages. It is observed that bits are written
with speed in 0x202, 0x215, and 0x217 are partially reversed to obtain 9 bits for 16 bits in
0x202, 52 bits for 64 bits in 0x215, and 14 bits for 16 bits in 0x217. The bit reversal accuracy

Figure 17. Wiper-related messages reverse result.

Table 5. Results for gears and wipers of bit-level reverse.

Gear

Status
ID 0x165 ID 0x228

Bits 54–51 Bits 39–35 Bit 10 Bits 7–5 Bit 3

P/N 0110 00010 1 110 0
D 1100 10000 1 001 1
R 1101 00010 1 010 1

Wiper

Status
ID 0x09A

Bit 50 Bits 38–37

Auto 1 10
Slow 0 10
Fast 0 01

4.2. Framework Accuracy

The accuracy of the system proposed in this study is evaluated using the inverse
results of the actual vehicles. The accuracy is evaluated using the DBC files of the test
vehicle, which were determined to be the truth.

The accuracy of message filtering is shown in Table 6. All CAN traces are taken from
the OBD-II interface, so the accuracy is expressed using the percentage of filtered quantities
in the OBD-II. Among all the results, only the brake-related messages have an accuracy of
66.67 %, while all other messages are filtered at 100%. The false-positive result for 0x202 for
brakes is due to the fact the brakes are velocity-dependent to some extent. According to the
DBC file, 0x202 does contain velocity information, which causes R2 to be higher than the
threshold. In addition, message 0x240 in the description of the DBC, describes the vehicle’s
torque information. Although it is a steering-related message, it cannot be inverted at the
bit level because the torque measurement information is not directly available. It is also
worth noting that the messages defined in the DBC file do not fully appear in the OBD-II
interface. This phenomenon is due to a gateway in the vehicle CAN-bus network, which
does not forward all bus traces to OBD-II, but only a portion of the traffic to the OBD-II
interface. The rest of the CAN bus data, especially the traffic related to assisted driving and
vehicle control, flows only within the vehicle and cannot be captured externally.

Sensors 2022, 22, 981 21 of 30

Table 6. Message filtering accuracy results for vehicle behavior.

Behavior DBC Defined
Messages

Messages Captured
from OBD-II

Framework Filtering
Results Accuracy

Speed 0x25E, 0x217, 0x202,
0x215, 0x35F, 0x361 0x217, 0x202, 0x215 0x217, 0x202, 0x215 100%

Steer 0x86, 0x240, 0x243, 0x82 0x86, 0x240, 0x82 0x86, 0x240, 0x82 100%

Gas 0x202, 0x21C, 0xFD,
0x167, 0x165, 0x21F

0x202, 0xFD, 0x167,
0x165, 0x21F

0x202, 0xFD, 0x167,
0x165, 0x21F 100%

Brake 0x165, 0x78 0x165, 0x78 0x165, 0x78, 0x165 66.67%
Gear 0x228, 0x165 0x228, 0x165 0x228, 0x165 100%

Wiper 0x9A 0x9A 0x9A 100%

The bit-reverse accuracy is shown in Figure 18, which compares the bit reverse results
of this framework with the vehicle behavior defined in the DBC file. Figure 18a shows
the bit-inverse accuracy of the speed-dependent messages. It is observed that bits are
written with speed in 0x202, 0x215, and 0x217 are partially reversed to obtain 9 bits for
16 bits in 0x202, 52 bits for 64 bits in 0x215, and 14 bits for 16 bits in 0x217. The bit reversal
accuracy of the two steering-related messages, 0x082 and 0x086, is shown in Figure 18b.
The proposed framework in this study correctly reverses 9 of the 16 bits in 0x082 and 18 of
the 27 bits in 0x086. The accuracy of gas-related message reversal is shown in Figure 18c.
0x0FD gets 7 out of 8 bits, 0x167 completely reverses 8 bits, 0x202 gets 9 out of 16 bits, and
both 0x21F and 0x165 have only one bit that is not reversed. Only bits 38 to 39 of 0x078
were not found in the brake-related messages’ reverse results, as shown in Figure 18d. For
the gear and wiper-related messages, the bits indicating the gear and wiper switches are
both correctly reversed, which can be seen in Figure 18.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 30

of the two steering-related messages, 0x082 and 0x086, is shown in Figure 18b. The pro-
posed framework in this study correctly reverses 9 of the 16 bits in 0x082 and 18 of the 27
bits in 0x086. The accuracy of gas-related message reversal is shown in Figure 18c. 0x0FD
gets 7 out of 8 bits, 0x167 completely reverses 8 bits, 0x202 gets 9 out of 16 bits, and both
0x21F and 0x165 have only one bit that is not reversed. Only bits 38 to 39 of 0x078 were
not found in the brake-related messages’ reverse results, as shown in Figure 18d. For the
gear and wiper-related messages, the bits indicating the gear and wiper switches are both
correctly reversed, which can be seen in Figure 18.

The overall bit-reverse accuracy of the proposed framework for vehicle behavior is
shown in Table 7. The overall reverse accuracy is over 76%, especially for gear, and wiper
reversion can reach 100% because CAN messages and sensor data are discrete and not
easily disturbed by other data. The reverse accuracy for vehicle speed, gas pedal, and ac-
celerator pedal are all about 80% because these behaviors are difficult to reach the limit
state during vehicle sampling, such as vehicle speed of 255 km/h, gas, and brake pedals
kept at the maximum angle. Therefore, when reversing the messages related to these be-
haviors, their high values can barely be detected (i.e., the high value of 𝛽 does not satisfy
the two-fold relation), which results in poor accuracy. The steering-related information
performs the worst, with only 65%. Due to the low degree of steering wheel variability in
daily driving, the linear regression model is easily disturbed by irrelevant bits, resulting
in poor accuracy of bit reversals.

