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Abstract. In this paper, we give an overview of the BitBlaze project, a new ap-
proach to computer security via binary analysis. In particular, BitBlaze focuses
on building a unified binary analysis platform and using it to provide novel so-
lutions to a broad spectrum of different security problems. The binary analysis
platform is designed to enable accurate analysis, provide an extensible architec-
ture, and combines static and dynamic analysis as well as program verification
techniques to satisfy the common needs of security applications. By extracting
security-related properties from binary programs directly, BitBlaze enables a prin-
cipled, root-cause based approach to computer security, offering novel and effec-
tive solutions, as demonstrated with over a dozen different security applications.
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1 Introduction

In BitBlaze, we propose a new approach to computer security via binary analysis. In
particular, we make the simple and yet important observation that for many security
problems, their root cause and the key to their solutions lie directly in the relevant
programs (e.g., vulnerable programs and malicious code). Thus, by designing and de-
veloping techniques and tools to automatically extract security-related properties from
programs and devise solutions based on them, we can enable a principled approach to
many security problems, focusing on their root cause, and offer more effective solutions
than previous approaches which rely on heuristics or symptoms of an attack.

To enable the above approach, one technical challenge is that for security applica-
tions, we often need to directly deal with binary code. For many programs such as com-
mon off-the-shelf (COTS) programs, users do not have access to their source code. For
malicious code attacks, attackers simply do not attach the source code with the attack.
And binary code is what gets executed, and hence analyzing binary code will give the
ground truth important for security applications whereas analyzing source code may
give the wrong results due to compiler errors and optimizations. However, analyzing
binary code is commonly considered as an extremely challenging task due to its com-
plexity and the lack of higher-level semantic information. As a result, very few tools
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exist for binary analysis that are powerful enough for general security applications, and
this has been a big hurdle preventing security researchers and practitioners from taking
the aforementioned root-cause based approach.

Thus, the above observations have motivated us to conduct the BitBlaze project,
building a unified binary analysis platform and using it to provide novel solutions to
a broad spectrum of different security problems. In this paper, we give an overview of
the two main research foci of BitBlaze: (1) the design and development of a unified,
extensible binary analysis infrastructure for security applications; (2) novel solutions
to address a spectrum of different security problems by taking a principled, root-cause
based approach enabled by our binary analysis infrastructure.

In the rest of this paper, we describe the challenges and design rationale behind the
BitBlaze Binary Analysis Platform and its overall architecture, and then describe its
three main components Vine , TEMU, and Rudder. Finally, we give an overview of the
different security applications that we have enabled using the BitBlaze Binary Analysis
Platform and discuss some related work.

2 The Architecture of the BitBlaze Binary Analysis Platform

In this section, we first describe the challenges of binary analysis for security appli-
cations, then the desired properties of a binary analysis platform catering to security
applications, and finally outline the architecture of the BitBlaze Binary Analysis Plat-
form.

2.1 Challenges

There are several main challenges for binary code analysis, some of which are specific
to security applications.

Complexity. The first major challenge for binary analysis is that binary code is com-
plex. Binary analysis needs to model this complexity accurately in order for the analysis
itself to be accurate. However, the sheer number and complexity of instructions in mod-
ern architectures makes accurate modeling a significant challenge. Popular modern ar-
chitectures typically have hundreds of different instructions, with new ones added at
each processor revision. Further, each instruction can have complex semantics, such as
single instruction loops, instructions which behave differently based upon their operand
values, and implicit side effects such as setting processor flags. For example, the IA-32
manuals describing the semantics of x86 weigh over 11 pounds.

As an example, consider the problem of determining the control flow in the following
x86 assembly program:

/ / i n s t r u c t i o n ds t , s r c
add a , b / / a = a+b
s h l a , x / / a << x
j z t a r g e t / / jump i f z e r o t o a d d r e s s t a r g e t

The first instruction, add a,b, computes a := a+b. The second instruction, shl
a,x, computes a := a << x. The last instruction, jz a, jumps to address a if the
processor zero flag is set.
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One problem is that both the add and shl instruction have implicit side effects. Both
instructions calculate up to six other bits of information that are stored as processor
status flags. In particular, they calculate whether the result is zero, the parity of the
result, whether there is an auxiliary carry, whether the result is signed, and whether an
overflow has occurred.

Conditional control flow, such as the jz instruction, is determined by the implicitly
calculated processor flags. Thus, either the add instruction calculates the zero flag, or
the shl will. However, which instruction, add or shl, determines whether the branch
is taken? Answering this question is not straight-forward. The shl instruction behaves
differently depending upon the operands: it only updates the zero flag if x is not zero.

Lack of Higher-Level Semantics. The second major challenge is that binary code is
different than source code, and in particular, lacking higher-level semantics present in
source code. Thus, we need to adapt and develop program analysis techniques and tools
that are suitable for the setting of binary code (where debugging information is often
unavailable). In particular, binary code lacks abstractions that are often fundamental to
source code and source code analysis, as shown in the following examples:

– No Functions. The function abstraction does not exist at the binary level. Instead,
control flow in a binary program is performed by jumps. For example, the x86
instruction call x is just shorthand for storing the current instruction pointer
(register eip) at the address named by the register esp, decrementing esp by the
architecture word size, then loading the eip with number x. Indeed, it is perfectly
valid in assembly, and sometimes happens in practice, that code may call into the
middle of a “function”, or have a single “function” separated into non-contiguous
pieces.

– Memory vs. Buffers. Binary code does not have buffers, it has memory. While the
OS may determine a particular memory page is not valid, memory does not have
the semantics of a user-specified type and size. One implication of the difference
between buffers and memory is that in binary code there is no such thing as a buffer
overflow. While we may say a particular store violates a higher-level semantics
given by the source code, such facts are inferences with respect to the higher-level
semantics, not part of the binary code itself.

– No Types. New types cannot be created or used since there is no such thing as a
type constructor in binary code. The only types available are those provided by the
hardware: registers and memory. Even register types are not necessarily informa-
tive, since it is common to store values from one register type (e.g., 32-bit register)
and read them as another (e.g., 8-bit register).

Overall, an assembly-specific approach is unattractive because writing analysis over
modern complex instruction tends to be tedious and error-prone. Verifying a program
analysis is correct over such a large and complicated instruction set seems even more
difficult. Further, an assembly-specific approach is specific to a single architecture. All
analysis would have to be ported each time we want to consider a new architecture.
Thus, analysis could not take advantage of the common semantics across many different
assembly languages.
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Whole-System View. Many security applications requires the ability to analyze oper-
ations in the operating system kernel and interactions between multiple processes, thus
require a whole-system view, presenting greater challenges than in traditional single-
program analysis.

