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Abstract. We study smooth tropical plane quartic curves and show that they satisfy certain properties
analogous to (but also different from) smooth plane quartics in algebraic geometry. For example, we show
that every such curve admits either infinitely many or exactly 7 bitangent lines. We also prove that a smooth
tropical plane quartic curve cannot be hyperelliptic.

1. Introduction

In classical algebraic geometry, smooth plane quartics are the simplest examples of algebraic curves that
are not hyperelliptic, as well as the simplest examples of canonically embedded curves. The study of the
enumerative geometry of these curves dates back to at least 1834, when Plücker [14] showed that a smooth
plane quartic curve C over C has 28 bitangent lines. Our main results in this paper are the following two
theorems, which show that smooth tropical plane quartics behave similarly to their algebraic counterparts:

Theorem. (3.9) Every smooth tropical plane quartic curve admits exactly 7 equivalence classes of bitangent
lines.

Theorem. (4.3) Every smooth tropical plane quartic curve is non-hyperelliptic.

See Definitions 3.1 and 3.8 for the precise meaning of bitangent lines and equivalence classes thereof, and
see Definition 4.1 for the meaning of “hyperelliptic” in the tropical setting.

Many classical arguments regarding smooth algebraic plane quartic curves break down in the tropical
setting because smooth tropical quartics are not canonically embedded in the strongest possible sense: while
the stable intersection with any tropical line gives a canonical divisor (cf. Lemma 3.3), it is not the case that
every canonical divisor arises in this way. For example, the standard representative of the canonical divisor
of a smooth tropical plane quartic (when viewed as a metric graph) does not generally lie on a tropical
line. Thus many standard algebro-geometric arguments are invalid tropically. However, a combination of
geometric results and case-by-case analysis will allow us to prove Theorems 3.9 and Theorem 4.3.

We make use of both the “abstract” and “embedded” points of view on tropical algebraic geometry in
this paper. For example, we employ the tropical Riemann-Roch theorem (a statement about abstract metric
graphs), as well as Luo’s theory of rank-determining sets of metric graphs and Zharkov’s results on theta
characteristics. On the other hand, we also make use of Newton polygons, the balancing condition, and
elementary facts from tropical intersection theory, all of which concern embeddings of tropical curves in
the plane.

Although we do not study such questions in this paper, we are also interested in the relationship between
algebraic curves and their tropicalizations. If K is an algebraically closed and non-trivially valued non-
Archimedean field, the tropicalization map sends the points of a smooth plane curve X = V (f) in (K∗)2

into R
2 by coordinate-wise valuation. The Euclidean closure of the image of X in R

2 is denoted Trop(X),
and when endowed with an appropriate weight function it is a plane tropical curve as defined in Definition
2.1. By a theorem of Kapranov, the tropical curve Trop(X) is dual to the subdivision of the Newton polygon
of f induced by the valuations of the coefficients of f . When X is a smooth plane quartic for which Trop(X)
is tropically smooth, it is natural to guess that the 28 bitangents on X specialize in groups of 4. More
precisely, we make the following conjecture:
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Conjecture 1.1. Let X be a smooth plane quartic and assume that Trop(X) is tropically smooth. Then
each odd theta characteristic of Γ is the specialization of four effective theta characteristics of X (counted
with multiplicity).

We remark that Chan and Jiradilok have recently confirmed the conjecture for curves whose skeleton is
the first tropical curve pictured in Figure 1 [6].

Acknowledgements. This paper arose from the first author’s project group at the 2013 AMS Math Re-
search Communities workshop on Tropical and Non-Archimedean Geometry in Snowbird, Utah. The authors
are grateful to the AMS for their support of this program. Thanks to Bernd Sturmfels for his encouragement
of this project, and to Johannes Rau for helpful comments. We also thank the referees for their insightful
remarks. The first author was supported in part by the NSF grant DMS-1201473.

2. Preliminaries

We briefly review some of the basic definitions of tropical geometry that will be used in this paper. See
[8, 16] for more details.

Definition 2.1. A plane tropical curve is a planar graph C, together with positive integer weights on the
edges, such that:

(1) The slope of each edge is rational.
(2) At each vertex, the following balancing condition holds: the weighted sum of the primitive integral

vectors of the edges around the vertex is zero.

A plane tropical curve is smooth of degree d if it is dual to a unimodular triangulation of the triangle with
vertices (0, 0), (d, 0), (0, d). Here, unimodular means that it is subdivided to d2 triangles each having area 1

2
.