Table 6. Message filtering accuracy results for vehicle behavior.

Behavior DBC Defined Messages
Messages Captured from

OBD-II
Framework Filtering

Results Accuracy

Speed
0x25E, 0x217, 0x202, 0x215,

0x35F, 0x361 0x217, 0x202, 0x215 0x217, 0x202, 0x215 100%

Steer 0x86, 0x240, 0x243, 0x82 0x86, 0x240, 0x82 0x86, 0x240, 0x82 100%

Gas 0x202, 0x21C, 0xFD, 0x167,
0x165, 0x21F

0x202, 0xFD, 0x167, 0x165,
0x21F

0x202, 0xFD, 0x167,
0x165, 0x21F

100%

Brake 0x165, 0x78 0x165, 0x78 0x165, 0x78, 0x165 66.67%
Gear 0x228, 0x165 0x228, 0x165 0x228, 0x165 100%

Wiper 0x9A 0x9A 0x9A 100%

(a)

(b)

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0x202 reverse result

0x202 in the DBC

0x215 in the DBC

0x215 reverse result

0x217 in the DBC

0x217 reverse result

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0x082 reverse result

0x082 in the DBC

0x086 in the DBC

0x086 reverse result

Figure 18. Cont.

Sensors 2022, 22, 981 22 of 30

Sensors 2022, 22, x FOR PEER REVIEW 22 of 30

(c)

(d)

(e)

(f)

Figure 18. Bit reverse accuracy: (a) Speed reverse result; (b) Steer reverse result; (c) Gas reverse
result; (d) Brake reverse result; (e) Gear reverse result; (f) Wiper reverse result.

Table 7. Bit reverse result with DBC file description.

Vehicle Behavior Number of Relevant
Bits in DBC

Reverse Results Accuracy

Speed 96 74 77.1%
Steer 43 28 65.1%

Throttle 44 34 77.3%
Brake 13 11 84.6%
Gear 13 13 100%

Wiper 3 3 100%
Total 212 163 76.9%

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0x0FD reverse result

0x0FD in the DBC

0x167 in the DBC

0x167 reverse result

0x202 in the DBC

0x202 reverse result

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0x21F reverse result

0x21F in the DBC

0x165 in the DBC

0x165 reverse result

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0x078 reverse result

0x078 in the DBC

0x165 in the DBC

0x165 reverse result

0816243240485663

0816243240485663

0816243240485663

0816243240485663

0x228 reverse result

0x228 in the DBC

0x165 in the DBC

0x165 reverse result

0816243240485663

0816243240485663
0x09A reverse result

0x09A in the DBC

Figure 18. Bit reverse accuracy: (a) Speed reverse result; (b) Steer reverse result; (c) Gas reverse result;
(d) Brake reverse result; (e) Gear reverse result; (f) Wiper reverse result.

The overall bit-reverse accuracy of the proposed framework for vehicle behavior is
shown in Table 7. The overall reverse accuracy is over 76%, especially for gear, and wiper
reversion can reach 100% because CAN messages and sensor data are discrete and not
easily disturbed by other data. The reverse accuracy for vehicle speed, gas pedal, and
accelerator pedal are all about 80% because these behaviors are difficult to reach the limit
state during vehicle sampling, such as vehicle speed of 255 km/h, gas, and brake pedals
kept at the maximum angle. Therefore, when reversing the messages related to these
behaviors, their high values can barely be detected (i.e., the high value of β does not satisfy
the two-fold relation), which results in poor accuracy. The steering-related information

Sensors 2022, 22, 981 23 of 30

performs the worst, with only 65%. Due to the low degree of steering wheel variability in
daily driving, the linear regression model is easily disturbed by irrelevant bits, resulting in
poor accuracy of bit reversals.

Table 7. Bit reverse result with DBC file description.

Vehicle Behavior Number of Relevant
Bits in DBC Reverse Results Accuracy

Speed 96 74 77.1%
Steer 43 28 65.1%

Throttle 44 34 77.3%
Brake 13 11 84.6%
Gear 13 13 100%

Wiper 3 3 100%
Total 212 163 76.9%

4.3. Time Consumption

The framework’s time performance analysis was performed on a CentOS server with
an Intel® Xeon® Gold 6248 CPU @ 2.50 GHz and 8 GB of RAM using Python 3. The time
is taken to compute the three critical stages of data resampling, multiple linear regression
modeling, and a bitwise inversion was calculated separately during the evaluation. Table 8
shows the execution time results for each phase. The shortest time-consuming stage is
the bit-inverse stage, which requires no more than 25 us in the longest case and can be
completed within 7 us in the fastest case. The most time-consuming phase is the data
resampling phase. The execution time of the data resampling phase varies from 1.15 s to
190.67 s, with an average time of 37.23 s, which is because this stage resamples the sensor
data based on the number of IDs that occur. The essential linear regression phase does
not take more than 0.84 s. Overall, the time required to reverse the content of a message
correctly averages 37.41 s and does not exceed 191.5 s at most.

Table 8. Implementation time of each stage.