Code Obfuscation. Some security applications require analyzing malicious code. Ma-
licious code may employ anti-analysis techniques such as code packing, encryption,
and obfuscation to make program analysis difficult, posing greater challenges than an-
alyzing benign programs.

2.2 Design Rationale

The goal of the BitBlaze Binary Analysis Platform is to design and develop techniques
and the core utilities that cater the common needs of security applications and enable
others to build upon and develop new solutions to security problems more easily and
effectively. Given the aforementioned challenges, we have a few design guidelines mo-
tivating the architecture of the BitBlaze Binary Analysis Platform:

Accuracy. We would like to enable accurate analysis, motivating us to build precise,
formal models of instructions that allow the tool to accurately model the program exe-
cution behavior symbolically.

Extensibility. Given the complexity of binary analysis, we would like to develop core
utilities which can then be re-used and easily extended to enable other more sophisti-
cated analysis on binaries, or easily re-targeted to different architectures.

Fusion of Static and Dynamic Analysis. Static and dynamic analysis both have ad-
vantages and disadvantages. Static analysis can give more complete results as it covers
different execution paths, however, it may be difficult due to the complexity of pointer
aliasing, the prevalence of indirect jumps, and the lack of types and other higher-level
abstractions in binaries. Even telling what is code and what is data statically is an unde-
cidable problem in general. Moreover, it is particularly challenging for static analysis
to deal with dynamically generated code and other anti-static-analysis techniques em-
ployed in malicious code. Furthermore, certain instructions such as kernel and floating
point instructions may be extremely challenging to accurately model. On the other hand,
dynamic analysis naturally avoid many of the difficulties that static analysis needs to
face, at the cost of analyzing one path at a time. Thus, we would like to combine static
and dynamic analysis whenever possible to have the benefits of both.

Vine TEMU Rudder

BitBlaze

Fig. 1. The BitBlaze Binary Analysis Platform Overview
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2.3 Architecture

Motivated by the aforementioned challenges and design rationale, the BitBlaze Bi-
nary Analysis Platform is composed of three components: Vine, the static analysis
component, TEMU, the dynamic analysis component, and Rudder, the mixed concrete
and symbolic analysis component combining dynamic and static analysis, as shown in
Figure 1.

Vine translates assembly to a simple, formally specified intermediate language (IL)
and provides a set of core utilities for common static analysis on the IL, such as control
flow, data flow, optimization, symbolic execution, and weakest precondition calculation.

TEMU performs whole-system dynamic analysis, enabling whole-system fine-
grained monitoring and dynamic binary instrumentation. It provides a set of core utili-
ties for extracting OS-level semantics, user-defined dynamic taint analysis, and a clean
plug-in interface for user-defined activities.

Rudder uses the core functionalities provided by Vine and TEMU to enable mixed
concrete and symbolic execution at the binary level. For a given program execution
path, it identifies the symbolic path predicates that symbolic inputs need to satisfy to
follow the program path. By querying solvers such as decision procedures, it can de-
termine whether the path is feasible and what inputs could lead the program execution
to follow the given path. Thus, Rudder can automatically generate inputs leading pro-
gram execution down different paths, exploring different parts of the program execution
space. Rudder provides a set of core utilities and interfaces enabling users to snapshot
and reload the exploration state and provide user-specified path selection policies.

3 Vine: The Static Analysis Component

In this section, we give an overview of Vine, the static analysis component of BitBlaze
Binary Analysis Platform, describing its intermediate language (IL), its front end and
back end components, and implementation.

3.1 Vine Overview

Figure 2 shows a high-level picture of Vine. The Vine static analysis component is di-
vided into a platform-specific front-end and a platform-independent back-end. At the
core of Vine is a platform-independent intermediate language (IL) for assembly. The
IL is designed as a small and formally specified language that faithfully represents
the assembly languages. Assembly instructions in the underlying architecture are lifted
up to the Vine IL via the Vine front-end. All back-end analyses are performed on the
platform-independent IL. Thus, program analyses can be written in an architecture-
independent fashion and do not need to directly deal with the complexity of an instruc-
tion set such as x86. This design also provides extensibility—users can easily write
their own analysis on the IL by building on top of the core utilities provided in Vine.

The Vine front-end currently supports translating x86 [23] and ARMv4 [4] to the
IL. It uses a set of third-party libraries to parse different binary formats and produce
assembly. The assembly is then translated into the Vine IL in a syntax-directed manner.
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Fig. 2. Vine Overview

The Vine back-end supports a variety of core program analysis utilities. The back-
end has utilities for creating a variety of different graphs, such as control flow and
program dependence graphs. The back-end also provides an optimization framework.
The optimization framework is usually used to simplify a specific set of instructions.
We also provide program verification capabilities such as symbolic execution, cal-
culating weakest preconditions, and interfacing with decision procedures. Vine can
also write out lifted Vine instructions as valid C code via the code generator
back-end.

To combine static and dynamic analysis, we also provide an interface for Vine to
read an execution trace generated by a dynamic analysis component such as TEMU.
The execution trace can be lifted to the IL for various further analysis.

3.2 The Vine Intermediate Language

The Vine IL is the target language during lifting, as well as the analysis language for
back-end program analysis. The semantics of the IL are designed to be faithful to as-
sembly languages. Table 1 shows the Vine IL.

The base types in the Vine IL are 1, 8, 16, 32, and 64-bit registers (i.e., n-bit vec-
tors) and memories. A memory type is qualified by its endianness, which can be either
little (e.g., for little-endian architectures like x86), big (e.g., for big-endian archi-
tectures such as PowerPC), or norm for normalized memory (explained later in this
section). A memory type is also qualified by the index type, which must be a regis-
ter type. For example mem t(little, reg32 t) denotes a memory type which is
little endian and is addressed by 32-bit numbers.

There are three types of values in Vine. First, Vine has numbers n of type τreg. Sec-
ond, Vine has memory values {na1 → nv1, na2 → nv2, ...}, where nai denotes a
number used as an address, and nvi denotes the value stored at the address. Finally,
Vine has a distinguished value ⊥. ⊥ values are not exposed to the user and cannot
be constructed in the presentation language. ⊥ is used internally to indicate a failed
execution.