There are alternate definitions of plane tropical curves, including those that live in modified tropical planes
[12]. Here, however, we use the above definition, so all plane tropical curves are subsets of R2. In particular,
a smooth plane tropical curve of degree d is a trivalent graph with d infinite edges pointing in each of the
directions (1, 1), (−1, 0), (0,−1), with the weight of each edge equal to 1. See Figure 1 for some examples
with d = 4. Although plane tropical curves are unbounded subsets of R2, much of the relevant data is
contained in a compact subset of the curve, which we now introduce.

Definition 2.2. The skeleton of a plane tropical curve is the subgraph obtained by contracting all the leaf
edges.

To distinguish between a tropical line and a standard line in R
2, we will refer to a standard line as

Euclidean.

2.1. Smooth tropical plane quartics. A smooth tropical plane quartic curve is obtained as the dual graph
of a unimodular triangulation of the standard triangle T with vertices (0, 0), (0, 4), (4, 0). Each interior lattice
point gives rise to a cycle in the dual graph, and the standard triangle contains three integer points in its
interior, so the genus of the tropical curve (i.e., the genus of its skeleton considered as a metric graph) is
three.

As we will see in Proposition 2.3, there are four basic types of smooth tropical plane curves, examples of
which are shown in Figure 1 along with the corresponding unimodular triangulations. We will affectionately
refer to these four types as honeycomb, Mickey Mouse, one-bridge, and two-bridge, names that are clear
when contracting all the infinite edges and leaves.

Proposition 2.3. Up to homeomorphism, there are precisely five connected trivalent planar graphs of genus
three having no leaf edges. Of these, precisely four of the homeomorphism classes are realizable as skeletons
of smooth tropical plane quartic curves.

Proof. Let G be a trivalent planar graph of genus three. By Euler’s formula, together with a counting
argument, G has four vertices and six edges. Suppose first that two of the vertices of G are connected by
more than one edge. Then by the trivalent condition, they must be connected by two edges, and the only
possible graphs are the Mickey Mouse graph, the one-bridge graph, and the two-bridge graph.
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Figure 1. Smooth tropical plane quartic curves and the dual triangulations. From left to
right, we have instances of tropical curves which we will refer to as the honeycomb, Mickey
Mouse, one-bridge, and two-bridge. The skeletons are colored in red.

Next, assume that G does not have multiple edges. Since the genus is three, it is not possible for each
vertex to have a loop attached to it, so by trivalency there is at least one vertex that is connected to each
of the others by an edge. Now, each vertex may have a loop attached to it, or it may be connected to other
vertices, giving rise to the honeycomb graph and the lollipop graph, pictured at the far right of Figure 2.

We now show that the lollipop graph is never the skeleton of a smooth tropical plane quartic curve. If
a graph arises from a unimodular triangulation, then every bridge that separates the graph to topologically
non-trivial components is dual to a line segment in the subdivision that separates the polygon into two
smaller polygons, each of which contains at least one interior lattice point. Inspection reveals that there are
six possible such splits for T : they are the segments joining the pairs of points {(0, 2), (3, 0)}, {(0, 2), (3, 1)},
{(2, 0), (0, 3)}, {(2, 0), (1, 3)}, {(2, 2), (1, 0)}, and {(2, 2), (0, 1)}. However, no three of these splits may appear
in the same triangulation due to intersections. It follows that the lollipop graph, which has three bridges,
does not arise as the skeleton of a smooth tropical plane quartic curve. �

Figure 2. The five homeomorphism classes of trivalent connected leafless genus 3 graphs,
the first four of which occur in smooth tropical plane quartics.

Remark 2.4. By a computation in TOPCOM [15], there are precisely 7422 regular unimodular triangulations
of the standard triangle T with vertices (0, 0), (4, 0), (0, 4). Of the resulting 1278 S3-equivalence classes (with
respect to the natural action of S3 on T ), 573 are honeycomb, 450 are Mickey Mouse, 225 are one-bridge,
and 30 are two-bridge.

2.2. Divisor theory on metric graphs. Next, we briefly recall the theory of divisors on tropical curves
(see [9, 13] for more details). A metric graph is a graph Γ together with a function ℓ : E(Γ) → R>0 ∪ {∞}
assigning a length to each edge, with infinite lengths only allowed on edges containing a one-valent vertex.
A divisor D on a metric graph Γ is an element of the free abelian group on Γ, i.e., a finite formal sum of
points

D = a1 · p1 + . . .+ an · pn.