Step Shortest (s) Longest (s) Average (s)

Resample 1.150728 190.674251 37.23192305
Linear regression model 0.007088 0.83345 0.179022554

Bit reverse 0.000007 0.000025 0.0000099
Total 1.157823 191.50772 37.4109555

4.4. Result of Comparison with Other Methods

This section presents the performance comparison results between the bit-level reverse
framework proposed in this study and other CAN message reverse methods. Nowadays,
the effective CAN message reversal algorithms are READ [30], LibreCAN [31], ReCAN,
and Bram’s proposed reversal algorithm based on the correlation coefficient [30]. Among
them, READ, ReCAN [32], and LibreCAN algorithms use bit-flip rates to delimit CAN
message data fields; LibreCAN and Bram’s scheme [37] use correlation coefficients to
find the message IDs describing specific vehicle behavior. The differences between the
existing algorithms and the linear regression framework in reverse results are given in
Table 9. Our proposed scheme is the only one that enables boundary delineation, correlated
message identification, and bit reverse. READ and ReCAN only perform CAN message
data boundary delineation, Bram’s scheme only addresses correlated message screening,
and LibreCAN achieves both results but cannot achieve bit-level inversion. Therefore, this
section only compares the performance of this framework with existing algorithms in terms
of boundary delineation, correlated message filtering, and execution complexity.

Sensors 2022, 22, 981 24 of 30

Table 9. Reverse function compared with existing algorithms.

Algorithm Boundary
Delineation

Related Message
Filtering

Bit-Level
Reverse

Bit-level reverse based on linear regression
√ √ √

READ
√

× ×
LibreCAN

√ √
×

ReCAN
√

× ×
Reverse engineering based on correlation coefficient ×

√
×

4.4.1. Boundary Delineation

In terms of boundary delineation, we compare the linear regression framework of
this paper with the bit-flip rate algorithm used by READ, ReCAN, and LibreCAN. The
performance of the methods in this study and the bit-flip rate method in delineating CAN
messages with discrete states and continuous vehicle behavior is shown in Table 10. The
framework in this paper can delineate the vehicle behavior within the corresponding range
with 100% correctness, while the bit-flip-based rate is only 53.3% correct in delineating
the boundaries. In particular, bit flipping has relatively good results in delineating CAN
messages describing continuous behavior, but boundary delineation errors occur for fields
corresponding to discrete vehicle behavior.

Table 10. Boundary Delineation Comparison.

Vehicle Behavior ID Linear Regression Bit Flip (READ, ReCAN, LbreCAN)

Speed
202

√ √

215
√ √

271
√ √

Steer
082

√ √

086
√

×

Throttle

0FD
√

×
167

√
×

202
√ √

21F
√ √

165
√

×

Brake
078

√ √

165
√ √

Gear
228

√
×

165
√

×
Wiper 09A

√
×

Total Accuracy 100% 53.33%

The reasons for the different performance of existing methods in delineating bound-
aries are explained in Figure 19 using 0x082 (for steering) and 0x228 (for gears) as examples.
As shown in Figure 19a, this approach may not set the boundary for the boundary delin-
eation of continuous values quite correctly, but the delineation is within the correct range.
In contrast, the bit-flip rate approach is easily affected by bits with the exact change pattern
or are completely changed when dividing the boundary, which leads to the boundary
division outside the normal range. Figure 19b compares the delineation results of the two
methods for discrete values. The bit-flip rate approach fails to delineate the boundary
accurately because the flipped cases of individual bits are generalized to the same field
as the adjacent invariant bits when delineating the boundary. Therefore, the framework
proposed in this study gives better results for discrete values.

Sensors 2022, 22, 981 25 of 30

Sensors 2022, 22, x FOR PEER REVIEW 24 of 30

messages with discrete states and continuous vehicle behavior is shown in Table 10. The
framework in this paper can delineate the vehicle behavior within the corresponding
range with 100% correctness, while the bit-flip-based rate is only 53.3% correct in deline-
ating the boundaries. In particular, bit flipping has relatively good results in delineating
CAN messages describing continuous behavior, but boundary delineation errors occur
for fields corresponding to discrete vehicle behavior.

Table 10. Boundary Delineation Comparison.

Vehicle Behavior ID Linear Regression Bit Flip (READ, ReCAN, LbreCAN)

Speed
202 √ √
215 √ √
271 √ √

Steer 082 √ √
086 √ ×

Throttle

0FD √ ×
167 √ ×
202 √ √
21F √ √
165 √ ×

Brake 078 √ √
165 √ √

Gear 228 √ ×
165 √ ×

Wiper 09A √ ×
Total Accuracy 100% 53.33%

The reasons for the different performance of existing methods in delineating bound-
aries are explained in Figure 19 using 0x082 (for steering) and 0x228 (for gears) as exam-
ples. As shown in Figure 19a, this approach may not set the boundary for the boundary
delineation of continuous values quite correctly, but the delineation is within the correct
range. In contrast, the bit-flip rate approach is easily affected by bits with the exact change
pattern or are completely changed when dividing the boundary, which leads to the
boundary division outside the normal range. Figure 19b compares the delineation results
of the two methods for discrete values. The bit-flip rate approach fails to delineate the
boundary accurately because the flipped cases of individual bits are generalized to the
same field as the adjacent invariant bits when delineating the boundary. Therefore, the
framework proposed in this study gives better results for discrete values.

(a)

(b)

Figure 19. Boundary division results of bit-flip rate and proposed method: (a) Continuous value
division result (0x082 for steering); (b) Discrete value division result (0x228 for gear).

4.4.2. Related Message Filtering
This section describes the outstanding performance of the framework in this paper

compared to existing schemes in related message filtering, where existing schemes mainly

READ's results
Framework results

DCB's content

READ's results
Framework results

DCB's content

Figure 19. Boundary division results of bit-flip rate and proposed method: (a) Continuous value
division result (0x082 for steering); (b) Discrete value division result (0x228 for gear).

