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Abstract

This thesis considers the joint design of bit loading, precoding and receive filters
for a multiple-input multiple-output (MIMO) digital communication system. Both
the transmitter and the receiver are assumed to know the channel matrix perfectly.
It is well known that, for linear MIMO transceivers, orthogonal transmission (i.e.,
diagonalization of the channel matrix) is optimal for some criteria such as maxi-
mum mutual information. It has been shown that if the receiver uses the linear
minimum mean squared error (MMSE) detector, the optimal transmission strategy
is to perform bit loading on orthogonal subchannels.

In the first part of the thesis, we consider the problem of designing the transceiver
in order to minimize the probability of error given maximum likelihood (ML) detec-
tion. A joint bit loading and linear precoder design is proposed that outperforms
the optimal orthogonal transmission. The design uses lattice invariant operations
to transform the channel matrix into a lattice generator matrix with large minimum
distance separation at a low price in terms of transmit power. With appropriate
approximations, it is shown that this corresponds to selecting lattices with good
sphere-packing properties. An algorithm for this power minimization is presented
along with a lower bound on the optimization. Apparently, given the optimal ML
detector, orthogonal subchannels are (in general) suboptimal.

The ML detector may suffer from high computational complexity, which moti-
vates the use of the suboptimal but less complex MMSE detector. An intermediate
detector in terms of complexity and performance is the decision feedback (DF) de-
tector. In the second part of the thesis, we consider the problem of joint bit loading
and precoding assuming the DF detector. The main result shows that for a DF
MIMO transceiver where the bit loading is jointly optimized with the transceiver
filters, orthogonal transmission is optimal. As a consequence, inter-symbol inter-
ference is eliminated and the DF part of the receiver is actually not required, only
the linear part is needed. The proof is based on a relaxation of the discrete set of
available bit rates on the individual subchannels to the set of positive real num-
bers. In practice, the signal constellations are discrete and the optimal relaxed bit
loading has to be rounded. It is shown that the loss due to rounding is small, and
an upper bound on the maximum loss is derived. Numerical results are presented
that confirm the theoretical results and demonstrate that orthogonal transmission
and the truly optimal DF design perform almost equally well. An algorithm that
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makes the filter design problem especially easy to solve is presented.

As a byproduct from the work on decision feedback detectors we also present
some work on the problem of optimizing a Schur-convex objective under a linearly
shifted, or skewed, majorization constraint. Similar to the case with a regular ma-
jorization constraint, the solution is found to be the same for the entire class of cost
functions. Furthermore, it is shown that the problem is equivalent to identifying
the convex hull under a simple polygon defined by the constraint parameters. This
leads to an algorithm that produces the exact optimum with linear computational
complexity. As applications, two unitary precoder designs for MIMO communica-
tion systems that use heterogenous signal constellations and employ DF detection
at the receiver are presented.
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Chapter 1

Introduction

The recent developments in information and communication technologies have been
quite astonishing, even in a historical perspective. Most people today carry mobile
phones that allow us unlimited access to anyone anytime at a very low cost. From
all inhabited parts of the world, with just a click on a button, we can access most of
the worlds written texts, news, recorded songs, films, all in a matter of seconds or
minutes. In some sense, wireless access to the internet has redefined the notion of
knowledge; to know is no longer to learn and remember, to know is to understand
what to look for.

What we have been (and are still) experiencing in terms of new practical ap-
plications of technological innovations, is perhaps only comparable to what people
during the industrial revolution of the 19’th century may have experienced. In
fact, it was in the 19’th century that the first steps towards the modern digital
communication systems were taken with the invention of the electrical telegraph.
The rate of communication in an electrical telegraph was very much limited by the
persons that operated the system. The telegraphist needed a good sense of rhythm
and an alert mind in order to transmit or receive messages at a high rate. With the
introduction of electronics and computers, the human factor on the rate of commu-
nication was no longer the main limitation. The new bottleneck for communication
of data was instead given by the physical electromagnetical characteristics of the
channel, in particular the signal to noise ratio.

It is partly the processing power provided by the computers that has driven, as
well as enabled, the recent dramatically increased usage of digital communications.
In the last two decades the prices on advanced communication devices has reduced
sharply, while in parallel the operators have increased the coverage and efficiency of
the communication networks. Since new sophisticated wireless user terminals are
able to present increasingly advanced content, each user is more frequently active
and has an incentive to consume more data traffic. As wireless access becomes a
necessity for more people, the demand for even better coverage and reliability will
grow.
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The challenge of supporting more users, increased traffic, better coverage and
higher reliability is not a problem the operators can solve solely by installing more
infrastructure — the radio spectrum is a finite resource that is strictly regulated
and is typically very costly to acquire. For this reason, much research effort has
been (and is being) put on advanced signal processing techniques for making use of
the available spectrum as efficiently as possible. The aim of this thesis is to provide
a contribution to this important scientific field.

1.1 Making the most out of the spectrum

Information theory [CT91], the mathematical theory on how to optimally store
and send information, took a great leap in 1948 with the pioneering work by Shan-
non [Sha48]. Shannon showed that a communication channel, such as a radio link
or a magnetic tape, can convey information without errors up to a limit; the chan-
nel capacity. Equally important, he showed that it is impossible to send error-free
information at a rate above the channel capacity. The capacity is determined by
the signal to noise ratio on the channel and it sets a fundamental limit on the rate
of communication.

In order to attain data rates close to the channel capacity, the transmitter
needs to accumulate the information and encode it using very long codewords. The
receiver of the information can then decode the data once the entire codeword has
been received. In information theoretic work these codewords are typically infinitely
long when transmitting at the rate of the capacity. In practice finite codewords
are used, but with a penalty that there is a small but non-zero probability of
decoding errors [Gal62, RU0OS|. Roughly speaking, given that our codebooks are
wisely designed, the larger chunks of information that are encoded (using longer
codewords), the lower probability of a decoding error is attained. The protection of
data against errors by means of coding is commonly referred to as channel coding.
One consequence of channel coding is that some delay is inevitable in order to
maximize the throughput on the available spectrum.

1.2 The multiple-input multiple-output system

Any communication system transmitting and receiving blocks of data can be seen as
a multiple-input multiple-output (MIMO) communication system. Multiple data
symbols are transmitted over the channel, another set of symbols are received,
and finally the transmitted symbols are estimated from the information in the
received symbols. The interest in MIMO systems increased dramatically a decade
ago when it was discovered that multiple antennas at both the transmitter and the
receiver can be used to transmit data very efficiently. For sufficiently rich scattering
environments it was shown in [Tel95, FG98] that the increase in capacity by using
antenna arrays is linear with the minimum number of transmit or receive antennas.
This means that we can send much more data compared to single-antenna systems,
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Figure 1.1: Multiple-antenna systems.

using the same amount of total power and the same amount of spectral resources.
The idea is to multiplex data on parallel spatial subchannels, where the richness
of the channel allows us to separate the subchannels on the receiver side. This is
referred to as the multiplexing gain. Multiple antennas can also be used to provide
a diversity gain in the MIMO channel, i.e. with more antennas the probability
that all antennas experience a bad channel becomes smaller, making the system
more robust to fading [TSC98, HHO02]. Using multiple antennas to increase data
rate through the multiplexing gain, or to make the system more robust through the
diversity gain is a trade off [ZT03]. Recently, the use of multiple antennas at both
the transmitter and the receiver has been specified in many wireless standards, such
as the 3GPP LTE! standard [DPSB07]. However, as of today it is fair to say that
the use MIMO systems has not yet reached its full potential in a commercial sense.

1.3 Delay-limited communication

One problem that comes with powerful channel coding is the delay it brings to the
system. Wireless systems typically suffer from very unpredictable channels that
change over time. For such cases, long error correcting codes can be problematic
since the amount of error protection that is needed may change over the duration of
a codeword. Retransmission of incorrectly decoded data is another common method
for error protection in wireless communication systems. A checksum indicates to
the receiver if a block of data has been incorrectly decoded, and if so, a request for
a retransmission of the block is fed back to the transmitter. The longer the blocks,
the more data has to be retransmitted once an error occurs, which further adds to
the delay in the system.

IThird generation partnership project long term evolution.
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Some applications, such as closed-loop control applications are very sensitive to
delay. A control system with a closed loop (see Figure 1.2) consists of a sensor (for
example a radar) that measures some entity (the position of a rocket), a controller
that sends control signals (rocket thrust), and a plant (a rocket). The state of
the plant (the position) will subsequently affect the measurement, hence the term
closed loop. Now, assume that parts of the control system are spatially dispersed
and that communication between the entities has to be performed over radio. Then
it is of outmost importance that this communication comes with as short delay as
possible in order to preserve the stability of the system. A control application
typically communicates at a fixed data rate (the control signaling is fixed), with
the main objective to convey this information as quickly as possible, with a low
power consumption and with a small probability of decoding errors. The above
example motivates the analysis of a system with a fixed data rate and relatively
short codewords that are delay limited.

In most cases it is mathematically intractable to provide a global performance
analysis of the delay-sensitive system as a whole, let alone to jointly optimize the
system. By only optimizing the lowest layer of the communication chain, our hope
is that the overall performance also can be brought close to the optimum. This
motivates the separate analysis of the modulation part of the physical layer —
before we apply (possible) outer error-correcting codes. When not considering
error correcting codes, the system will suffer from an inherent non-zero probability
of detection error. Thus, not only must the optimal design trade off uncoded data
rate against power usage, the design needs to consider the error probability as well.

This thesis considers the delay-limited communication problem, where the data
rate and the codeword length are given, and where the task is to convey the data
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using minimum amount of power, or with a minimum probability of decoding error.

1.4 Linear precoding and bit loading

Under the assumption that the transmitter knows the channel perfectly, the capacity-
optimal strategy is to linearly orthogonalize the MIMO channel (using a precoder),
and then convey the data over the non-interfering orthogonal subchannels. Each
subchannel supports a specific data rate that is determined by the strength (signal
to noise ratio) of the corresponding subchannel [FE91, GC97]. The procedure of
optimizing the subchannel data rates is denoted bit loading. Figure 1.3 illustrates
a MIMO communication system. Bits of data are multiplexed to separate subchan-
nels, where each subchannel has an individual bit rate that is determined by the
bit loading. The data in each subchannel is modulated to data symbols, then these
symbols are mixed using a linear precoder to form a vector of transmit signals.
The transmit signals are transmitted using multiple antennas, distorted by the ra-
dio channel, and received using multiple receive antennas. Finally, the transmitted
data symbols are estimated (detected) using some type of detection algorithm at
the receiver.

As was the case for capacity-optimal transmission, the linear precoder can be de-
signed to make the effective subchannels orthogonal — to eliminate all inter-symbol
interference between the subchannels. For the delay-limited case this orthogonaliz-
ing precoder is not necessarily optimal, sometimes it is better to allow the subchan-
nels to interfere with each other [DDLWO03, PCLO03]. For the delay-limited case the
jointly optimal design of the linear precoder and bit loading is still an open prob-
lem. We know that the optimal detector at the receiver is the maximum-likelihood
(ML) detector, cf. [DGC03]. However, the optimal detector may suffer from high
computational complexity as the number of dimensions grow [JOO05]. Therefore, we
often consider suboptimal detection algorithms, such as the zero-forcing receiver,
the minimum mean squared error (MMSE) receiver [Pro01], or the decision feed-
back (DF) detector [BP79, WFGV98, GC01]. The design of the optimal transmitter
depends on which detection algorithm that is used. Given the information about
the channel, the transmitter needs to determine the bit loading on the subchan-
nels, but also how the subchannels are to interfere each other through the linear
precoder. Obviously, without taking the choice of receiver algorithm into account
it becomes difficult to consider optimization of the transmitter. In this thesis we
study the effects of bit loading and orthogonalization given different types of re-
ceiver structures.

1.5 Outline and contributions

This section gives the outline of the thesis, highlights the contributions, and pro-
vides references to the articles where the results where (or will be) presented. The
main body of the thesis is separated into two parts, the first part considers the
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Figure 1.3: Bit loading and linear precoding.

bit loading and linear precoding problem assuming that the optimal ML detector is
employed at the receiver, the second part considers the same problem but assuming
the DF detector is used. Furthermore, the second part contains some extra math-
ematical results that are related to the DF design but will be treated separately in
this outline.

Chapter 2: Background and problem formulation

Chapter 2 specifies and provides background to the MIMO communication problem,
including mathematical model and assumptions. It contains the relevant references
and some preliminary results that will serve as a basis for the discussion in the
chapters that follow.

Chapters 3—5: Design based on maximum likelihood detection

The first part starts with Chapter 3, that introduces the design problem for ML de-
tection. References to related work are provided. In Chapter 4, an approximation
of the probability of detection error is derived that will serve as performance mea-
sure of the system, and the mathematical tools that are needed in order to optimize
the transceiver are introduced. Chapter 5 presents the algorithm that optimizes
the precoder and bit loading, numerical results and some analysis are presented.
We propose to use linear precoding and lattice invariant operations to transform
the channel matrix into a lattice generator matrix with large minimum distance
separation. With appropriate approximations, it is shown that this corresponds to
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selecting lattices with good sphere-packing properties. Lattice invariant transfor-
mations are then used to minimize the power consumption. An algorithm for this
power minimization is presented along with a lower bound on the optimization. Nu-
merical results indicate significant gains by using the proposed method compared
to channel diagonalization with adaptive bit loading.

The main contributions of Part I comprise of: The lattice based precoding algo-
rithm that optimizes the transceiver, upper and lower bounds on the performance
of the outcome of the algorithm, the motivation for using dense lattices in the con-
text of linear precoding, and the observation that orthogonal subchannels are (in
general) suboptimal given ML detection. The results in this part have previously
been published in the following articles:

[BOO8] S. Bergman and B. Ottersten. Lattice Based Linear Precoding for Multi-
carrier Block Codes. IEEE Transactions on Signal Processing, 56(7):2902—
2914, July 2008.

[BOO07] S. Bergman and B. Ottersten. Lattice Based Linear Precoding For MIMO
Block Codes. In Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, 3:111329-111332, April 2007.

Chapters 6—9: Design based on decision feedback detection

The second part starts with Chapter 6 that provides a background to the transceiver
design problem for DF detectors. In Chapter 7, a performance measure is derived
and the design problem is formulated as a mathematical optimization problem.
Chapter 8 considers the problem of designing the linear precoder together with the
filters in the DF detector for a fixed bit loading. We show how this problem can be
posed as a convex optimization problem, and we present an algorithm that solves
this convex problem with linear complexity.

Chapter 9 considers the joint bit loading and precoder design problem. It is
shown that the optimal design results in orthogonal subchannels, consequently we
can apply conventional bit and power loading schemes for orthogonal subchannels
to obtain the optimal transceiver. The proof is based on a relaxation of the discrete
set of available bit rates on the individual subchannels to the set of positive real
numbers. In practice, the signal constellations are discrete and the optimal relaxed
bit loading has to be rounded. It is shown that the loss due to rounding is small, and
an upper bound on the maximum loss is derived. Numerical results are presented
that confirm the theoretical results and demonstrate that orthogonal transmission
and the truly optimal DF design perform almost equally well.

The main contributions of Part II are: The observation that orthogonal sub-
channels are in fact optimal given DF detection, the algorithm that optimize the
power allocation with linear complexity, the derivation of the optimal bit loading,
and the discussion concerning the robustness with respect to rounding of the bit
loading. The results in this part has previously been published in (or submitted
as) the following articles:
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[BPOO09] S. Bergman, D.P. Palomar, and B. Ottersten. Optimal Bit Loading
for MIMO Systems with Decision Feedback Detection. In Proceedings IEEE
Vehicular Technology Conference, April 2009. Invited paper.

[BPOOS8] S. Bergman, D. P. Palomar, and B. Ottersten. Joint Bit Allocation
and Precoding for MIMO Systems with Decision Feedback Detection. IEEE
Transactions on Signal Processing, November 2008. Submitted.

Chapter 10: Skewed majorization

In the second part, Chapter 10, we present some related but rather self contained
mathematical results regarding a class of optimization problems that arise in the
precoder design for DF detectors. The class of problems is denoted optimization
problems with skewed majorization constraints.

It is shown that the problem is equivalent to identifying the convex hull under
a simple polygon defined by the parameters of the skewed majorization constraint.
This leads to an algorithm that produces the exact optimum with linear computa-
tional complexity. As an application, we present two unitary precoder designs for a
MIMO communication system with heterogenous signal constellations utilizing DF
detection at the receiver. The results regarding skewed majorization constrained
problems have previously been published in:

[BJJOO8| S. Bergman, S. Jarmyr, E. Jorswieck, and B. Ottersten. Optimization
with Skewed Majorization Constraints: Application to MIMO Systems. In
IEEE International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), 1-6, September 2008.

Chapter 11: Thesis conclusions

This chapter concludes the thesis, and elaborates on possible lines for future re-
search.
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Notation

In this thesis, matrices are denoted by boldface, uppercase letters, M, and vectors
are denoted by boldface, lowercase letters, v. Scalars are denoted by italic letters,
e.g, , K, a. The following mathematical notation will be used:

CNxM the set of complex-valued N by M matrices

RNVXM the set of real-valued N by M matrices

N the set of integer vectors of dimension N

[M]; ; is the element on the i’th row and j’th column of M
E[] statistical expectation

vec(+) the vectorization operator on matrices

| M| the determinant of a matrix M

Tr{M} the trace of a matrix M

|v] the Euclidian norm of a vector v

M* the transpose of a matrix M

M the conjugate transpose of a matrix M

Mt the inverse of a matrix M

d(M) the vector of the diagonal elements of M

D(m) the diagonal matrix with the diagonal elements m
D(M) the diagonal matrix with the diagonal elements d(M)
N(m, R) the Gaussian multivariate distribution with mean m

and covariance matrix R
CN(m,R) the circularly symmetric complex Gaussian counterpart

Re the real part of a complex number ¢

Se the imaginary part of a complex number ¢

XY the Kronecker product of matrices, cf. [HJ91]

Ik the identity matrix of dimension K by K

Onx M the N by M matrix of only zeros

1n the vector of all ones and length N by 1

a=<c means a is majorized by ¢, see e.g. Appendix 9.A, or [JB0G]

a=<xc means a is multiplicatively majorized by ¢, see e.g.
Appendix 9.A, or [JB06]

a<ce means ar < cg, for all vector indices k

VF the gradient vector of a scalar-valued function F

O(N) the gradient vector of a scalar-valued function F

() maximum value of = and zero

[z] quantization of x

llzll, the p-norm of a vector @

arg max the maximizing argument

arg min the minimizing argument

2 defined as
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Abbreviations

3GPP third generation partnership project
AWGN  additive white Gaussian noise

CDF cumulative distribution function
CR cross (QAM constellation)
CSI channel state information

BER bit error rate
BLER block error rate
BPSK binary phase-shift keying

dB decibel

DF decision feedback

DFT discrete fourier transform

GTD generalized triangular decomposition
1ID independent identically distributed

KKT Karush Kuhn Tucker (conditions)
LDPC  low-density parity-check (codes)

LTE long term evolution

MAP maximum a-posteriori

MIMO  multiple-input multiple-output

ML maximum likelihood

MMSE  minimum mean squared error

MSE mean squared error

PAM pulse amplitude modulation

PEP pairwise error probability

PSD positive semi-definite

PSK phase-shift keying

QAM quadrature amplitude modulation

QR (not an abbreviation, a matrix decomposition)
RX-CSI receiver-side channel state information
SER symbol error rate

SINR signal to interference plus noise ratio
SISO single-input single-output

SNR signal to noise ratio

SVD singular value decomposition

TH Tomlinson-Harashima

TX-CSI transmitter-side channel state information
7ZF zero forcing
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Appendix 1.A  Work not covered by the thesis

Some of our published work did not fit into the scope of this thesis; in this appendix
we list them.

A transmitter can not estimate the channel while simultaneously transmitting
on the same time—frequency slot. Therefore, it may not be reasonable to assume
perfect knowledge about the channel at the transmitter during transmission. During
my Ph.D. studies we have presented several different approaches to the transceiver
design with partial or imperfect channel state information. The designs differ in
the types of channel state information that are available: In particular either first
order statistics, second order statistics, or both first and second order statistics
where considered.

In [JBOO0S] we proposed a precoding scheme for the case of second order statistics
given a DF detector at the receiver. In [MBOO04b] we proposed a precoding scheme
for the ML detector, also assuming second order statistics. In [MBOO04a, BOO06,
BO05a, BO05b] we proposed different transmission schemes for ML detection given
first order statistics of the channel, and, in [BMOO04] we proposed a scheme for ML
that can be used for both first and second order statistics.

When perfect channel state information is available, data can be multiplexed
and optimized over independent spatial channels. When the available channel in-
formation is imperfect or partial, parallel orthogonal transmission is impossible and
crosstalk between the spatial channels will inevitably complicate the analysis as well
as the design. Due to the difficulties analyzing the system, our precoders based on
imperfect or partial channel estimates can not easily be compared in closed form
or analytically. For this reason we have decided not to include these results in the
thesis.

[BOO06] S. Bergman and B. Ottersten. Design of robust linear dispersion codes
based on imperfect CSI for ML receivers. In Proceedings FEuropean Signal
Processing Conference, September 2006.

[BOO05a] S. Bergman and B. Ottersten. Adaptive spatial bit loading using im-
perfect channel state information. In Proceedings of International Workshop
on Optical and Electronic Device Technology for Access Networks, Aalborg,
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Chapter 2

Background and problem
formulation

In this chapter we introduce the system model, provide the relevant background,
present the main assumptions, and define the problem that will be considered in
the later chapters.

2.1 System model

Consider the discrete-time linear model of an N, x Ny MIMO baseband symbol-
sampled communication system over the set of complex numbers C. Such a system
can be modeled using the linear regression equation

y=Hx +n, (2.1)

where y € CM is the received signal, H € CN~*M¢ is the channel matrix, x €
CMt is the vector of transmitted signals, and n € CV* is a vector with additive
white circularly-symmetric complex-Gaussian noise. Further, the noise vector has
covariance matrix E{nn*} = R,,.

In some cases it is easier to work in the real-valued rather than the complex-
valued domain. The complex-valued system equation can be reformulated to a
real-valued equation using

| Ry | Rz | Rn
y,.{%y},mr{%m],nr{%n], (22)
RH SH
H’”{—“H é}eH]’

where R extracts the real part, and & the imaginary part of the argument. It is
straightforward to verify that the real-valued system model

(2.3)

Y, = H,z, +n,, (24)

13
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is equivalent to (2.1) with the noise vector, 1., Gaussian distributed as

1 RR, -SSR,

In this thesis, both the complex-valued and the real-valued equations will be used
to describe the MIMO system.

2.1.1 Channel state information

The receiver can typically estimate the channel from the received signal with the
help of training sequences, or piloting symbols. If the channel is sufficiently station-
ary, a receiver-side channel estimate obtained using sufficient amount of training
can be treated as an exact description of the true channel matrix. We say that the
receiver-side channel state information (RX-CSI) is perfect. On the transmitter
side, one can not directly estimate the channel since it is not possible to receive
and transmit on the same frequency and time-slot. Indirect methods for the trans-
mitter to obtain the channel estimate include

e Obtaining the information from the receiver using a feedback link. A draw-
back with this method is the bandwidth resources that are consumed by the
feedback link. There is also an inherent delay in the system that can make the
channel information outdated when it becomes available to the transmitter.

o Using the reciprocity property of the channel, i.e., using the fact that the
forward channel is equivalent to the reverse channel. Problems with this
approach includes issues with calibration and that the forward and reverse
links are not necessarily close in frequency and time.

Despite the practical difficulties to obtain perfect transmitter-side channel state
information (TX-CSI), if there is a two-way communication with sufficient capacity
and if the channel varies slowly, then it is possible to assume perfect TX-CSI. Unless
explicitly stated otherwise, in this thesis we make the assumption that both the
transmitter and the receiver know the channel matrix H and the noise covariance
matrix R, perfectly.

2.1.2 Applications

Up to this point, the origin of the N; input and NV, output signals has not been
specified. The input and output signals can be obtained from various sources, such
as different samples in time, frequency, multiple antennas, or any combination of the
three. In the case when there are uncertainties in the CSI, the channel statistics are
often modeled based on how the input and output vectors where collected. Herein,
where the channel matrix is known exactly, the origin of the vectors are of minor
importance to the transmitter and the receiver. However, in order to illustrate
how (2.1) can be used in practice we will consider two examples.
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In the first example, we consider a MIMO system with [V; transmitting antennas,
N, receiving antennas, and N, orthogonal frequencies (sub-carriers) that have been
orthogonalized using orthogonal frequency-division multiplexing (OFDM). Each
sub-carrier can be modeled as

vy, = Hyxz, + 1y, vV n=0,..,N.—1, (2.6)

where n denotes the sub-carrier index. For each sub-carrier the vector y,, € C* de-
notes received signals, ,, € CV is the vector of transmitted signals, H, € CNr>N¢
is the channel matrix, and finally n, € C™- is the noise vector. The noise is
assumed to be independent identically-distributed (IID) circularly-symmetric com-
plex Gaussian, zero-mean with variance one for each component. By stacking the
equations of the sub-carriers

Yo no xo
Y1 ni x
Yy = , = , L= ) (2 7)
Yo nr-1 Tr 1
H,
H = ) (28)
Hg

we obtain the system model as in (2.1).

In the second example, we model a finite impulse response channel with colored
additive noise for a wireless communication system with one transmitting and one
receiving antenna. Assume that the discrete-time impulse response of the channel
can be approximated using a finite number of taps, ho,...,An,—1. Also, assume
that the transmitter sends a complex-valued codeword & € CMi. Let the receiver
collect the corresponding received symbols in a vector y € CNr+Ni=1 The received
signal may be subject to some colored additive, zero-mean complex-Gaussian noise,
distributed as n ~ CN(On,+n,—1, R). Furthermore, neglecting the inter-block
interference (for example by applying zero-padding), the system can be modeled as

y=Hx +n, (2.9)

where the channel matrix is formed as

ho
H=| hy, ho | . (2.10)

hn, -1
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The above examples show the flexibility of the MIMO system. For some applications
it can be beneficial to utilize specific structures in H to reduce the computational
complexity of the system. In this thesis however, in order not to lose generality, we
will not make such structural assumptions and H can be of arbitrary structure.