Expressions in Vine are side-effect free. The Vine IL has binary operations ♦b (“&”
and “|” are bit-wise), unary operations ♦u, constants, let bindings, and casting. Cast-
ing is used when the semantics requires a change in the width of a value. For example,
the lower 8 bits of eax in x86 are known as al. When lifting x86 instructions, we use
casting to project out the lower-bits of the corresponding eax register variable to an al
register variable when al is accessed.
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Table 1. The Vine Intermediate Language (Since ’|’ is an operator, for clarity we use commas to
separate all operator elements in the productions for ♦b and ♦u.)

program ::= decl* instr*

instr ::= var = exp | jmp exp | cjmp exp,exp,exp | halt exp | assert exp

| label integer | special ids

exp ::= load(exp, exp, τreg) | store(exp, exp, exp,τreg) | exp ♦b exp | ♦u exp

| const | var | let var = exp in exp | cast(cast kind,τreg,exp)

cast kind ::= unsigned | signed | high | low
decl ::= var var

var ::= (string, idv , τ )

♦b ::= +,−, ∗, /, /s, mod, mods,�,�,�a, &, |,⊕, ==, �=, <,≤, <s,≤s

♦u ::= − (unary minus), ! (bit-wise not)

value ::= const | { na1 → nv1, na2 → nv2, . . .}: τmem | ⊥
const ::= n : τreg

τ ::= τreg | τmem | Bot | Unit

τ reg ::= reg1 t | reg8 t | reg16 t | reg32 t | reg64 t

τmem ::= mem t(τendian, τreg)

τendian ::= little | big | norm

In Vine, both load and store operations are pure. While load is normally pure,
the semantics of store are often not. Each store expression must specify which
memory to load or store from. The resulting memory is returned as a value. For exam-
ple, a Vine store operation is written mem1 = store(mem0, a, y), where mem1
is the same as mem0 except address a has value y. The advantage of pure memory
operations in Vine notation is that it makes it possible to syntactically distinguish what
memory is modified or read. One place where we take advantage of this is in computing
Single Static Assignment (SSA) where both scalars and memory have a unique single
static assignment location.

A program in Vine is a sequence of variable declarations, followed by a sequence of
instructions. There are 7 different kinds of instructions. The language has assignments,
jumps, conditional jumps, and labels. The target of all jumps and conditional jumps
must be a valid label in our operational semantics, else the program halts with ⊥. Note
that a jump to an undefined location (e.g., a location that was not disassembled such as
to dynamically generated code) results in the Vine program halting with ⊥. A program
can halt normally at any time by issuing the halt statement. We also provide assert,
which acts similar to a C assert: the asserted expression must be true, else the machine
halts with ⊥.

A special in Vine corresponds to a call to an externally defined procedure or
function. The id of a special indexes what kind of special, e.g., what system call. The
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// x86 instr dst,src
1. mov [eax], 0xaabbccdd
2. mov ebx, eax
3. add ebx, 0x3
4. mov eax, 0x1122
5. mov [ebx], ax
6. sub ebx, 1
7. mov ax, [ebx]

(a)

eax+4

memory

0xdd

0xcc

0xaa

0xbb

address

eax+1

eax+2

eax+3

eax

(b)

0x22

memory

0xdd

0xcc

0xbb

address

eax+1

eax+2

eax+3

eax

eax+4 0x11

(c)

Fig. 3. An example of little-endian stores as found in x86 that partially overlap. (b) shows memory
after executing line 1, and (c) shows memory after executing line 5. Line 7 will load the value
0x22bb.

semantics of special is up to the analysis; its operational semantics are not defined.
We include special as an instruction type to explicitly distinguish when such calls
may occur that alter the soundness of an analysis. A typical approach to dealing with
special is to replace special with an analysis-specific summary function written
in the Vine IL that is appropriate for the analysis.

Normalized Memory
The endianness of a machine is usually specified by the byte-ordering of the hardware.
A little endian architecture puts the low-order byte first, and a big-endian architecture
puts the high-order byte first. x86 is an example of a little endian architecture, and
PowerPC is an example of a big endian architecture.

We must take endianness into account when analyzing memory accesses. Consider
the assembly in Figure 3a. The mov operation on line 2 writes 4 bytes to memory
in little endian order (since x86 is little endian). After executing line 2, the address
given by eax contains byte 0xdd, eax+1 contains byte 0xcc, and so on, as shown
in Figure 3b. Lines 2 and 3 set ebx = eax+2. Line 4 and 5 write the 16-bit value
0x1122 to ebx. An analysis of these few lines of code needs to consider that the write
on line 4 overwrites the last byte written on line 1, as shown in Figure 3c. Considering
such cases requires additional logic in each analysis. For example, the value loaded on
line 7 will contain one byte from each of the two stores.

We say a memory is normalized for a b-byte addressable memory if all loads and
stores are exactly b-bytes and b-byte aligned. For example, in x86 memory is byte ad-
dressable, so a normalized memory for x86 has all loads and stores at the byte level.
The normalized form for the write on Line 1 of Figure 3a in Vine is shown in Figure 4.
Note the subsequent load on line 7 are with respect to the current memory mem6.

Normalized memory makes writing program analyses involving memory easier.
Analyses are easier because normalized memory syntactically exposes memory updates
that are otherwise implicitly defined by the endianness. The Vine back-end provides
utilities for normalizing all memory operations.
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1. mem4 = let mem1 = store(mem0,eax, 0xdd, reg8_t) in
let mem2 = store(mem1, eax+1, 0xcc, reg8_t) in
let mem3 = store(mem2, eax+2, 0xbb, reg8_t) in

store(mem3, eax+3, 0xcc, reg8_t);
...
5. mem6 = let mem5 = store(mem4, ebx, 0x22, reg8_t) in

store(mem5, ebx+1, 0x22, reg8_t)
...
7. value = let b1 = load(mem6, ebx, reg8_t) in

let b2 = load(mem6, ebx+1, reg8_t) in
let b1’ = cast(unsigned, b1, reg16_t) in
let b2’ = cast(unsigned, b2, reg16_t) in

(b2’ � 8) | b1’;

Fig. 4. Vine normalized version of the store and load from Figure 3a

3.3 The Vine Front-End

The Vine front-end is responsible for translating binary code to the Vine IL. In addition,
the front-end interfaces with libraries such as the GNU Binary File Descriptor (libbfd)
library for parsing the low-level details of binary files.

Translating binary code to the IL consists of three steps:

– Step 1. First the binary file is disassembled. Vine currently interfaces with three
disassemblers: IDA Pro [19], a commercial disassembler, a research disassembler
from Kruegel et al. [26] that can disassemble x86 obfuscated code, and our own
linear-sweep disassembler built on top of GNU libopcodes. Interfacing with other
disassemblers is straightforward.