The degree of D is deg(D) := a1+ . . .+an, and D is said to be effective if all the coefficients are non-negative.
We will sometimes refer to the points of a divisor as (virtual) chips, so that D has ai chips on pi for each i.
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A rational function on Γ is a continuous piecewise linear function with integer slopes. To a rational
function f we associate a divisor div(f) whose degree at each point p is the sum of the outgoing slopes of
f at p. A divisor of this form is called principal. Note that the degree of a principal divisor is always zero.
Two divisors D and D′ are said to be linearly equivalent if D−D′ = div(f) for some rational function f . A
divisor D has rank r if for every effective divisor E of degree r, D − E is linearly equivalent to an effective
divisor, and r is the largest integer with this property.

A canonical divisor on Γ is any divisor linearly equivalent to

KΓ :=
∑

v∈Γ

(valence(v)− 2) · v.

Its degree is 2g − 2, where g is the genus of Γ, i.e., the dimension of H1(Γ,R).

The tropical Riemann-Roch theorem [2] asserts that if Γ is a metric graph of genus g and D is any divisor
on Γ, then

r(D) + r(KΓ −D) = deg(D) + 1− g.

The skeleton of a smooth plane tropical curve can be viewed as a metric graph by letting the length of
an edge e be its lattice length (see [10, Definition 3.4] or [4, Section 6.2]). In the same way, we can (more
generally) consider any connected compact subset of a smooth tropical plane curve as a metric graph. The
lattice lengths of the bounded edges in a tropical plane curve are not determined solely by the subdivided
Newton polygon; they depend on the actual coefficients of a defining tropical polynomial.

The definition of the metric on a smooth tropical plane curve is justified in part by the following folklore
result. It deals with a subgraph Σ of a tropical curve C, which is a collection of edges in C together with
the adjacent vertices.

Lemma 2.5. Let C be a smooth tropical plane curve and let L1, L2 be tropical lines. Suppose that Σ is a
connected subgraph of C that contains the skeleton and the stable intersections L1 ·C and L2 ·C. Then L1 ·C
and L2 · C are linearly equivalent as divisors on Σ.

Proof. For i = 1, 2, let fi be the pullback to C of the defining piecewise-linear equation of the tropical line
Li, and let φi be the rational function on Σ obtained by restricting fi to Σ.

By [1], the Weil divisor div(fi) on C is exactly the stable intersection of Li and C counted with multiplicity.
For a point x in the interior of Σ, we see from the definitions that div(φi)(x) coincides with div(fi)(x). For
x on the boundary of Σ, the difference between div(fi)(x) and div(φi)(x) equals the outgoing slope of fi on
the infinite edge of C emanating from x. If x is on an edge pointing in the (1, 1) direction, then since we are
assuming that the intersection of Li and C is contained in Σ, it follows that x is not in the region spanned
by the two rays of Li pointing in the (−1, 0) and (0,−1) directions. Therefore, the slope of fi on the infinite
edge emanating from x is 1. Similarly, if x is on an infinite edge pointing in a different direction, the slope
of fi is zero on that edge.

Therefore, div(φi) is the divisor obtained from div(fi)(x) by subtracting a chip from every boundary point
of Σ on an infinite edge pointing in the (1, 1) direction. It follows that φ1 − φ2 is a rational function on Σ
whose associated principal divisor is exactly C · L1 − C · L2, as required.

�

3. The 7 bitangent lines to a smooth tropical plane quartic

A classical fact in algebraic geometry is that a smooth plane quartic curve has 28 bitangent lines. In this
section, we will adapt a classical proof of that fact to the tropical world, and show that every smooth plane
tropical curve admits 7 bitangent lines up to a certain equivalence relation.

Definition 3.1. A tropical line L is said to be bitangent to a smooth tropical plane quartic curve C if
L ∩ C consists of two components each with stable intersection multiplicity 2, or one component with stable
intersection multiplicity 4. A tropical bitangent line is called skeletal if its intersection with the tropical curve
is contained in the skeleton.
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An outline of a classical proof that there are 28 bitangent lines is as follows. Every smooth algebraic
plane quartic curve X is canonically embedded, so any line section is a canonical divisor. It follows that
bitangent lines correspond bijectively to linear equivalence classes1 of effective divisors D of degree two such
that 2D is a canonical divisor. Such divisors are called effective theta characteristics. The set of all theta
characteristics (effective or not) is canonically a torsor for Jac(X)[2], which has order 64. Via a non-trivial
analysis of bilinear forms in characteristic 2 as in [7, Ch. VIII.2], one proves that there are exactly 28 effective
theta characteristics, obtaining the desired result.