4.4.2. Related Message Filtering

This section describes the outstanding performance of the framework in this paper
compared to existing schemes in related message filtering, where existing schemes mainly
use correlation coefficients (e.g., LibreCAN, Bram’s method) to filter related messages.
Figure 20 compares the performance between our proposed framework and the Pearson
correlation coefficient for correlated message filtering. Regardless of the number of mes-
sages, the multiple linear regression method proposed in this study can filter messages
related to vehicle behavior with 100% accuracy. When using the correlation coefficient
to filter messages, although the accuracy of candidate message filtering increases as the
number of messages rises, the accuracy still does not exceed 95%. When calculating the
correlation between the two vectors, the results of the Pearson correlation coefficient are
easily influenced by outliers in the two vectors, resulting in a reduced correlation coefficient
that does not effectively filter out candidate messages [46]. In this paper, using multiple
linear regression to model each bit of the data field as an independent variable, the effect
of outliers is weakened, and the relevant messages are effectively filtered out. This result
shows that the framework proposed in this study is more accurate than existing message
filtering methods.

Sensors 2022, 22, x FOR PEER REVIEW 25 of 30

use correlation coefficients (e.g., LibreCAN, Bram’s method) to filter related messages.
Figure 20 compares the performance between our proposed framework and the Pearson
correlation coefficient for correlated message filtering. Regardless of the number of mes-
sages, the multiple linear regression method proposed in this study can filter messages
related to vehicle behavior with 100% accuracy. When using the correlation coefficient to
filter messages, although the accuracy of candidate message filtering increases as the num-
ber of messages rises, the accuracy still does not exceed 95%. When calculating the corre-
lation between the two vectors, the results of the Pearson correlation coefficient are easily
influenced by outliers in the two vectors, resulting in a reduced correlation coefficient that
does not effectively filter out candidate messages [46]. In this paper, using multiple linear
regression to model each bit of the data field as an independent variable, the effect of
outliers is weakened, and the relevant messages are effectively filtered out. This result
shows that the framework proposed in this study is more accurate than existing message
filtering methods.

Figure 20. Comparison between correlation coefficient and multiple linear regression.

In addition, as shown in Table 11, the accuracy of the linear regression method is not
affected by the number of messages, which remains 100%, while the correlation coefficient
requires a higher number of messages to obtain a higher correct rate. This indicates that
fewer messages are needed to locate messages related to vehicle behavior when using the
linear regression method for CAN message screening, reducing data acquisition and com-
putation time that speeds up the reverse work.

Table 11. The influence of different message counts on accuracy.

Methods
Number of Messages

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Linear regression 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Correlation coefficients 80% 72% 82% 86% 90% 92% 90% 92% 92% 90%

4.4.3. Execution Complexity
We compare the algorithms in this section concerning the devices needed for their

execution, the data requirement, the algorithm execution time, and the reverse results. As
shown in Table 12, each algorithm relies on OBD-II data acquisition devices. Only the
framework and LibreCAN require additional sensor devices and smartphones, respec-
tively. In terms of data requirements, the READ and ReCAN require only CAN traffic, the
linear regression method and LibreCAN require data from additional devices. However,
the correlation coefficient method requires UDS data through interaction with the vehicle
[47]. LibreCAN is the algorithm that takes the longest time to execute since some manual

0.8

0.9

1.0

2,500 5,000 7,500 10,000
Message quantity

M
es

sa
ge

 fi
lte

rin
g

ac
cu

ra
cy

variable

Multiple linear regression

Correlation coefficient

Figure 20. Comparison between correlation coefficient and multiple linear regression.

In addition, as shown in Table 11, the accuracy of the linear regression method is not
affected by the number of messages, which remains 100%, while the correlation coefficient
requires a higher number of messages to obtain a higher correct rate. This indicates that
fewer messages are needed to locate messages related to vehicle behavior when using
the linear regression method for CAN message screening, reducing data acquisition and
computation time that speeds up the reverse work.

Sensors 2022, 22, 981 26 of 30

Table 11. The influence of different message counts on accuracy.

Methods
Number of Messages

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

Linear
regression 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Correlation
coefficients 80% 72% 82% 86% 90% 92% 90% 92% 92% 90%

4.4.3. Execution Complexity

We compare the algorithms in this section concerning the devices needed for their
execution, the data requirement, the algorithm execution time, and the reverse results. As
shown in Table 12, each algorithm relies on OBD-II data acquisition devices. Only the
framework and LibreCAN require additional sensor devices and smartphones, respectively.
In terms of data requirements, the READ and ReCAN require only CAN traffic, the linear
regression method and LibreCAN require data from additional devices. However, the
correlation coefficient method requires UDS data through interaction with the vehicle [47].
LibreCAN is the algorithm that takes the longest time to execute since some manual work is
also required, and the fastest execution is the correlation coefficient method. The framework
in this paper is close to the average time of the READ algorithm. However, in terms of
reverse results, our scheme is the only one that can achieve bit-level reverse, outperforms
the other algorithms in boundary delineation and message filtering, and does not require
interaction with the vehicle. Although additional sensor devices are required, such sensors
can be purchased very cheaply and used very simply in the market.

Table 12. Execution complexity comparison of different algorithms.