2.2 The MIMO communication problem

With the system model in place, our next step is to define the communication prob-
lem. Assume that both the transmitter and the receiver are aware of a codebook,
X C CNt, consisting of a set of transmit vectors, € X. Each vector represent a
unique number (a sequence of bits) that can be sent from the transmitter to the
receiver. Based on the information that is to be communicated!, the transmitter
picks a transmit vector from the codebook, then sends it over the channel (2.1) to
the receiver. The receiver decodes the transmitted bits by estimating the vector
from the received vector y, using its knowledge about the channel and the codebook
as side information.

The problem considered in this thesis is to design the codebook of transmit
vectors, X, to convey bits of information over the MIMO channel under an average
transmit power constraint

E{z*z} < P. (2.11)

It is assumed that the CSI is perfect; both the transmitter and the receiver knows
the channel matrix H and the noise covariance R,, perfectly.

Note that at this point we do not specify what the objective of the design is. An
objective could be, for example, to maximize the mutual information between y and
x, or to minimize the probability of detection error given a certain codebook size.
Before we look at specific problems, we will first consider two objective-independent
procedures that can make the problem easier to handle; the noise pre-whitening,
and the parallel single-input single-output transmission (SISO).

2.2.1 Noise pre-whitening

Because a rank-deficient noise covariance matrix R,, would imply infinite signal to
interference plus noise ratio (SINR), we can assume that any valid communication
problem has a non-singular R,,. Multiplying the received signal y with a non-
singular matrix does not remove any information about the transmitted signal x
from y. Therefore, we can perform noise whitening of the received signal according
tO 1 1 1

Yo = Ry°’y=R,"Hz+ R,’n = H,x +n,, (2.12)

where y,,, H,, and n,, are the pre-whitened counterparts of y, H, and n, re-
spectively. The main difference is, of course, that the pre-whitened noise is white

1 Assume here that the information is sufficiently random for us to consider all transmit vectors
in X as equally likely.
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E{n,n}} = I. In this work, from this point and onwards, we will assume that the
noise is uncorrelated, or similarly, that pre-whitening has already been performed.
Whenever the original system model (2.1) is referred to, it is assumed implicitly
that R,, = I. This implies no loss of generality.

2.2.2 Equivalent parallel SISO system

If the transmitter and the receiver can perform linear filtering of the transmitted
and received signals, then the MIMO channel can be transformed into several par-
allel SISO subchannels. Introduce the singular value decomposition of the channel
matrix

H=UgAgVi, (2.13)

where A g is a diagonal matrix (with real-valued decreasing elements on the diag-
onal) and U g, V g are unitary matrices. Since unitary matrices are non-singular,
no information is lost by multiplying the received and transmitted signal vectors
with unitary matrices as

y=Uyy, &=Vyx, n=Upyn. (2.14)

Note that the power constraint E{&*Z} < P is preserved, and the covariance matrix
of the noise vector is E{nn*} = I. Actually, since the noise is complex Gaussian
zero-mean, its distribution is also preserved with the matrix rotation. The linearly
pre-filtered system model is then

§=Auz+n, (2.15)

which corresponds to parallel SISO channels. Hence, any MIMO system on the
form (2.1) with perfect CSI at the transmitter as well as the receiver can be trans-
formed to (2.15) without loss of generality.

2.3 Capacity-optimal transmission

From information theory we know that the highest rate at which information can be
conveyed over an additive white Gaussian noise (AWGN) channel is given by the
maximum mutual information between the transmitted and the received signals
(cf. [CTI1]). Here, we recapitulate how to obtain the solution to the maximum
mutual information problem [CT91]. The resulting codebook attains the capacity
of the MIMO channel, and therefore we refer to this transmission scheme as the
capacity-optimal transmission.

The following lemma states that the equivalent parallel SISO system with inde-
pendent subchannels can maximize the mutual information of the MIMO system.

Lemma 2.3.1 [t is optimal in terms of maximum mutual information to send data
independently over parallel orthogonal subchannels.
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Proof: The mutual information between the received signal, 4, and the transmitted
signal, &, is given by
I(y,®) = h(y) — h(y|z) = h(y) — h(n), (2.16)

where h(g) and h(g|Z) denotes entropy and conditional entropy, respectively. Since
the elements of 1 are statistically independent we have

Ny
h(f) = (i), (2.17)
i=1
and using that the sum entropy is larger than or equal to the joint entropy, we get
N, Ny
I(g,z) < Z h(G:) — (i) = Z h(gi) — h(7i). (2.18)
i=1 i=1

The inequality is satisfied with equality if the elements of & are mutually indepen-
dent. O

Maximizing the mutual information over an AWGN SISO channel results in Gaus-
sian distributed codebooks [Sha48]. Using Lemma 2.3.1, the mutual information of
a MIMO channel is therefore maximized if & satisfies

T ~ C’N(O,P), (2.19)
where P is diagonal and positive (so that the symbols are independent). The
mutual information is then given by

Ny
I('gv :i:) = Z log(l + )‘ipi)v (2.20)

i=1
where the channel gain of subchannel 7 is denoted \; = [A%{]m, and p; = [P];,; is
the corresponding transmit power. The constraints on the power allocation are

N
> pi<P pi=0 Vi=1,.,N. (2.21)

=1

Maximizing the mutual information (2.20) with respect to the power under the
above constraints is a convex problem. The solution is given by the so-called water-
filling solution [CT91]

pi=(u—-A"HT, Vi=1,.., Ny, (2.22)

where the water level, pu, is chosen such that the sum-power constraint is satisfied
with equality

Ny
Z p; = P. (2.23)
i=1
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Figure 2.1: Illustration of the water-filling power allocation.

The analogy of water filling is illustrated in Figure 2.1: The power allocation can
be seen as the depth of water that has been poured on a ‘seabed’ represented by
the noise powers )\1_1, e )\Ei. Strong subchannels with a low noise power get more
power than weak subchannels. The water level, u, determines the number of active
subchannels. By pouring more water (i.e. by increasing the total transmit power),
more subchannels are activated as their corresponding noise powers are submerged.

2.3.1 Practical considerations

Gaussian distributed codebooks make the decoding procedure very difficult due to
the lack of structure in the code. In order to attain the capacity it is necessary
to repeatedly use the channel a large number of times (in fact an infinite num-
ber of times), and then jointly detect the block of transmitted vectors as one big
codeword. The detector has to search through all possible codeword blocks in the
infinite codebook, which is not feasible in practice. In addition to the computa-
tional complexity of the search, the channel may change over time and therefore
our assumption of perfect CSI becomes difficult to attain.

However, the capacity optimal transmission can serve as an upper bound or
a benchmarking scheme to other more practical schemes that strive to maximize
the data rate with vanishing probability of error. By using state of the art error
correcting codes, such as low-density parity-check (LDPC) codes (cf. [RUO08]), it is
possible to convey data at a rate very close to the capacity. These LDPC codes still
need to be of a rather high dimensionality (~ 10°) in order to approach the capacity,
see e.g., [LYW04, tBKA04, BB06]. The high dimensionality of the codeword block
introduces a delay in the system that may be problematic for certain types of
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applications. This motivates the next discussion on delay-limited transmission.

2.4 Delay-limited transmission

One downside with the capacity-optimal transmission scheme is the (infinitely)
long codeword blocks and the delay that this brings to the system. Clearly, a
long delay has practical disadvantages; especially when considering time-varying
channels, systems with packet retransmission, or delay-sensitive applications. As
an example of a delay-sensitive application, we can consider the control system that
was discussed in Chapter 1. Ideally such a system needs to be reliable (low error
probability), power efficient, but perhaps most importantly — it needs to have a
short delay. In this case, achieving a high data rate is of minor importance if it
comes at a cost of instability due to delay.

Without error correcting codes the system will suffer from an inherent non-
zero probability of detection error. Thus, not only must the optimal design trade
off uncoded data rate against power usage; it needs to consider the probability of
detection error as well. We define the delay-limited communication problem, which
will be the main focus of this thesis, as follows: The objective is to convey a certain
number of bits, R, of data over the channel (2.1), under an average power constraint

E{z*z} < P, (2.24)

and with minimum probability of detection error. It is assumed that the RX-CSI
as well as the TX-CSI is perfect. At this point we have not defined how the receiver
detects the transmit vector, and thus it is not clear what the probability of detection
error is. In Section 2.7, we specify the detection algorithms that will be considered
in the thesis.

Note how this problem formulation differs from the capacity-optimal transmis-
sion, where the focus is on transmitting at a certain bit rate as opposed to trans-
mitting a fixed number of bits. To see the difference, consider a case when we
transmit R bits, using vectors of dimension N;, and with a transmit power P. By
instead concatenating L transmit vectors to one vector, we transmit L R bits using
a vector of dimension L N; and with a total transmit power L P. Even though the
data rate and average power consumption per dimension remains unchanged with
the concatenated vector, the delay is not the same and consequently the problems
are not comparable in the delay-limited sense. If we instead focus on average data
throughput, both cases satisfy the constraints on rate and power, and since the
probability of error goes down with increasing L, the capacity-optimal solution is
to use infinitely long codewords.

Now that the delay-limited problem has been formulated, we continue with the
design of a codebook, X. Optimizing a codebook without any imposed structure
on the codewords is very difficult. One way to introduce structure is by means of
linear precoding which is the topic of the following section.
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Figure 2.2: The linearly precoded system. Data is multiplexed and modulated to
form a symbol vector s. The vector is linearly precoded using F', sent over the
linear channel H with AWGN n, and then detected on the receiver side using a
detection algorithm D. The data is finally extracted from the detected symbol
vector 8.

2.5 Linear precoding

In Section 2.3 it was shown that the mutual information can be maximized by using
correlated complex-Gaussian distributed transmit vectors. The transmit vectors are

constructed as
x = F's, (2.25)

where the matrix F € CM*¥ is a data-independent correlating matrix (that will
be referred to as the precoder), and where s € CV is a vector containing the data
symbols that are drawn from the complex-Gaussian distribution as

s~ CN(0,I). (2.26)
For capacity-optimal transmission, the precoder should be chosen as
F=VypP'/? (2.27)

where the diagonal matrix P satisfies the water-filling equations (2.22) and (2.23).
Given that the receiver multiplies the received signal vector with the unitary matrix
Uy, this precoder creates orthogonal, parallel SISO channels. Interestingly, this is
not the only optimal precoder; any precoder on the form

F =VvygP'?Q", (2.28)

where @ is unitary is also optimal, since the complex-Gaussian vectors s and Q s
have the same distribution. We say that the transmit vector, x, is obtained using
a linear precoding, F', of a data symbols vector, s.

This structure can be generalized to non-Gaussian data symbols. We define
linear precoding as the synthesis of the transmit signal «, using a linear combination
of independent random variables (not necessarily Gaussian) stacked in a symbol

vector, s, as
x = Fs. (2.29)



22 CHAPTER 2. BACKGROUND AND PROBLEM FORMULATION

The matrix F' is the data independent precoding matrix, also denoted the precoder.
Without loss of generality, the symbol vector is normalized as

E{ss"} =1, (2.30)

which implies that the power constraint (2.11) becomes a function of the precoder

as
Te{FF*} < P. (2.31)

The linearly precoded system is illustrated in Figure 2.2. It will be of interest to
consider the following SVD-like decomposition of the precoder

F=UrZrQ", (2.32)

where U g € CV+*N has orthonormal columns and determines the directivity of the
precoder, X = P2 g diagonal and specifies the power assigned to the spatial
subchannels, and finally @ is unitary and determines how the symbol vector is
mixed (or rotated) before power allocation. For reasons that will be explained
in the next subsection we do not yet impose a specific ordering of the diagonal
elements of X .

Although linear precoding is (in general) suboptimal for delay-limited transmis-
sion, it remains a very attractive transmission strategy due to its simplicity; it is
straightforward to implement, and easy to adapt to various channel conditions.

2.5.1 Optimal directivity matrix

The following lemma shows the optimal transmit directivity matrix of the linearly
precoded system. The lemma is based on well known results from matrix anal-
ysis [HJ85], and this result (or similar variants) occurs frequently in the MIMO
literature, cf. [Tel95, PCL03, SD07, JSBC04, KS04, HJ85, SD08]. The lemma is
central in the linear precoding design, and therefore we will give our version of the
proof in full detail.

Lemma 2.5.1 The power-optimal linear precoder transmits in the directions of
the eigenvectors of the channel matriz, and assigns power to the eigenmodes of
the channel such that the order of the eigenvalues of the effective channel remains
unchanged.

Proof: The system model
y=HFs+n, (2.33)

can be reformulated to the following equivalent parallel SISO form
YaweN = S+ TAWGN, (2.34)

where the random variables in s are statistically independent of F', and where the
noise distribution is given by

nawen ~ CN(0,(F*H*HF)™ ). (2.35)
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By keeping F*H*HF € CN*V fixed, the performance (in terms of detection error)
of the system becomes independent of F. Denote the eigenvector decomposition
of H'H = VHA%IV}I, where Vg € CN*XQ contains orthonormal columns and
A € ROXQ is diagonal and positive definite. Further, define the matrix

A=AygVyF e COV, (2.36)

Note that, by assumption, A*A is a fixed matrix. Note also that Q > N. The
transmitted power is

Tr{FF*} = Tr{A;7AA*}

T (2.37)
=d(Ay) M o(AAY),

where o(AA") are the (real non-negative) eigenvalues of AA* sorted in decreasing
order, and M is a doubly stochastic matrix. Because () > N, we have the following
relation

o(AA") = [o(A"A)T 015 o-m)]", (2.38)

and because A" A is fixed, we therefore know that (A A”") is fixed. The stochastic
matrix, M, is thus the only parameter that depends on F given that A* A is fixed.
Hence, our problem is to find the minimizing M in the set of doubly stochastic
matrices. Any doubly stochastic matrix can be written as a convex combination of
all permutation matrices of the same dimension [HJ85]. Let IL(yy, ..., (g1 be the
enumeration of all permutation matrices, then

Te{F*F} > mind(Ay)" ;) o(AAY). (2.39)

Clearly, if the eigenvalues, Apr, and o(A*A) are ordered in decreasing order, the

minimizing permutation matrix is the identity matrix Il;) = I. The lower bound

is attained when the precoder is on the form

EF :| *
Y

2.40
0 @-nyxn (240)

F=Vu|

where X g is ngn—negative diagonal such that A g2 F is decreasing along the di-
agonal, where A is the upper-left N x N block of Ag. The right-side unitary
matrix, @, of the precoder has the following impact on the fixed matrix

F*H'HF = QAL 3%Q". (2.41)
O

Now, by minimizing the transmitted power Tr{ F F*} subject to a fixed F*H"HF,
we obtain a Pareto optimum that also must be satisfied for the system using full
power, Tr{ FF*} = P, with a rescaled F*"H*"HF'.
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Note the differences and similarities between Lemmas 2.3.1 and 2.5.1, where the
former shows that in order to maximize the mutual information it is necessary to
transmit linearly precoded Gaussian symbols, whereas the latter shows that in the
case of linear precoding with an average power constraint it is optimal to transmit
in the directions of the channel eigenvectors. The case where Q = I is of particu-
lar interest: This choice of mixing matrix ¢ combined with the optimal directivity
matrix U g corresponds to having orthogonal subchannels with no co-channel inter-
ference (cross-talk). This mode implies significantly reduced encoding and decoding
complexity since each subchannel can be treated independently. Although orthog-
onal transmission is optimal in the sense of maximizing mutual information, it is
not guaranteed to be optimal in the delay-limited case.

2.5.2 Non-linear precoding

For completeness, we note that an alternative to linear precoding is non-linear
precoding, see [FWLH02b, HPS05] with references. Non-linear precoding tech-
niques are commonly based on the Tomlinson-Harashima (TH) precoding strat-
egy [HM72, Tom71]. The precoder inverts the channel, and uses modulus opera-
tions to reduce the transmitted power. Non-linear precoding is especially suitable
for multi-user communication due to the ability to efficiently pre-eliminate inter-
symbol interference on the transmitter side, without the need for joint detection.

2.6 Discrete signal constellations

Because the complex-Gaussian signal constellation has a continuous distribution,
its use is not an option for delay-limited transmission. In order to make the system
practically implementable, we need to use discrete (and finite) signal-constellation
sets. A discrete constellation is a finite set of points (typically in R or C), where each
point corresponds to a specific message or bit sequence?. Since the constellation
points are separated in signal space, it is possible to estimate the exact sent message
with high probability even though the signal is corrupted with noise.

Figure 2.3 shows common signal constellations in C of various types, repre-
senting bit rates from one up to six bits. One important factor that determines
the probability of detection error is the minimum distance between constellation
points, a dense signal constellation is more sensitive to noise than a sparse con-
stellation because of the lower minimum distance. The binary phase-shift keying
(BPSK) and the square quadrature amplitude modulated (QAM) constellations
have an important property; they are linear in the real and imaginary parts. We
can therefore construct a QAM constellation by linearly combining two real-valued
pulse amplitude modulated (PAM) constellations.

2Finite codebooks with randomly generated Gaussian codeword blocks are also discrete, but
with higher dimensions due to the concatenation of multiple symbols into codeword blocks.
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Figure 2.3: Signal constellations of various types. Note that the constellations
8PSK and 32CR are not linearly separable.
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For the AWGN channel, the probability of detection error when using a QAM
constellation can be tightly approximated as

nssm a0 (5, 242

where SNR denotes the signal to noise ratio and M denotes the number of points
in the constellation. The function Q(-) is the Gaussian-tail function defined as

Qz) & \/% / ey (2.43)

When using linear precoding, different elements in s may be drawn from different
signal constellations. If the channel has been orthogonalized, equation (2.42) can
be used to determine the probability of detection error per symbol element. In the
case when there is interference between the subchannels, the problem of computing
the error probability depends on the type of detection algorithm that is used at the
receiver.

2.6.1 The gap approximation

Equation (2.20) reveals that for Gaussian-distributed symbols there is a direct con-
nection between data throughput and transmit power. The higher the power, the
higher is the mutual information and the corresponding data rate. For discrete
signal constellations where the data rate is determined by the number of points in
the constellation, changing the power will mainly affect the error probability but in
general not significantly alter the mutual information (or the information through-
put). Hence, the number of constellation points needs to be optimized alongside
the power optimization [FE91, GC97]. Deciding the optimal signal constellations,
i.e. bit loading, is one of the main topics in this thesis.

Perhaps the most common approach for bit loading is to use the so-called gap
approximation [CDEF95, PB05]: Use the orthogonalizing linear precoder, then use
the constellations on the orthogonal subchannels according to the following bit rate
(in nats)

>\’L (2
b; = log (1 + Tp) (2.44)

where I' > 1 is denoted the SNR gap. The idea is that we can use the bit rate
given by the capacity-optimal solution, but with a fixed penalty in terms of SNR
given by the SNR gap I'. By increasing the gap, the probability of a detection error
reduces. From (2.42) we get the following relation between P. and I'

1

r=: (Q*I(Pe/ax))z. (2.45)

The bit rate b; cannot be an arbitrary real number, it must be rounded or dis-
cretized to match the set of available discrete signal constellations. However, it is
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convenient (in terms of mathematical simplicity) to perform power optimization
before rounding, rather than after. Maximizing the sum rate under a power con-
straint is very similar to the capacity-optimal power optimization problem. The
optimal power is given by the water-filling solution

pi=(n=TA7H", (2.46)

where p is determined such that the sum power satisfies ), p; = P. Insertion
into (2.44) yields

b; = log (1 + ATp) = <1og (A{'f‘)>+ - (a + log()\i))Jr, (2.47)

where « is another constant such that the sum rate equals the desired bit rate.
These bit rates can now be discretized to match the set of available signal constel-
lations as

+ Ny
b = {a + log()\i)J . Y b=R (2.48)
i=1

The bit loading defined by (2.48) is a good choice whenever we have orthogonal
subchannels, this will be shown later in this thesis.

2.6.2 Gray coding

Up to now, we have not discussed how to map information, represented by a se-
quence of bits, to an element in the signal constellation set. Gray coding [Gra53]
is a very efficient bit-to-constellation mapping for square QAM constellations. Fig-
ure 2.4 shows a Gray coding for 16-QAM. The main advantage with the Gray
coding is that any point in the constellation differ by only one bit from its nearest
neighbors. This means that when an detection error occurs, the number of bits
that is detected incorrectly is in most cases only one or two bits. The bit error rate
(BER) of a Gray coded symbol relates to the symbol error rate (SER) as

BER ~ SETR, (2.49)
where b denotes the number of bits represented by the constellation. For moder-
ately low BERs, it can be shown that the dependency on b in the BER expression
is dominated by the SER factor. Hence symmetric SER can serve as a good ap-
proximation to attain symmetric BERs as well.

2.7 Receiver structures

As was mentioned in Section 2.4, the delay-limited communication problem is not
well defined without a specified detection algorithm. In this section we give an
overview of the detection algorithms that will be considered in this work.
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0000 1000 1010 0010
e (©) e e
0100 1100 1110 0110
e () (<] e
0101 1101 1111 0111
e (©) e e
0001 1001 1011 0011
e () e e

Figure 2.4: Gray coding for a 16-QAM signal constellation.

The task for the receiver is to detect the transmitted symbol vector x given
the received signal y and the channel matrix H. In systems employing iterative
decoding between outer and inner codes, the a-priori information about x also serves
as an input to the detector. The optimal detector is the maximum a-posteriori
(MAP) detector, that maximizes the probability of « being sent given y, H, and
the a-priori distribution of .

When outer codes are not taken into account, the a-priori distribution is uni-
form, and the MAP detector becomes the maximum likelihood (ML) detector that
finds the vector & with the highest likelihood of observing vy, given that @ was sent.

2.7.1 Maximum likelihood detector

When the noise vector has IID complex-Gaussian elements, the ML estimate is
given by

& = arg min |y — Hzx|?, (2.50)
reEX

where X’ denotes the set of codewords. In general, this problem can be very difficult,
cf. [JOO05]. Herein, perfect CSI is available at the transmitter so the problem can
be simplified by wisely designing the codebook, X, based on the CSI.
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2.7.2 Linear detector

The linear detector consists of a linear transformation of the received signal, subse-
quently followed by an element-wise (closest-point) detection of the signal constel-
lations

&= [Wy, (2.51)

where [-] denotes the element-wise closest-point detection. Strictly speaking this
detector is non-linear since [-] is non-linear, however, the joint multi-channel pro-
cessing is a linear operation while the remaining (non-linear) detection is done
element by element and not jointly, hence the name. Important special cases of
this detector are the zero-forcing (ZF) detector

W*=(FH*"HF) 'F*H", (2.52)
and the minimum mean squared error (MMSE) detector
W* = (F*H*HF + 1) F*H". (2.53)

The ZF detector removes all inter-symbol interference between subchannels but
suffers from instability if F*H*HF is badly conditioned. The MMSE detector is
more robust at the price of a small bias in the estimate.

2.7.3 Decision feedback detector

The decision feedback (DF) detector uses a linear equalizer to detect the symbols
of the subchannels one by one. Once a symbol is detected, its interference on the
remaining subchannels (that are not yet detected) is removed. Figure 2.5 shows a
schematic view of the DF detector. The received signal, y, is passed to a linear
filter, w1, to obtain an estimate, §;, of the first element of the transmitted signal
vector s. The estimate is passed to a closest-point detector to obtain the detected
symbol §;. Ideally the detected symbol is identical to the transmitted symbol of
subchannel one. This enables us to remove all the inter-symbol interference that s;
causes on the remaining subchannels. The linear filter, w3, gives an estimate of the
second element of s, subsequently all interference due to symbol s; is filtered out
using the (scalar) feedback filter b5. The resulting estimate, 82, is then passed on to
a closest-point detector to obtain the detected symbol 55 of the second subchannel.
The procedure is repeated for all subchannels such that each detected subchannel is
fed back to cancel out its interference on the remaining subchannels. The detection
order has an impact on the performance, a rule of thumb is to detect the strong
subchannels first to minimize the interference on the weaker subchannels. Herein
however, because we perform joint bit loading and linear precoding, the detection
order is automatically taken into account in the optimization.

Similar to the linear detector, the DF detector has two versions, the ZF or the
MMSE detector. Linear detection is a special case of DF detection (use B = 0).
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Hence, if designed properly, the DF detector must be superior (or at least equiva-
lent) to the linear detector. Note also that, even though the DF detector is slightly
more complex than the linear detector, its complexity does not grow exponentially
with the number of subchannels as is generally the case for the ML detection [JO05].
So, both in terms of complexity and performance we can regard the DF detector
as an intermediate detector compared to the linear and ML detectors.

Instead of using the rather complicated subchannel-by-subchannel notation, we
will use a vector-matrix notation illustrated to the right in Figure 2.5. To maintain
causality (i.e. that no symbol is fed back that has not yet been detected) we enforce
the condition that the feedback matrix B is strictly lower triangular.

2.8 Conclusion

In this chapter we introduced the MIMO system model, recapitulated the capacity-
optimal transmission scheme, and formulated the problem of delay-limited trans-
mission. We then introduced the linear precoding transmission strategy in combi-
nation with bit loading. Finally, Section 2.7 provided a short introduction to the
three types of detection algorithms that will be considered in the thesis. We now
continue to the two main parts of the thesis, starting with the linear precoding and
bit loading design assuming ML detection.
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Figure 2.5: Schematic view of the DF detector.
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Chapter 3

Introduction to Part I

In this part of the thesis we assume that the optimal maximum-likelihood (ML)
detector [DGCO03] is employed at the receiver. If data is blindly transmitted without
any active effort to simplify the detection procedure, the computational complexity
of ML detection grows exponentially with the number of dimensions in the MIMO
system [JOO05]. In fact, high complexity is the main motivation for using suboptimal
detectors, such as the decision feedback detector that will be considered later in
the thesis. However, if the transmitter has access to perfect CSI, we have the
option to transmit the signals in such a way that the complexity of the optimal
detection procedure can be significantly reduced. For instance, if we transmit data
on orthogonal subchannels the complexity of ML detection is equal to that of the
computationally inexpensive linear (zero-forcing) receiver.