One can define theta characteristics for a metric graph in the same way:

Definition 3.2. A theta characteristic on a metric graph Γ is a linear equivalence class of divisors D such
that 2D is linearly equivalent to the canonical divisor on Γ. A theta characteristic is called effective if one
can choose D to be an effective divisor.

Zharkov proves in [18] that a metric graph Γ of genus g has 2g theta characteristics, exactly 2g − 1 of
which are effective. The fact that there are 2g theta characteristics (instead of 22g as in the classical case)
comes from the fact that Jac(Γ) is a real (rather than complex) torus of dimension g. In both the classical
and tropical situations the set of theta characteristics is naturally a torsor for the 2-torsion in the Jacobian.
Zharkov’s proof that all but one of the theta characteristics on Γ is effective does not seem to have an
algebraic analogue; for the reader’s convenience we summarize some of the ideas behind Zharkov’s proof in
Lemma 3.4 below.

In particular, Zharkov’s theorem tells us that an abstract metric graph Γ of genus 3 has exactly 7 effective
theta characteristics. However, unlike the classical case, it is not obvious (and in fact not true) that bitangent
lines to a smooth tropical plane quartic Γ are in bijection with effective theta characteristics. In fact, it is not
even completely obvious a priori how to define a tropical bitangent line! With our definition (which seems
to be the only reasonable one), there are examples of smooth tropical plane quartics with infinitely many
bitangent lines; see Example 3.5. (This is reminiscent of Vigeland’s example of cubic surfaces with infinitely
many lines rather than 27 [17]; a possible relationship between tropical plane quartic curves and tropical
cubic surfaces warrants further investigation.) Moreover, unlike the classical case, it appears to be subtle to
prove that for every effective theta characteristic [D], there is a tropical line L and a divisor D′ ∼ D such
that L · C = 2D′. We will prove this via a case-by-case analysis of the different possible smooth tropical
plane quartic curves.

First, however, we show that while tropical plane quartics are not canonically embedded, it is still true
that every line section belongs to the class of the canonical divisor. We thank Yang An for suggesting the
following proof:

Lemma 3.3. For a smooth tropical plane quartic curve C and a tropical line L, the stable intersection
divisor L · C is canonical.

Proof. By Lemma 2.5, any two divisors obtained as line sections of C are linearly equivalent. Now let L be
a tropical line, and let D be the divisor L · C. By tropical Bezout’s Theorem [16], the degree of D is 4, and
by the tropical Rieman-Roch theorem it is canonical if and only if its rank is 2. Let Γ be a compact subset
of C containing the support of D, considered as a metric graph. Choose a loopless model G for Γ, which is
obtained from Γ by adding two-valent vertices in the middle of edges so that G contains no loops. Let E be
any effective divisor of degree 2 supported on the vertices of G.

If E consists of two distinct vertices u and v, let L′ be a tropical line passing through them. Since u
and v are vertices, they are contained in the stable intersection L′ · C (even when the intersection is not
transversal). By the argument above, L ·C is linearly equivalent to L′ ·C, hence D is equivalent to a divisor
containing E.

Otherwise, E consists of a double point at some vertex w of G. Let L be a tropical line with a vertex
at w. Suppose first that, locally at w, Γ is parallel to L, i.e. Γ is trivalent at w with edges pointing
towards (−1, 0), (0,−1), (1, 1). Since C is not a line, at least one of these edges is finite and the stable
intersection contains a point at w and at the vertices at the end of those edges. By firing the complement of

1Since X is not hyperelliptic, one can in fact remove the phrase “linear equivalence classes” here.
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a neighborhood of w, we obtain a divisor containing at least two chips at w. If, on the other hand, L is not
parallel to Γ at w, the stable intersection is easily seen to have multiplicity two at w.

Since the vertices of G are a rank-determining set by [11], the rank of D is at least 2, and therefore D is
canonical. �

Next, we describe Zharkov’s algorithm for finding the theta characteristics of a metric graph Γ (see 3.5 for
an example). Place a nonzero (Z/2Z)-flow on the graph, namely, choose a subset of the edges so that around
each vertex, the number of selected edges equals 0 modulo 2. Let S be the support of the flow. Place arrows
on Γ− S indicating movement away from S, with multiple arrows allowed on different portions of the same
edge. Now, at the points where these arrows meet, place a number of chips equal to #{incoming edges}− 1.

Zharkov proves:

Lemma 3.4. Let Γ be a metric graph of genus g. Then:

(1) Each of the 2g − 1 divisors constructed as above is an effective theta characteristic.
(2) Different choices of (Z/2Z)-flows yield non-linearly equivalent divisors.
(3) The remaining theta characteristic on Γ is non-effective.