Algorithm Devices Requirements Data Requirements Average Time Reverse Results

Bit-level reverse based
on linear regression

OBD-II data acquisition device,
Behavior sensors

CAN traffic,
Sensors data 37 s

Boundary Delineation,
Related message filtering,

Bit-level reverse
READ OBD-II data acquisition device CAN traffic 35.9 s Boundary Delineation

ReCAN OBD-II data acquisition device CAN traffic 35.9 s Boundary Delineation

LibreCAN OBD-II data acquisition device,
Smartphone

CAN traffic,
Smartphone data >60 s Boundary Delineation,

Related message filtering
Reverse engineering

based on
correlation coefficient

OBD-II data acquisition device CAN traffic,
UDS data <20 s Related message filtering

4.5. Application and Discussion
4.5.1. Application

The bit-level automotive CAN bus reverse framework proposed in this study can be
used in almost all commercially available vehicles, independent of vehicle make and model.
According to Table 12, the implementation of the framework requires OBD-II [48,49] data
collection devices, sensors, and CAN traffic. In-vehicle CAN network traffic is typically
collected using the OBD-II interface, a globally accepted automotive standard. It is required
for almost all commercially available vehicles to be equipped with an OBD-II interface
before they can be marketed [50–54]. Therefore, regardless of vehicle models on the market,
the vehicle CAN traffic can be obtained after connecting OBD-II data collection devices.
Therefore, regardless of vehicle models on the market, the vehicle CAN traffic can be
obtained after connecting OBD-II data collection devices. For OBD-II data acquisition
devices, such devices are readily available on the market today, with prices ranging from
a few tens to a few hundred dollars. The sensor devices used in this framework are
off-the-shelf motion sensors, which are inexpensive and easily placed in various vehicle
parts to collect relevant data. Using CAN traffic and sensor data as input to our proposed

Sensors 2022, 22, 981 27 of 30

framework, the algorithm proposed in this paper can obtain how CAN messages in any
vehicle describe the vehicle state.

To verify the applicability of the framework, an electric car with completely a different
power and brand was chosen to apply the framework. The reverse results are shown in
Table A1 in Appendix A. In the absence of relevant DBC files, a script is provided in the
appendix that can display CAN data changes in real-time to confirm the accuracy of each
result. All filtered messages are consistent with the actual results in the actual results, and
the reverse results of the bits remain consistent with the data bit changes. Overall, the
method proposed in this study can be applied to most vehicle CAN message inversions
and is not affected by vehicle changes.

4.5.2. Discussion

In this study, we propose an innovative bit-level reverse framework for automotive
CAN messages. This framework builds a multiple linear regression model between CAN
traces and sensor data, uses decision coefficients to filter candidate messages, and uses
model parameters to determine how data fields represent vehicle behavior and maximally
recover DBC files. In the test vehicle, this framework has high accuracy in both message
screening and bit-inversion. However, the limitation of the test environment results in
the unavailability of the extreme vehicle behavior data, leading to less than perfect results
in bit-reversion. In addition, the framework reverses the candidate messages correctly in
a short time, which improves the reversal efficiency. Our study proposes the only CAN
message translator that can achieve bit-level reversal and has significant advantages over
other existing methods for boundary delineation and message verification. Finally, the
framework can be applied to any standard-compliant commercially available vehicle.

5. Conclusions
5.1. Implication

This study examines the bit-level CAN bus reverse framework using a multiple linear
regression model. This framework is the only method that can achieve bit-level reversion.
It uses sensor data as the dependent variable and each bit of the CAN message data field as
the dependent variable to build a multiple linear regression model to obtain the carving
of vehicle behavior for each bit based on the β. This study shows that the framework
can accurately filter CAN messages related to vehicle behavior, reverse the way each bit
represents vehicle behavior, and obtain the length, boundary, and alignment format of
the signal. Compared to other methods, the framework can delineate the signal length
and message filtering more accurately. In addition, the algorithm uses a globally available
standard interface (OBD-II) and common motion sensors to capture CAN traffic and
vehicle behavior data, which allows access to data that is not limited by model and make,
making the algorithm more usable. The excellent reverse capability of the system can help
automotive security researchers to quickly discover how CAN messages describe vehicle
behavior when DBC files are not available. It is worth mentioning that attackers may also
use our approach to find better attack approaches against cars. Although the framework
makes DBC files less secret, it is more meaningful to study the automotive CAN detection
and defense attack capabilities. In addition, a better attack prevention system could be
developed based on the reverse results of this scheme.

5.2. Limitations and Future Work

The present study has three significant limitations that can be addressed in future studies.
First, the lack of extreme data affected the correctness of the experiment. When CAN

traffic and vehicle behavior data were acquired, CAN data and sensor data could not cover
extreme data, such as vehicle speed reaching 255 km/h, maximum steering wheel angle,
and pedal reaching maximum angle. The lack of extreme data departs the highest position
in the experimental results, resulting in unsatisfactory experimental results. Future research
can obtain extreme data in closed scenarios to optimize the experimental results.

Sensors 2022, 22, 981 28 of 30

Second, insufficient DBC files. We use open-source DBC descriptions as truth when
testing the results of validation experiments in vehicles. However, most of the current
open-source DBC files are obtained by extracting the ECU firmware, resulting in a minimal
number. This study can obtain the description of CAN messages without firmware, which
provides a new idea to obtain DBC files for subsequent studies.

Finally, application limitations. Due to the limited number of test vehicles used, this
framework validated its reverse effect in a subset of vehicles. According to the devices
and data on which the framework relies, it can be applied to almost all vehicles. To
address the difficulty of testing in actual vehicles, software and hardware simulations [55]
of the internal networks of vehicles can be investigated in future research to address the
application limitations.