Another use of TX-CSI is to improve system performance by turning off weak
subchannels (to save power) and then send more data on the stronger subchannels.
From information theory it is known that using TX-CSI improves the ergodic ca-
pacity of the system [Tel95], and it is reasonable to assume that there are potential
gains for delay-limited transmission as well. We propose a transmission scheme
using linear precoding with TX-CSI, that is designed explicitly for the ML detec-
tor with the main objective to be as power efficient as possible. Interestingly it
turns out that it is suboptimal to orthogonalize the channel. It appears that the
transmitter has to trade off decoding complexity at the receiver with performance
in terms of power efficiency.

Essentially, ML detection involves an exhaustive search over all possible combi-
nations of constellation points and then detects the most likely combination!. Be-
cause all combinations are tested, an ML detector can decode constellation points
that are packed very densely in a high-dimensional signal space, which in turn al-
lows for a reduced transmit power with an approximately unaltered block error
rate. As a comparison, the ZF or MMSE detectors use a linear transformation to
separate the subchannels, but the detection is only done subchannel by subchannel

n practice, the search space can be reduced by using the so-called sphere decoder [DGCO03].
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(not jointly).

The design of signal constellations for the AWGN channel was considered in
[For99] by Forney et al. Forney showed that the gain by using a constellation based
on a lattice can be separated into a packing gain of the lattice, and a shaping gain
of the constellation. Packing gain (also termed coding gain) is attained by packing
points as densely as possible with fixed minimum distance, commonly referred to
as sphere packing [CS88]. Shaping gain is determined by the shape of the union
of all constellation points. Unfortunately, for high-dimensional systems it can be
fairly demanding for the encoder as well as the decoder to use constellations with
maximum shaping gain. Figure 3.1 illustrates the principles of coding and shaping
gain for the AWGN channel. The leftmost constellation is a standard 64-QAM
constellation. By making the constellation more circular while maintaining a fixed
minimum distance between points, the average transmitted power can be reduced
at approximately constant error probability. The gain due to the circular shape (as
opposed to the square shape) is denoted the shaping gain of the constellation. In
the figure the ideal shape is shown as a circle. The points in the QAM constellation
is a subset of a square lattice. This square lattice is however not the densest packing
in two dimensions; it is better to use the hexagonal lattice as illustrated in the right-
most constellation. By using a lattice with a denser sphere packing, less transmit
power is required and we attain a so-called coding gain.

Consider the system equation of the parallel-SISO equivalent MIMO system
(2.14). We see that the main difference between the MIMO channel and an AWGN
channel (used multiple times), is the fact that channel gains differ between sub-
channels for the MIMO system. In our example from Figure 3.1 it could, for
instance, be less costly to transmit in the vertical dimension compared to the hor-
izontal dimension. Figure 3.2 shows a hypothetical case where a two-dimensional
MIMO system has more gain in the vertical dimension. This asymmetry manifests
into an elliptical ideal shaping region. Temporal variations imply that the optimal
shape changes for every new channel realization. In the MIMO case, the problem
of optimal constellation shaping is (even) more complex because the ideal shapes
are elliptical (not circular). The 64-QAM constellation has a shape that is much
worse for this MIMO channel compared to what it was for the AWGN channel in
Figure 3.1, and we see that the importance of shaping is evident when there are
asymmetric gains on the subchannels. The rightmost constellation illustrates that,
similar to the AWGN case, by using a hexagonal lattice we attain a coding gain.

One drawback with constellations that are optimal in terms of shaping is that
they are not linear, i.e., we can not generate the constellation as a linear combi-
nation of independent PAM symbols. Because of this non-linearity, the problem of
mapping data to optimally shaped constellations is rather difficult if the number
of dimensions is large. Since MIMO channels change over time, the ideal shaping
regions change too. As a result the constellation mappings can not be precompiled,
making it increasingly difficult to implement the system. The question we look into
in this part of the thesis is: Can we obtain a linear code (easy to implement) that
exploits some of the promised shaping and coding gain? Figure 3.3 demonstrates
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Figure 3.2: Shaping gain and coding gain for a MIMO channel.

three linear constellations for an asymmetric MIMO channel. The leftmost is the
square 64-QAM constellation that we have seen before. The middle constellation is
a rectangular QAM constellation that transmits 4 bits in the strong dimension and
2 bits in the weak dimension. This non-quadratic constellation represents a case of
bit loading, i.e., the bit rate is adjusted to match the quality of the corresponding
subchannel. However, in this example we can do even better by using a linear
construction of the hexagonal lattice, as the rightmost constellation shows. Note
that the rightmost constellation does not represent orthogonal transmission — the
basis vectors in the generator matrix of the constellation are not perpendicular.
Since the transmission is not orthogonal, linear detectors are suboptimal for this
constellation.

In the following chapters, a close to optimal precoding scheme is presented that
relies on known results concerning lattice sphere packing [CS88]. We propose to
restrict the constellations to consist of linear combinations of PAM signals, and
then optimize the shape of these constellations as far as possible. By using certain
transformations that affect the constellation shape but not the underlying lattice
structure, we can change the transmitted power at approximately constant block
error rate (BLER). A two-step strategy to design close to optimal block codes under
this restriction is proposed. The first step is to find the power optimal precoder for a
fixed lattice structure. An approximate algorithm for this optimization is presented
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Figure 3.3: Linear constellations for a MIMO channel.

that combines lattice-aided basis reduction — similar to linear pre-equalization as
proposed in [WF03] — with SVD precoding and adaptive bit loading. Lower and
upper bounds on the minimized transmitted power that specify the limits of the
algorithm are derived. The second step in the strategy is to determine which
lattice structure that should be used as input to the algorithm. Essentially this
corresponds to minimizing the lower bound, which turns out to be a problem related
to lattice sphere packing. We will see that gains of several decibel (dB) can be
achieved compared to the optimized diagonalizing precoder. A discussion regarding
the suboptimality of the algorithm, due to approximations, is presented. In some
sense, the presented precoding algorithm combines AWGN lattice coding [For99),
traditional precoding with bit and power loading [BMOO04, PB05], and lattice-aided
basis reduction precoding [WF03] into one transmission scheme.



Chapter 4

The error probability and lattices

Exact performance analysis of the ML detector is a notoriously difficult problem.
In many cases one has to resort to time-consuming Monte Carlo simulations of the
entire MIMO system. This makes the task of designing the bit loading and pre-
coder such that the performance is optimized an even more challenging problem.
As of today, the optimal bit loading and precoder design using ML detection at the
receiver is unknown. In this chapter we formulate a performance measure that ap-
proximates the probability of detection error and possesses sufficient mathematical
simplicity for us to use it as optimization objective. In Chapter 5, we use this mea-
sure to develop a suboptimal joint bit loading and precoding scheme that improves
the performance compared to the optimal orthogonal design by several dB.

4.1 System model

Consider the linear model of a discrete-time MIMO communication system, where
N; real-valued symbols are transmitted over a linear channel, from which N, real-
valued signals are received. In this part of the thesis, when dealing with ML detec-
tors, all signals are real-valued since this simplifies the later notation significantly.
Communication systems with complex signals can however always be reformulated
on real form, as was shown in Section 2.1. The received signal block, y € R™r,
depends on the transmitted block, € R™¢, as

y=Hax+n, (4.1)

where H € RV"*Nt is the channel matrix and n € RY" is an additive Gaussian
noise vector. It is assumed that the noise distribution is known, and that the noise
component has already been linearly pre-whitened. Furthermore, without loss of
generality, the signal is normalized such that the noise variance is unity, and n is
consequently distributed as n ~ N(0, Iy,).

Denote @) as the rank of the channel matrix, then define the singular value
decomposition (SVD) of the channel matrix as H = UpgApV g, where both
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U € RV"*@Q and Vi € RV+X? have orthonormal columns, and Ay € RY*€ is
diagonal and nonsingular. No information about « in y is lost when projecting the
received signal to ) dimensions as

J=Upy=AgVgx +n, (4.2)

with the noise 1 ~ N(0,1g). A PAM linear dispersion code can be formulated as
VIIm = F s, where F € R?*N is a data-independent precoding matrix, and s is the
PAM data-symbols vector. It is assumed that the number of subchannels, NV, has
been chosen such that N < Q). The elements of s are assumed to be independent,
zero-mean random variables representing the data to be conveyed over the channel.

4.2 The union bound

Our objective is to optimize the system performance. The first step is to derive an
expression of the probability of detection error. Later we will use this expression to
search for the Pareto optimum between data rate, transmitted power and detection
error probability. Based on the system model (4.1) we can formulate the ML
detection criterion (2.50) as

5 =arg min|y — AgFs|?, (4.3)
s€eS

where S denotes the set of possible symbol vectors. The probability of detection
error, P., is equal to one minus the probability of correct detection

PelPr{ U |ApF(s—38)+n*> |ﬁ|2}, (4.4)
8,8€8
8#s
which unfortunately is difficult to put in closed form. Instead, we use the well
known union bound [LS03] to get an upper bound!

1 N
P.< E Y E Pr{|AHF(.s —8)+nt< |n|2}, (4.5)
seS *  ses
8#s

that consists of a sum of pairwise error probabilities (PEP) defined as
PEP; , = Pr {|AHF(3 —8)+nl)? < |n|2}. (4.6)

By observing that the difference between the two norms in (4.6) is normal dis-
tributed

AuF(s—8)+nf —n] ~ N(|AnF(s - 5)2 A F(s - 3)]*),  (47)

INote that since all symbols are equally likely, the a-priori probability that a specific codeword
was transmitted is S| 7! = 27F, where R is the rate.
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we can compute the PEPs as

(4.8)

Pm%§:Q(MHF@—QU7

2

where the @-function is the Gaussian-tail integral given by (2.43). The PEP for-
mula shows that the union bound is determined by the set of all difference vectors
A F(3—s). In the next section we show how this set is a subset of a lattice, which
will allow us to formulate a very compact approximation of the error probability.

4.3 The error probability as a function of a lattice

Although the union bound (4.5) is an approximation of the true error probability,
the bound is not easy to analyze in closed form. In order to obtain a cost function
that is easier to optimize we will simplify (4.5) by making appropriate approxima-
tions. The first step is to show that the difference vectors constitute a subset of a
lattice. The points in a b-bit PAM constellation can be defined as

1),

where z is an integer in the range 0,...,2° — 1. Note that the normalization is
such that the constellation uses unit power on average. The difference between two
points in a b-bit PAM constellation is therefore a subset of

R [ 12
sse{ mz‘zeZ}, (4.10)

which is, in fact, a one-dimensional lattice. Extending this to N dimensions yields
the set of difference vectors

3736{244‘z€ZN}, (4.11)

where the diagonal normalization matrix, 3, is defined as

45 1 4y 1
Ediag{\/ 5 ,...,\/ 15 }, (4.12)

and where by, ..., by denotes the bit load on each element.
By parameterizing the difference vectors by the corresponding integer vectors,
z € ZN, we can reformulate the union bound as

P- > Ao (PR, (113)

2
z€ZN, z#£0
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where A(z) denotes the number of terms in (4.5) that has a difference vector cor-
responding to z. By counting the number of terms for a specific z, we get

N b : b —
A(z) = ITi=y (2% = lexl) if |zl S P*Vk=1.,N (4.14)
0 otherwise

By inspection, the number of terms can be upper bounded as A(z) < 2%, and thus,
(4.13) can be upper bounded as

Po< > Q(w> (4.15)

2
z2€ZN | z#40

The main problem with applying the upper bound A(z) < 2% is that if AgFx!
is not well conditioned, then there may exist vectors z such that A(z) = 0 but for
which Q(|AgFX '2|/2) is dominating in (4.15). Here we postulate that (4.15)
is approximately tight in the high SNR region when Ag FX~! is sufficiently well
conditioned.

It is clear that we can express the vectors Ay FX 'z in (4.15) as points in a
lattice with generator matrix M = AgFX~!. Due to the steep descent of the
Q-function towards zero, only a few terms in the union bound contribute to P,
namely the terms containing small Euclidian norms |M z|. The smallest norm,

§(M) = zeﬁir}#o 2TM* Mz, (4.16)

is referred to as the minimum distance of the lattice. Typically there are multiple
vectors with norms of length £(M). We therefore define the kissing number, K (M),
of the lattice as the number of distinct vectors z € Z" such that |[Mz| = £(M).
(See [CS88] for more on kissing numbers.) By assuming that only the K (M)

minimum-distance terms contribute to (4.15), the probability of a detection error
can be approximated as
§(M ))

PezK(M)Q< 5 (4.17)
Since the lattice is a linear construction, the kissing number is also the number
of nearest neighbors to any point in the lattice. To illustrate this, the minimum
distance and kissing number of the hexagonal Ej lattice is shown in Figure 4.1.
Note that (4.17) relies on high SNR assumptions, therefore the approximation is
not valid for low SNR per bits or when M is ill-conditioned.

Given that the CSI at the transmitter is perfect, the problem of designing a
linear precoder for ML detection is equivalent to the problem of choosing a lattice
generator matrix M. The choice of lattice affects the probability of error via the
minimum distance and the kissing number, but we also have constraints on M
through the limitations on the transmit power and the data rate. As an example,

consider using the Z" lattice, where the generator matrix is a scaled identity matrix
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M = I¢. This lattice corresponds to an orthogonalizing precoder since the effective
channel is interference free. The lattice has a minimum distance (M) = £ and a
kissing number K (M) = 2N. The transmit power is given by P = &2Tr{ A X?}.
In order to maximize the performance we need to distribute the bit loading so that
the total data rate R remains fixed while

552 = Tr{AFX%} (4.18)

is minimized. This allows us to either minimize the probability of error (by keeping
P fixed), or minimize the transmitted power P (by keeping 2 fixed). In the next
chapter we will generalize this precoder synthesis strategy to arbitrary lattices.
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Figure 4.1: An illustration of the hexagonal F lattice. The generator matrix M
with column vectors m; and my fully defines all lattice points. So do the basis
vectors m/ and my, that can be calculated by multiplying M with an integer matrix
B. The kissing number (which in this case is equal to six) and the minimum distance
between any points in the lattice are denoted K (M) and &(M) respectively. These
properties are not only invariant to basis vector changes, but also to rotations of
the entire R? space using an orthogonal matrix U.



Chapter 5

Lattice-based precoding

An interesting property of the performance measure (4.17) is that it is completely
determined by the lattice represented by the generator matrix, M. This allows us
to use well-known results regarding lattices in the search for the optimal precoder.
In particular we will use that lattices are invariant to rotations and changes of
basis vectors. Let U be a real-valued, (full column-rank) matrix with orthonor-
mal columns, and let B be a unimodular integer-valued matrix with determinant
|B| = £1. When multiplying the generator matrix with U and B, on the left
and right side respectively, the new generator matrix represents the same lattice as
the previous matrix. In particular, the minimum distance and the kissing number
remain unchanged as {(UMB) = {(M), and K(UMB) = K(M). The matrix
U rotates the lattice points around the origin, and will therefore be denoted the
rotation matrix. The matrix B changes the basis vectors of the lattice generator
matrix, M, but not the lattice itself. The matrix will be referred to as the ba-
sis reduction matrix. Figure 4.1 demonstrates how two sets of basis vectors can
represent the same lattice.

Assume that we have selected an initial lattice generator matrix, My € RV*N,
that results in a desired probability of error. Using a rotation matrix and a basis
reduction matrix we create a new generator matrix M that relates to the precoder
as

F = A, MY = A,;UM\BY, (5.1)

where U € R2*N has orthonormal columns and B € ZV*V is integer-valued and
unimodular. Because of the lattice equivalence properties we are essentially free to
modify U and B, as well as the bit load ¥ arbitrarily without significantly affecting
the error probability. What will be affected is the transmit power

P=Tr{Aj;;UM\BX*B"M;U"}. (5.2)

This allows us to reduce the transmitted power at some fixed BLER, making the
precoder more efficient. The BLER approximation (4.17) is monotonically decreas-
ing with the transmitted power, P. Hence, minimizing the transmit power and
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minimizing BLER is essentially the same problem — the difference is simply a re-
scaling of the generator matrix. In other words, the optimum is a Pareto optimum.

5.1 Precoding algorithm

Given a nonsingular generator matrix, My € RVY*N our goal is to find the most

power efficient precoder, F. In order not to confuse My with M, the matrix
M will be denoted as the lattice base in this work. Minimizing the power (5.2)
involves joint optimization of both discrete and continuous variables. This problem
is difficult (if not impossible) to solve optimally. In the following subsections a sub-
optimal algorithm is proposed: The idea is to optimize each parameter sequentially,
and iterate until the solution converges.

5.1.1 Optimization of the rotation matrix

The optimization of the rotation matrix, U, for fixed M, B, and X corresponds
to solving an SVD. The procedure is summarized in the following theorem:

Theorem 5.1.1 The power minimizing rotation matriz, U, for a fited M, B,
and X s
VT
U= [ ] | (5:3)
0@-N)xn
where V' is given by the SVD of
M BX*B"M; = VAVT, (5.4)

Note that the singular values A are (per definition) non-increasing along the diag-
onal.

Proof: Define

A1 = diag{Az’},

A = [diag{A}" O1xq-n]".
The transmitted power is then P = AlTQ)\Q, where Q € RO*€? is a doubly stochastic
matrix that depends on U. By Birkhoff’s Theorem (see [HJ85]) we know that all

doubly stochastic matrices can be decomposed into a finite linear combination of
all permutation matrices, Iy, ..., IIg, of the same dimensions. More specifically,

Q!
Q=) Maj,
n=1
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where 3 a2 = 1. Minimizing P = Y% | (ATTII,A2)a2 subject to >, a2 =1
gives QQ = I1,,, where
m = arg min A} I, Aq.
n

The power is minimized if we let the i’th largest element of A; be multiplied with
the i’th smallest element of Ao for all 4. Since A; is increasing with the indices and
Ao is decreasing with the indices, we conclude that the optimum is achieved with
Q = I, which is equivalent to choosing U as in (5.3). O

5.1.2 Optimization of the bit load

There are numerous algorithms available for multi-carrier bit loading in the lit-
erature [HH, CCB95, FH96, KRJ98, Cam99]. Most of them assume orthogonal
subchannels and use the gap approximation [CDEF95] to maximize the mutual in-
formation of the system. In this work, the focus is on maximizing the minimum
distance rather than the mutual information. Moreover, our problem differs be-
cause of the potential cross talk between the subchannels. The following algorithm
optimally redistributes the bit load such that the power is minimized, while the
total data rate, R, and the matrices U, M, and B are kept fixed.
Introduce the transmit-signal basis matrix as

G =A4jUM,B, (5.5)

and denote g1, ..., g, such that g; is the i’th diagonal element of GTG. The power
consumption is then

(gbi _
P= Z W. (5.6)

If one bit is moved from subchannel n to m, the change in power consumption will

be

gn4bn N gm4b7n.
16 4

Hence, in order to reduce the power consumption, n and m have to be selected such
that g,4% > 4 g,,4%~. Using this result, we propose the following algorithm for bit
loading:

Pnewfpold:*

(5.7)

Theorem 5.1.2 Algorithm 5.1.2 finds the global optimum with respect to by, ...,bn.

Proof: See Appendix 5.A. g

5.1.3 Optimization of the basis reduction matrix

The basis reduction matrix, B, is more difficult to optimize compared to the two
previous cases. There do however exist efficient but sub-optimal algorithms for
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Initialize by, ..., by by distributing the R bits as evenly as possible among the sub-
channels.

1. Let n be the index of the maximum element of g14%, ..., gny4°~ with non-zero
bit load. Then let m be the index of the minimum element.

2. Check whether g¢,4°" > 4g¢,,4*~. If so, move one bit from b, to b,, and
go to 1. Otherwise, the bit load has been optimized and the algorithm can
terminate.

lattice basis reduction that reduce the transmitted power. One such algorithm
that has polynomial average complexity is the Lenstra, Lenstra and Lovasz (LLL)
algorithm [LLL82, JSMO08]. Here, the LLL algorithm is used to reduce the basis
of the transmit signal basis matrix Gy = A;UM 0. The result is a new basis,
G = G B, that represents an equivalent lattice, but where the lengths of the basis
vectors have been reduced. For this to hold, the matrix B has to be integer-valued
with determinant |B| £ 1.

The main idea of the LLL algorithm is to make the basis vectors as orthogonal
as possible. A good measure of orthogonality is to compare the product of the
lengths of the basis vectors with the determinant as

I, [GOTGO]%N
|G Go|V/N

D(Gy) = (5.8)

Due to the Hadamard inequality [Had93], D(Gy) is always greater than or equal
to one. As D(Gy) approaches one, the basis Gy becomes more orthogonal. The
following upper bound on the reduced basis was derived in [LLL82]

D(GoB) < 2WW-1/4, (5.9)

However, empirical experience suggests that the bound is typically not so tight:
For most initial bases Gq of practical interest, D(GoB) is closer to one than the
upper bound. The orthogonality measure will play an important role later in this
work when we discuss performance bounds on the optimization algorithm.

5.1.4 Combined optimization

When combining the above optimization procedures, one has to decide in what
order and how often each procedure should be performed. After comparing various
configurations experimentally, we believe that the ordering is not of major signifi-
cance to the final result. In the later simulations we used the procedure described
here: First, initialize the basis reduction matrix as B = I, distribute the bit load
as evenly as possible, and perform an initial optimization of the rotation matrix,
U. The algorithm should then iteratively optimize the matrices in the following
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order: B, U, 3, U. The iteration should stop when the algorithm converges, and
no further improvements are obtained. By optimizing U in between every B and
3 optimization step, it appears that convergence speed is improved. A reason for
this could be that U is a continuous entity. Its optimization is more well behaved
without the flip-flop characteristics of the discrete optimization steps, B and 3.
Sub-channels that have zero bit load in the optimization should be switched off
by removing the corresponding columns from the precoder matrix, F'. For later
notational simplicity, we now redefine N as the number of subchannels with non-
zero bit loads by, ..., by after the combined power optimization has been performed.
Furthermore, using (5.3), we define AHJV € RVXN ysing the SVD of UTA%JU as

UTALU = VAL V7, (5.10)

where A H,N is diagonal and contains the upper left sub-matrix of the Ay matrix.

5.2 Bounds on the performance

Using the three invariance properties described in Section 5.1, it is possible to reduce
the transmit power without drastically affecting the BLER. A valid question here
is: To what extent can the power be reduced in this way? Clearly, because the error
probability remains fixed, the transmitted power must at least be greater than zero.
This section shows that, for a fixed lattice base, there exists a fundamental lower
bound on the transmitted power. The lower bound is independent of the bit load
distribution!, as well as the matrices U, and B. It can therefore be used as a goal,
or benchmark, for the power-minimizing algorithm presented above. Furthermore,
the bound also provides insight into the problem on how to optimally select the
lattice base matrix, M.

5.2.1 Lower bound

Using the fact that an algebraic mean of positive entities is larger than or equal to
the geometric mean, it can be established that the transmit power is bounded as

P=T{F'F} > Nﬂ[FTF]

HA (5.11)
i=1
The bound is further refined using Hadamard’s inequality
P> N|B"M{VAy; yV M,B=?|"Y
_ N(|MO|2|E2|)1/N
|Am.n|? (5.12)

N4R/N |MO|2/N
> - —=
16 [AanPY

IThe bound is however highly dependent on the number of active substreams.
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Figure 5.1: Relation between the density of the lattice and the determinant of the
generator matrix. The left-hand side shows the Voronoi cells of the Fs lattice. The
right-hand side shows the parallelotopes spanned by the basis vectors of the same
lattice. Clearly, the hyper-dimensional volume (in this case the area) of the Voronoi
cell is equal to the volume of the parallelotopes, which is equal to the determinant
of the generator matrix.

where the last inequality is due to

Hi\f:l 4bi/N(1 _ 47171-)1/1\1 . 4AR/N
12 - 16’

|Z2 VN = (5.13)

since all bit loads b; > 1. Note that, because the right hand side of (5.12) is
independent of B, 3, and U, the bound is a definite lower bound on the minimized
transmit power.

In order to apply the bound to the BLER expression (4.17), we need to express
it in terms of the minimum distance of the lattice. The determinant, |M], is the
volume of a Voronoi cell of the lattice; it is related to the minimum distance of the
lattice by the packing gain, o(My), defined here as?

€2(Mo) = |Mo|*No?(My). (5.14)

Figure 5.1 shows the relation between the density of the lattice, the Voronoi cell,
and the determinant of the Gram matrix, Mj M. For a fixed minimum distance,
the density of the lattice (i.e., the packing gain) is determined by the volume of
the Voronoi cells: The smaller volume, the denser the lattice. The figure illustrates

2See also [CS88].
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Figure 5.2: Example of a 12 dimensional lattice. The equation shows a Gram matrix
for the Kj2, Coxeter-Todd lattice (see [CS88] with references). The minimum
distance is £(M) = 2, the determinant of the Gram matrix is |[M " M| = 729, and
the corresponding packing gain is o%(M) = 2.31.

the fact that the volume of the Voronoi cells must be equal to the volume of the
parallelotope defined by the columns of the generator matrix M. The volume
of the parallelotope is, in turn, equal to |M§M0|1/2. Because we assume M is
N x N full rank, |[Mj M,|'/? = |M|. The packing gain can be quite substantial
for high dimensions N. Figure 5.2 shows an example of a 12 dimensional lattice
with a substantial packing gain.