We refer the reader to [18] for an explicit description of the non-effective theta characteristic, which will
not be needed for this paper.

Example 3.5. Consider the genus 3 metric graph Σ in Figure 3. (We have not included lengths, since it
will not affect the combinatorics of this example.) Place a nonzero (Z/2Z)-flow on it, and let P +Q be the
corresponding effective theta characteristic for Σ.

We then consider a tropical curve C which has Σ as its minimal skeleton. Drawing a line through P
and Q does indeed give a bitangent to C, as shown in Figure 3 (showing the tropical curve without its
exterior branches). One component of the intersection, containing P , is a line segment with stable tropical
intersection number 2. The other component, the point Q, is a tropical intersection of multiplicity 2. Hence
L · C = 2P + 2Q.

Note that the bitangent line in Figure 3 can be translated horizontally while remaining bitangent, leaving
P alone but moving Q. This gives an infinite family of bitangents whose intersection divisors with C are
linearly equivalent. This behavior can be seen already in the metric graph Σ: there are effective divisors
linearly equivalent to P +Q, namely those leaving P fixed and moving Q along the edge containing it.





 

 

Figure 3. The construction of a theta characteristic, and a corresponding bitangent line.

In Appendix A, we use Zharkov’s algorithm to compute the 7 effective theta characteristics for each of
the first four graphs in Figure 2. The computation depends slightly on the relative lengths of certain edges,
but is made easier by the fact that smooth plane quartic curves are not hyperelliptic (Theorem 4.3).

Next, we show that each effective theta characteristic on a smooth tropical plane quartic curve is repre-
sented by a bitangent line:
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Proposition 3.6. Let P + Q be an effective theta characteristic for a smooth tropical plane quartic curve
C, and let L be a tropical line connecting P and Q. Then L is a bitangent line to C.

Proof. First, if the stable tropical intersection L ·C does not contain P or Q, we can move the divisor L ·C
within L ∩ C to a linearly equivalent divisor P +Q+R+ S, with all four points still in L ∩ C. We wish to
show that P +Q+R+ S = 2P + 2Q.

By definition of a theta divisor we know that 2P +2Q is canonical, and by Lemma 3.3, L ·C is canonical
for any line L. Thus 2P + 2Q ∼ P +Q+ R + S, and so P +Q ∼ R + S. There are three cases we have to
deal with.

(i) P + Q is rigid (i.e., not linearly equivalent to any other effective divisor). In this case, it follows
immediately that P +Q = R+ S.

(ii) One or both of P and Q is flexible, i.e., can be moved independently of the other while maintaining
linear equivalence. In this case, we claim that it suffices to show that the intersection multiplicity
of L with C at each flexible point is 2. Indeed, if the multiplicity at P is 2, and Q cannot move
independently, then L ·C = 2P +Q+S ∼ K together with 2P +2Q ∼ K implies that Q ∼ S. Since
we assumed that Q cannot move independently, we obtain Q = S, namely L · C = 2P + 2Q.

To see that the multiplicity at each flexible point is 2, we notice that, by [2, Corollary 4.7], a chip can
only move independently when it is on a bridge edge. This can only occur for the one-bridge and the
two-bridge curves (cf. Figure 1). The slopes of the bridge edges in these curves are always either −2
or − 1

2
. By Appendix A, the two-bridge curve has at most four theta characteristics with a chip on a

bridge, and the the one-bridge curve has as most three such theta characteristics (depending on the
edge lengths). Moreover, the chip on a bridge with slope −2 is always obtained by intersection with
the edge of a tropical line pointing in the (−1, 0) direction, and the chip on an edge with slope − 1

2
is

obtained by intersection with an edge pointing in the (0,−1) direction. Either way, the intersection
is of multiplicity 2.

(iii) P +Q is linearly equivalent to effective divisors obtainable only by moving the two points in tandem.
By Lemma 3.7 below, this can only occur when P and Q form a 2-edge-cut. By the classification in
Appendix A, this happens only for the Mickey Mouse and two-bridge combinatorial types.

Figure 4. The divisor D1 on the Mickey Mouse graph, and the divisor D2 on the two-bridge graph.