Author Contributions: Formal analysis, G.X. (Guosheng Xu); Funding acquisition, G.X. (Guosheng Xu)
and C.W.; Investigation, S.Z.; Methodology, Z.B. and G.X. (Guoai Xu); Project administration,
G.X. (Guoai Xu); Resources, C.W.; Software, Z.B. and S.Z.; Supervision, G.X. (Guoai Xu); Validation,
G.X. (Guosheng Xu); Writing—original draft, Z.B. and S.Z.; Writing—review & editing, C.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant No. 62102042, and the China Postdoctoral Science Foundation under Grant No. 2021T140074,
and the Data Security Risk Monitoring Traceability & Integrated Management Platform project from
the 2020 China Industrial Internet Innovation and Development Project.

Data Availability Statement: The data presented in this study are available in Section 4.4.1.

Acknowledgments: The authors would like to thank the editors and all the reviewers for their
valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 shows the framework’s CAN message reverse for an electric vehicle manu-
factured in China. Although there is no DBC file to verify its correctness, we wrote a script
(It can be found at http://49.232.218.41:8000/ accessed on 23 January 2022) that can display
the data changes of the specified ID in real-time using the experimental equipment in this
paper to verify the correctness of the results.

Table A1. Another vehicle reverse result.

Behavior ID Bits Description

speed
0x212 48–56 real-time speed data
0x23A 32–40, 56–64 real-time speed data
0x21A 17–32 real-time speed data

mileage 0x21A 48–64 mileage per unit of time
steer 0x236 58–64 real-time steering data

brake pedal 0x668 0–16 brake pedal angle
0x668 36 brake status

accelerate pedal 0x668 17–31 accelerate pedal angle

gear 0x235
39, 42, 44 D
39, 42, 43 R

References
1. Number of Automotive Ecus Continues to Rise. Available online: https://www.eenewsautomotive.com/news/number-

automotive-ecus-continues-rise (accessed on 15 May 2019).
2. CANbus—All You Need to Know. Available online: https://www.rs-online.com/designspark/canbus-all-you-need-to-know

(accessed on 11 December 2020).
3. Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of can bus security challenges. Sensors 2020, 20, 2364. [CrossRef]

[PubMed]

http://49.232.218.41:8000/
https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise
https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise
https://www.rs-online.com/designspark/canbus-all-you-need-to-know
http://doi.org/10.3390/s20082364
http://www.ncbi.nlm.nih.gov/pubmed/32326272

Sensors 2022, 22, 981 29 of 30

4. Farag, W.A. CANTrack: Enhancing automotive CAN bus security using intuitive encryption algorithms. In Proceedings of
the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab
Emirates, 4–6 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

5. Van Herrewege, A.; Singelee, D.; Verbauwhede, I. CANAuth—A simple, backward compatible broadcast authentication pro-
tocol for CAN bus. In Proceedings of the ECRYPT Workshop on Lightweight Cryptography, Louvain-la-Neuve, Belgium,
28–29 November 2011; p. 20.

6. Bozdal, M.; Samie, M.; Jennions, I. A survey on can bus protocol: Attacks, challenges, and potential solutions. In Proceedings
of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK,
16–17 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 201–205.

7. Miller, C.; Valasek, C. Remote exploitation of an unaltered passenger vehicle. In Proceedings of the Black Hat USA, Las Vegas,
NV, USA, 1–8 August 2015.

8. TBONE—A Zero-Click Exploit for Tesla MCUs. Available online: https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf (accessed
on 28 April 2020).

9. Tesla Model S Can Be Hacked, and Fixed. Available online: https://www.npr.org/sections/alltechconsidered/2015/08/06/429
907506/tesla-model-s-can-be-hacked-and-fixed-which-is-the-real-news (accessed on 6 August 2020).

10. Hackers Remotely Kill a Jeep on the Highway—With Me in It. Available online: https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/ (accessed on 21 July 2015).

11. Tencent Keen Security Lab: Experimental Security Research of Tesla Autopilot. Available online: https://keenlab.tencent.com/
en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/ (accessed on 29 March 2019).

12. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al.
Experimental security analysis of a modern automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
Berleley/Oakland, California, 16–19 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 447–462.

13. CAN DBC File Explained—A Simple Intro. Available online: https://www.csselectronics.com/pages/can-dbc-file-database-intro
(accessed on 10 May 2021).

14. DBC File Format Documentation. Available online: https://ishare.iask.sina.com.cn/f/3Yjd8GR3d.html (accessed on
20 September 2021).

15. Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In
Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 57–5709.

16. Yu, K.S.; Kim, S.H.; Lim, D.W.; Kim, Y.S. A multiple Rényi entropy based intrusion detection system for connected vehicles.
Entropy 2020, 22, 186. [CrossRef] [PubMed]

17. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198. [CrossRef]

18. Cho, K.T.; Shin, K.G. Viden: Attacker identification on in-vehicle networks. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, Dallas, TX, USA, 30 October 2017; pp. 1109–1123.

19. Marchetti, M.; Stabili, D. Anomaly detection of CAN bus messages through analysis of ID sequences. In Proceedings of the
2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 1577–1583.

20. Tariq, S.; Lee, S.; Kim, H.K.; Woo, S.S. CAN-ADF: The controller area network attack detection framework. Comput. Secur. 2020,
94, 101857. [CrossRef]

21. Seo, E.; Song, H.M.; Kim, H.K. Gids: Gan based intrusion detection system for in-vehicle network. In Proceedings of the 2018
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, UK, 28–30 August 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 1–6.