Applying the definition of packing gain (5.14) to (5.12) yields

VAR (M)
T 16 o2(Mo)|Am.N|2/N

= Prp(My), (5.15)

which we refer to as the fundamental lower bound on the transmitted power. The
bound depends to a large extent on the number of active subchannels, N. Weak
subchannels will reduce the overall performance if activated. On the other hand, if
N is too small, then too many bits are transmitted per subchannel which will also
degrade the performance. By assuming the bound (5.15) is tight, it can be used
to approximate the optimal value of N with a relative ease. Note that the bound
also depends on the packing gain of the lattice — which also can be allowed to
vary with N. In Section 5.3, the impact of the packing gain on the performance is
further discussed.

It is interesting to compare the fundamental lower bound to the concept of
optimal shaping gain, as described in Forney et al. [For99]. By making the so-called
continuous approximation, one can show that the power-optimal codebook can be
approximated by an infinite codebook, uniformly distributed inside a hyper-sphere
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with radius W. The optimal power is

1 T 2N 9 9
PSpheTe:Q_RZmZmZNQN+1\II ~ U~ (516)

The radius is related to the codebook size by equating the volume of the hyper-
sphere with the volume of the union of all Voronoi regions in the codebook, x = F's,

as N/2
2me W2
28| F| ~ : 1
7~ (75) (5.17)
Combining the equations we get
N4R/N|F|2/N
Ps ere ¥ T, 1
ph 2me (5.18)
and since e

 02(Mo)|Ap N[N

we conclude that the fundamental lower bound is almost equal to the approximate
power expression for the optimal shaping gain. This is interesting since the optimal
constellation-shaping region is elliptical, hence very difficult to implement in prac-
tice. If our algorithm can reduce the power close to the lower bound, then it also
performs close to the optimal constellation shape as described by Forney. (Note
that since the optimal shaping region is not spherical, the classical upper bound,
1.53 dB, on the shaping gain is no longer valid.) The next step is to derive an upper
bound that allows us to determine if, and when, the lower bound (5.15) is tight.

5.2.2 Upper bound on the optimized power

The upper bound on the transmit power is derived under the assumption that the
bit-loading step in the optimization procedure has been performed. It is summa-
rized in the following theorem:

Theorem 5.2.1 Assuming the bit-loading Algorithm 5.1.2 has been performed: The
transmitted power can be upper bounded as

P< MLLR/N | Mo[?/Y F)

e In(4) |A g |2/ (5.20)
< 1.69 PLB(M()) D(F) = PUB(M()).

Proof: Consider the transmit-signal basis matrix, G, defined in (5.5), and denote
the diagonal elements of GTG as g1, ..., gn. The transmitted power can be upper

bounded as . .
p= i g"(f; mRY S Zi192¢4 (5.21)
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Due to Algorithm 5.1.2, we know that there is at most a factor of 4 differing the
maximum to the minimum term ¢14%, ..., gn4%V, in the summation. Applying
Lemma 5.2.2 (stated below) with C' = 4, we obtain

3N -41/3
Abi Abi\1/N
% g4’ < (D) IZ_I(QA ) (5.22)
Hence,
N-472/3 .
/N ~T |1/N
P < ¢ (D) 4V GG D(G), (5.23)

where we use the definition of D() from (5.8) to see that D(F) = D(G). The
determinant is given by |G G| = |[Mo|?|Amr n|~2, which completes the proof. [

Lemma 5.2.2 Let o, ...,an be strictly positive real numbers, and let

C = w7 (5.24)
min; o;
then . )
~+ >0 (C—1)CT=—
flag,.,ay) = =1 — < . (5.25)
I, a;/N In(C)e
Proof: See Appendix 5.B. O

As we can see from (5.20), the upper bound and the lower bound differs by a
factor 1.69 D(F'). Thus, in order to obtain an optimized power that is close to the
fundamental lower bound, we need to make sure D(F') is as close to one as possible.
The upper bound (5.9) on D(F'), is exponentially increasing with the dimension
N, but fortunately not very tight in most cases as is demonstrated in Section 5.4
where simulations of the CDF of D(F') are presented for a MIMO link with 12
dimensions. However, if the minimized power in the end turns out to be far grater
than the fundamental lower bound, then we can reduce the gap between the upper
and lower bounds by enforcing a reduction of D(F') through the choice of lattice
base, M.

5.3 Selecting the lattice base

In Section 5.1, it was demonstrated how to minimize the transmitted power for
some fixed lattice base, M. The next step is to determine what lattice base to
use: The lower and the upper bounds from Chapter 5.2 on the transmitted power
can facilitate this decision. As the first priority, our focus will be on finding a
lattice base that minimizes the lower bound (5.15). This corresponds to finding
the generator matrix, M, of a certain dimension N that has the largest possible
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Lattice | Dimension | 0?(M) [dB] | K (M)
Z 1 0.000 2
Agy 2 0.625 6
As 3 1.003 12
Dy 4 1.505 20
Ds 5 1.806 40
Eg 6 2.215 72
Er 7 2.580 126
Ey 8 3.010 240
Ag 9 3.010 272
Ao 10 3.135 336
K 11 3.305 432
Ko 12 3.635 756
Kis 13 3.722 918
Ay 14 3.960 1422
A5 15 4.214 2340
A 16 4.515 4320
Ay 17 4.604 5346
Mg 18 4.752 7398
Ao 19 4.912 10668
Ay 20 5.118 17400
Aoy 21 5.304 27720
Ago 22 5.530 49896
Ao 23 5.759 93150
Aoy 24 6.021 196560

Table 5.1: Packing gains, 0?(My), and kissing numbers, K (M), for lattices with
dense packings in various dimensions.

packing gain, 02(M). The lattice sphere-packing problem is a classical problem in
mathematics that has no known optimal solutions for most dimensions. Fortunately,
many lattices with good sphere-packing properties have been found [CS88], and the
best known lattice can be chosen for each dimensional size of interest. In Table 5.1,
the packing gain, and the kissing number are listed for some well known lattices
(that are available in e.g. [CS88]). If the minimized power is not sufficiently close
to the lower bound after optimization, we can use the upper bound as described in
Section 5.2.2 to understand how to search for lattice bases that are better.

5.3.1 Enforced reduction of the D(F) factor

In the special case when the lattice equals Z", all subchannels are orthogonal and
D(F) = 1. The corresponding upper bound is

Pup(In€) =1.69 PLp(In£). (5.26)
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For an arbitrary matrix lattice base My with dimension N and minimum distance
&, the following relation holds

PLB(INS):O'Q(M())PLB(M()). (527)

Hence, if the minimized power P for lattice base M, is a factor 1.69 02(M ) times
larger than Prp(My), then P > Pyp(In€&), and it is always better to use the
ZN -lattice rather than M. The drawback is of course that the ZM-lattice does
not provide any packing gain. So, a better strategy is to run the optimization with
increasing orthogonalization — i.e. to force the lattice base to be more and more
orthogonal — until a minimum in the transmitted power has been reached.

Let the lattice base, M, be a concatenation of S sub-lattices as follows

My
M, = , (5.28)
My,s

)

where M 1, ..., M s have dimensions Ny, ..., Ng, and sphere-packing gains o1, ..., 0g.
Due to orthogonality, the minimum distance of M, is the minimum of the min-
imum distances of My 1,..., Mo s. Hence, it is power optimal to scale the sub-
lattices to have the same minimum distance {(Mg ;) = {(My): We assume that
this scaling is applied. Due to the orthogonal subspaces in the lattice base, the
power optimization algorithm will result in a block diagonal matrix

FIF,
F'F = - . (5.29)
FiFg
We can now use the orthogonalization of the precoder to tighten the upper bound

on D(F) as

S N 1/N
15, [, [FTF)Y

N, 1/N
_ ﬁ 1% [FIF,)Y, 5.30)
_521_ |F3F5|1/N .

2
NS

S
—Ns —S
<[[2~= <27,

s=1

where we used (5.9) on each factor s. We conclude that by enforcing orthogonal

subspaces, the upper bound on the orthogonalization factor can be reduced.
However, orthogonalization also affects the packing gain, which for the concate-

nated lattice can be calculated as the weighted geometric mean of the packing gains
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of the sublattices

s s
o(My) = ¢ __ 11 e [T o)/ (5.31)
|M0|1/N b M(),s|1/N et >

=1

Because the highest possible packing gain for a sublattice (with dimension lower
than N) is strictly lower than the highest possible packing gain of lattices of di-
mension IV, we see that the orthogonalization reduces the packing gain. The price
of introducing orthogonal subspaces is consequently an increased lower bound. A
strategy is to let S go from 1 to N, keeping Ny, ..., Ng as equal as possible, and
then terminate when the power has reached a minimum. In the worst case, this
would lead to the ZV-lattice, i.e. completely orthogonal transmission.

5.3.2 Kissing number versus packing gain

One conclusion from Section 5.3.1 is that, since the algorithm from Section 5.1.4
may not always be able to reach close to the lower bound, maximizing packing gain
is not always the best choice. Moreover, there is also another negative effect: The
packing gain is connected to the kissing number and, roughly speaking, the higher
packing gain the larger is the kissing number. From equation (4.17), we observe
that the kissing number has a direct negative impact on the performance, while
(due to the relation with packing gain) it also has an indirect positive effect on the
performance. There is no exact way to determine which effect that dominates from
case to case. In the following, we present an approximation to set a heuristic rule
for this tradeoff. By applying the Chernoff upper bound approximation (assuming
high SNR) on the @-function in the BLER expression (4.17), we have

2
3 (iw))'

P, ~ 0.5 K (M) exp ( - (5.32)
Assume that the fundamental lower bound (5.15) is tight, such that the minimum
distance can be approximated as

16P|Ag n|>/N
2 ~ , 2
§ ( ) ~ N4R/N o (M)7 (533)
and then inserted into the BLER approximation. We now seek the lattice base that
minimizes ~ ,
4P| A NN,
PSNO.5K(M)QXP<WU (M) . (534)

We have observed (empirically) that the kissing numbers for dense lattices roughly
grow exponentially with increasing packing gain. Hence, we introduce the following
approximation

K (M) ~ N Ky exp (yo?(M)), (5.35)
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where Ky = 0.1173 and v = 2.751. In Figure 5.3 the approximation is evaluated
as a function of the true kissing numbers for the lattices in Table 5.1; we conclude
that the fit is satisfactory. Consequently, the BLER may be approximated as

AP|A g NPV
P, ~0.5N Ko exp ((7 - %)0‘2(M)), (5.36)

and thus, for low transmit powers an increased packing gain will actually result in
a decreased performance. Using equation (5.36), we formulate the following rule of
thumb: If the transmit power satisfies

0.7TN 4R/N

then the lattice base should have as large packing gain as possible. If the inequality
does not hold, it is better to use lattices with low packing gain — for instance the
ZN-lattice. This rule of thumb is based on approximations and some precaution

must be taken. When P~ LTN4"™ 410 SNR is typically too low for the BLER

\AH,N [2/N
approximation (5.32) to be tight. However, the general trend holds: The packing
gain is more important in the high SNR region rather than the low SNR region.

5.3.3 Selection procedure

Below, step by step instructions are given to solve the joint bit loading and pre-
coding problem for ML detection. Although some steps in the instructions are
heuristic, they are all motivated by the theoretical considerations presented in this
part of the theis.

1. The first step is to determine the maximum tolerable kissing number as spec-
ified by system constraints. The kissing number is, for instance, restricted
by the largest possible lattice dimension — which equals the rank, @, of the
channel matrix. Complexity issues also pose constraints on the kissing num-
ber: The more nearest neighbors, the more complex is the decoding problem
at the receiver. In this work, the maximum kissing number is regarded as a
design parameter (that will not be optimized).

2. Determine the number of data subchannels, N, that should be used. This is
achieved by minimizing the fundamental lower bound (5.15). When doing so,
it is important to note that the diagonal matrix A H,N also depends on N.
For each N, we should use the lattice with the best possible sphere-packing
density, and that has a kissing number lower than or equal to the maximum
kissing number. At this point we have obtained a candidate for the lattice
base M.

3. Check the packing gain versus kissing number tradeoff. If the SNR is too low,
i.e. if the rule of thumb (5.37) does not hold: Then the lattice base generator
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matrix should be changed to My = In &, in order to keep the kissing number
small.

4. Optimize the power using the minimization algorithm in Section 5 for the
candidate lattice base M. If some subchannels have been turned off during
the bit loading, reduce N by one, change the lattice base to the best lattice
(in terms of packing gain) with this new dimension, and go back to step 4.

5. If the precoder has a D(F') factor that is significantly larger than one (say by
more than 2 dB), then the lattice basis reduction algorithm has not been able
to orthogonalize the precoder sufficiently. In this case there is a potential gain
by constructing a lattice base with concatenated lattices of lower dimension.
Start with a lattice using two orthogonal subspaces of similar dimensions and
go back to step 3. If the minimized power is reduced use the concatenated
lattice. Iteratively test lattice bases with more and more orthogonal subspaces
until the D(F") factor falls below the threshold level (for example 2 dB). The
threshold level is a design parameter which involves considerations regarding
computational complexity.

The complexity of the transmission scheme depends, to a large extent, on the
number of iterations in the lattice precoding algorithm. Fortunately, only a few
iteration rounds are typically needed since both B and X are discrete, so that once
they stabilize, the optimization of U needs only one last round.

5.4 Numerical results

The proposed scheme can provide a packing gain of several dB for sufficiently high
SNR and sufficiently large lattice dimensions (compared to completely orthogo-
nal transmission). Unfortunately packing gain is not the only factor affecting the
performance: The kissing number can have a dominant negative effect for low to
moderately low SNR. Furthermore, in order to fully benefit from the packing gain
it is necessary that the basis reduction step (Section 5.1.3) manages to sufficiently
orthogonalize the channel. It remains to be seen how much of the packing gain
that can be realized in practice. In this section, we seek to shed some light on these
issues through numerical simulations.

As was mentioned in Section 2.1, there are many potential applications for
the proposed transmission scheme. For simplicity the examples herein are limited
to narrow band multi-antenna systems of various dimensions, where the channel
matrix consists of Rayleigh-fading matrix elements. This channel model is widely
used for modelling MIMO channels with rich scattering around both the transmitter
and the receiver. When the TX-CSI is perfect, as in this case, the definition of
the SNR is not straightforward because the received signal power depends on the
eigenvectors of the precoder. In the examples below, we avoid this problem by
simply defining SNR as the transmitted power, P, (note that the noise power is
normalized to one).
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The proposed precoding scheme will be compared with three commonly used
transmission schemes. The following list specifies the schemes:

e Proposed precoding scheme
This is the bitloading and precoding scheme described in Section 5.3.3. The
lattice with the best known sphere packing for the dimension of interest is
used. These lattices are listed in Table 5.1 for all dimensions up to N = 24.
After optimization the precoding matrices are re-scaled to ensure a specific
transmit power, and consequently, the BLER is minimized instead of the
power.

e Orthogonalizing bit and power loading scheme
By running the power minimization algorithm on the Z" lattice, we get the or-
thogonalizing precoder that after re-scaling maximizes the minimum-distance.
In the high SNR region, this is the optimal orthogonalizing precoder. Note
that this precoder creates parallel non-interfering sub-channels and the opti-
mal ML decoder can therefore be implemented using the linear ZF detector.

e Blind transmission scheme
Blind transmission is a relatively simple transmission scheme that does not
utilize any TX-CSI, where the bit load is as evenly distributed as possible,
and the transmitted signal vector is

P
c=,/ T[] x. (5.38)

ML detection of blindly transmitted data can be computationally demanding,
especially when the channel matrix is close to rank deficient.

e Decentralized detection scheme
In addition to the above linear precoders, Tomlinson-Harashima (TH) precod-
ing for decentralized receivers will be simulated for comparison [FWLHO02al:
No joint processing of the received signals are needed. Scaling and a modulus
operation on each signal is all that is needed. In order to make the comparison
fair for the TH precoder, we implemented adaptive bit and power loading on
the subchannels.

Figure 5.4 shows a comparison of the average BLER performance of the Z'2
and Ko, when applied to a 6 x 6 MIMO channel. One thousand channel matrix
realizations where used, with the matrix elements drawn from an uncorrelated
Rayleigh-fading distribution as

vec(H) ~ CN(0,I). (5.39)

Precoding was performed for each realization at different SNR levels, and with a
fixed data rate. The average block error rate was calculated using Monte Carlo
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simulations, in which ML-detection was performed using the finite-alphabet con-
stellation algorithm from [DGCO03]. The maximum dimension of the lattices is 12,
although lower dimensions are used whenever it improves the fundamental lower
bound (5.15). The data rate is 24 bits per channel use.

We observe that, due to the packing gain of the K75 lattice, a gain of approxi-
mately 2 dB is attained over the Z'? lattice in the high SNR region. Judging from
the sphere-packing gains listed in Table 5.1, one may come to the conclusion that
the gain of the K lattice over the Z'? lattice should be on the order of 3.6 dB
instead of 2 dB. There are three factors that can explain why this is not the case:

1. The kissing number of the K15 lattice is larger than for the Z!'2 lattice. Ac-
cording to equation (4.17) this will result in a higher BLER for the Kjs-lattice
in relative terms.

2. While the Z!? lattice is completely orthogonal, resulting in the tightest pos-
sible upper bound, the D(F') factor for the K12 lattice is larger than one and
there may be a loss due to lack of orthogonalization.

3. The algorithm adaptively selects the number of subchannels, N, and the
optimal number of active channels is not always the largest possible (in this
case 12). From Table 5.1, we know that a lower lattice dimension results in a
lower packing gain.

In order to verify whether these three factors are sufficient for explaining the dif-
ference between the ideal gain and the measured gain, we have roughly estimated
their values from the simulation. The results are shown in Table 5.2. The relative
difference in kissing numbers is approximately 24, which, by analyzing slope of the
curve of interest in Figure 5.4, roughly translates into a 1 dB loss in the high SNR
region. The average D(F')-factor of K15 was evaluated numerically to 0.528 dB, so
a loss of approximately 0.5 dB could be expected. In Figure 5.5, the cumulative
density function (CDF) of D(F) is approximated using a histogram. Finally, in
Table 5.3 the third factor is analyzed using the histogram of the number of active
subchannels (for the channel realizations used in the examples). It turns out that
in most cases only 10 subchannels are active, and the packing gain is on average
0.31 dB lower than if all 12 dimensions would have been used. Adding all effects
together, we get a residual gain of 3.3 — 0.5 — 1 dB ~ 1.8 dB, which is more in
line with what can be observed in Figure 5.4. While the above analysis is approx-
imate, we have seen that the three factors are plausible candidates for explaining
the observed differences.

Returning to Figure 5.4, we can see that blind transmission works (perhaps
surprisingly) well for low SNR, considering that no TX-CSI is used. This may be
explained by the low number of nearest neighbors the blindly transmitted code-
words typically have. Remember that the negative effect of nearest neighbors is
most prominent in the low-SNR region. While blind transmission leaves all the
processing to the receiver (ML detection of blindly transmitted data is in general
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Figure 5.3: Evaluation of approximation (5.35) that approximates the kissing num-
ber as a function of the packing gain. The figure shows the approximated kissing
number versus the true kissing number for the lattices in Table 5.1.

| K12 | ZIQ
Avg. Kissing Nbr. | 488 20.6
Avg. D(F) 0.528 dB | 0 dB
Avg. o? 3.324dB | 0dB

Table 5.2: The average kissing numbers, sphere packing gains, and orthogonality
factor for the lattice precoders simulated in Figure 5.4.

N |8]9] 10 | 11 | 12 | Total
Z™ [ 6| 7]798] 65 | 124 | 1000
Kip | 1] 0| 449 | 243 | 307 | 1000

Table 5.3: Histogram of the number of used dimensions, IV, in the simulations from
Figure 5.4.
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computationally demanding), the TH precoder for decentralized receivers does the
opposite. It has essentially all processing on the transmitter side, and the receiver
can detect the data directly from the received signals, after a simple modulo op-
eration. Although the TH precoder is well-suited for the case where the receiver
antennas are decentralized, it has difficulties competing with the ML decoder that
employs joint detection.

The conclusion from Figure 5.4 is: When using TX-CSI in combination with
ML decoding, one needs to find a tradeoff between sphere-packing gain and kissing
number. Interestingly, traditional channel diagonalization with adaptive bit load-
ing (i.e. using Z") does not meet this tradeoff, it can even perform worse than
blind transmission. Another conclusion is that the detection algorithm plays a cen-
tral role. In many cases blind transmission may perform excellently provided the
appropriate detection algorithm is used.

These facts are even more evident for systems with higher dimensions. In Fig-
ure 5.6, an 8 x 8 MIMO channel with uncorrelated Rayleigh-fading elements is
simulated in a similar fashion. The densest lattice for this scenario is the Aj¢g lat-
tice. With a data rate of 32 bits per channel use, the gain is on the order of 2-3
dB which is smaller than the packing gain of the lattice. The gap to the pack-
ing gain can again be explained by the three factors described above. For BLER
levels of practical interest, the blind transmission scheme clearly outperforms Z!6
lattice precoding. However, in the more realistic scenario with correlation between
channel elements [YBO'01], one can expect blind transmission to suffer a greater
loss in performance compared to the Z'® precoder. This fact is illustrated in Fig-
ure 5.7, which shows the performance of the algorithm over an 8 x 8 correlated
Rayleigh-fading channel. As opposed to the uncorrelated case, both lattice types
now outperform blind transmission. In the simulations we used the so-called Kro-
necker correlation model [YBO101, SFGKO00]: The covariance matrix is Kronecker
structured, i.e.

E {vec(H)vec(H)*} = R} ® R, (5.40)

with the transmit covariance matrix being parameterized as

pl i
[Riij=q 1  i=J, (5.41)
P i<

and with similar parametrization of R, using p,. The covariance coefficients py, p; €
{# :|z| < 1}, represent the amount of transmit and receive covariance respectively.
That is, the covariance decreases exponentially with the antenna-index distance.
This model might be realistic for uniform linear arrays in rich scattering environ-
ments. For more motivations and references on this model see [MOO04]. In the
example herein p, = py = 0.6 + j0.1 is used.

Although the packing gain can not be realized in its entirety, we have seen
that it is possible to achieve a significant part of it. Furthermore, for uncorrelated
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Figure 5.4: Block error rate comparison between the Z!? lattice, the K15 lattice,
Tomlinson—-Harashima precoding for decentralized receivers, and 12-dimensional

blind transmission. The channel is a 6 x 6 MIMO Rayleigh-fading channel, and the
data rate is 24 bits/use.
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Figure 5.5: Monte Carlo approximation of the CDF of the loss due to the orthog-
onalization factor D(F') for the K2 lattice in Figure 5.4.
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Figure 5.6: Block error rate comparison between the Z!6 lattice, the A6 lattice, and
16-dimensional blind transmission. The channel is an 8 x 8 MIMO Rayleigh-fading
channel, and the data rate is 32 bits/use.
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Figure 5.7: Block error rate comparison between the Z© lattice, the A4 lattice,
and 16-dimensional blind transmission. The channel is an 8 x 8 MIMO Rayleigh-
correlated fading channel, and the data rate is 26 bits/use.
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Rayleigh-fading channels, it is in fact necessary to use lattices with high packing
gain in order to outperform blind transmission in terms of minimum BLER.

5.5 Conclusions to Part I

The problem of designing bit loading and linear precoder for MIMO communication
systems has been investigated. Both the receiver and the transmitter are assumed
to have perfect CSI; the receiver is assumed to employ ML detection. The main
conclusion is that orthogonal transmission in combination with bit and power load-
ing is not optimal if the receiver uses ML detection. In some cases even blindly
transmitted data performs better than the orthogonal scheme. In order to fully
take advantage of the ML decoder, we propose the use of lattice invariant opera-
tions to transform the channel matrix into a lattice generator matrix. The lattice
should ideally have good sphere-packing properties, resulting in large minimum-
distance separation. An algorithm that performs the transformation in a close to
power-optimal manner was presented, along with a lower and an upper bound on
the optimized power level. The lower bound motivates the use of lattice generator
matrices with dense sphere-packing properties, although it was concluded that the
kissing number of the lattice also affects the performance. A design methodology
was presented using the theoretical developments herein. Numerical results indi-
cate that there is a potential gain of several dB by using the method compared to
channel diagonalization with adaptive bit loading.
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Appendix 5.A Proof of Theorem 5.1.2

Let by, ...,bx be a local optimum, i.e satisfying
gndPn < 4 g, dbm (5.42)

for all n and m such that b, > 0. Let by,...,by be an arbitrary bit load. Define
8, = b, — by, for all n. Note that all bit load residuals 81, ..., 6 are integer-valued.
Let the transmitted power for the local optimum be P and the transmitted power
for by,...,bny be P. We have the difference in power

12(P — P) = > gidb (4% — 1)

~ _ (5.43)
= Y g @ -1+ Y gabi(ad —1).
7:0; >0 7:0; <0
Define _
_ ; Abi
C= Inin 94", (5.44)
so that we can bound
ST gk -1 >0 > (-1, (5.45)
7:0; >0 7:0; >0

For all §,, < 0 we know that b, > 0 and consequently by using local optimality
gn4bn < 4C. Assembling these results we have

12(P—P)/C> Y (4% —1)+4 > (4% —1). (5.46)
1:0, >0 7:0,<0
Let M; be the number of elements in d1, ...,y such that §; = —1. Let M be the
number of elements that satisfy ; < —1. It is easily verified that
43 (4% —1) > =3 My — 4 M. (5.47)
7:0; <0
Similarly it can be shown that for integer §; > 0 we have
D@ -1=3> d. (5.48)
7:0; >0 7:0,>0

Since the total data rate is the same for both bit loads, by, ..., by and by, ..., by, we
know that ). 6; = 0 and consequently

Y di= Y =0 =M +2M,. (5.49)
i:8;>0 i:8;<0
Assembling the results we have
12(P — P)/C > 3(M; +2M>) — 3 M; — 4 M,
=2M> > 0.