We begin with the Mickey Mouse graph. From the combinatorial type of C, we know that the
corresponding Newton subdivision has exactly two edges between the interior points (1, 1), (2, 1),
and (1, 2). By symmetry, we may assume that (1, 1) is connected to the two other points, giving a
Newton subdivision of the form shown on the left side of Figure 5. The diagonal edge from (1, 1) to
(2, 2) is present because an edge must separate (2, 1) from (1, 2) from being joined by an edge. The
simple cycle γ ⊂ C containing the support of the divisor D1 is determined by which other points
connect to (1, 1) in the triangulation, with all possibilities for the edges and a corresponding cycle
shown in Figure 5. The relevant points are labelled by i with 1 ≤ i ≤ 9, and the edges are labelled
by ei, where ei is dual to the edge connecting point i to (1, 1). Although not all triangulations will
have all of the edges, each triangulation will have some subset of them making up the cycle γ.

Let LE be a Euclidean line with slope 1 passing through the midpoint of the edge of C dual to the
segment connecting (1, 1) and (2, 2). The line LE must pass through exactly one more point of the
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e5

e6

e7

e8

e9

e4

e3

e2

e1

Figure 5. Triangulations for the Mickey Mouse combinatorial type, and the middle cycle.

cycle γ, and this point must in fact be contained in e4 ∪ e5 ∪ e6; this is because the edges e1, e2, and
e3 have slopes ≥ 0 and ≤ 1, and the edges e7, e8, and e9 have slopes ≥ 1 , making it impossible for
LE to pass through them due to the position of the edges.

We claim that the tropical line L defined by placing the vertex at the point pE = LE ∩ (e4 ∪ e5 ∪ e6)
is bitangent to C. It will certainly pass through the edge of C dual to the segment connecting (1, 1)
and (2, 2) with multiplicity 2. We must show that the other component of C∩L also has multiplicity
2. We can handle this in several cases:
(1) If p is the interior of e4, then C ∩L contains the vertical line segment below p on e4, which will

have multiplicity 2. A similar argument holds if p is in the interior of e6.
(2) If p is in the interior of e5, then p is an isolated intersection point of C and L, and will have

multiplicity 2 due to slope considerations.
(3) If p = e4 ∩ e5, then that component of C ∩ L is a horizontal ray in the direction (−1, 0). A

small perturbation will put us in one of the previous two cases (or give two intersection points),
meaning it is an intersection of multiplicity 2. A similar argument holds if p = e5 ∩ e6.

(4) If p = e4 ∩ e6 (meaning there is no e5), a small perturbation will give either a vertical line
segment contained in e4, a horizontal line segment contained in e6, a diagonal line segment dual
to the edge connecting points 4 and 6, or a pair of points. This too will be an intersection of
multiplicity 2.

Hence L is indeed a bitangent line to C. To verify that it corresponds to the theta characteristic D1,
note that it must correspond to some theta characteristic, and D1 is the only one with both points
on the middle cycle.

The proof for the two-bridge case is nearly identical to the Mickey Mouse case. Due to the com-
binatorial type, we know there are no edges between the three interior points in the triangulation,
and by symmetry we may assume the point (1, 1) corresponds to the middle cycle. This means there
is an edge connecting (1, 1) to (2, 2). The other points that (1, 1) may connect to are the points
1, . . . , 9 as in the previous proof. If we consider a Euclidean line through the midpoint of the edge
corresponding to the edge connecting (1, 1) to (2, 2), we find once again that it must pass through
a point in e4 ∪ e5 ∪ e6. Letting L be the tropical line having a vertex at that point, we once again
argue that it is bitangent to C, and find that it corresponds to the theta characteristic D2.

�

Lemma 3.7. Let P,Q be two distinct points of Γ such that P + Q is not rigid, and neither P nor Q is
flexible (as defined in Proposition 3.6). Then Γ \ {P,Q} is disconnected.

Proof. Let φ be a non-constant rational function such that P+Q+div(φ) is effective, and let M be the global
maximum of φ. Then div(φ) < 0 on any boundary point of φ−1(M) of valency greater than 1. Therefore, the
global maximum of φ is obtained at P and Q, and any other point where the global maximum is obtained
is an interior point of φ−1(M). Moreover, since div(φ) is −1 at P and Q, the slope of φ is −1 on a single
edge leaving P,Q, and 0 on the others.
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Let x be a point on an edge leaving P where the slope is 0, and y a point on an edge leaving Q where the
slope is −1. Then x is in φ−1(M), and y is not, so any path between x and y passes through the boundary
of M , namely through either P or Q. Therefore, by removing P and Q, the graph becomes disconnected.

�

Since we have seen (cf. Example 3.5) that a smooth tropical plane quartic curve can have infinitely many
bitangent lines, we wish to define a notion of equivalence for tropical bitangents so that if one bitangent can
be moved to another while preserving the bitangency condition, then the two are equivalent. Formally, what
works is the following:

Definition 3.8. Two bitangent lines are equivalent if they correspond to linearly equivalent theta charac-
teristics.