22. Jin, S.; Chung, J.G.; Xu, Y. Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. In Proceedings of
the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; IEEE: Piscataway, NJ,
USA, 2021; pp. 1–5.

23. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.H. Intrusion detection system for automotive Controller Area Network (CAN) bus
system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 184. [CrossRef]

24. Fowler, D.S.; Bryans, J.; Shaikh, S.A.; Wooderson, P. Fuzz testing for automotive cyber-security. In Proceedings of the 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Luxembourg, 25–28
June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 239–246.

25. Lee, H.; Choi, K.; Chung, K.; Kim, J.; Yim, K. Fuzzing can packets into automobiles. In Proceedings of the 2015 IEEE 29th
International Conference on Advanced Information Networking and Applications, Gwangiu, Korea, 24–27 March 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 817–821.

26. McShane, J.; Kultinov, K. CAN Bus Fuzz Testing with Artificial Intelligence. ATZelectronics Worldw. 2021, 16, 62–64. [CrossRef]
27. Fowler, D.S.; Bryans, J.; Cheah, M.; Wooderson, P.; Shaikh, S.A. A method for constructing automotive cybersecurity tests, a CAN

fuzz testing example. In Proceedings of the 2019 IEEE 19th International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Sofia, Bulgaria, 22–26 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8.

https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf
https://www.npr.org/sections/alltechconsidered/2015/08/06/429907506/tesla-model-s-can-be-hacked-and-fixed-which-is-the-real-news
https://www.npr.org/sections/alltechconsidered/2015/08/06/429907506/tesla-model-s-can-be-hacked-and-fixed-which-is-the-real-news
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://ishare.iask.sina.com.cn/f/3Yjd8GR3d.html
http://doi.org/10.3390/e22020186
http://www.ncbi.nlm.nih.gov/pubmed/33285960
http://doi.org/10.1016/j.vehcom.2019.100198
http://doi.org/10.1016/j.cose.2020.101857
http://doi.org/10.1186/s13638-019-1484-3
http://doi.org/10.1007/s38314-021-0690-z

Sensors 2022, 22, 981 30 of 30

28. Fowler, D.S. A Fuzz Testing Methodology for Cyber-Security Assurance of the Automotive CAN Bus. Ph.D. Thesis, Coventry
University, Coventry, UK, 2019.

29. Markovitz, M.; Wool, A. Field classification, modeling and anomaly detection in unknown CAN bus networks. Veh. Commun.
2017, 9, 43–52. [CrossRef]

30. Marchetti, M.; Stabili, D. READ: Reverse engineering of automotive data frames. IEEE Trans. Inf. Forensics Secur. 2018, 14,
1083–1097. [CrossRef]

31. Pesé, M.D.; Stacer, T.; Campos, C.A.; Newberry, E.; Chen, D.; Shin, K.G. LibreCAN: Automated CAN message translator. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November
2019; pp. 2283–2300.

32. Zago, M.; Longari, S.; Tricarico, A.; Carminati, M.; Pérez, M.G.; Pérez, G.M.; Zanero, S. ReCAN–Dataset for reverse engineering of
Controller Area Networks. Data Brief 2020, 29, 105149. [CrossRef] [PubMed]

33. Jaynes, M.; Dantu, R.; Varriale, R.; Evans, N. Automating ECU identification for vehicle security. In Proceedings of the 2016 15th
IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 632–635.

34. Buscemi, A.; Castignani, G.; Engel, T.; Turcanu, I. A Data-Driven Minimal Approach for CAN Bus Reverse Engineering. In
Proceedings of the 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS), Victoria, BC, Canada, 18 November–16
December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5.

35. Ezeobi, U.; Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. Reverse Engineering Controller Area Network Messages using
Unsupervised Machine Learning. IEEE Consum. Electron. Mag. 2020, 11, 50–56. [CrossRef]

36. Song, H.M.; Kim, H.K. Discovering can specification using on-board diagnostics. IEEE Des. Test 2020, 38, 93–103. [CrossRef]
37. Blaauwendraad, B.; Kieberl, V. Automated reverse-engineering of CAN messages using OBD-II and correlation coefficients.

Available online: https://www.os3.nl/_media/2019-2020/courses/rp2/p103_report.pdf (accessed on 23 January 2022).
38. Wen, H.; Zhao, Q.; Chen, Q.A.; Lin, Z. Automated cross-platform reverse engineering of CAN bus commands from mobile

apps. In Proceedings of the 2020 Network and Distributed System Security Symposium (NDSS’20), San Diego, CA, USA,
23–26 February 2020.

39. CAN Specification. Available online: http://esd.cs.ucr.edu/webres/can20.pdf (accessed on 10 September 2021).
40. Texas Instruments. Introduction to the Controller Area Network (CAN). Application Report SLOA101. 2002; pp. 1–17. Available

online: https://www.rpi.edu/dept/ecse/mps/sloa101.pdf (accessed on 22 January 2022).
41. Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [CrossRef]
42. Tranmer, M.; Elliot, M. Multiple linear regression. Cathie Marsh Cent. Census Surv. Res. (CCSR) 2008, 5, 1–5.
43. Amazon-Acceleration Sensors. Available online: https://www.amazon.com/High-Stability-Inclinometer-High-Precision-

Accelerometer-Navigation/dp/B072ZZ83JZ/ref=sr_1_3?crid=D2ETL9PC5TBQ&keywords=ten-axis+GPS+inertial+navigation+
sensor&qid=1642921112&sprefix=ten-axis+gps+inertial+navigation+sensor%2Caps%2C855&sr=8-3 (accessed on 12 May 2021).