Hence P > P, and a local optimum is also a global optimum. O
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Appendix 5.B Proof of Lemma 5.2.2

We are seeking the maximum of

1 N
_E L
f(Oél7 ...,OKN) = W, (550)

Jj=1"7

which is equivalent to maximizing g(-) = log f(-). Normalize the variables as

Bi=— (5.51)
min; a;
such that 1 < 3; < C for all i, where
=% (5.52)
IIlHlj Oéj

Note that the normalization does not affect the cost function,

9(B1, .., Bn) = glag, ...,an). (5.53)

Assume that N variables are forced to satisfy §; = 1, and N¢ variables satisfy 8; =
C. Differentiating g(-) with respect to the remaining variables (1, ..., SN—N, - N
and equating to zero results in the following system of equations

1 1

S = Vji=1,..,N—N; — Ne, (5.54)
N; + NoC + SN M-Ne g Np;

with the solution §; = % for all 7. The Hessian at this optimal point is
always positive semi-definite, hence the optimum is a minimum. Any maximum
must consequently have some of 3i,...,8v_N,—n. equal to either 1 or C. By
recursion, the maximum of f(3i,..., 5ny) must have some N; elements equal to 1

and N — Ny elements equal to C. Then we have

Nt IyrC_14+(C -1y

fa,..,1,C,...,C) = ppEEnn o , (5.55)
N
where y = & R,N L. Maximizing with respect to v gives
| 1
T Tme -1 (5.56)

and the resulting upper bound is (note that for C' > 1 this gives a valid v* € (0,1))

(C—1)CTT

f) < (O e (5.57)

O
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Chapter 6

Introduction to Part I1

Under the assumption that the transmitter knows the channel perfectly, the capacity-
optimal precoding strategy is to linearly orthogonalize the channel matrix using the
SVD [CT91, Tel95]. Information is optimally conveyed over the orthogonal sub-
channels using infinitely long and Gaussian distributed codewords, with data rates
assigned to the subchannels given by the so called waterfilling solution. Although
SVD based, orthogonal, transmission is optimal in the sense of maximizing the
mutual information, it is not necessarily optimal in the delay-limited case that is
considered herein. In Part I of this thesis, the suboptimality of orthogonal trans-
mission was shown given that the optimal ML decoder is used at the receiver.
Another design was proposed in [CBRB04] that gives the minimum BER solution
for a 2 x 2 MIMO system with quadrature phase-shift keying modulation. Both of
these designs include a rotation of the precoder such that the effective channel is
not orthogonalized.

The ML detection problem can be rather computationally demanding if the
channel is not orthogonal, and therefore suboptimal receivers are often considered.
Arguably one of the more commonly considered receiver structures is the linear
detector (ZF or MMSE). When using equal bit rates on all active subchannels, the
optimal precoding strategy for linear receivers was given in [PCL03, DDLWO03]. Tt
turns out that the best choice in terms of minimum BER) is to mix the substreams
using a discrete fourier transform (DFT) matrix so that all substreams are dispersed
equally over all channel eigenvalues. In [PCLO03], the precoding problem for linear
receivers was generalized to cost functions of the mean squared errors (MSE) that
are either Schur-convex or Schur-concave. A short definition of Schur-convexity
and concavity is included in Appendix 9.A. For Schur-convex cost functions, the
solution is similar to the solution with the minimum BER objective, i.e., it is optimal
to mix the subchannels (in fact, for equal signal constellations the minimum BER
objective is Schur-convex). For Schur-concave cost functions, the optimal solution is
instead to transmit on orthogonal subchannels using SVD based precoding, similar
to the capacity optimal transmission.
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The analysis in [PCL03, DDLWO03] did not consider using optimized bit loading
on the subchannels. Adjusting the data rate according to the channel quality is
important in order to achieve high performance in a digital communication system.
In [DDWO03, PLC04, PBOO05] the problem of designing transmit and receive filters
when using heterogenous constellations on the subchannels were treated. Different
bit rates on the subchannels results in filters that need to meet various quality of
service constraints depending on the constellations that are used. This question
was taken one step further in [PB05] where the joint optimization of bit loading
and linear precoder was investigated. Surprisingly, perhaps, it was shown that joint
optimization of the bit loading, transmit and receive filters results in orthogonal
subchannels and that no DFT-type of rotation should be used. In other words —
the bit-loading optimized cost function is Schur-concave with respect to the MSEs.

To summarize; for joint bit loading and precoding it is known that orthogo-
nal transmission is suboptimal for ML receivers (Part I), but optimal for linear
receivers [PB05]. An intermediate receiver solution between the linear receiver
and the ML detection is the DF receiver [BP79, GC01, WFGV98, Gue03, SGS01,
XDZW06, JHL06, SD08, PJ07]. The DF receiver has low decoding complexity com-
pared to the ML detector [JOO05], and for channels with inter-symbol interference
it outperforms the linear receiver in terms of error performance (the linear receiver
is a special case of the DF receiver). Since the DF decoder is something in between
the ML and the linear detector in terms of performance, a natural question to ask
is whether the optimal joint bit loading and precoding strategy (when using DF)
is to orthogonalize the channel or not? Note that if the precoder orthogonalizes
the channel, the DF detector has no inter-symbol interference to remove, and thus,
linear detection and DF detection becomes equivalent.

In [XDZWO06, PJ07, SD08] it was shown that orthogonal transmission is indeed
optimal for multiplicative Schur-concave objective functions of the MSEs, while
for multiplicative Schur-convex objectives a rotation of the signal vector is needed
(similar to the linear case). These conclusions are for systems with equal constel-
lations, and as a relevant special case the minimum BER objective is shown to be
multiplicatively Schur-convex. In [JHL0O6, PJ07] the quality-of-service constrained
problem was treated, which allows for optimal filter design given a fixed heteroge-
nous bit loading.

In this part of the thesis we consider the problem of jointly optimizing the
precoder, receiver filters, and bit loading when using the DF receiver. The main
result is that the optimal bit loading will, in fact, result in an orthogonalizing
precoder design. Orthogonal subchannels implies that there is no interference for
the DF detector to remove, and as a result decision feedback actually becomes
superfluous when the signal constellations are chosen properly. However, due to
robustness the DF may still be advantageous to implement: The DF allows us to
redistribute the bit loading on high-rate subchannels at a very low cost in terms
of reduced performance, which in turn means that a suboptimal bit loading will
perform almost as good as the optimal one. Another reason for using DF detection
is that perfect transmitter-side CSI may be an unrealistic assumption. Imperfect
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transmitter-side CSI inevitably causes inter-symbol interference that can be reduced
using DF (note that perfect CSI is required for orthogonal transmission).

In addition to the results regarding bit loading, we show that the problem of
computing the optimal precoder and receiver filters for a fixed bit loading can be
posed as a convex problem (similar, but not equivalent to [JHL06]). An algorithm
that solves the convex problem with linear computational complexity is provided.
Because of the low computational complexity of the filter optimization, an exhaus-
tive search for the optimal bit loading becomes feasible in practice — although the
main result of the paper suggests that an exhaustive search is not necessary in most
cases.

Finally, as a byproduct from the work regarding linear precoding for DF re-
ceivers, we include Chapter 10 that treats a special class of optimization problems
with so-called skewed majorization constraints. It turns out that problems of this
class are particularly easy to solve by simply identifying the convex hull under a
sequence of numbers. Two MIMO related problems are provided as applications to
this class of problems.






Chapter 7

Performance measure and problem
formulation

Part II of the thesis considers joint bit loading and linear precoding assuming
delay-limited transmission and a minimum-MSE decision feedback detector at the
receiver. In this chapter we derive a performance measure and define the optimiza-
tion problem for this particular setting.

7.1 System model

Consider the discrete-time flat-fading linear model of a V. x Ny MIMO communi-
cation system

y=HFs+n, (7.1)

where y € CNr is the received signal, H € CN-*Nt is the channel matrix, F' €
CNtXN is a precoding matrix, s € CV is the data-symbols vector, and n € CM-
is additive white circularly-symmetric complex-Gaussian noise. The data symbols
and the noise are assumed to be normalized as E[ss*] = I and E[nn*] = I. The
average transmitted power is limited such that Te{ FF*} < P, is satisfied.

7.2 Decision feedback receiver

In the following chapters we assume that the receiver employs DF equalization, and
a schematic view of the considered system is depicted in Figure 7.1. The received
signal is linearly equalized using a forward filter, W*, and subsequently passed to
an elementwise detector of the data symbols. From the outcome of the detection,
we reconstruct the transmitted data symbols, 8, then use the reconstructed symbols
to remove inter-symbol interference between the symbols in the equalized signal.
In order to ensure that the DF detection is sequential, i.e. that we do not feedback
symbols that have not yet been detected, we enforce the feedback matrix B to be
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-B

Figure 7.1: Schematic view of the MIMO communication system with DF detection.

strictly lower triangular. The signal after the interference subtraction, 8, is then
passed on to the detector again. Taking the feedback into account, the error prior
detection is

e=38—-s=(W'HF —I)s— Bs+ W'"n. (7.2)

If the probability of detection error is small, one can assume that § and s are
zero mean and have almost identical auto-correlation and cross-correlation matrices,
and that s is uncorrelated with the noise n. Using these approximations the error
covariance matrix is given by

Fise = B lee’ (73)
— (W*HF - B-I)(W'HF - B 1) + W*W. '

Since detection of the symbols § = s + e is made elementwise, we can regard the
problem simply as detecting a scalar signal in additive complex-Gaussian noise’.
We denote each virtual transfer function §; = s; + e; as a subchannel, for which the
performance is determined by its virtual noise power, [Rmsgl;,i-

In general, sequential decision feedback does not restrict us to use only lower-
triangular feedback matrices, any joint row—column permutation is also possible.
However, in this case where we are free to design both the precoder and the bit
loading, such a permutation loses its purpose since it can be absorbed into the other

optimization parameters.

7.3 Cost functions based on the weighted mean squared
error

A general framework was presented in [PJ07] for optimizing the DF system (i.e. the
filters F;, W™, and B) based on monotonic cost functions of the MSEs of the sub-
channels. Our goal here is to optimize not only these DF filters, but also the signal
constellations that are used on the subchannels. For mathematical tractability in
the later analysis, we narrow down the class of cost functions to p-norms of weighted

IStrictly speaking the interference part of the error is not complex Gaussian distributed.
However, combined with the noise we can tightly approximate the interference as such by the law
of large numbers.
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MSEs. More precisely, consider the cost function |d(RmsgDuw)l|p, where D, is a
weighting matrix assumed to be diagonal and non-negative, and the function

N 1/p
1d(X)], = (Z[X]f,i) , (7.4)

i=1

is the p-norm of the diagonal elements of X. The p-norm is defined for p > 1.

To illustrate how the cost function (7.4) can be applied in practice, consider min-
imizing the probability of detection error. Using the Gaussian-tail function (2.43),
the probability of error of subchannel i can be approximated as

diin (bi)
P.;,~4 —a— | 7.5
’ @ < 2 [RumsEli,i (7.5)
where d2,;,(b;) denotes the squared minimum distance of a b;-bit signal constella-

tion, normalized to unit variance [Pro0l]. Equation (7.5) allows us to relate the
MSE with the performance in terms of error probability. It also indicates how
we should chose the MSE weighting matrix D,, in our cost function. Namely, in
order to have symmetry among the subchannels, the weights should be inversely
proportional to the squared minimum distance as

[Dy)ii =d 3, (b;) Vi=1,..,N. (7.6)
This will make the subchannels (approximately) symmetric with respect to SER,
which is a relevant measure, for example, if we want to minimize the joint proba-
bility of detection error. In the case when outer error correcting codes are used it
may be more relevant to have symmetric BERs rather than SERs. Assuming Gray
coded bit mapping the BERs can be approximated as

1

R b

Pe,i~ (77)
For moderately low BERs, it can be shown that the dependency on b; in the BER
expression is dominated by the SER factor, P, ;. Hence symmetric SERs can serve
as a good approximation to attain symmetric BERs as well.

For most classes of constellations used in practice, the minimum distance typ-
ically decreases exponentially with the number of bits b;. For example, QAM
constellations with even bit loading has minimum distance

d?nin(b’i) = 5, 1 (78)

resulting in a weighting matrix (disregarding constant factors)

D, =D(2" —1,..,2% 1), (7.9)
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One objective could be to minimize the maximum error probability, P ;, of the
subchannels. Under the high-SNR assumption, this objective translates into a cost
function

d(RysEDuw)|[oc = max [RnseDuwliis (7.10)

corresponding to the p = oo norm.

Another strategy is to have approximately equal error rate on all subchannels,
but to allow small deviations around this point. To do this, we first apply the
Chernoff upper bound [SA00] to approximate the Gaussian-tail function as

ZPMNZQGXp( 12‘3;2(;]) ) (7.11)

The Taylor expansion of the Chernoff approximation around the point
[RyseDylii =k Yi=1,..,N, (7.12)

where k is a constant, gives

N
6\ _o/n . 12 _g/ge
ZP@@'%2N(1—8—H)6 S 4 e T Rysp D} (7.13)

Disregarding positive coefficients and constants, this cost function corresponds to
the p = 1 norm

Hd(RMSEDw)”l = TT{RMSEDw}. (714)

Summarizing, if the SNR is high, the probability of error on a subchannel de-
pends to a large extent on the minimum distance of the signal constellations. The
minimum distance scales the MSE of the subchannels, which leads to imbalances
when different types of signal constellations are used on different subchannels. Us-
ing a cost function with weighted MSE this imbalance can be compensated for. The
parameter p of the cost function can be used to control how flexible the system is
in terms of the spread of the error rates among the subchannels. Low p results in
more spread, which may be disadvantageous since the worst subchannel typically
dominates. In general, and specifically for high SNRs, the infinity norm seems to
translate into the lowest SERs in most cases.
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7.4 Problem formulation

With the definitions of the MSE matrix (7.3) and the cost function (7.4) in place,
our problem can be mathematically formulated as

r}n}rgnvrr‘}lzg |d(Ruse(F, B, W*)Dw)Hp (7.15a)
subject to Te{FF*} <P, (7.15b)
[Dy)ii = d2 (b)) Yi=1,..,N, (7.15¢)
beB Vi=1,..N, (7.15d)

N
> bi=R, (7.15¢)

i=1

where the vector b = [by, ..., by] is the bit loading vector, and the set B denotes the
set of feasible bit rates which is determined by the available signal constellations.
Typically, due to the discrete nature of bits, this set is equal to the set of positive
integers.

The problem of designing the DF filters for a fixed bit loading, b, is treated in
Chapter 8. It is shown how to apply the framework given in [PJ07] to the par-
ticular problem considered here, and the result is a problem formulation involving
majorization inequality constraints. Then we show how the resulting non-convex
problem can be replaced with a convex problem that can be solved very efficiently
with linear complexity. Once the optimal bit rates are known, the remaining prob-
lem is therefore fairly simple.

As for the optimization of the bit loading, the set B is discrete and it is possi-
ble to numerically try out all feasible bit loading combinations in order to find the
global optimum. An alternative to such an exhaustive search is to relax the problem
and extend the set B to allow for arbitrary positive bit rates. We do this in Chap-
ter 9 by using (7.8) to relate the real-valued bit rates to virtual minimum-distance
weights. This relaxation allows us to optimize the bit loading for any given MSE
matrix. The remaining problem of jointly optimizing the DF filters is characterized
in Section 9.3, together with a discussion on the loss due to rounding of the bit
rates. Finally, in Sections 9.5 and 9.6, various practical strategies for solving the
joint problem are presented and evaluated numerically.






Chapter 8

Design of optimal DF filters

Because the set of feasible bit loads is discrete, its optimization is not easy to
combine with the filter and precoder design. This chapter treats the filter design
problem alone, assuming a fixed bit loading. The problem is formulated as

myinimize |d(Russ D)l (8.1a)
subject to Te{FF*} < P. (8.1b)

In [PJ07, Theorem 4.3] it was shown how problems of this type (with monotonic
cost functions of the MSEs) can be reduced to a power-loading problem involving
a multiplicative majorization constraint!. In Sections 8.1, 8.2, and 8.3, we will,
for completeness, apply this procedure to Problem (8.1), and derive expressions for
the filters that are obtained in the process. In Section 8.4, we then show how the
resulting problem with a majorization constraint can be replaced with a convex
problem that is easy to solve numerically.

8.1 Optimal forward receiver filter

For a given transmit matrix, F', and receive DF matrix, B, the optimal forward
filter, W™, in the receiver is the well known MMSE equalizer

W*=(B+I)(F*H*HF +1)"'F*H*. (8.2)

The proof is given by completing the squares of (7.3) and then applying the matrix
inversion lemma?. Using the optimal forward filter, the resulting vector of weighted
MSEs is

d(RuseDy) = d((B+ D,/*)(F*H"HF +I)"'(B+ D,/?)"), (83)

LA short recapitulation on vector majorization is provided in Appendix 9.A.
2(A+BCD)'=A"1'-A"'B(DA'B+C 1) 'DA!
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where B & Dij/ 2B. Note that the MMSE equalizer minimizes any monotonic in-
creasing function of the MSEs and is thus optimal for a wider class of cost functions
than considered here.

8.2 Optimal feedback receiver filter

Consider the Cholesky factorization of
(FFH*HF +1I)"' = LL", (8.4)

where L is lower triangular. Inserting (8.4) into (8.3) we obtain the weighted MSE
of subchannel i as

[RyseDulii = Y _|[(B+ Dy/*)L]; 1% (8.5)

j=1

Since BL is a strictly lower-triangular matrix (zero diagonal) it can only affect
the non-diagonal elements of the lower-triangular matrix BL + Dllu/ 2L. Hence, the
feedback matrix, B, that minimizes the MSEs in (8.5) satisfies

BL = — Ly (DY?L), (8.6)

where Lgirict (2( ) is the matrix that contains the strictly lower-diagonal part of X.
The optimal B is then

B=-D!*(L-D(L)L™, (8.7)
and the resulting minimum MSE of subchannel i is

[RaiseDulii = [Dy/*D(L)]7,; = [Dulisl L]} - (8.8)
Note here that the impact the precoder F' has on the weighted MSE is given entirely
via the squared diagonal elements of the Cholesky decomposition, L.

8.3 Optimal precoder: Left and right unitary matrices

The remaining filter to optimize is the precoder, F'. Consider the SVD of the
precoder matrix

F=UpSpV, (8.9)

where U p and V g are unitary matrices, and X is a non-negative diagonal matrix
but with a non-specified ordering of the diagonal. For arbitrary monotonic in-
creasing objective functions of the MSEs, the optimal left unitary matrix has been
shown to match the matrix of eigenvectors of H*H = V gz A3; V' [PCLO3], [PJO7,
Theorem 4.3]:

Ur =V, (8.10)
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where it is assumed that the diagonal of Agr is decreasing, and that the order of
the diagonal of X satisfies that Ay X g is decreasing. A proof of this statement
is also available in Lemma 2.5.1. Using (8.10), the right unitary matrix, Vg, can

readily be obtained from the SVD of L as
FPH*HF +I=Vp(S3pAL +)VyE = 1)
L=Vgp(SLAL +1)"Y2U%, '

where U is a unitary matrix that makes L lower triangular. Note here that the
diagonal matrix with the singular values Ay 2 (%A% + I)~'/? is in this case
ordered with increasing diagonal entries. Finally, also assuming L is known, the
singular values of F' are obtained from Ay and Ay as

SE=AF (A2 -1T). (8.12)

With the optimal W*, B, and U g, the remaining optimization problem is

minimize HDw|d(L)|2Hp (8.13a)

subject to L=Vg(D(o)A%4 + 1)U, (8.13b)

[L];; =0 Vi<j, (8.13¢)

Ve, U€el, (8.13d)

o >0, (8.13¢)

1o < P, (8.13f)

where we introduced the power vector o = d(E%), that represents the power

assigned to each spatial channel, and where U is the set of all N-dimensional unitary
matrices.

Now, optimizing the unitary matrices V g, U, directly is very difficult. From
the expressions of the optimal DF filters we see that the filters either implicitly
or explicitly depend on the lower triangular matrix L. By optimizing L instead
of Vg, U, we can avoid the unitary constraints. In order to do this we need a
way to specify the singular values of L as an optimization constraint. Fortunately,
this is possible since the diagonal elements of a triangular matrix are equal to its
eigenvalues, and it is known that the absolute values of the eigenvalues are always
multiplicatively majorized by the singular values (cf. [HJ91]). Interestingly, this
necessary condition is also a sufficient condition on the triangular matrix L: For
a given power load, 2%, and a specified vector d(L), one can uniquely determine
(using generalized triangular decomposition (GTD) [JHLO§]) the lower triangular
matrix L if and only if

|d(L)| 7% =« d(ZFAy + ), (8.14)

where <, denotes multiplicative majorization [MO79, PJ07]. The proof of this
statement was given in [JHLOS8|, and for completeness, in Appendix 8.A a short
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introduction to GTD is provided. With this necessary and sufficient condition on
the diagonal elements of a triangular matrix we can replace the constraints (8.13b),
(8.13c), and (8.13d) with the majorization constraint (8.14). Matrix notation be-
comes tedious (and unnecessary) to work with at this point, instead define the
vectors w = logd(D,,), €& = log|d(L)|~2, and use (8.14) to pose the equivalent
optimization problem in vector notation as

miréimize [lexp(w — &)]|p (8.15a)
subject to € < log(A} o + 1), (8.15b)
o >0, (8.15¢)
1T < P, (8.15d)

where =< denotes additive majorization. The vector w relates to the MSE weights
of the problem and we call it the log-weights vector. The vector £ has the interpre-
tation of data rate (see (8.15b)) and we name it rate vector?.

8.4 Optimal precoder: Power allocation

The optimization problem (8.15) is somewhat difficult due to the majorization
constraint. Fortunately a simpler convex problem can be considered instead, as
will be shown in this section. Because the p-norm is symmetric and because a
majorization inequality is invariant to permutations of the vector elements, we can
without loss of generality assume the subchannels are ordered such that both w
and A £ d(A%;) are decreasing.

Now that we have fixed the ordering of w and A, we may consider the following
optimization problem

miréimize [lexp(w — &)]|p (8.16a)
o
i
subject to Z (Ej —log(1 + aj)\j)) <0 Vi, (8.16b)
j=1
o >0, (8.16¢)
1Te < P. (8.16d)

Note that Problem (8.15) differs from (8.16), in that the majorization constraint
has been replaced with another (similar) constraint that does not include the mono-
tonic rearrangement of the vector elements. Although the two problems seem to
be different, the following theorem states that the both problems share the same
optimal solution.

3Note also, that £ is the logarithm of the inverse of the MSEs, which corresponds to the mutual
information over AWGN channels using Gaussian codebooks.



8.4. OPTIMAL PRECODER: POWER ALLOCATION 85

Theorem 8.4.1 Given that A and w are decreasing, the optimum solutions of
problems (8.15) and (8.16) coincide.

Proof: First we show that if A is decreasing, then the optimal power loading,
o, for problems (8.15) and (8.16) must ensure that A%o is decreasing: Assume
that A%J has a strictly positive diagonal. Define o = quo'. Let IT be an arbi-
trary permutation matrix. Define an alternative power allocation, &, that yields
a permutation of a as A%I& £ IIa. Now, the total power consumption for the
alternative power allocation is 116 = 1TA;{2Ha. Because AI_JQl is increasing by
assumption, the permutation matrix that yields the minimum power consumption
is the one that makes Il decreasing. Consequently, if « is not decreasing then it
cannot be optimal, and for both problems the optimal solution yields a decreasing
vector log(A3o + 1).

As a consequence, by forcing the vector A%IO' to be decreasing in both prob-
lems we do not change their corresponding optima. The two problems can therefore
be reformulated with more strict constraints: The reformulated version of Prob-
lem (8.15) is

miréimize | exp(w — &)||, (8.17a)
subject to ZEM —log(1+ Njoj) <0 Vi, (8.17b)
j=1
N N
Zfi = Zlog(l + Xioy), (8.17¢)
i=1 i=1
Ao > )\i+10i+1 V1<i<N, (817(1)
o >0, (8.17e)
1o <P, (8.17f)

and the corresponding reformulation of (8.16) is

miréimize [lexp(w — &)]|p (8.18a)
i
subject to Zgj —log(1+05);) <0 Vi, (8.18b)
j=1
N
> & —log(1+0;)) =0, (8.18¢)
j=1
o > )\i+10i+1 Vi<i< N, (818(1)
o >0, (8.18e)

1Te < P. (8.18f)
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Note that the equality constraint (8.18c) is a consequence of the objective (8.18a)
being decreasing with respect to &y, so that the optimal £ must achieve the upper
bound defined by the only inequality containing &y .

From the definition of monotonic rearrangements we have

G G (8.19)
j=1 j=1

and we see that Problem (8.18) is a relaxation of (8.17). Furthermore, since
the function | exp(—z)||, is Schur-convex with respect to z, and because w and
log(A3;0 + 1) are decreasing, it can be shown, due to the constraints (8.18b), that
the optimal £ in (8.18) will be decreasing. The proof is given later in Theorem 2,
Chapter 10. This means that the optimum of the relaxed problem (8.18) is also a
feasible point given the constraints in (8.17). Hence, the problems (8.17), (8.18),
(8.15), and (8.16) have equivalent optimal solutions. O

Problem (8.16) is convex and can be solved numerically with relative ease using
standard tools for convex optimization [BV04]. In Section 8.5, we present an algo-
rithm that solves the problem exactly with only O(N) complexity.

To summarize, Figure 8.1 shows the flow chart for calculating the optimal DF
filters. The first step is to compute the power loading, o, and rate vector, &, e.g., by
using the algorithm in Section 8.5. The second step uses the generalized triangular
decomposition to compute the Cholesky factor, L. The third step computes both
the precoder, F', and the feedback filter, B, from L. Finally, the feed forward filter,
W™, is computed from F' and B. Note that after the first step we can already
evaluate the objective value. It is therefore less computationally demanding to
evaluate the performance than it is to compute the optimal filters for a particular
bit loading. This fact allows us to reduce the complexity when an exhaustive search
for the jointly optimal bit loading is performed (as was proposed in Section 7.4).