– Step 2. The disassembly is passed to VEX, a third-party library which turns as-
sembly instructions into the VEX intermediate language. The VEX IL is part of the
Valgrind dynamic instrumentation tool [31]. The VEX IL is also similar to a RISC-
based language. As a result, the lifted IL has only a few instruction types, similar to
Vine. However, the VEX IL itself is inconvenient for performing program analysis
because its information about side effects of instructions such as what EFLAGS
are set by x86 instructions is implicit. This step is mainly performed in order to
simplify the development of Vine: we let the existing tool take care of the task of
reducing assembly instructions to a basic IL, then in step 3 expose all side-effects
so that the analysis is faithful.

– Step 3. We translate the VEX IL to Vine. The resulting Vine IL is intended to be
faithful to the semantics of the disassembled assembly instructions.

Translated assembly instructions have all side-effects explicitly exposed as Vine instruc-
tions. As a result, a single typical assembly instruction will be translated as a sequence
of Vine instructions. For example, the add eax,0x2 x86 instruction is translated as
the following instructions:
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tmp1 = EAX; EAX = EAX + 2;
//eflags calculation
CF:reg1_t = (EAX<tmp1);
tmp2 = cast(low, EAX, reg8_t);
PF =(!cast(low,

((((tmp2>>7)ˆ(tmp2>>6))ˆ((tmp2>>5)ˆ(tmp2>>4)))ˆ
(((tmp2>>3)ˆ(tmp2>>2))ˆ((tmp2>>1)ˆtmp2)))), reg1_t);

AF = (1==(16&(EAXˆ(tmp1ˆ2))));
ZF = (EAX==0);
SF = (1==(1&(EAX>>31)));
OF = (1==(1&(((tmp1ˆ(2ˆ0xFFFFFFFF))&(tmp1ˆEAX))>>31)));

The translated instructions expose all the side-effects of the add instruction, including
all 6 eflags that are updated by the operation. As another example, an instruction
with the rep prefix is translated as a sequence of instructions that form a loop.

In addition to binary files, Vine can also translate an instruction trace to the IL. Con-
ditional branches in a trace are lifted as assert statements to check that the executed
branch is followed. This is done to prevent branching outside the trace to an unknown
instruction. Vine and TEMU are co-designed so that TEMU currently generates traces
in a trace format that Vine can read.

3.4 The Vine Back-End

In the Vine back-end, new program analyses are written over the Vine IL. Vine provides
a library of common analyses and utilities which serve as building blocks for more
advanced analyses. Below we provide an overview of some of the utilities and analyses
provided in the Vine back-end.

Evaluator. Vine has an evaluator which implements the operational semantics of the
Vine IL. The evaluator allows us to execute programs without recompiling the IL back
down to assembly. For example, we can test a raised Vine IL for an instruction trace
produced by an input by evaluating the IL on that input and verifying we end in the
same state.

Graphs. Vine provides routines for building and manipulating control flow graphs
(CFG), including a pretty-printer for the graphviz DOT graph language [2]. Vine also
provides utilities for building data dependence and program dependence graphs [30].

One issue when constructing a CFG of an assembly program is determining the suc-
cessors of jumps to computed values, called indirect jumps. Resolving indirect jumps
usually requires program analyses that require a CFG, e.g., Value Set Analysis
(VSA) [5]. Thus, there is a potential circular dependency. Note that an indirect jump
may potentially go anywhere, including the heap or code that has not been previously
disassembled.

Our solution is to designate a special node as a successor of unresolved indirect jump
targets in the CFG. We provide this so an analysis that depends on a correct CFG can
recognize that we do not know the subsequent state. For example, a data-flow analysis
could widen all facts to the lattice bottom. Most normal analyses will first run an indirect
jump resolution analysis in order to build a more precise CFG that resolves indirect
jumps to a list of possible jump targets. Vine provides one such analysis, VSA [5].
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Single Static Assignment. Vine supports conversion to and from single static assign-
ment (SSA) form [30]. SSA form makes writing analysis easier because every variable
is defined statically only once. We convert both memory and scalars to SSA form. We
convert memories because then one can syntactically distinguish between memories
before and after a write operation instead of requiring the analysis itself to maintain
similar bookkeeping. For example, in the memory normalization example in Figure 3.2,
an analysis can syntactically distinguish between the memory state before the write on
line 1, the write on line 5, and the read on line 7.

Chopping. Given a source and sink node, a program chop [24] is a graph showing the
statements that cause definitions of the source to affect uses of the sink. For example,
chopping can be used to restrict subsequent analysis to only a portion of code relevant
to a given source and sink instead of the whole program.

Data-flow and Optimizations. Vine provides a generic data-flow engine that works on
user-defined lattices. Vine also implements several data-flow analysis. Vine currently
implements Simpson’s global value numbering [37], constant propagation and fold-
ing [30], dead-code elimination [30], live-variable analysis [30], integer range analysis,
and Value set analysis (VSA) [5]. VSA is a data-flow analysis that over-approximates
the values for each variable at each program point. Value-set analysis can be used to help
resolve indirect jumps. It can also be used as an alias analysis. Two memory accesses
are potentially aliased if the intersection of their value sets is non-empty.

Optimizations are useful for simplifying or speeding up subsequent analysis. For
example, we have found that the time for the decision procedure STP to return a satis-
fying answer for a query can be cut in half by using program optimization to simplify
the query first [9].

C Code Generator. Vine can generate valid C code from the IL. For example, one
could use Vine as a rudimentary decompiler by first raising assembly to Vine, then
writing it out as valid C. The ability to export to C also provides a way to compile Vine
programs: the IL is written as C, then compiled with a C compiler.

The C code generator implements memories in the IL as arrays. A store operation
is a store on the array, and a load is a load from the array. Thus, C-generated code
simulates real memory. For example, consider a program vulnerable to a buffer overflow
attack is raised to Vine, then written as C and recompiled. An out-of-bound write on the
original program will be simulated in the corresponding C array, but will not lead to a
real buffer overflow.

Program Verification Analyses. Vine currently supports formal program verification
in two ways. First, Vine can convert the IL into Dijkstra’s Guarded Command Language
(GCL), and calculate the weakest precondition with respect to GCL programs [20]. The
weakest precondition for a program with respect to a predicate q is the most general
condition such that any input satisfying the condition is guaranteed to terminate (nor-
mally) in a state satisfying q. Currently we only support acyclic programs, i.e., we do
not support GCL while.
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Vine also interfaces with decision procedures. Vine can write out expressions (e.g.,
weakest preconditions) in CVC Lite syntax [1], which is supported by several decision
procedures. In addition, Vine interfaces directly with the STP [22] decision procedure
through calls from Vine to the STP library.