Note that any bitangent line is equivalent to a skeletal bitangent line. To see this, suppose that a tropical
line intersects C at the points P and Q with multiplicity 2, and that either of them is on the infinite branches
and not on the skeleton Σ of the curve. Then, since the infinite branches are leaf edges, the theta divisor
P +Q is linearly equivalent to a divisor P ′+Q′ on the skeleton. By Proposition 3.6, the line passing through
P ′ +Q′ is a bitangent line.

Combining this observation with Lemma 3.4 and Proposition 3.6, we obtain the following result:

Theorem 3.9. Every smooth tropical plane quartic admits precisely 7 bitangent lines up to equivalence.

4. Smooth tropical plane quartics are not hyperelliptic

As is well known, a smooth algebraic plane quartic curve is never hyperelliptic. In this section, we prove
a tropical analogue of this statement. This is a useful result in computing theta characteristics for genus 3
graphs, as it put restrictions on possible edge lengths (cf. Appendix A).

We begin by recalling the definition of a hyperelliptic graph.

Definition 4.1. A metric graph Γ is hyperelliptic if it has a divisor of degree 2 and rank 1.

We will use the following necessary condition for hyperellipticity.

Lemma 4.2. Let Γ be a metric graph with a 2-edge-cut. Then Γ is hyperelliptic only if the two edges of the
cut are of equal length.

Proof. Let e1 and e2 be the two edges of the cut, and let Γ′ and Γ′′ be the two connected components of
Γ \ {e1 ∪ e2}. By the metric graph analogue of [3, Corollary 5.10] (which is proved in exactly the same way
as in loc. cit., using [5, Lemma 3.11] instead of [3, Lemma 5.7]), we may assume that Γ is leafless with no
bridge edges. Let D = p + q be a divisor of degree 2 and rank 1 on Γ. Since D has positive rank, we may
assume that p is on the intersection between e1 and Γ′.

We will begin by showing that q is on e1 ∪ e2. Assume by contradiction that it is not, and choose some
point x in the interior of e2. Then one easily checks that D is x-reduced, contradicting the fact that D has
rank 1. Moreover, q has to be on the intersection between Γ′ and e2. Otherwise, choose a point y in Γ′.
Then again, D is y-reduced, and we arrive at a contradiction.

Now, move p and q along the cut while preserving linear equivalence, until one of them reaches Γ′′. By
the same argument as before (switching the roles of Γ′ and Γ′′, and of p and q if necessary), both p and q
must reach Γ′′ together. It follows that e1 and e2 have the same length. �

Let C be a smooth tropical plane quartic. As discussed in Subsection 2.1, C is trivalent of genus 3, and
its skeleton must have one of the first four combinatorial types depicted in Figure 2. According to [5], out
of these four, only the ones shown in Figure 6 have hyperelliptic metric realizations. The following theorem
shows that none of these realizations occur for the skeleton of a smooth tropical plane quartic curve.

Theorem 4.3. Every smooth tropical plane quartic curve is non-hyperelliptic.

9



Figure 6. The three combinatorial types of graphs realizable as trivalent hyperelliptic
metric graphs of genus 3, and the same graphs with lengths making them non-hyperelliptic.

Figure 7. Edges coming from (1, 1), and the corresponding cycle.

Proof. By Lemma 4.2, whenever a hyperelliptic metric graph contains a 2-edge-cut, that cut consists of two
edges of equal length. As we will see, this never occurs for smooth tropical plane quartic curves.

Consider a unimodular triangulation of the standard triangle with vertices (0, 0), (4, 0), (0, 4), correspond-
ing to a tropical curve C. There are four possible combinatorial types of the skeleton Γ of C, namely the
first four pictured in Figure 2. The first one (the “honeycomb” graph) is never hyperelliptic [5], regardless
of the length of the edges. The other three can be hyperelliptic if given the appropriate lengths. We will
show that such lengths are never achieved by Γ.

Without loss of generality, we may assume that the point (1, 1) corresponds to the large cycle γ in the
middle as in the second row of Figure 6. Each edge emanating from (1, 1) in the triangluation corresponds
to an edge of the cycle. Figure 7 shows all possibilities for such edges and the corresponding cycle. We know
that the edge from (1, 1) and (2, 2) is present in the triangulation: some edge must separate (2, 1) and (1, 2),
and any other separating edge prevents (1, 1) from being the middle cycle.