8.5 Algorithm that solves Problem (8.16)

Algorithm 1 presented below solves Problem (8.16) exactly with only O(N) com-
plexity. The proof of this statement is available in Appendix 8.B. The algorithm
has some similarities with an algorithm presented in [JHLOG6] that solves the quality
of service (QoS) constrained MSE optimization problem.

The input to the algorithm is the decreasing vectors w and A of length NV,
and the p parameter. In the algorithm, the arrow ‘—’ denotes assignment of a
variable, ‘&’ and ‘|” denotes the logical operators AND and OR respectively. When
the algorithm terminates, the result set consists of the following variables: ¢, «,
Iy, ..., 14, and Cy, ..., Cy—1. The sequence Iy, ..., I, is an ordered subset of the indices
0,..., N and it defines the indices for which the constraints (8.16b) are satisfied with
equality. Within each interval I; + 1, ..., I; ;1 the optimal power allocation follows a
waterfilling-like solution where the water levels are given by e“*~®. From the result
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Alg. 1 GTD SVD
b £ o )| L F, B w*
A% Vi Un

Figure 8.1: Flow chart for the calculation of the optimal DF filters given a bit
loading vector b. Alg. 1 denotes the algorithm in Appendix 8.5, GTD denotes
generalized triangular decomposition.

set we can calculate the optimal power assignments o1, ..., o, and MSE exponents
&1, &N, as:

e Forall j=1,+1,...,1;41, and for all i =0, ...,q — 1, assign

oj= (=T G =w—p'Ci—a (8.20)

o Forall j=1,+1,..., N, assign o; =0,§; = 0.

In the algorithm two lines are tagged as ‘Pos X’ and ‘Pos Y’, these are merely
comments that will be used as references in the proof related to the algorithm.
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Algorithm 1 Power allocation algorithm

1: Allocate memory for the following vectors of length N + 1:
110}, ..., I[N], C[0], ..., C[N], K[0], ..., K[N].

2: Initialization of variables:
I0] —0,q«— 0, n <0, k<0,
s« 0, A < true, B < true.

3: Foralli=1,..,N: _ 5 )
Wi = Y wis Gi— 3 A he = Y0 log AT
Wo = ho = Jo = 0.

4: while A| B do

5:  Given I[g] and n, calculate the highest k € {[[q] +1,..., n} such that v > log A\, ' +

(1 + B)a, where

W — g + b — Py
k+np=t — (1+p~1)I[g]’
k+np=t —(1+p~1)I[g]’
and finally « that is evaluated by solving the non-linear equation

Y

(P+ gi)e” = s + (k— I[g) =

6:  Klq] — k—1Ilq]
7 Clg] < v — B
8 % PosY:
9: if (¢ > 0)& (Clg — 1] < C[q]) then
10: qg—q—1
11: s s— K[q] el
12:  else
13: if n < N then
14: A—(k=n)& (wnH —a>p t(logA, i, + a))
15: B~ (p~'Clg] < wnt1 — @)
16: else
17: A « false, B < false
18: end if
19: % Pos X:
20: if A|not(B) then
21: 5« s+ K[q] 19
22: q+—q-+1
23: Ilg] —n
24: end if
25: n—n-+1
26: end if

27: end while
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Appendix 8.A Generalized triangular decomposition

The generalized triangular decomposition (GTD) [JHLOS] is a matrix decomposi-
tion that can be seen as a generalization of many well-known decompositions includ-
ing; the singular value decomposition [Bel73, Jor74], the QR factorization [Giv58,
Houb8], and the geometric mean decomposition [KS00, JHLO5]. A rank K matrix
X € CM*N is decomposed as

X =URV™, (8.21)

where R € CKXK is upper triangular, and U, V are matrices with orthonormal
columns. From [JHLO8|] we have the following theorem:

Theorem 8.A.1 Let X € CM*N have rank K with singular values o1 > o9 >
... 2 0 > 0. There exists an upper triangular matric R € CEXK with diagonal
prescribed by r, and matrices U, V' with orthonormal columns such that

X — URV", (8.22)
if and only if |r| <« o.

Along with this theorem, an algorithm that produces R given r and o is presented.
Below we give a brief overview on the main steps of the algorithm.

First, we note that by using the SVD of X = U xXV'%, an equivalent problem
is to find the unitary matrices U and V such that

USV* =R, (8.23)

where the diagonal of the upper triangular matrix R is prescribed. Now, con-
sider the simplified case with matrices of dimension 2 x 2, and denote the diagonal
elements of 3 as o1 and o2. By using the following parametrization

2 _ 2
co Bzl o AT (8.24)

Vol = oo

we construct a unitary matrix, V', as

V:[ ¢ z} (8.25)

—S

Then, we perform the QR decomposition of ZV* = U*R, where U is a unitary
matrix, to obtain the GTD as

1| cor  so3 op 0 c —s B T X
™| —soy coq 0 o2 5 ¢ - 0 r |, (8.26)
U b v R

The same procedure can be applied to matrices of higher dimension. By multiplying
the given diagonal matrix 3 with unitary matrices that linearly combine a pair of



90 CHAPTER 8. DESIGN OF OPTIMAL DF FILTERS

rn X | X X X X r X X | X X X
0 79| X X X X 0 ro X | X X X
0 0 o3 0 0 0 0 0 T3 X X X
0 0|10 o4 0 O 0 0 O0joy O O
0O 00 0 o5 O 0 0 0|0 of O
0O 0|0 0 0 o 0 0 0|0 0 o}

Figure 8.2: One iteration in the GTD algorithm. The left-hand side shows the
state of the R matrix before multiplying with a unitary matrix pair that enforces
the third diagonal element to the prescribed value rs. The result is shown in the
right-hand side. Note how the lower right submatrix remains diagonal but with
modified diagonal entries.

diagonal elements ¢, 7, we will get a new triangular matrix R. The diagonal elements
of R remains unchanged except on the positions ¢, and j, for which the diagonal
elements are r; and ry. By repeating the procedure for elements i =1, ..., N —1 and
j >4 we can transform the diagonal from o to r one element at a time. Figure 8.2
shows one iteration in the GTD algorithm.

Perhaps the most fascinating aspect of the GTD algorithm is that, by rotating a
matrix X with a unitary matrix W, we can change the eigenvalues of X arbitrarily
(to A) provided the majorization constraint A <, o is satisfied: Say we want to
change the eigenvalues to A. First compute the GTD of X such that the diagonal
elements of R is A. We have

X =URV™. (8.27)

Then define the unitary matrix W = VU™ to obtain
XW =URU*=URU . (8.28)
The diagonal elements of a triangular matrix R are equivalent to its eigenvalues,

and since URU ! and R have identical eigenvalues, the eigenvalues of XW are

A

Appendix 8.B Proof of Algorithm 1

In order to avoid numerical complications with the infinity norm, the norm coeffi-
cient may be redefined as

p=pteclol] (8.29)

Consider the optimization problem in (8.16). Since the problem is convex, the KKT
optimality conditions [BV04] are necessary and sufficient conditions for optimality.
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Using €1, ...,ex and & as duality variables the KKT conditions can be posed as*
N
& =w; — ¢log (cZ) Z ej>, (8.30a)
j=i

ai(a—lﬁfein1)+, (8.30D)
j=i

€20, Vi, (8.30¢)

E(EZQ*k%O+UMﬁ):& Vi, (8.30d)
j=1

i

> & —log(l+0;4) <0, Vi, (8.30¢)

j=1

1Te =P (8.30f)

The core when solving these conditions is to identify the set of indices where €; > 0.
Once these are known, the remaining conditions follows straightforwardly, as will
be shown. Denote these indices Iy, ..., I, and define also Iy = 0. As a first step
we will refine these KKT conditions to a set of conditions that are more easy to
handle, then we will show (inductively) that the result set of the algorithm will
satisfy the conditions.

The summation Z;v:l €; that appears in (8.30a) and (8.30b) remains constant
for indices ¢ in intervals, defined by I, ..., Ig as

{ EI’I“ £ {1+Ira~'~7]r+1}7 (831)
where 7 is the interval index and ranges from 0 to ) — 1. To see this, note that
=0 V e, \{l 41} (8.32)
Now, introduce the following interval coefficients
N Q@
Cb:bng§: q)——q Vr=0,..,Q—-1, (8.33)
j=1+1I, ¢

where the variable « is defined as

Co+1
4For simplicity we have eliminated the possibility of § = 0. It is easy to verify that this is not

a solution to the KKT conditions; § = 0 = ¢; = 0V 4, which leads to infinite power, which in turn
contradicts the fact that § = 0.

! log(d¢). (8.34)
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With these definitions in place, we can make substitutions into the conditions (8.30)
for & and o; as

g — Wy — - C’l“ .
G=w—a ¢A1)+ } Viel, Vr. (8.35)

i = (e i

Furthermore, the condition €¢; > 0 for all i combined with the definition of the
intervals can be replaced by the condition that C, is strictly decreasing with 7.
Consider condition (8.30d), because we know that €; is zero for all i except for

i €{l,1I,...,Ig}, for which ¢; is strictly positive, we must have

> & —log(l+0;0)=0, Vr=0,.,Q-1 (8.36)
JEL,

From the above substitutions we can simplify the KKT optimality conditions to

S =wi—a—o¢C., Yiel., Vr, (8.37a)
op= (S -\, VieZ, Vr=0,.,Q-1, (8.37h)
> & —log(l+0;0) =0, Vr, (8.37¢)
JEL,

1Mo =P. (8.37d)
Co>Cy>...>Cqn, (8.37¢)
i:fj —log(1+0;X;) <0, Vi, (8.371)
j=1

If we ignore the inequalities in (8.37), we have in total 3Q) 4+ 1 equations and 3Q) +1
unknowns, so given a set of indices Iy, ..., I we also have a unique solution. The
problem is to find the set of indices Iy, ..., Ig that gives a solution that also satisfies
the inequalities. We will find this set inductively by assuming the optimal set
I, ..., 14,1441 has been obtained for a system of size n, then add one extra element
and see how this changes the optimal index set.

The algorithm steps through the indices n = 1, ..., N one by one. In each step
the optimality conditions will be ensured for the indices 1,...,n. At each specific
step, n, we have ¢ + 1 intervals defined by the index sequence Ii,..., I3, n. Note
that by assuming we have optimality, both C;. and \; are decreasing, and hence the
sequence e€r— — )\;1 must be decreasing too. This implies that there is exactly
one index k that is the highest index with a non-zero power allocation ;. This
index is denoted the water-level index, and it must satisfy

log Aty > Cr — o > log A (8.38)

If C; — a > logA,! then k = n. In the following we assume k > I, because, as
will be shown later, when k < I, our problem is solved since the remaining set of
indices Ig441,...,/g can be obtained instantly.
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For notational simplicity in the lemmas and theorems below, we introduce the
following definitions and relations

h; =log A\ !, (8.39)
k] :mln(j7k)a 840
K, =min(k,I,4+1) — I, 8.41)
J k;
i=I.+1 i=I.+1
g(jakaL“) = (];] 7IT)+¢(.7‘7]T)7 (843)

where we use the following (integral-style) convention for reversing the limits of

summation , ,
i=1 i=1

1=a+1 i=b+1

Applying these definitions to the equations in (8.37) we can isolate Cy, ..., Cy from
the &;’s and o;’s as

f(Ir+17 k; I’r‘)

C,= Vr<aq,

" g(ITJrl;kaIr) 1 (8 45)
o _ k1)) — (0= F)a |

! g(n7 k, Iq)

Again using the new notation, KKT condition (8.30f) can be posed as
k q
P4+ et =YKo, (8.46)
i=1 r=0

which will be referred to as the power equation. So, given the index set Iy, ..., I, n,
and a water-level index %k, we can uniquely compute Cy,...,Cy and a from equa-
tions (8.45) and (8.46). In order for this solution to satisfy the KKT optimality
conditions the inequalities in (8.37) as well as the inequalities relating to k needs
to be fulfilled:

o Firstly, C, has to be decreasing

Co>Ch>...>C4. (8.47a)

e Secondly, the water-level, k, index needs to satisfy

k<n: hk+1>Cq—ath

k=n: Cy—a>hy (8.47b)
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e Thirdly, for all j = I, +1,...,n, we need
f(]a k’ Iq) S g(]a ka IQ)CQ + (] - lj‘:j)a' (847C)
e Finally, for all j € Z, and all r < ¢

Uk L) < g4, k, I)C,. (8.47d)

The following lemmas and theorems provide a proof that Algorithm 1 produces
a sequence I1, ..., Ig, with the corresponding Cy, ...,Cg_1 and o that satisfies the
optimality conditions (8.47). Most lemmas and theorems will compare the state
of the variables on two time instances (positions) in the algorithm. The variables
relating to the first position (in chronological order) will be denoted as in the
algorithm description, i.e. n, g, Cy, 7, etc., while the variables relating to the
later position will be denoted as primed, i.e. n/, ¢', C;,, 7/, etc. Note also that
mixtures will occur: For instance C’(’] means the value of variable Cy in the second
chronological position, but with the index ¢ with the value as it is on the first
position.

Lemma 8.B.1 If A is true at the line ‘Pos X’ in Algorithm 1 (in the following we
will simply refer to Pos X and Pos Y for the corresponding lines in the algorithm),
then the state variables will satisfy k = n the following stop at position Pos Y, i.e.
using the prime notation introduced above we have k' = n'.

Proof: If A is true at Pos X, then I +1 = n/ and consequently &' = n/. However,
we need to check that this k' satisfies v > hy + o’ (otherwise &’ is not defined in
the algorithm): Using the condition for A to be true we have

’_ wnJrl +hn+1
1+¢

The power equations at Pos X and Pos Y respectively are

> hn+1 + a. (848)

(P + gn)e® =5, (8.49)
(P+ g +em)e = + e (8.50)

Combining these equations with the +' inequality we get
(P + i + €mi1)e® > (P + G + e'n1)e”, (8.51)

and « > «. So we have shown that v/ > h,+1 + o and thus &’ is well defined and
equal to n’ at the following Pos Y. O
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Lemma 8.B.2 Between two stops at Pos X where k < n and k' # k, we have the
following inequalities

f(]a kla IT) § f(]; k, Ir) + (l;f; - ];])(C:]/ - Oél), (852&)

fOK L) = [0 k1) + (K — k) (Cq — ). (8.52b)

Proof: From definitions (8.42) and (8.47b) we have, assuming k' > k:

k)
fGK I) = G,k 1) = hi < (K — k;)(Cl — o), (8.53)
i=];j+1
and similarly
K
fG K L) = f(G,k, I,) = hi > (K — k;)(Cq — ). (8.54)
i=k;+1

Assuming k' < k, we first note that &’ < n < n’ and we have

k;
fG K L) = fG,k, 1) = — hi < (k) — k;)(Cl — o), (8.55)
i:l;;+1
and similarly
k;
GRS L) = [k, L) = — hi > (k5 — k;)(Cy — ). (8.56)
i:E;+1

Lemma 8.B.3 At Pos Y, if Cq—1 < Cq we perform a merge in the following if-
statement. The result (the consecutive stop at Pos Y) will then satisfy Cy—1 < Cj_;.

Proof: Whenever C,_1 < Cy, a merge will take place between intervals {I,—1 +
1,.., I} and {I; +1,...,n}. Similar to the proof in Lamma 8.B.2 we have

f(nvklalq—l) > f(Iq7k7Iq—1) + f(nvkalq) + (kl - k’)(Cq - a)

8.57
> g(n. K\ Iy 1)Cqr + (n— K)o (8:57)
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where the last inequality use (8.45). So then, if @ > o' we have C;_; > Cy—1. If
on the other hand o’ > «, then the power equation gives

k' q—2
(P + Z eh")eo" = K(’I_leczlz—l + Z K,er
i=1 r—1

, (8.58)
k q—2
(P + Z eh")eo‘ < K(’I_lecqfl + Z K,eCr
i=1 r=1
At the same time, using the fact that Cy; > Cy_1 along with (8.47b),
k q—2
(P + Z ehi>e“ = qucq + qu,leC“*1 + Z KTeCT
i=1 r=1
- Vo (8.59)
(P + Z ehi>e“ > K('FleC“*1 + Z K,efr
i=1 r=1
and consequently C;_; > Cy_1. O

Lemma 8.B.4 On two consecutive stops at Pos X, if (8.47a) is satisfied at the
first stop and if ¢ < q, then C}, > Cy and o’ > a.

Proof: Because we are at Pos X, we have Cy—1 = Cj,_; > C,. Since ¢’ < ¢, at
least one merge has occurred, from Lemma 8.B.3 we have C’;/ > Cg. Since the
sequence is valid initially we must have Cyr_q > C’;/ > Cq > ... > Cq. Apply this

result to the power equations

k q -1
(P doem)er = 3 s (3 K)o,
i=1 r=1 r=q’
i , (8.60)
q—1 q ,
(P doet)er < 3 Kee (3 K)o
i=1 r=1 r=q’
hence o' > a. O

Lemma 8.B.5 On two consecutive stops at Pos X, if ¢ = q then

C; >0, < o >a. (8.61)
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Proof: Consider the power equations (8.46) and (8.38)

k q—1
(P + Z e}“)e“ = K, e + quCq,
i=1 r=1
k q—1
(P + Z eh")ea > K, e + qucq,
i=1 r=1
o -1 (8.62)
(P + Z e}“)e“ = K, e + K;ecq,
i=1 r=1
K q—1
(P + Z e}“)e“ > Z K, e¢r + K;ecq
i=1 r=1
From these inequalities we can derive C; > C; <= o' > a. O

Lemma 8.B.6 If A is true at Pos X and the state is optimal up to this point, then
the state is optimal the next time the algorithm reaches Pos X.

Proof: If ¢ = g+ 1, we have C(']l_1 > C('I, and we have CI. = C, for all r < ¢/, thus
condition (8.47a) is satisfied. From Lemma 8.B.1, we have k¥’ > k = I, conditions
(8.47d) are satisfied. Finally, since K, = 1, (8.47c) is satisfied.

If ¢ < g, then a number of merges have occurred. We have C/. = C,., for all
r < q and Cj,_, > Cy,, and consequently condition (8.47a) is satisfied. Similarly,
the conditions in (8.47d) are satisfied. Lemma 8.B.3 implies that Cj, > Cy, and
because the state was optimal the first time at Pos X, we have

fGkIy) < g(3,k, 1g)Cl + (5 — k) (8.63)
Lemmas 8.B.4, 8.B.5, and 8.B.2 give

FG K Ty) < fG R Iy) + (K] — kj)(Ch — o)

. g (8.64)
< g(]a kl7Iq')CgI(’ + (.7 - k;’)al7

which satisfy condition (8.47c¢). O

Lemma 8.B.7 Between two consecutive stops at Pos X, if A is false, B is true,
and the state is optimal initially, then o’ > o and C('I, > Cy.
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Proof: Since A is false and B is true we have ¢’ < ¢. For the case ¢’ < ¢, we
have o’ > a by Lemma 8.B.4. For the case ¢ = ¢, using ¢Cy + a < wp41 and
Lemma 8.B.2 we have
fn+ LK 1) > f(n.k, 1) + (¢ + & — k)Cot
+ (1=K +ka =

/ _ _ /
fln+ LK, I;)—(n+1 k)a> (8.65)
gn+1,k,1,) -
[,k 1g) — (n— k)o
2 =Cy.
g(n,k, 1)
So if ¢ < « then C’(’J > (4, which is a contradiction due to Lemma 8.B.5. Conse-
quently o/ > o and C7, > Cy for all cases ¢’ < g¢. O

Lemma 8.B.8 If A is false and B is true at Pos X, and the state is optimal up to
this point, then the state is optimal the next time the algorithm reaches Pos X.

Proof: We will show that (8.47c) is valid. From Lemma 8.B.2 we have

FGK Ty) < [0k 1) + (K = k) (Cyp — o) (8.66)
and using the fact that (8.47¢) is valid initially we have
FGok Iy) < 90 ks Lo )Co + (G = Ky, (8.67)

for all j = Iy +1,...,n. By Lemma 8.B.7 we have o/ > o and C}, > Cy for all
cases ¢’ < ¢, hence (8.47c¢) is satisfied as

f(]a kla Iq/) § g(]a k/a Iq’)c(/]’ + (] - ];:_;’)O/a (868)

forall j =1y +1,...,n. O

Lemma 8.B.9 If (8.47) is satisfied up ton < N and A as well as B are false at
Pos X, then the algorithm has calculated the optimal index set and should terminate.

Proof: If ¢ > 0: For all j =1,..., N — n, construct the following elements

Wn4j — &

Z (8.69)

Cqﬂ' =
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Note that (due to the fact that B is false and the decreasing sequence w,, 1) we
have Cq > Cy41 > ... > Cyyn—n. Note also that since A is false, a will not be
affected by these new elements. This means that we have found the optimal index
set I, ..., [g+ N—n, and the algorithm can terminate.

If ¢ = 0: We have reached the point where w,11 < «, it will not be possible
to add any more elements. The optimal index set Iy, ..., I;, has been obtained and
the algorithm can terminate. O

Theorem 8.B.10 Algorithm 1 produces the solution that satisfies the KKT condi-
tions (8.30).

Proof: Initially, n =1 and

w1 + h1

1+¢
Note that Cy > h1 + «, so k = n = 1. Clearly since there is only one element C4
with only one index n = 1, all optimality conditions (8.47a), (8.47c), and (8.47d),
are satisfied at Pos X. By induction and using Lemmas 8.B.6 and 8.B.8 we then
know that every time the algorithm passes by Pos X, the index set satisfies con-
ditions (8.47a), (8.47¢), and (8.47d). Finally, when eventually A is false and B is
false, Lemma 8.B.9 tells us that the optimal index set has been obtained. O

Cy = a=C —log(P + ™). (8.70)

Lemma 8.B.11 Between two consecutive stops at Pos X, the water level index
does not decrease k' > k.

Proof: If A is true, by Lemma 8.B.1 we have k¥’ = k + 1. If A is false and B is
false, then the algorithm terminates and there is no next stop. If A is false and B
is true, we have by Lemma 8.B.7 ¢’ < ¢, o/ > avand C}, > C,. Now assume k' < k,
then Cj, — o’ < hy < Cy — a. Consider the power equation

q-1

k/
. / — / . ’
P+ E el :Ké/ecq’ * 4 E K, efr—«
i=1 =1

< Ké/ecq*a + Z K.efr2, (8.71)
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Since (8.47a) is satisfied,

k q
P+ el <y Ko, (8.72)
i=1 r=1
which contradicts (8.46). Hence &k’ > k. O

Theorem 8.B.12 Algorithm 1 has linear complexity.

Proof: Between two consecutive stops at Pos X, n is increased by one untiln = N,
when the algorithm terminates. When the algorithm has finished there have been
at most twice as many stops at Pos Y as there have been stops at Pos X since ¢ > 1.
By Lemma 8.B.11, k& does not decrease between stops at Pos X, hence the search
space for k does not grow with N. Consequently complexity of the algorithm scales
linearly with N. O



Chapter 9

Optimal bit loading

This chapter switches focus to the bit loading problem, i.e. the problem of com-
puting the optimal b in (7.15). In Chapter 8, it was shown that for any weighting
vector w, Problem (7.15) can be simplified to the form (8.15). Because the bit
loading and the DF filters are coupled only through the cost function (there are
no common constraints), the results from Chapter 8 can be incorporated into the
original problem formulation (7.15) as

miginyre Jexp(w — &)1l (9.1a)
subject to € <log(A%o +1), (9.1b)
o >0, (9.1¢)
1Mo < P, (9.1d)
w; = —logd?,,(bi) Vi, (9.1e)
b;eB Vi, (9.1f)
1"b=R. (9.1g)

In general, the set of available constellations, B, is discrete. In particular, if QAM
constellations are used the bit rates are restricted to positive, even integers. The
set of feasible bit rates is then

b; € {0,2,4,..} Vi, (9.2a)
1"b=R. (9.2b)

Clearly, the feasible set is finite and it is possible to compute the optimal bit loading
numerically by trying out all possible candidates. This observation does however
provide little insight into the overall behavior of the system. It is also questionable
whether it is worth the computational burden to globally search all possible bit
loading candidates. In order to gain more insight and to find heuristics for comput-
ing the bit rates more efficiently, the following section considers optimizing b while

101
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the vectors € and o remain fixed (recall that Chapter 8 was optimizing & and o for
a fixed b). Then, later, Section 9.3 will be devoted to the joint optimization of all
three vectors €, o, and b.

9.1 Continuous bit loading relaxation

Optimization of the discrete-valued bit loading is difficult in closed form. One
way to approach this optimization problem is to relax the set of bit rates to the
continuous domain (by ignoring the constraint (9.2a)), so that b can be analytically
optimized. This leads to the continuous relaxation of Problem (9.1), where B = R..
In order to specify constraint (9.1e), we assume for simplicity that the constellations
are QAM. Then, using (7.9), the log-weights w depend on the bit allocations as

e® =d(D,) =€’ -1, (9.3)

where the unit of the rate has been changed to nats (rather than bits) in order to
simplify the notation below. For a given & and o, using weights defined by (9.3),
the continuous relaxation of Problem (9.1) with &, o fixed, is then formulated as

N
i bi —pts

minimize e’ — 1)Pe7Pst) 9.4a
iy 2 (=) (9-40)

N
subject to Z bi =R, (9.4b)

i=1
b >0 Vi, (9.4c)
where we use the fact that || - ||, and | - [|? are minimized simultaneously'. Note

(by inspection) that the problem is convex.

Theorem 9.1.1 The optimum bit allocation in (9.4) is given by
bi=gv+&) Vi=1,..,N, (9.5)
where the function g(x) is defined as

{ r=(1-p1log (1—@‘9(”)) + g(z), if p>1 (9.6)
g(z) = (x)F, if p=1" '
and where v is chosen so that

N

Zg(z/Jrfz') =R. (9.7)

=1

1The infinity norm is not well defined at this point and has to be treated separately. The
conclusions of the following discussion are however valid for the infinity norm as well.
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Figure 9.1: The g(z) function for different levels of p.