3.5 Implementation of Vine

The Vine infrastructure is implemented in C++ and OCaml. The front-end lifting is
implemented primarily in C++, and consists of about 17,200 lines of code. The back-
end is implemented in OCaml, and consists of about 40,000 lines of code. We interface
the C++ front-end with the OCaml back-end using OCaml via IDL generated stubs.

The front-end interfaces with Valgrind’s VEX [31] to help lift instructions, GNU
BFD for parsing executable objects, and GNU libopcodes for pretty-printing the
disassembly.

The implemented Vine IL has several constructors in addition to the instructions in
Figure 1:

– The Vine IL has a constructor for comments. We use the comment constructor to
pretty-print each disassembled instruction before the IL, as well as a place-holder
for user-defined comments.

– The Vine IL supports variable scoping via blocks. Vine provides routines to de-
scope Vine programs via α-varying as needed.

– The Vine IL has constructs for qualifying statements and types with user-defined
attributes. This is added to help facilitate certain kinds of analysis such as taint-
based analysis.

4 TEMU: The Dynamic Analysis Component

In this section, we give an overview of TEMU, the dynamic analysis component of
BitBlaze Binary Analysis Platform, describing its components for extracting OS-level
semantics, performing whole-system dynamic taint analysis, its Plugins and
implementation.

4.1 TEMU Overview

TEMU is a whole-system dynamic binary analysis platform that we developed on the
basis of a whole-system emulator, QEMU [36]. We run an entire system, including the
operating system and applications in this emulator, and observe in a fine-grained manner
how the binary code of interest is executed. The whole-system approach in TEMU is
motivated by several considerations:

– Many analyses require fine-grained instrumentation (i.e., at instruction level) on
binary code. By dynamically translating the emulated code, the whole-system em-
ulator enables fine-grained instrumentation.

– A whole-system emulator presents us a whole-system view. The whole-system
view enables us to analyze the operating system kernel and interactions between
multiple processes. In contrast, many other binary analysis tools (e.g., Valgrind,
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DynamoRIO, Pin) only provide a local view (i.e., a view of a single user-mode pro-
cess). This is particularly important for analyzing malicious code, because many
attacks involve multiple processes, and kernel attacks such as rootkits have become
increasingly popular.

– A whole-system emulator provides an excellent isolation between the analysis com-
ponents and the code under analysis. As a result, it is more difficult for the code
under analysis to interfere with analysis results.

The design of TEMU is motivated by several challenges and considerations:

– The whole-system emulator only provides us only the hardware-level view of the
emulated system, whereas we need a software-level view to get meaningful analysis
results. Therefore, we need a mechanism that can extract the OS-level semantics
from the emulated system. For example, we need to know what process is currently
running and what module an instruction comes from.

– In addition, many analyses require reasoning about how specific data depends on
its data sources and how it propagates throughout the system. We enable this using
whole-system dynamic taint analysis.

– We need to provide a well-designed programming interface (i.e., API) for users
to implement their own plugins on TEMU to perform their customized analysis.
Such an interface can hide unnecessary details from users and reuse the common
functionalities.

With these considerations in mind, we have designed the architecture of TEMU, as
shown in Figure 5. We build the semantics extractor to extract OS-level semantics in-
formation from the emulated system. We build the taint analysis engine to perform dy-
namic taint analysis. We define and implement an interface (i.e, TEMU API) for users to
easily implement their own analysis modules (i.e. TEMU plugins). These modules can
be loaded and unloaded at runtime to perform designated analyses. We implemented
TEMU in Linux, and at the time of writing, TEMU can be used to analyze binary code
in Windows 2000, Windows XP, and Linux systems. Below we describe these three
components respectively.
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4.2 Semantics Extractor

The semantics extractor is responsible for extracting OS-level semantics information of
the emulated system, including process, module, thread, and symbol information.

Process and Module Information. For the current execution instruction, we need to
know which process, thread and module this instruction comes from. In some cases,
instructions may be dynamically generated and executed on the heap.

Maintaining a mapping between addresses in memory and modules requires infor-
mation from the guest operating system. We use two different approaches to extract
process and module information for Windows and Linux.

For Windows, we have developed a kernel module called module notifier. We load
this module into the guest operating system to collect the updated memory map infor-
mation. The module notifier registers two callback routines. The first callback routine is
invoked whenever a process is created or deleted. The second callback routine is called
whenever a new module is loaded and gathers the address range in the virtual mem-
ory that the new module occupies. In addition, the module notifier obtains the value of
the CR3 register for each process. As the CR3 register contains the physical address
of the page table of the current process, it is different (and unique) for each process. All
the information described above is passed on to TEMU through a predefined I/O port.

For Linux, we can directly read process and module information from outside, be-
cause we know the relevant kernel data structures, and the addresses of relevant symbols
are also exported in the system.map file. In order to maintain the process and module
information during execution, we hook several kernel functions, such as do fork and
do exec.

Thread Information. For windows, we also obtain the current thread information to
support analysis of multi-threaded applications and the OS kernel. It is fairly straight-
forward, because the data structure of the current thread is mapped into a well-known
virtual address in Windows. Currently, we do not obtain thread information for Linux
and may implement it in future versions.

Symbol Information. For PE (Windows) binaries, we also parse their PE headers and
extract the exported symbol names and offsets. After we determine the locations of all
modules, we can determine the absolute address of each symbol by adding the base
address of the module and its offset. This feature is very useful, because all windows
APIs and kernel APIs are exported by their hosting modules. The symbol information
conveys important semantics information, because from a function name, we are able
to determine what purpose this function is used for, what input arguments it takes, and
what output arguments and return value it generates. Moreover, the symbol informa-
tion makes it more convenient to hook a function—instead of giving the actual address
of a function, we can specify its module name and function name. Then TEMU will
automatically map the actual address of the function for the user.

Currently, this feature is only available for PE binaries. Support for ELF (Linux)
binaries will be available in future versions.
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4.3 Taint Analysis Engine

Our dynamic taint analysis is similar in spirit to a number of previous systems [16, 35,
18, 38, 17]. However, since our goal is to support a broad spectrum of different appli-
cations, our design and implementation is the most complete. For example, previous
approaches either operate on a single process only [17,35,38], or they cannot deal with
memory swapping and disks [16, 18].