44. Chen, D.; Cho, K.-T.; Han, S.; Jin, Z.; Shin, K.G. Invisible sensing of vehicle steering with smartphones. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; ACM: New
York, NY, USA, 2015; pp. 1–13.

45. Opendbcfromcomma.ai. Available online: https://github.com/commaai/opendbc (accessed on 10 January 2021).
46. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin,

German, 2009; pp. 1–4.
47. OBD-II PIDs. Available online: https://en.wikipedia.org/wiki/OBD-II_PIDs (accessed on 20 September 2021).
48. On-Board Diagnostics. Available online: https://en.wikipedia.org/wiki/On-_board_diagnostics#OBD-%20II_diagnostic_

connector (accessed on 10 January 2021).
49. OBD II Generic PID Diagnosis. Available online: https://www.motor.com/magazinepdfs/092007_09.pdf (accessed on

10 August 2021).
50. Is Your Vehicle OBD II Compliant? Available online: https://www.plxdevices.com/obdii-compliant-vehicles-s/153.htm (ac-

cessed on 10 January 2022).
51. EPC (European Parliament and Council). Directive 98/69/EC of the European Parliament and of the Council of 13 October

1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive
70/220/EEC. 1998. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1998L0069:19981228:
EN:PDF (accessed on 23 January 2022).

52. ISO 15765-4:2005 Road vehicles—Diagnostics on Controller Area Networks (CAN)—Part 4: Requirements for emissions-related
systems. Available online: https://www.iso.org/standard/33619.html (accessed on 20 January 2022).

53. CAN Bus Explained—A Simple Intro. 2021. Available online: https://www.csselectronics.com/pages/can-bus-simple-intro-
tutorial (accessed on 20 January 2022).

54. Limits and Measurement Methods for Emissions from Light-Duty Vehicles (CHINA 6). Available online: https://www.
chinesestandard.net/PDF/BOOK.aspx/GB18352.6-2016 (accessed on 20 January 2022).

55. Mundhenk, P.; Mrowca, A.; Steinhorst, S.; Lukasiewycz, M.; Fahmy, S.A.; Chakraborty, S. Open source model and simulator for
real-time performance analysis of automotive network security. ACM Sigbed Rev. 2016, 13, 8–13. [CrossRef]

http://doi.org/10.1016/j.vehcom.2017.02.005
http://doi.org/10.1109/TIFS.2018.2870826
http://doi.org/10.1016/j.dib.2020.105149
http://www.ncbi.nlm.nih.gov/pubmed/32071958
http://doi.org/10.1109/MCE.2020.3023538
http://doi.org/10.1109/MDAT.2020.3011036
https://www.os3.nl/_media/2019-2020/courses/rp2/p103_report.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://www.rpi.edu/dept/ecse/mps/sloa101.pdf
http://doi.org/10.1016/j.sbspro.2013.12.027
https://www.amazon.com/High-Stability-Inclinometer-High-Precision-Accelerometer-Navigation/dp/B072ZZ83JZ/ref=sr_1_3?crid=D2ETL9PC5TBQ&keywords=ten-axis+GPS+inertial+navigation+sensor&qid=1642921112&sprefix=ten-axis+gps+inertial+navigation+sensor%2Caps%2C855&sr=8-3
https://www.amazon.com/High-Stability-Inclinometer-High-Precision-Accelerometer-Navigation/dp/B072ZZ83JZ/ref=sr_1_3?crid=D2ETL9PC5TBQ&keywords=ten-axis+GPS+inertial+navigation+sensor&qid=1642921112&sprefix=ten-axis+gps+inertial+navigation+sensor%2Caps%2C855&sr=8-3
https://www.amazon.com/High-Stability-Inclinometer-High-Precision-Accelerometer-Navigation/dp/B072ZZ83JZ/ref=sr_1_3?crid=D2ETL9PC5TBQ&keywords=ten-axis+GPS+inertial+navigation+sensor&qid=1642921112&sprefix=ten-axis+gps+inertial+navigation+sensor%2Caps%2C855&sr=8-3
https://github.com/commaai/opendbc
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/On-_board_diagnostics#OBD-%20II_diagnostic_connector
https://en.wikipedia.org/wiki/On-_board_diagnostics#OBD-%20II_diagnostic_connector
https://www.motor.com/magazinepdfs/092007_09.pdf
https://www.plxdevices.com/obdii-compliant-vehicles-s/153.htm
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1998L0069:19981228:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1998L0069:19981228:EN:PDF
https://www.iso.org/standard/33619.html
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.chinesestandard.net/PDF/BOOK.aspx/GB18352.6-2016
https://www.chinesestandard.net/PDF/BOOK.aspx/GB18352.6-2016
http://doi.org/10.1145/2983185.2983186

	Introduction
	Background and Feasibility
	CAN Bus Overview
	DBC File
	Linear Regression Preliminary
	Feasibility

	Framework Design
	Data Collection and Processing
	Data Collection
	Data Processing and Resampling

	Related Messages Filter
	Bit-Level Message Reverse

	Performance Evaluation
	Performance in Real Vehicle
	Device Description and Data Processing
	Message Filter Results
	Bit-Level Reverse Results

	Framework Accuracy
	Time Consumption
	Result of Comparison with Other Methods
	Boundary Delineation
	Related Message Filtering
	Execution Complexity

	Application and Discussion
	Application
	Discussion

	Conclusions
	Implication
	Limitations and Future Work

	Appendix A
	References