Proof: In the following proof we assume p € (1,00). The proofs for p =1 and p —
oo are similar but needs to be treated separately and are given in Appendix 9.3.2.
Disregarding, for a while, the constraint that b must be positive; minimizing the
Lagrangian cost function of (9.4) yields the optimal solution to the problem as

pebi(ebi _ 1)7”’1@’7”5" =60 Vi=1,...,N, (9.8)

where 6 is the non-negative dual variable such that constraint (9.4b) is satisfied.
Equation (9.8) contains multiple roots. However, if there exists a root with strictly
positive b;’s, then it must also be a global optimum to the convex problem (9.4) (a
convex problem does not have local optima unless they also are global optima).
Taking the logarithm of (9.8) and performing some rearrangements yields

flbi) £ (1 —p Hlog(l—e ) +bi =p 'log(fp™") +&. (9.9)

Note that the function f(b;) is real valued when all b;’s are positive. By inspection,
f(b;) is strictly increasing, concave, and it maps the set (0, 00) to the set (—oo, 00).
Because f(b;) is strictly increasing and concave, the inverse function g(z) exists and
is strictly increasing and convex. Figure 9.1 shows the function g(z) for different
p’s. Following (9.9), the function g(x) must satisfy

z=(1-p "log(1- e*g(x)) + g(z). (9.10)

This implies that for any vector £ there exists one and only one solution to (9.8)
with strictly positive bit rates, b, given by

bi=g(v+&) Vi=1,..,N, (9.11)

where v £ p~llog(6p~'). O
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Given a rate vector £, equations (9.5) and (9.7) uniquely determines the optimal
bit loading (as well as v). These equations will later be applied to eliminate b from
the joint optimization problem.

The observant reader may have noticed that the optimal relaxed bit loading will
never be exactly zero on any subchannel. Instead of switching off weak subchannels
with zero bit loading, it turns out that it is more favorable to use an infinitesimal
(positive) bit rate. Of course there is no such thing as infinitesimal bit rates in
practice, it is worth to recall that the relaxation is merely a tool that we can use
to obtain practically implementable bit-loading candidates by means of rounding.
Fortunately, as will be shown in Section 9.4, the impact that a low-rate subchannel
has on the rest of the system is limited, i.e., the performance will remain close to
optimal if we turn off the low-rate subchannels. After the bit loading, these low-rate
subchannels will in any case be rounded to zero when we apply finite constellations.
The next section contains a comment on the sensitivity of the relaxed optimum
towards rounding.

9.2 Rounded bit loading

In practice, arbitrary real-valued bit rates are not implementable and the impact
of rounding or quantization of the bit rates has to be considered. Assume b, is the
optimal solution to the relaxed bit loading problem for some given rate vector &,
and assume that b’ is the rounded or quantized version of b such that the sum rate
is R. Denote the logarithm of the objective function (9.1a) as

N
J(b,&) =p~log (Z(e”* - 1)”@"’&), (9.12)

i=1

where we have chosen the weights according to (9.3). The first order Taylor expan-
sion of (9.12) around the optimal bit loading b yields

N bi _ —1.bi ,—p&; §.
’  T(E Zi:l(e P~ levie P g,
J(b a€) ~ J(baé) + ep~](57€) )

(9.13)

where § = b’ — b. Now, using (9.8), and assuming both b’ and b satisfy (9.4b) so
that 178 = 0, the first order term in the expansion sums to zero

4 vazl 0;

e 0O, (9.14)

J(b', &) = J(b,€) +

This result indicates that rounding of the optimal relaxed bit loading can be per-
formed without too much loss in performance, although it is not clear how to quan-
tify the loss. In the following section the loss is quantified for the joint optimum
by making a distinction between low-rate and high-rate subchannels.
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9.3 Joint optimization of bit loading and filters

Now that we know how to obtain the optimal DF filters (via & and o) for a given bit
allocation (cf. Chapter 8), and how to optimize the bit allocation b given vectors &
and o, our next step is to combine these results into a joint optimization problem.

9.3.1 The bit-loading optimized objective

The optimal relaxed bit allocation from Theorem 9.1.1 depends on the rate vector &.
By inserting the optimal bit loading into the refined transceiver problem (8.15), we
obtain a new objective with a dependence on £ that is not as easily characterized
as before. This section analyzes the behavior with respect to & of such a bit-
loading optimized objective. As it turns out, even though the dependency on £ is
complicated, it is still possible to determine the optimal £ as a function of o

The optimal relaxed bit-loading vector B, obtained from (9.4) in the original
objective, yields the following objective function

N ~
J(&1, .. én) =p tlog (Z(ebi - 1)”6_”57'), (9.15)

i=1
where the logarithm is introduced for later mathematical simplicity. The optimal
bit allocation must satisfy (9.5), which can be reformulated to?

PPt — (9 HE) _ )P (1 = e—.q(u+€7,))_17 (9.16)
and then, using b; = g(v + &) as
(el — 1)Pe P8 = eV (1 — e 90H8)) v, (9.17)

we obtain the bit-loading optimized cost function without the vector b as

N
J(gla"'agN) = V+p_1 logz (1 _e_g(l/—‘r&i))? (918)
i=1
where v is chosen such that N
> glv+&) =R (9.19)
i=1

Note that (9.18) is also valid for the co-norm when p~! = 0.
Using the new bit-optimized cost function, the remaining optimization problem
(that determines the DF filters) is

miréimize J(&) (9.20a)

o

subject to € < log(A}o +1), (9.20b)
c>0, 1Te<P (9.20c)

2Compare with (9.8).
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Although the problem is non-convex and perhaps difficult to solve, it turns out the
cost function is symmetric and concave which enables us to solve at least parts of
the problem with relative ease.

Theorem 9.3.1 The function J(&) is Schur-concave with respect to €.
Proof: See Appendix 9.C. O

A direct consequence of Theorem 9.3.1 is the following important corollary

Corollary 9.3.2 Orthogonal SVD-based transmission with no decision feedback is
always an optimal solution to the decision feedback problem, given that the optimal
relazed bit loading is used.

Proof: Because the objective is Schur-concave (see Appendix 9.A for definition),
the optimal vector € must satisfy the majorization constraint with equality (cf. [JB06]),
i.e. we have £ = log(1+ A%;0). This means that V g in (8.9) can be chosen as the
identity matrix so that the subchannels are orthogonalized. Orthogonal subchan-
nels implies that L is diagonal and that the optimal feedback matrix B is zero (see
Section 8.2). O

The remaining problem of computing the optimal power load, o, is in general a
problem with a non-trivial solution. However, the result above shows that it suffices
to use SVD-based bit and power loading schemes to compute a close-to-optimal bit
loading, e.g., by using the gap approximation (see Chapter 2.6.1). For the infinity
norm it is actually possible to obtain a solution for the optimized power.

9.3.2 Joint bitloading—power optimization: co-norm

In this section we derive the solution for the infinity norm. The problem of com-
puting the optimal power load o is

minimize J(log(A3jo +1)) (9.21a)
subject to c>0, 1Yo <P, (9.21b)

where v is given by the equation

N
> log ((Nioi +1)e” +1) = R. (9.22)

i=1

First we need to establish that the global optimum is solvable my means of differ-
entiation, i.e. we need to know that the cost function is convex.

Theorem 9.3.3 For the case p~' = 0, the Hessian of the function
J(log(Afyo +1)), (9.23)

with respect to o is positive semi-definite.
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Proof: See Appendix 9.D. g

Hence, the global optimum can be computed by solving the Karush-Kuhn-Tucker
(KKT) conditions of the problem. It turns out the solution is easier to obtain if we
reformulate the problem as follows. For the infinity norm p=! = 0, from (9.18) we
have J(log(A};0 + 1)) = v. This means that problem (9.21) is equivalent to

N

maxtiymize Z log (()\iai + 1e” + 1) (9.24a)
i=1

subject to c>0, 1Te<P, (9.24b)

Solving the KKT conditions yields the optimal o and v as the solution to the
following equations

oi=(n—-0+e)A N, Vi=1,..N, (9.25a)
N

R="> log (e’ (Nioi +1)+1), (9.25Db)
=1

P=1"0, (9.25¢)

where p is a dual variable such that the power constraint is satisfied. The optimal
bit loading is, after some derivations,

b; = max (log(\;) + a, log(e” + 1)), (9.26)

where « ensures that the total bit rate is R nats. Again we note the fact that zero
power on a substream gives a non-zero bit load

bmin = log(e” +1). (9.27)

Two reasons can explain this somewhat counterintuitive result. The first is that the
objective, to minimize the maximum SER, is not applicable when operating in the
high error-rate regime. To see this, consider the case when the data rate assigned
to a particular subchannel is very high, with the corresponding SER above 0.5.
In such case the objective can always be reduced by throwing away one bit (or
equivalently, put it on a subchannel with zero power) since the single bit has a
SER of 0.5. Table 9.1 illustrates this example in more detail. Bit Loading 1 puts
all eight bits on the only connected sub channel, while Bit Loading 2 throws away
two bits. It is clear that the min-max SER strategy is to throw away two bits,
although this is not the minimum BER strategy (which perhaps is more relevant
for the high error rate regime). The other reason for a non-zero b,,;, is that the
minimum distance formula (7.8) is exact only for QAM constellations with an even
integer bit rate and not well defined for bit rates close to zero.
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| Bit Loading 1 | Bit Loading 2
b (8 0;0) (6; 1; 1)
SER | (0.758; 0; 0) | (0.348; 0.5; 0.5)
BER | (0.142; 0; 0) | (0.064; 0.5; 0.5)
BER 0.142 0.173

Table 9.1: Bit loading on three additive white Gaussian noise channels with Gray
coded constellations. The first subchannel has 15dB SNR, while the other two are
unconnected (SNR: —oo dB).

In practice, however, for practically useful symbol error rates, the value of
bmin < 1 bits and will be rounded to zero rather than to QPSK. When round-
ing bin to zero, the optimal relaxed bit loading is

bi = (log(Xi) + a)+, (9.28)

which is identical to what is attained using the well known gap approximation® for
bit loading (in combination with optimal power loading) of orthogonal substreams
(cf. [PBO5] or Chapter 2). This confirms the conclusion drawn from Corollary 9.3.2
that one should use classical bit and power loading schemes designed for orthogonal
subchannels even if a DF filter is available. If it should happen that b,,;, is not
rounded to zero, then there are reasons to believe the system is operating in a
region for which the min-max SER is no longer a good objective.

9.4 Turning off low-rate subchannels

Theorem 9.3.1 relies on the continuous relaxation, and the behavior of J(&) for
discrete constellation sets is not clear at this point. On the other hand, as was
shown in Section 9.2, small perturbations of the optimal relaxed bit load will not
significantly alter the value of the cost function. So, rounding the optimal bit
loading should still remain close to optimal. In the this section, an upper bound
on the loss due to rounding of the bit rates is derived.

Essentially, rounding the bit loading corresponds to turning off low-rate sub-
channels and slightly perturbing the bit rates on the remaining high-rate subchan-
nels. We will show that the loss by turning off low-rate subchannels is relatively
small and then, that a system with no active low-rate subchannels is insensitive to
reallocations of the bit loading.

An interesting property of g(z) is that its asymptotes? coincide with the function
(z)T. Therefore, by analyzing (9.18), (9.19), we see that weak subchannels with

3In fact, by using the gap approximation b; = log(e’GAP (efi — 1) + 1) instead of the min-max
SER bit loading (9.5), it can be shown (similar to Theorem 9.3.1) that the objective vgap (&) is
also Schur-concave. Thus Corollary 9.3.2 holds for this bit loading strategy as well.

4First note that the range of g(z) is non-negative, then from (9.6) we see that g(z) > 1 =
z~g(z) and g(z) 0=z~ (1 —p~ ) logg(z).
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values of z that are negative or close to zero will have almost no impact on v or on
J(&1, ..., €n). These subchannels can consequently be turned off at a very low cost
in terms of performance. To formalize this, assume that £ is decreasing and that
all N — N weakest subchannels with indices i > N are turned off. This will result
in a new dual variable 7 and cost function J(y, ..., & N) as

N
(&, bg) = Pp M og Yy (1- e, (9.29)
i=1

}:gy+§ =R. (9.30)

The following theorem quantiﬁes the loss.

Theorem 9.4.1 The loss when turning off the N — N weakest subchannels can be
upper bounded as

= S a9+ &)
J(fla"'a&]\?)7J(£1;"';£N) < = ]X;rl 1_p—1 (931)
N =) is1 gorenp=
Proof: See Appendix 9.E. O

In order to get a sense of how this bound behaves, denote the sum rate of the

truncated subchannels v

Ap= Y glv+&) (9.32)
i=N+1
Assuming the active subchannels satisfy 9 (»+&) > 1, then the denominator in (9.31)
can be approximated with N, and the bound becomes
~ Ar R
J—-J < : 9.33
<22 (9.3
As an example, typical figures for Ar/R could be on the order of 10% while the
average data rate per active subchannel is typically less than, lets say, 3 nats. This
would correspond to a maximum loss of around 1 dB.
The next step is to see how the cost function behaves when all low-rate sub-
channels have been turned off. Given that all subchannels are high rate we can
apply e9(7+&) > 1 to the definition (9.6) and obtain

g+ &) =+ & (9.34)

By applying the asymptote to (9.30), the cost function (9.29) tends to

N
J(E1y ) j{: & +p tlog(N). (9.35)

ZI:U
ZI
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Given that the majorization constraint (9.20b) is satisfied, the following equality
holds . )

N N

> &= log(hioi +1), (9.36)

i=1 i=1
and we can eliminate & completely from (9.35). Interestingly, any & that satis-
fies (9.20b) can be used and still be optimal. Since there is a direct relation between
the optimal b and &, this result implies that we can redistribute the bit allocations
at a very low cost, provided the resulting & satisfies (9.20b) and the data rates on
the active subchannels remain sufficiently high.

The results in this section predict very limited losses when rounding the relaxed

bit loading. This fact is further motivated by the numerical results in Section 9.6
where almost identical performance of the truly optimal bit loading (achieved by a
global search) and the rounded optimal relaxed bit loading is shown.

9.5 Transmission schemes

Due to the potential high complexity of the truly optimal joint bit loading and filter
design, this section defines (in addition to the optimal design) three suboptimal
schemes: Two of which, in theory, should perform very close to optimal.

9.5.1 Optimal design

This transmission scheme is optimal in terms of (7.15). The strategy is to ex-
haustively search all combinations of bit loading allocations. For each bit loading
candidate, optimize the rate vector, &, and the power loading vector, o, by solving
Problem (8.16). Compute the weighted MSEs and use the bit loading with the least
weighted MSE.

9.5.2 Suboptimal bit loading

As Theorem 9.3.1 shows, the optimal relaxed bit loading allow us to make the DF
optimized system orthogonal. In [PB05], the so called gap approximation was used
for determining the constellations of an orthogonal system (see also Section 2.6.1).
The gap approximation is close to optimal for the orthogonal system, and since the
optimal bit loading with DF results in an orthogonal system it must be approxi-
mately optimal in this case as well.

Given that the power as well as the bit loading has been optimized (as was done
in Section 2.6.1), the gap approximation leads to the following bit loading

1 +
b =2 \‘5 10g2()\i) + Oé-‘ , (937)

where a is a constant such that ) .b; = R. The precoder, forward filter, and
feedback filter are then optimized for this particular bit loading.
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9.5.3 Orthogonal design

As was shown in Section 9.3, the optimal relaxed bit loading allows us to use
orthogonal subchannels. It was also shown that the first order Taylor expansion
around the optimal relaxed bit loading is constant. Hence, an optimal design under
the constraint that the subchannels are forced to be orthogonal should perform
almost as good as the two schemes above.

Use the gap approximation to compute the bit rates, then design the optimal
orthogonalizing precoder and forward filter for this particular bit loading. That is,
design the optimal precoder such that the interference among the subchannels is
zero. Since the subchannels are orthogonal for this scheme, the optimal feedback
matrix will be zero.

9.5.4 Equal rate design

The bit rates are distributed uniformly among all available subchannels. Again,
the precoder, the forward filter, and the feedback filter are subsequently optimized
for this particular bit loading.

9.6 Numerical results

In this section we numerically compare the schemes that was introduced in Sec-
tion 9.5. For simplicity, only the infinity norm has been considered as cost function.
Figure 9.2 shows a comparison of the scheme over an 8 x 8 Rayleigh-fading MIMO
channel. The data rate is set to 24 bits per channel use. The optimal design and
the suboptimal bit loading design have almost identical performance. This confirms
that the rounding of the bits does not affect the overall performance significantly,
and the DF filters compensate for small deviations from the optimal bit loading.
The orthogonal design performs only slightly worse, which is an indication that if
the appropriate bit loading is used, the importance of DF is very limited. The final
scheme, equal bit loading, shows that the bit loading is important for achieving op-
timal performance. The difference in performance is however less than one dB and
this indicates that DF can partly compensate for suboptimal bit loading. Figure 9.3
and Figure 9.4 illustrate similar results: In Figure 9.3, a 6 x 6 Rayleigh-fading chan-
nel was simulated with a data rate at 18 bits per channel use. Figure 9.4 similarly
illustrates transmission over a 4 x 4 Rayleigh-fading channel was simulated with a
data rate at 12 bits per channel.

9.7 Conclusions

In this part of the thesis, we considered the problem of joint optimization of the bit
loading, precoder, and receiver filters for a DF-detection system. It was shown that
minimizing the probability of detection error can be translated into minimizing
a weighted p-norm of the MSEs. Then, by fixing the bit loading, it was shown
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Figure 9.2: Monte Carlo simulations of an 8 x 8 MIMO system. The data rate is
set to 24 bits, and the cost function is the infinity norm.

that the problem of optimizing the precoder and receiver filters may be reduced
to a convex optimization problem that is easy to solve numerically. Due to the
low computational complexity of the problem, the task of jointly optimizing the
bit loading and filters by exhaustively searching through all possible bit-loading
candidates becomes a feasible option in practice.

In another approach to the same problem, by instead fixing the DF filters, we
derived the optimal bit loading by relaxing the integer constraints on the subchan-
nel bit rates. It was shown that this optimum is insensitive towards small deviations
in the bit loading. When combining the relaxed bit loading with filter optimiza-
tion, we showed that it is optimal to use orthogonal non-interfering subchannels.
Therefore, by jointly optimizing bit loading and filters, the DF part of the receiver
becomes superfluous. That said, another conclusion is that the DF receiver makes
the system more robust towards rounding of the bit loading. These results were
illustrated numerically by comparisons between the truly optimal solution and var-
ious suboptimal transmission strategies.
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Figure 9.3: Monte Carlo simulations of a 6 x 6 MIMO system. The data rate is set
to 18 bits, and the cost function is the infinity norm.
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Figure 9.4: Monte Carlo simulations of a 4 x 4 MIMO system. The data rate is set
to 12 bits, and the cost function is the infinity norm.
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Appendix 9.A Definitions from majorization theory

Denote z[1j, x[g), ..., [n] as the monotonic rearrangement of a vector  such that
T = T = ... = x[n]. For two vectors & and y, additive majorization is defined

as
Z,]-g_l xp) < Z,’-g_l Yy Vk=1,..,N—1
TIY & N N
{ Dim1 Tli) = D1 Vi)

Similarly, multiplicative majorization is defined as

k k
Hij\?I xp) < Hﬁl Y[i] Vk=1,.,.N—1
iy 2z = Iz v

A function f(«) is said to be Schur-convex if

vy — f(z)<[f(y), (9.38)

$jxy<:>{

similarly it is defined Schur-concave if
<y = f(x)> f(y). (9.39)

Multiplicative Schur-convex/concave functions are defined in a similar fashion using
<« instead of <. For a more complete introduction to majorization theory, please
see [JBOG].

Appendix 9.B Extended proof of Theorem 9.1.1

In this appendix we prove Theorem 9.1.1 for the two special cases p = 1 and p — oc.
The first case, p = 1, corresponds to the following optimization problem

N
i bi )t
11’11)111111’1})156 ;(e 1)e™%, (9.40a)
N
subject to Z bi = R, (9.40b)
=1
b >0 Vi (9.40¢)

Solving the KKT conditions results in

bi—&i — D,
{ e 0 ifb; >0 (9.41)

)

b; =0 otherwise

where 6 is a positive dual such that

> bi=R. (9.42)
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Note that (9.41) is equivalent to
bi=w+&)7",  v=log), (9.43)

which is exactly the solution given by Theorem 9.1.1.
In the second case, p — 0o, we must use the cost function on the original form

|| - |p, rather than || - ||[P. Hence, the problem is
minimize max(e? — 1)e™%, (9.44a)
b1 e i
N
subject to Z bi = R, (9.44b)
i=1
b; >0 Vi (9.44c)

By inspection, the solution is given by
ebi —1 =€, (9.45)

where, again, 6 is a positive dual such that the sum rate is R. Reformulating the
expression yields

by =log(1+e 57") + & + v, (9.46)
where v is chosen such that the sum rate is R. This solution is also equivalent to
the solution given by Theorem 9.1.1. g

Appendix 9.C Proof of Theorem 9.3.1

First we will derive the second order derivative of the cost function (9.18), then,
using the second order derivatives, we will show that the cost function is concave.
Let ¢ = p~! € [0,1]. The derivative of g(z) is

dg e9—-1

!/

—9_c = 4
i R (9.47)

Rearranging the equation yields
dge 9 =g +e 9 1. (9.48)
Define g; = g(v + &), and ¢; = ¢'(v + &;), then the derivative with respect to &, is

dg;  Og(v+&) ( ov

=2 =(—+9 ) . 9.49
afn afn agn + n,t 9; ( )
where d,,; = 1 if n = i, and zero otherwise. Differentiating (9.19) with respect to
&, results in

v 9n
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Using (9.49), then (9.48), and finally (9.50), the derivative of (9.18) with respect
to &, is

oJ _ ov | Y ¢e g Ov pe~Ingl

0 04 Y l-e 9 0E, Y, l—e 0
2.9 Ov  gnte -1

= — 9.51
> 1—e9 06, + Yo l—e 9 (9:51)

B 1— ¢ 9n

Zi 1—e 9
The second order derivative of J(-) with respect to &, &m, is given by
8%J _ e In agn +
8€na€m Zz 1—e9 6§m

(9.52)

1—e9n - 0g;
- —9gi
* (31691-)2(2;@ agm>'
Using (9.49) and (9.50) we can obtain

09 VIN TN
96, vVl (5n,m - ﬁ) V- (9.53)

In order to show that J(&) is concave, we will compute the Hessian matrix. To do
that, we first introduce the following diagonal matrices

[Alii=g;, [Blii=1—¢". (9.54)

Note that since g > 0, and g’ > 0, both A and B are positive semi-definite (PSD).
With these definitions we can define a matrix G as

9gn
(Glnm = o€
" (9.55)
1/211T 41/2 :
G = A2 <I _ ﬁ)fll/?
17 A1 ’
and then, using (9.52), we can derive the Hessian matrix of J(-) as
(I - B)\G B11"(I - B)G
H=- + . 9.56
1"B1 (1T B1)2 (9.56)
Because GT1 = 0, the Hessian can be simplified as
H = cG (9.57)

1™B1’
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where
B11'B
1'B1
We will show in a few steps that this Hessian, H, is a negative semi-definite matrix.
As a reference regarding the various properties of PSD matrices we refer to [HJ85].
The center factor of G is a projection matrix (thus PSD), and consequently the
entire matrix G is PSD. By inspection, the matrices I — B and B11T B are both
PSD, and because the sum of two PSD matrices is also PSD, C is PSD. The
eigenvalues of the product of two PSD matrices are always real and non-negative,
and consequently we know that the Hessian has non-positive real eigenvalues. Any
real, symmetric matrix with non-positive real eigenvalues is negative semi-definite,
hence the Hessian is negative semi-definite®. By inspection, the function J(-) is
component-wise symmetric and thus, because it is jointly concave, it is also Schur-
concave [JBO06]. O

C=I-B+ (9.58)

Appendix 9.D Proof of Theorem 9.3.3

Because A3;o + 1 is affine, it suffices to show that J(log @) is convex with respect
to a. The second order derivative of J(log &) is

PJ(loga) 1 (9*J(E) 5 0J(€)\ 1
da;0a; ai<6§i5€j g >04j'

For the second order derivative to be positive definite we need to show that the
matrix E, defined as

(9.59)

0%J(§) 0J(§)
E|; ; = — 8 , 9.60
[ ] 5J aglagj »J aé-l ( )
is PSD. Introducing the matrix notation from Appendix 9.C yields
1
E=——(B-CG). 9.61
Using the assumption that p~! = 0 we have A = B, C = I — G, and thus
1
EFE=———(B-G+GG
1'B1 ( ) 062
1 (BllTB+GG) (9.62)
S 1'B1\ 1'B1 ’
which is PSD by inspection. U

5Symmetry is perhaps not apparent from (9.57). However, all second order derivatives of
J(+) are continuous and consequently we know that the Hessian matrix (9.57) is symmetric. The
interested reader can alternatively show symmetry of (9.57) by applying (9.48), but this requires
a few extra steps of derivations.
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Appendix 9.E Proof of Theorem 9.4.1

Due to (9.19), the dual variable v will inevitably be affected when reducing the
number of subchannels. Denote the new dual variable 7, and equation (9.19) gives

N N

g +&) =) gv+8). (9.63)

i=1 i=1
Since g(z) > 0 and ¢'(x) > 0, we have 7 > v. The convexity of g(x) implies
90 +&) —gw+&) = g' (v + &)@ —v), (9.64)

where the derivative is specified in (9.47). Apply (9.64) to (9.63) as

N
< 2=k 9V £ &)
- % N 1-p-1

N = Xim1 wore

@ FE) _p—1

(9.65)

Note that, because 7 > v, g(x) is positive and increasing, and because Exp1s s &N

correspond to the weakest subchannels; the vectors

:| T
k)

b=[g(0+&), . 9(7 +E5),0,...,0 (9.66)
b

(g + &), g +En)],

of length NV satisfy b < b. Since 1Te~? is a Schur-convex function we therefore
have 1Te=® < 1Te~? and consequently

N N
_ e 9(7+E) _ e 9(w+é&i)
log;<1 e 9t ) < logz (1 e 9t ) (9.67)

=1

This together with (9.65) proves the theorem. O






Chapter 10

Skewed majorization

This chapter considers the optimization of Schur-convex objective functions given
shifted or skewed majorization constraints that appeared in Chapter 8.