Shadow Memory. We use a shadow memory to store the taint status of each byte of
the physical memory, CPU registers, the hard disk and the network interface buffer.
Each tainted byte is associated with a small data structure storing the original source
of the taint and some other book keeping information that a TEMU plugin wants to
maintain. The shadow memory is organized in a page-table-like structure to ensure
efficient memory usage. By using shadow memory for the hard disks, the system can
continue to track the tainted data that has been swapped out, and also track the tainted
data that has been saved to a file and is then read back in.

Taint Sources. A TEMU plugin is responsible for introducing taint sources into the
system. TEMU supports taint input from hardware, such as the keyboard, network in-
terface, and hard disk. TEMU also supports tainting a high-level abstract data object
(e.g. the output of a function call, or a data structure in a specific application or the OS
kernel).

Taint Propagation. After a data source is tainted, the taint analysis engine monitors
each CPU instruction and DMA operation that manipulates this data in order to de-
termine how the taint propagates. The taint analysis engine propagates taint through
data movement instructions, DMA operations, arithmetic operations, and table lookups.
Considering that some instructions (e.g., xor eax, eax) always produce the same
results, independent of the values of their operands, the taint analysis engine does not
propagate taint in these instructions.

Note that TEMU plugins may employ very different taint policies, according to their
application requirements. For example, for some applications, we do not need to prop-
agate taint through table lookups. For some applications, we want to propagate taint
through an immediate operand, if the code region occupied by it is tainted. Therefore,
during taint propagation, the taint analysis engine lets TEMU plugins determine how
they want to propagate taint into the destination.

This design provides valuable flexibility to TEMU plugins. They can specify dif-
ferent taint sources, maintain an arbitrary record for each tainted byte, keep track of
multiple taint sources, and employ various taint policies.

4.4 TEMU API and Plugins

In order for users to make use of the functionalities provided by TEMU, we define a
set of functions and callbacks. By using this interface, users can implement their own
plugins and load them into TEMU at runtime to perform analysis. Currently, TEMU
provides the following functionalities:
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– Query and set the value of a memory cell or a CPU register.
– Query and set the taint information of memory or registers.
– Register a hook to a function at its entry and exit, and remove a hook. TEMU

plugins can use this interface to monitor both user and kernel functions.
– Query OS-level semantics information, such as the current process, module, and

thread.
– Save and load the emulated system state. This interface helps to switch between dif-

ferent machine states for more efficient analysis. For example, this interface makes
multiple path exploration more efficient, because we can save a state for a specific
branch point and explore one path, and then load this state to explore the other path
without restarting the program execution.

TEMU defines callbacks for various events, including (1) the entry and exit of a basic
block; (2) the entry and exit of an instruction; (3) when taint is propagating; (4) when a
memory is read or write; (5) when a register is read or written to; (6) hardware events
such as network and disk inputs and outputs.

Quite a few TEMU plugins have been implemented by using these functions and
callbacks. These plugins include:

– Panorama [43]: a plugin that performs OS-aware whole-system taint analysis to
detect and analyze malicious code’s information processing behavior.

– HookFinder [42]: a plugin that performs fine-grained impact analysis (a variant of
taint analysis) to detect and analyze malware’s hooking behavior.

– Renovo [25]: a plugin that extracts unpacked code from packed executables.
– Polyglot [14]: a plugin that make use of dynamic taint analysis to extract protocol

message format.
– Tracecap: a plugin that records an instruction trace with taint information for a

process or the OS kernel.
– MineSweeper [10]: a plugin that identifies and uncovers trigger-based behaviors in

malware by performing online symbolic execution.
– BitScope: a more generic plugin that make use of symbolic execution to perform

in-depth analysis of malware.
– HookScout: a plugin that infers kernel data structures.

4.5 Implementation of TEMU

The TEMU infrastructure is implemented in C and C++. In general, performance-
critical code is implemented in C due to efficiency of C, whereas analysis-oriented code
is written in C++ to leverage the abstract data types in STL and stronger type checking
in C++. For example, the taint analysis engine insert code snippets into QEMU micro
operations to check and propagate taint information. Since taint analysis is performance
critical, we implemented it in C. On the other hand, we implemented the semantics ex-
tractor in C++ using string, list, map and other abstract data types in STL, to
maintain a mapping between OS-level view and hardware view. The TEMU API is de-
fined in C. This gives flexibility to users to implement their plugin in either C, C++,
or both. The TEMU core consists of about 37,000 lines of code, excluding the code
originally from QEMU (about 306,000 lines of code). TEMU plugins consist of about
134,000 lines of code.
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5 Rudder: The Mixed Concrete and Symbolic Execution
Component

In this section, we give an overview of Rudder, the mixed concrete and symbolic
execution component of BitBlaze Binary Analysis Platform, describing its compo-
nents for performing mixed execution and exploring program execution space and its
implementation.

5.1 System Overview

We have designed and developed Rudder, to perform mixed concrete and symbolic
execution at the binary level. Given a binary program and a specification of symbolic
inputs, Rudder performs mixed concrete and symbolic execution and explores multiple
execution paths whenever the path conditions are dependent on symbolic inputs. By
doing so, Rudder is able to automatically uncover hidden behaviors that only exhibit
under certain conditions.

Figure 6 shows a high level picture of Rudder. Rudder consists of the following
components: the mixed execution engine that performs mixed concrete and symbolic
execution, the path selector that prioritizes and determines the execution paths, and the
solver that performs reasoning on symbolic path predicates and determines if a path is
feasible. Rudder takes as inputs a binary program and a symbolic input specification. In
TEMU, the binary program is executed and monitored. Rudder runs as a TEMU plugin
to instrument the execution of the binary program. During the execution, Rudder marks
some of the inputs as symbolic according to the symbolic input specification. Then
the mixed execution engine symbolically executes the operations on symbolic inputs
and data calculated from symbolic inputs. When a symbolic value is used in a branch
condition, the path selector determines, with assistance of the solver, which branches
are feasible and selects a branch to explore.

5.2 Mixed Execution Engine

Determine Whether to Symbolically Execution an Instruction. For each instruction,
the mixed execution engine performs the following steps. First, it checks the source
operands of that instruction, and answers whether they are concrete or symbolic. If
all source operands are concrete, this instruction will be executed concretely on the
emulated CPU. Otherwise, the mixed execution engine marks the destination operand
as symbolic, and calculate symbolic expressions for the destination operand. To mark

Engine
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Specification
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Program

Path Selector
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Fig. 6. Rudder Overview
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and propagate symbolic data, the mixed execution engine relies on the dynamic taint
analysis functionality provided by TEMU.