In the three combinatorial types in question, the 2-edge-cut consists of certain edges of the cycle γ. The
first edge, which we will denote e1, is dual to the edge connecting (1,1) with (2,2) in the triangulation. The
other edge of the cut, denoted e2, comes from the edges in the triangulation emanating from (1,1) with
angles strictly between π

4
and 2π. While a triangulation does not uniquely determine the lattice lengths of

the edges in a tropical curve, we claim that the data of the directions of the edges suffices to conclude that
e2 must be longer than e1. We will show this for each of the three combinatorial types separately. Let ℓ1
and ℓ2 be the lengths of the edges e1 and e2.

(1) Mickey Mouse. In this case, the cycle γ decomposes as e1-eh-e2-ev, where eh and ev are horizontal
and vertical edges with lengths ℓh and ℓv, respectively. Consider the line segments in e2 that are
dual to edges in the triangulation connecting (1, 1) with points on the horizontal edge of the Newton
polygon. The sum of the horizontal widths of these segments must be at least the sum of the
horizontal widths of e1 and eh: otherwise the cycle γ would not be closed. Since these line segments
in e2 have integer slopes, each of them has lattice length equal to horizontal width. The same holds
for e1 and eh, implying ℓ2 ≥ ℓ1 + ℓh > ℓ1.
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Figure 8. Possibilities for the middle cycle of the two-bridge graph, with the corresponding
subdivision structure

(2) One-bridge. In this case, without loss of generality the cycle γ decomposes as e1-eh-e2, where eh
is a horizontal edge of length ℓh. The same argument from the Mickey Mouse case holds, giving
ℓ2 ≥ ℓ1 + ℓh > ℓ1.

(3) Two-bridge. In this case, e1 and e2 form the whole cycle γ. Since edges must separate (1, 1) from (1, 2)
and (2, 1) in the triangulation, there are very few possibilities for the form of e2. Either e2 consists
of a vertical segment and a horizontal segment with lengths ℓv = ℓ1 and ℓh = ℓ1, which implies
ℓ2 = 2ℓ1; or e2 consists of a vertical, a diagonal, and a horizontal segment with lengths ℓv, ℓd, and
ℓh. In this latter case, ℓv = ℓh and ℓd = ℓ1−ℓv, so ℓ2 = ℓv+ℓd+ℓh = ℓv+(ℓ1−ℓv)+ℓv = ℓv+ℓ1 > ℓ1.
Both of the cases are illustrated in Figure 8.

This proves the claim, and hence the theorem.
�

Appendix A. Theta characteristics for genus 3 graphs

In the proof of Proposition 3.6, we made use of knowledge about the 7 theta characteristics of each of
the four graphs arising as a skeleton of a smooth plane quartic curve. In Figure 9, we illustrate all the
theta characteristics for the four types of genus 3 graphs relevant to us. Each graph has the support of a
nonzero (Z/2Z)-flow in bold, and in most cases the corresponding theta characteristic is illustrated as a pair
of circular points. In the cases where edge lengths might change the combinatorial position of the points of
the theta characteristic, the other possibility is illustrated by a pair of crosses. There are degenerate cases
where one of these moves to a vertex, but this will not affect our arguments. We have also taken advantage
of Theorem 4.3, which allows us to assume asymmetry for the middle cycle in the second, third, and fourth
columns.

Labeling the columns 1, 2, 3, and 4 and the rows A, B, C, D, E, F, and G, we have the following
classification of these 28 theta characteristics by cases (i), (ii), and (iii) of Proposition 3.6:

(i) The 20 not falling into cases (ii) or (iii).
(ii) The 6 theta characteristics 3E, 3F, 3G, 4D, 4F, 4G.
(iii) The 2 theta characteristics 2E, 4E.
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[8] A. Gathmann. Tropical algebraic geometry. Jahresbericht der DMV, 108(1):3–32, 2006.

[9] A. Gathmann and M. Kerber. A Riemann-Roch theorem in tropical geometry. Mathematische Zeitschrift, 259:217–230,
2008.

[10] E. Katz, H. Markwig, and T. Markwig. The j-invariant of a plane tropical cubic. J. Algebra, 320(10):3832–3848, 2008.
[11] Y. Luo. Rank-determining sets of metric graphs. J. Comb. Theory Series A, 118(6):1775–1793, 2011.

11



[12] G. Mikhalkin. Tropical geometry and its applications. In International Congress of Mathematicians. Vol. II, pages 827–852.
Eur. Math. Soc., Zürich, 2006.
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Figure 9. The 7 theta characteristics for each type of graph.
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