10.1 Introduction

A majorization inequality consists of a specific collection of inequalities and is used
for comparing vectors. These inequalities appear, e.g., when comparing the diag-
onal elements of a positive semi-definite matrix with its singular values, or simi-
larly, when comparing the Cholesky factor’s diagonal elements with the singular
values [HJ91].

Optimization problems constrained by a majorization inequality appears in var-
ious applications [PJ07, PCL03, SD08]. If the cost function can be characterized as
either Schur-convex or Schur-concave (see Appendix 9.A), the optimal solution to
the problem is given instantly according to rules of majorization theory [JB06]. In
the case when the cost function is convex — but not necessarily Schur-convex — the
solution can be calculated by numerical means using convex optimization [BV04].

In this chapter, we consider the minimization of a Schur-convex objective func-
tion, but where the majorization constraint is skewed or shifted linearly. More
specifically; a skewed majorization constraint implies that the vector variable z
must satisfy that z + w is majorized by ¢, where w and ¢ are vector parameters to
the problem. The vector w shifts or “skewes” the constraint, making conventional
majorization theory not directly applicable. The skewed majorization problem can
be posed in many different ways; in Appendix 10.A two alternative, albeit math-
ematically identical formulations are provided. One of the formulations can be
directly applied to design problems that arise in MIMO communication systems as
will be demonstrated in Section 10.4.

In short, the contributions of this chapter are two-fold. Firstly, we show that
the solution is independent from the shape of the cost function F; it is completely
determined by the majorization constraint and the linear shift of the objective.

121
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Secondly, we show that the problem is equivalent to calculating the convex hull of
a simple polygon in R?, for which there exists efficient solvers with O(N) complex-
ity [MA79]. A solver tailored for this particular application is proposed.

A rigorous definition of the considered problem is presented in Section 10.2. In
Section 10.3, we show that the problem is equivalent to the convex-hull problem of
a simple polygon in R?. In Section 10.4, it is demonstrated how this problem can be
applied to a MIMO communications problem, and finally the chapter is concluded
in Section 10.5.

10.1.1 Notation

In addition to the notation introduced in Chapter 1, we will use the following
notation: Given a vector a, denote the prefix-sum vector as a defined by a; =
ZI:LZI an. For later notational simplicity we define @¢g = 0. Denote by D the set
of decreasing vectors, D = {a eERN:a; >... > aN}, and the set of increasing

vectors by D* = {a € RV : —a € D}.

10.2 Problem formulation

We consider minimizing a cost function F : X — R with the property that it is
Schur-convex on the symmetric domain' X ¢ R of interest, or equivalently,

z1 Rz = F(z1) < F(z2), V21,22 €X.
Herein, the optimization variable z is constrained to a convex domain defined by
Z={z:z+w=c}, (10.1)

where w and ¢ are two vectors in RY. Due to the asymmetry that is introduced
by the vector w, we choose to refer to the constraint imposed by Z as a skewed
majorization constraint. From here on it is assumed that w and c are chosen such
that Z C X. Assume further that F is continuously differentiable on the interior
of Z. A few implications of these statements that will be useful in the following
discussion are:

P-1. F is symmetric? on X,

P-2. Fis convex® on X,

LA set X is symmetric if and only if ITz € X for all permutation matrices IT and all vectors
zeX.
2A function F is symmetric on X if for any z € X and any N-dimensional permutation matrix
IT, the function stays invariant to the permutation F(z) = F(Ilz).
3A function F is convex on X if; for any two 21,22 € X, and for all § € [0, 1], the following
relation holds
F(210 4 22(1 = 0)) < F(21)0 + F(z2)(1 - 0).
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P-3. ze D*NX = VF(z) € D*,

where Schur-convexity of F implies P-1 and P-2 [JB06, MO79], and also P-3 in
conjunction with the additional assumption on differentiability.
The optimization problem of interest is given by

min F(z), (10.2)

with vectors w and ¢ defining the domain according to (10.1). Without loss of
generality we assume that ¢, w € D. This is true for ¢ since the order of majorization
is unaffected by permutations. For w, the symmetry property, P-1, implies that
Problem (10.2) with an unordered w can be solved via the equivalent problem with
w permuted into decreasing order.

Problem (10.2) belongs to the class of convex optimization problems since the
function F to be minimized is convex (P-2), and the domain Z is a convex set. The
latter can be verified by equivalently writing the majorization constraint in (10.1)
in terms of an affine equality constraint

ZN +WN = Cn, (10.3)
together with a number of affine inequality constraints

Zzn—i—wngék VIc{l,...,N}, (10.4)
nel

in which k is the cardinality of Z. In this case, as the number of inequality con-
straints in (10.4) grows exponentially with N, the problem does not scale well
with the number of dimensions. So, even though convex problems are sometimes
conceived as easy to solve, this is an example of a fairly difficult convex problem.

10.2.1 The relaxed problem

We shall approach problem (10.2) by considering, for a while, a relaxation of
the same problem by extending the feasible region. For each k in (10.4), we
let Zielax exclude all inequality constraints except those corresponding to Z =
{1,2,...,k —1,k}. Introducing the vector b = ¢ — w, Zielax D Z is defined as

Zrelax = {Z D Z S 57 E;N - EN} . (105)

Note that if the optimal solution z* of the relaxed problem

min  F(z), (10.6)

2ZE€Zrelax

also satisfies z* € Z, then z* solves the original problem (10.2) as well.
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10.3 Method to find the optimal point

The optimization problem (10.6) is convex (in fact so is (10.2)), hence the extensive
framework of convex optimization, [BV04], can be applied to efficiently calculate
the optimal solution numerically. In addition to this, for the case herein, we will
show that the optimal solution decouples from the specific cost function that is used.
Clearly, this will further simplify the optimization procedure, and an algorithm with
O(N) complexity is presented that determines the optimum exactly. We begin our
analysis of the problem with the KKT optimality conditions.

10.3.1 The KKT optimality conditions
The Lagrangian cost function of the relaxed problem is

L(z,A) = F(2) + AT (z - 5) , (10.7)

with Lagrangian multipliers A = [A1,...,Ax]|T, which gives the KKT optimality
conditions [BV04]:

N
VF(z)n+Y Ai=0, 1<n<N, (10.8a)
A >0, 1<n<N-1, (10.8b)
%, <bp, 1<n<N-—1, (10.8¢)
in = by, (10.8d)
AT (E - z) = 0. (10.8¢)

Slater’s theorem (see e.g. [BV04]) states that if the problem is convex and there
exists a strictly feasible point, z/, then strong duality holds and the KKT conditions
are both sufficient and necessary for optimality. Such a point z/ can readily be
found by defining o to be any constant such that o < min; b;. Then the vector 2z,
defined as

f {a k=1,...,N—1,

TV A-Na+by k=N, (10.9)

satisfies é,{ < Bk for k < N and EJ{, = Z;N.

The KKT condition (10.8a) above depends on the cost function F(z) that is
used. Next, we show that this dependency disappears when restricting F(z) to the
class of Schur-convex objectives.

Theorem 1 For a Schur-convex objective, F(z), the KKT conditions of the relazed
problem are fulfilled for a z satisfying the following constraints

C-1. ze D",
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C-2. %, <bp, 1<n<N-1,
C-3. 3n = by,
C-4. 2z =2ps1 if Sn <bn, 1<n< N—1.

Proof: Conditions C-2 and C-3 are identical to the corresponding KKT conditions.
KKT condition (10.8a) is satisfied by defining X as

[ VFR2)k1 —VF(2) k=1,...,N -1,
Ak = { ~VF(2)n k=N. (10.10)
Since F(z) is Schur-convex, condition C-1 implies that
zeD" = VF(z) e D" = \; >0, (10.11)

forall k =1,..., N —1 satisfying (10.8b). If Z; < by, for any k=1,...,N—1, then
condition C-4 implies (10.8¢) as

2 = Zk41 —> V]:(Z)k = vf(z)k;+1 — M\ = 0. (10.12)
O

The conditions in Theorem 1 are therefore sufficient to fulfill the KKT condi-
tions. Consequently, due to Slater’s theorem, any vector z that satisfies conditions
C-1 to C-4 must be a global optimum of the relaxed problem (10.6). It remains
to show that the conditions are also necessary, or in other words, that for any vec-
tor b there always exists a vector z that satisfies the constraints. This is shown
constructively in Section 10.3.2.

The question now is whether the optimal solution, z, of the relaxed problem
(10.6) also satisfies the solution to the original problem (10.2). Recall that this is
true if the optimal solution z satisfies z + w =< ¢. This is implied by 2 +w < ¢
provided that z + w € D, or more compactly, Z D Zieax N D. The following
theorem reveals that the optimal z 4+ w is in fact a decreasing vector, provided that
w and c are ordered in decreasing order.

Theorem 2 If z satisfies the optimality conditions in Theorem 1 for b = ¢ — w,
where ¢ € D and w € D, then z+w € D.

Proof: Since the optimality conditions are satisfied, Z, + w, < é, forall 1 <n <
N — 1. Assume first that Z, + W, < ¢é,. Then from C-4 we have

Zn + Wn = Znt1 + W 2 Zpt1 + Wnetl- (10.13)

If, on the other hand, %, + W, = &,, then

(9]¢

Zn—1+ Wp—1

§ n—1
Zn + W, =, —
Zntl +Wpy1 < Cpyr
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Points po,...,pN
““““““ Simple Polygon
Convex Hull

0 2 4 6 8 10 12 14 16 18 2C
n

Figure 10.1: An illustration of a simple polygon of a sequence of points, and the
convex hull under the same sequence.

Zn F Wy = Cp
Zpgl +Wnt1 < Cpga

Zn + Wn, Z ZnJrl + wnJrl

where the last inequality uses the fact that ¢, > ¢py1. ]

10.3.2 Algorithms producing the optimal solution

In this section we prove that the problem of obtaining a z satisfying the modified
KKT conditions can be solved by any algorithm identifying the convex hull of a
finite set of points in R2. Moreover, we show that this can be performed with
computational complexity of order O(N). In the appendix, we present an easily
implemented algorithm that avoids operating explicitly in R2,

In order to show that, in essence, solving the relaxed problem corresponds to a
convex-hull problem, we refer to the framework used in [MA79]. A simple polygon
is a sequence of points that, when connected with straight lines, partitions R? into
two disjoint sets. As guidance in the following discussion, Figure 10.1 illustrates
the distinction between a sequence of points, a simple polygon, and the convex hull
under the simple polygon respectively.

Theorem 3 The z which solves (10.2) and (10.6) can be found using any algorithm
that identifies the convex hull of a simple polygon in R?.

Proof: By embedding the components of the vector b into R2 according to

pn:(n,lv)n) Vn=0,...,N,
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it is obvious that either pg...pn is a simple polygon, or there are points above the
line popn that may be removed to form a simple polygon.

A convex-hull algorithm produces a simple, convex polygon py, . . . pn,, Which we
assume to be represented by a set of indices satisfying n, < n,y1, and necessarily,
ng = 0 and ng = N. The convexity property explicitly states that the slope between
points is increasing Vr =1,...,q¢ — 1,

v v v v

b

Np41 — Ny Ny —Np—1

MNprt1 bnr N bn,. - b’n,.,l

(10.14)

and the hull property that the straight line between neighboring points in the hull
forms a lower bound, i.e. Vr=0,...,q—1,
bn,.+1 - bn,,
— " Vn:n,<n<ng41. (10.15)
Np41 — Ny
We are now ready to use the convex simple polygon, specified by the set of
polygon indices Z4 = U, {n,.}, to construct a vector z that satisfies the optimality
conditions. Firstly, we enforce equality at the points of the polygon, i.e., 2, = by, if
n € Z4. Then, in order to satisfy condition C-4 we make the slope of Z, constant
for indices between polygon points,
bn7v+1 - bn,. .
2n = ——— ifn, <n<n.qq. (10.16)
Np41 — Ny
Clearly, the vector z is now completely determined from the corresponding polygon.
Since condition C-4 is satisfied by definition, it remains to be shown that conditions
C-1 to C-3 are satisfied as well. Again, by definition, C-3 is fulfilled since N € Z4.
Pick an arbitrary index, n € {1,..., N —1}, and identify the corresponding polygon
point, r, satisfying n, <n < n,y1. If n € T4 then Z, = En, while if n ¢ T4 then
by (10.15)

L < by (10.17)

Hence, C-2 is satisfied. Moreover, if n ¢ T4 then z, = 2,41, while if n € 74 then

Zp = — e == Znt, (10.18)
Ny — N1 Npt1 — Ny
and we conclude that z € D* (C-1). O

The general problem of identifying the convex hull of a set of points in R? typ-
ically requires O(N log N) iterations. However, since the points are ordered as a
simple polygon, the problem has additional structure that we can use. In [MA79],
an algorithm was presented that solves the simple-polygon problem in O(N) op-
erations. For the interested reader, a simplified O(NN) algorithm is presented in
Appendix 10.B, tailored for solving the particular problem considered herein.
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10.4 Application to a communications problem

This section presents two applications to the optimization problem that is treated
in this chapter. The problems concern transceiver design based on either perfect
TX-CSI or partial TX-CSI of the correlation statistics of the channel. The receiver
is assumed to know the channel perfectly and apply decision feedback detection.
For the full details on optimal filter design for a DF MIMO system we refer to
Chapter 8.

Consider the system model (2.1) in combination with linear precoding (2.25),
where the transmitted signal is constructed using linear precoding of the data-signal
vector s € CMt as

x = Fs.

The elements of s consist of uncorrelated modulated data signals of various con-
stellation types, and the vector is normalized as

E[ss*] =1.

Herein we restrict the precoder F' to be scaled unitary, which — in combination
with heterogenous signal constellations — is a reasonable restriction. Note that a
unitary precoder corresponds to equal power allocation, which is close to optimal in
the high-SNR region [YCO01], as well as robust to errors in the channel estimate at
the transmitter [BO06]. It also limits the maximum transmitted power per antenna
which sometimes is restricted due to hardware constraints. We will now consider
the two cases, perfect TX-CSI and partial TX-CSI, separately:

10.4.1 Perfect TX-CSI

The transmitter, as well as the receiver, is assumed to have perfect a-priori knowl-
edge about the channel matrix H. Define the matrix

Q= (F*H*'HF +1)}, (10.19)
and denote the singular value decomposition as
Q =U((P/N)A% +1)"'U". (10.20)

Denote also the Cholesky decomposition as Q = LL*, where L is a lower triangular
matrix. The squared diagonal elements of L are of particular interest and are
denoted the Cholesky elements. Define the vector

€ =1log (|d(L)|7?). (10.21)

By assuming the filters in the DF detector are designed to minimize the MSE, the
vector of MSEs prior symbol detection is [PJ07, Sec. 4.3]

a = exp(—§). (10.22)
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The spatial subchannels are not equally sensitive to noise if different types of signal
constellations are used. This fact is important to take into account in the pre-
coder design, and one way to do this is to form an objective function consisting of
weighted MSEs. Typically we choose the weights to be proportional to the inverse
of the squared minimum distance of the constellation used. Define the vector of the
logarithm of these weights as w. Suppose we would like to minimize a cost function
based on the weighted MSE, our objective function is

F(exp(w — £)), (10.23)

where F (exp(~)) is a Schur-convex function. At first glance the problem may
look difficult due to the unknown relation between the eigenvectors, U, of the
matrix @, and the Cholesky elements. However, it is known that the logarithm
of the Cholesky elements are always majorized by the logarithm of the singular
values [HJ91]. Consequently, if and only if the Cholesky elements satisfies

€ <logd((P/Ny)AY +1) £ ¢, (10.24)

where < denotes majorization, then there exists a unitary matrix U, and a Cholesky
factor L, such that U ((P/N;) A% + I)flU* = LL*. The problem of designing the
precoder, F', can therefore be reformulated to the form

minimize F (exp(w — £))
3 ) (10.25)
subject to &€ < ¢

As is shown in Appendix 10.A, problem (10.32) is equivalent to the original prob-
lem formulation (10.2). Once the optimal & has been calculated (e.g., using the
algorithm in Appendix 10.B), the unitary matrix U can be calculated using the
GTD [PJ07, Appendix B].

10.4.2 Partial TX-CSI

In this case the transmitter has access to first and second order statistics of the
channel. More specifically the channel matrix — as seen from the transmitter —
is assumed to be drawn from the following distribution

vec(H) ~ CN(0, R} @ I), (10.26)

where R; is the correlation from the transmitter side, i.e. R, = E[H*H]. Using a
zero forcing DF receiver, it was shown in [LZWO08] that the MSEs can be computed
from the Cholesky elements of LL* = F*R,F as

; :exp(f& flog(Nsz‘)) Vi=1,.., Ny, (10.27)

where
€ £ log (|d(L)]). (10.28)
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Note that the weights in (10.27) require us to use more receive antennas than trans-
mit antennas, such that N, > N;. Again, if we use different signal constellations on
the subchannels it is a good idea to weight the MSEs depending on the sensitivity
of the constellations. Denote these weights w, and define a cost function as

ol exp(w). (10.29)

Introduce the modified weights w as w; = w; — log(N,. — 4) for all ¢ = 1,..., N;.
Then the objective function becomes

1T exp(w — &). (10.30)

Assuming only scaled unitary precoders gives us the following sufficient and neces-
sary condition for &:
¢ <logd((P/N)AR,) 2 €, (1031)

where A g, is the diagonal matrix containing the singular values from R;. Similar
to the previous case, the problem of designing the precoder, F', can be reformulated
to the form

minimize 17 eXp(’&J -£)
I (10.32)
subject to £ =<é

Again, once the optimal & has been calculated, the unitary matrix U can be calcu-
lated using the GTD.

10.5 Conclusions

This chapter considered the problem of optimizing a Schur-convex objective under
a skewed majorization constraint. It was shown that the solution does not depend
on the shape of the cost function. But unlike the case with regular majorization
constraints, for which the solution corresponds to having all elements equal, skewed
constraints have greater impact on the optimal solution. It is also shown that the
optimization problem is equivalent to identifying the convex hull under a simple
polygon defined by the constraint parameters. This result allows us to calculate the
solution instantaneously. As an application of the posed problem, a novel precoder
design for MIMO communication systems utilizing decision feedback detection at
the receiver was presented. Using the theoretical results herein, it was demonstrated
how to efficiently calculate a precoder that take heterogenous signal constellations
into account for the cases of perfect as well as partial TX-CSI.
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Appendix 10.A Alternative problem formulations
By simple variable substitutions we can reformulate problem (10.2) as

min  F(x — w),
® (10.33)
st. x <gc,

where the cost function consists of a linearly shifted Schur-convex objective. Clearly,
the objective is still convex but not symmetric due to the linear shift. Another form
is

min  G(anx1,...,aNZN),
st. @ =<« ¢, (10.34)
x>0,

where the «;’s are strictly positive weighting coefficients, and F = G oexp is Schur-
convex (which is implied if G is Schur-convex).

Appendix 10.B Algorithm 2

Algorithm 2 determines the indices that correspond to points on the one-sided
convex hull under ®. The stack vector of indices in the convex hull is denoted

Algorithm 2
2: N « length(z) — 1
3:m«— 0
4
5

:forj=1to N—-1do

se Ti[m] —%j Tj—IN
if T > N then

i Tifm—1] —Ti[m] Tifm] —Tj
while m > 0 and T —ime1] < “j—i[m] do

m+—m—1
end while
m++—m-+1
10: ifm] «— j
11:  end if
12: end for
13: m+—m-+1
14: §[m] — N

t. After the algorithm has terminated the stack contains m + 1 < N elements.
Line 1 initializes the stack with the first index 0 (remember, the first and the last
points of x are always in the convex hull). In line 4, a loop over the elements of
x is commenced. If the point at x; is convex given that straight lines are drawn
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between x;[,,,], 2, and z, then the index j must be appended to the stack vector of
hull-indices, 2. Convexity is checked in the query on line 5. When appending a new
index, we must verify whether any previous points in the hull under construction
turn concave due to the new point x;. The loop commenced at line 6 removes all
such points from ¢ if they exist. Finally on line 14, the last point in @ is appended
to the convex hull. Although the loop is nested, in total at most 2N iterations
take place; In the first loop an element can be added to the index set, while for the
inner loop, in each iteration an element is removed. The inner loop can therefore
not have more iterations (in total) than the outer loop, hence the complexity is
O(N).



Chapter 11

Thesis conclusions

This thesis considers the problem of joint optimization of the bit loading and lin-
ear precoder for a MIMO communication system. The objective was to obtain the
Pareto optimum in terms of minimum transmit power and error probability for
the case of delay-limited transmission. Two types of detectors that differ in com-
plexity and performance have been considered; the optimal ML detector, and the
suboptimal but less complex DF detector.

The capacity-optimal rate allocation (bit loading) and linear precoding strategy
is to orthogonalize the channel into parallel non-interfering subchannels. Herein,
where delay-limited transmission is considered, it is shown that orthogonalization is
generally suboptimal when using the ML detector. This was shown constructively
with a transceiver design comprising of three steps; bit loading, optimization of
the unitary transmit-directivity matrix, and lattice basis reduction of the effective
channel matrix. By using certain upper and lower bounds on the performance,
we showed that densely packed non-orthogonal lattices can provide a gain, the so-
called packing gain. The drawback with these dense lattices is the high kissing
number that comes with the packing gain. The kissing number has a negative
impact on the performance, and it was shown that if the SNR is low, the negative
impact due to the kissing number outweighs the positive impact of the packing gain.
The results regarding the packing gain where confirmed numerically where gains of
several dB were attained compared with the best possible orthogonal transmission.
Another result from our numerical experiments was that blind transmission works
surprisingly well (when using the ML detector), at least if the Rayleigh distributed
elements of the channel matrix are uncorrelated. For moderately low SNR, blind
transmission even outperformed the optimized orthogonal transmission. This raises
the question whether TX-CSI is really useful for improving the system performance,
or, if its usefulness is more a matter of reducing the complexity of the detection
problem at the receiver?

The second part of the thesis focuses on the transceiver design when using the
suboptimal DF detector. An algorithm with linear complexity that computes the

133
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optimal transmit-power allocation given a prescribed bit loading was presented.
Then we switched focus to the joint optimization of both bit loading and DF filters
by relaxing the set of possible bit rates. Our main result shows that the jointly
optimal bit loading and linear precoder orthogonalizes the channel. Interestingly,
this result makes the DF part of the DF detector obsolete, and a linear detector
is therefore sufficient for optimal performance. From this result, we note that the
packing gain that was attainable using ML detection is not possible to realize when
using a DF detector. Finally, it was shown that when all subchannels operate at
a high bit rate, then all bit loadings perform almost equally well. Therefore, as
long as the correct number of subchannels are active, optimal bit loading is not
particularly important for close-to-optimal performance when using a DF detector.
Although, by using a suboptimal bit loading the feedback part of the DF receiver
will clearly no longer be zero.

While working on optimization of DF filters we identified a certain class of op-
timization problems that can be solved very efficiently. The class of problems con-
cerns optimization of a Schur-convex objective under a linearly shifted, or skewed,
majorization constraint. Although the problem as it stands is convex, it does
not scale well since the number of linear constraints grows exponentially with the
number of dimensions. We showed that a simpler relaxed problem with the same
optimum as the original problem can be considered instead. The solution to the
problem was shown to be independent of the shape of the cost function, i.e. the
solution is the same for the entire class of cost functions. Unlike the optimization
problems with regular majorization constraints, for which the optimum corresponds
to having all elements equal, skewed constraints impact the optimal solution more
directly. The optimization problem was shown to be equivalent to the problem of
identifying the convex hull under a simple polygon that is defined by the constraint
parameters. This property of the optimal solution makes the problem particularly
easy to solve. We presented two practical applications that arise in the field of
MIMO communication systems: Using skewed majorization it was shown how to
efficiently calculate a unitary precoder that takes heterogenous signal constellations
into account for the cases of perfect as well as partial TX-CSI.

11.1 Future work

There are a number of questions related to the work herein that remain open. In
the following we list a few of these issues.

e Problems regarding transceiver design for the ML detector are particularly
difficult to solve. Nevertheless, the ML decoder is the optimal detector and
improving the transceiver design that was presented herein is an interesting
line for future research. Specifically, one may consider modifying the basis
reduction algorithm (the LLL algorithm) to jointly optimize the bit loading
together with the lattice basis vectors.
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o It would be interesting to gain more insight into why blind transmission shows
such promising performance when using the ML detector. The fact that blind
transmission outperforms the optimal orthogonal transceiver for moderately
low SNRs is somewhat surprising to us.

e The transceiver design problem based on partial or imperfect TX-CSI remains
an open problem for both ML and the DF receiver. When the TX-CSI is
no longer perfect, cross talk between the subchannels is inevitable, and DF
will consequently outperform the linear detector. For the ML decoder our
lattice based approach faces many difficulties when the channel matrix is not
deterministic, for example a lattice with a high kissing number is likely to
be more sensitive to perturbations than a lattice with a low kissing number.
However, the good performance shown by the of blind transmission suggests
that there should exist simple schemes that perform well even for the case of
partial TX-CSI.

e The use of delay-limited transmission as opposed to capacity-optimal trans-
mission needs more investigation. To do this, higher layers (e.g. the applica-
tion layer) have to be considered. It would be interesting to compare various
transmission schemes using different types of channel coding (or no chan-
nel coding) for a delay-sensitive application, such as the closed-loop control
application.
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