Formulate a Symbolic Program. Ideally, we would like to calculate symbolic ex-
pressions on the fly. However, this naive approach would incur significant performance
overhead at runtime. Considering that many expressions would not be used in path pred-
icates, we take a “lazy” approach. The basic idea is to collect necessary information in
the symbolic machine during the symbolic execution. At a later time, when some sym-
bolic variables are used in path predicates, we can extract the corresponding symbolic
expressions from the symbolic machine.

More specifically, we enqueue this instruction, along with the relevant register and
memory states into our symbolic machine. That is, if an instruction to be symboli-
cally executed has any concrete operands, we must update those concrete values inside
the symbolic machine. In the case of registers, this is trivial – we simply update their
concrete values in the symbolic machine. Memory accesses with concrete addresses
are handled similarly. However, we also have to deal with memory accesses where the
memory address itself is symbolic, which is described below.

A symbolic memory address means that the data specifying which memory is to be
read or written is symbolic. If this address is symbolic, we do not know which memory
location is about to be accessed, because a symbolic address may potentially take any
concrete value. To solve this problem, we use the solver to determine the range of pos-
sible values of this address. In some cases, the range that the solver returns is too large
to be effective. In this case, we add a constraint to the system to limit its size, therefore
limiting the complexity that is introduced. In practice, we found that most symbolic
memory accesses are already constrained to small ranges, making this unnecessary. For
example, consider code that iterates over an array. Each access to the array is bounded
by the constraints imposed by the iteration itself. Note that this is a conservative ap-
proach, meaning that all solutions found are still correct. Once a range is selected, we
update the symbolic machine with the necessary information.

We leverage the functionality of Vine to perform symbolic execution. That is, when
symbolically executing an instruction, we lift it into Vine IL and formulate a symbolic
program in form of Vine IL.

Extract Symbolic Expressions. Given the symbolic program and a symbolic variable
of interest, we can extract a symbolic expression for it. Extracting a symbolic expression
takes several steps. First, we perform dynamic slicing on the symbolic program. This
step removes the instructions that the symbol does not depend upon. After this step,
the resulted symbolic program is reduced drastically. Then we generate one expression
by substituting intermediate symbols with their right-hand-side expressions. Finally, we
perform constant folding and other optimizations to further simplify the expression.

5.3 Path Selector

When a branch condition becomes symbolic, the path selector is consulted to determine
which branch to explore. There is an interface for users to supply their own path selec-
tion priority function. As we usually need to explore as many paths that depend upon
symbolic inputs as possible, the default is a breadth-first search approach.
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To make the path exploration more efficient, we make use of the functionality of state
saving and restoring provided by TEMU. That is, when a symbolic conditional branch
is first encountered, the path selector saves the current execution state, and determines
which feasible direction to explore. Later, when it decides to explore a different direc-
tion from this branch, the path selector restores the execution state on this branch and
explores the other branch.

5.4 Solver

The solver is a theorem prover or decision procedure, which performs reasoning on
symbolic expressions. In Rudder, the solver is used to determine if a path predicate is
satisfiable, and to determine the range of the memory region with a symbolic address.
We can make use of any appropriate decision procedures that are available. Thus, if
there is any new progress on decision procedures, we can benefit from it. Currently in
our implementation, we use STP as the solver [21].

5.5 Implementation of Rudder

Rudder is implemented in C, C++ and Ocaml. The implementation consists of about
3,600 lines of C/C++ code and 2,600 lines of Ocaml code. The C/C++ code is mainly
for implementing a TEMU plugin, and marking and tracking symbolic values, and the
Ocaml code is used to interface with Vine and perform symbolic analysis. We also have
an offline mode for Rudder where we take an execution trace and then perform symbolic
execution on the trace to obtain the path predicate and then solve for inputs for different
branches to be taken.

6 Security Applications

In this section, we give an overview of the different security applications that we have
enabled using the BitBlaze Binary Analysis Platform, ranging from automatic vulner-
ability detection, diagnosis, and defense, to automatic malware analysis and defense,
to automatic model extraction and reverse engineering. For each security application,
we give a new formulation of the problem based on the root cause in the relevant pro-
gram. We then demonstrate that this problem formulation leads us to new approaches
to address the security application based on the root cause. The results demonstrate
the utility and effectiveness of the BitBlaze Binary Analysis Platform and its vision—it
was relatively easy to build different applications on top of the BitBlaze Binary Analysis
Platform and we could obtain effective results that previous approaches could not.

6.1 Vulnerability Detection, Diagnosis, and Defense

Sting: An Automatic Defense System against Zero-Day Attacks. Worms such as
CodeRed and SQL Slammer exploit software vulnerabilities to self-propagate. They
can compromise millions of hosts within hours or even minutes and have caused bil-
lions of dollars in estimated damage. How can we design and develop effective defense
mechanisms against such fast, large scale worm attacks?
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We have designed and developed Sting [40,33], a new end-to-end automatic defense
system that aims to be effective against even zero-day exploits and protect vulnerable
hosts and networks against fast worm attacks. Sting uses dynamic taint analysis to de-
tect exploits to previously unknown vulnerabilities [35] and can automatically generate
filters for dynamic instrumentation to protect vulnerable hosts [34].

Automatic Generation of Vulnerability Signatures. Input-based filters (a.k.a. signa-
tures) provide important defenses against exploits before the vulnerable hosts can be
patched. Thus, to automatically generate effective input-based filters in a timely fash-
ion is an important task. We have designed and developed novel techniques to automat-
ically generate accurate input-based filters based on information about the vulnerability
instead of the exploits, and thus generating filters that have zero false positives and can
be effective against different variants of the exploits [11, 13].

Automatic Patch-based Exploit Generation. Security patches do not only fix secu-
rity vulnerabilities, they also contain sensitive information about the vulnerability that
could enable an attacker to exploit the original vulnerable program and lead to severe
consequences. We have demonstrated that this observation is correct—we have devel-
oped new techniques showing that given the patched version and the original vulnera-
ble program, we can automatically generate exploits in our experiments with real world
patches (often in minutes) [12]. This opens the research direction of how to design and
develop a secure patch dissemination scheme where attacker cannot use information in
the patch to attack vulnerable hosts before they have a chance to download and apply
the patch.

6.2 Malware Analysis and Defense

Panorama: Capturing System-wide Information Flow for Malware Detection and
Analysis. A myriad of malware such as keyloggers, Browser-helper Objects (BHO)
based spyware, rootkits, and backdoors accesses and leaks users’ sensitive information
and breaches users’ privacy. Can we have a unified approach to identify such privacy-
breaching malware despite their widely-varied appearance? We have designed and de-
veloped Panorama [43] as a unified approach to detect privacy-breaching malware using
whole-system dynamic taint analysis.

Renovo: Hidden Code Extraction from Packed Executables. Code packing is one
technique commonly used to hinder malware code analysis through reverse engineering.
Even though this problem has been previously researched, the existing solutions are
either unable to handle novel packers, or vulnerable to various evasion techniques. We
have designed and developed Renovo [25], as a fully dynamic approach for hidden code
extraction, capturing an intrinsic characteristic of hidden code execution.

HookFinder: Identfying and Understanding Malware Hooking Behavior. One im-
portant malware attacking vector is its hooking mechanism. Malicious programs im-
plant hooks for many different purposes. Spyware may implant hooks to be notified
of the arrival of new sensitive data. Rootkits may implant hooks to intercept and tam-
per with critical system information to conceal their presence in the system. A stealth
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backdoor may also place hooks on the network stack to establish a stealthy communica-
tion channel with remote attackers. We have designed and developed HookFinder [42]
to automatically detect and analyze malware’s hooking behaviors, by performing fine-
grained impact analysis. Since this technique captures the intrinsic nature of hooking
behaviors, it is well suited for identifying new hooking mechanisms.

BitScope: Automatically Dissecting Malware. The ability to automatically dissect a
malicious binary and extract information from it is an important cornerstone for system
forensic analysis and system defense. Malicious binaries, also called malware, include
denial of service attack tools, spamming systems, worms, and botnets. New malware
samples are uncovered daily through widely deployed honeypots/honeyfarms, foren-
sic analysis of compromised systems, and through underground channels. As a result
of the break-neck speed of malware development and recovery, automated analysis of
malicious programs has become necessary in order to create effective defenses.

We have designed and developed BitScope, an architecture for systematically uncov-
ering potentially hidden functionality of malicious software [8]. BitScope takes as input
a malicious binary, and outputs information about its execution paths. This information
can then be used by supplemental analysis designed to answer specific questions, such
as what behavior the malware exhibits, what inputs activate interesting behavior, and
the dependencies between its inputs and outputs.

6.3 Automatic Model Extraction and Analysis

Polyglot: Automatic Extraction of Protocol Message Format. Protocol reverse en-
gineering, the process of extracting the application-level protocol used by an imple-
mentation (without access to the protocol specification) is important for many network
security applications. Currently, protocol reverse engineering is mostly manual. For ex-
ample, it took the open source Samba project over the course of 10 years to reverse
engineer SMB, the protocol Microsoft Windows uses for sharing files and printers [39].

We have proposed that binary program analysis can be used to aid automatic protocol
reverse engineering [15]. The central intuition is that the binary itself encodes the pro-
tocol, thus binary analysis should be a significant aide in extracting the protocol from
the binary itself.

Automatic Deviation Detection. Many network protocols and services have several
different implementations. Due to coding errors and protocol specification ambigui-
ties, these implementations often contain deviations, i.e., differences in how they check
and process some of their inputs. Automatically identifying deviations can enable the
automatic detection of potential implementation errors and the automatic generation of
fingerprints that can be used to distinguish among implementations of the same network
service. The main challenge in this project is to automatically find deviations (without
requiring access to source code). We have developed techniques for taking two binary
implementations of the same protocol and automatically generating inputs which cause
deviations [7].

Replayer: Sound Replay of Application Dialogue. The ability to accurately replay
application protocol dialogs is useful in many security-oriented applications, such as
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replaying an exploit for forensic analysis or demonstrating an exploit to a third party. A
central challenge in application dialog replay is that the dialog intended for the original
host will likely not be accepted by another without modification. For example, the dia-
log may include or rely on state specific to the original host such as its host name or a
known cookie. In such cases, a straight-forward byte-by-byte replay to a different host
with a different state (e.g., different host name) than the original dialog participant will
likely fail. These state-dependent protocol fields must be updated to reflect the different
state of the different host for replay to succeed. We have proposed the first approach
for soundly replaying application dialog where replay succeeds whenever the analysis
yields an answer [32].

7 Related Work

In this section, we briefly describe some related work on other static and dynamic binary
analysis platforms.

Static Binary Analysis Platforms. There are several static binary analysis platforms,
however they are not sufficient for our purposes mainly because they were motivated
by different applications and hence did not need to satisfy the same requirements.

Phoenix is a compiler program analysis environment developed by Microsoft [28].
One of the Phoenix tools allows code to be raised up to a register transfer language
(RTL). A RTL is a low-level IR that resembles an architecture-neutral assembly.
Phoenix differs from Vine is several ways. First, Phoenix can only lift code produced
by a Microsoft compiler. Second, Phoenix requires debugging information, thus is not a
true binary-only analysis platform. Third, Phoenix lifts assembly to a low-level IR that
does not expose the semantics of complicated instructions, e.g., register status flags, as
part of the IR [29]. Fourth, the semantics of the lifted IR, as well as the lifting semantics
and goals, are not well specified [29], thus not suitable for our research purposes.

The CodeSurfer/x86 platform [6] is a proprietary platform for analyzing x86 pro-
grams. However, it was mainly designed for other applications such as slicing and does
not provide some of the capabilities that we need.

Dynamic Binary Analysis Platforms. Tools like DynamoRIO [3], Pin [27], and Val-
grind [41] support fine-grained instrumentation of a user-level program. They all pro-
vide a well-defined interface for users to implement plugins. However, as they can only
instrument a single user-level process, they are unsuitable to analyze the operating sys-
tem kernel and applications that involve multiple processes. In addition, these tools re-
side in the same execution environment with the program under instrumentation. Some
of them even share the same memory space with the program under instrumentation,
and change the memory layout of the program. In consequence, the analysis results
may be affected. In contrast, TEMU provides a whole-system view, enabling analysis
of the OS kernel and multiple processes. Moreover, as it resides completely out of the
analyzed execution environment, TEMU can provide more faithful analysis results.
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8 Conclusion

In this paper, we have described the BitBlaze project, its binary analysis platform and
applications to a broad spectrum of different security applications. Through this project,
we have demonstrated that our binary analysis platform provides a powerful arsenal
that enables us to take a principled, root-cause based approach to a broad spectrum
of security problems. We hope BitBlaze’s extensible architecture will enable others to
build upon and enable new solutions to other applications.
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