Bitcoin Mining Pools:
A Cooperative Game Theoretic Analysis

Yoad Lewenberg®
yoadlew@cs.huji.ac.il

_Aviv Zohar!
avivz@cs.huji.ac.il

Yoram Bachrach?
yobach@microsoft.com yoni_sompo@cs.huiji.ac.il

Yonatan Sompolinsky'

Jeffrey S. Rosenschein’
jeff@cs.huji.ac.il

1SchooI of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
2Microsoft Research, Cambridge, United Kingdom

ABSTRACT

Bitcoin is an innovative decentralized cryptocurrency whose
core security relies on a “proof of work” procedure, which
requires network participants to repeatedly compute hashes
on inputs from a large search space. Finding one of the rare
inputs that generates an extremely low hash value is consid-
ered a successful attempt, allowing miners to approve new
transactions and, in return, to collect rewards in bitcoins.

This reward allocation, which provides the incentive for
miners to participate, is a random process with a large vari-
ance. Miners who desire a steady income thus often par-
ticipate in mining pools that divide among their members
the earned rewards, and reduce this variance. Mining pools
are slightly better at coordinating participants due to lower-
latency communication, a fact which implies that they man-
age to collect slightly higher rewards.

We examine dynamics of pooled mining and the rewards
that pools manage to collect, and use cooperative game the-
oretic tools to analyze how pool members may share these
rewards. We show that for some network parameters, es-
pecially under high transaction loads, it is difficult or even
impossible to distribute rewards in a stable way: some par-
ticipants are always incentivized to switch between pools.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — Multiagent Systems

General Terms

Economics

Keywords

Bitcoin; Mining Pool; Game Theory; Cooperative Game

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4-8, 2015, Istanbul, Turkey.

Copyright (C) 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION

Bitcoin [30] is a digital currency created in 2009. Its main
achievement is its ability to arrive at a consensus about the
valid transaction history in a totally decentralized fashion.

Agents in the Bitcoin network contribute computational
power in order to maintain, secure, and extend Bitcoin’s
public ledger, the block chain. In return for their resources,
the agents are awarded some amount of bitcoins, in some
proportion to the computational power they invested.

Bitcoin’s security relies on a proof of work framework,
where a money transfer is only considered valid once the sys-
tem obtains proof that a sufficient amount of computational
work has been exerted by authorizing nodes. To achieve
this, the network of participants, called miners, constantly
attempts to solve cryptographic puzzles in the form of a hash
computation. Each block in the shared data structure, the
block chain, contains a set of transactions. The process of
adding a new block to the block chain is called mining. To
mine a block, a miner must examine inputs in a huge pos-
sible space X, seeking an input z € X that, when hashed
along with the block’s contents using a cryptographic hash
function h, yields a value below a certain threshold ¢, so
that h(b(z)) < t (where b(z) denotes the block with value
z inserted into it). To incentivize participants to search for
such an input, when such a hash is found and a block is
mined, the block is released to the network, and if the ma-
jority of miners (in terms of computational power) consider
this block to be valid and build further blocks on top of it,
the miner who mined that block is rewarded with bitcoins.

An input x selected at random from X has a very small
probability of having a low value under the hash, denoted
as pr = Praex(h(b(z)) < t). Thus trying a random input
from the space is a Bernoulli trial with a success probability
pt. Currently, Bitcoin is designed to set the threshold ¢ so
that a single block would be mined in the entire network in
expectation once every 10 minutes. Hence, a miner with a
state-of-the-art mining machine [19] will in expectation wait
687 days to mine a single block [44].

This results in a large variance in rewards across miners —
even with a long time horizon of a few months, the majority
of miners would get no rewards, while a few miners would
get large rewards. Most miners seek to have a steady income
stream and wish to reduce the variance in rewards. To do so,
miners form teams, called mining pools, that share rewards

among the pool members. When a pool member finds a
successful input (i.e., an input = where h(b(z)) < t) the
block is mined and the rewards are distributed among the
pool members. As pool participants may be unequal in their
computational resources, the rewards are split among them
in proportion to their contributed computational power.

Combining powers by forming a pool not only reduces the
volatility in the rewards of its participants but also increases
their total accumulated revenue. As the pool presents itself
to the Bitcoin network as a single powerful node, it is able
to gain an advantage over other agents, by prevailing in the
case of natural conflicts in the network. Moreover, a recently
proposed attack allows a pool that encompasses more than a
third of the network’s overall computational power to obtain
more than its fair share of the rewards, by deviating from
the Bitcoin protocol rules [24].

Our contribution: We consider how the existence of
mining pools affects the reward allocation in the Bitcoin
network. We analyze the effect of skewed rewards, and
demonstrate the fact that a pool gains more rewards, in
expectation, than its fair share (that which corresponds to
the fraction of computational power held by the pool’s par-
ticipants). We show that the non-linear returns depend on
the communication delay parameters of the network. This
makes decisions regarding which mining pool to join a strate-
gic choice, motivating the use of software agents that choose
which pool to join so as to optimize payoffs.

We use tools from cooperative game theory to study which
pools agents may wish to join, and how pool members are
likely to share the monetary rewards. We show that due to
the non-linear nature of returns, it may be difficult to dis-
tribute the pool’s rewards among its participants in a stable
way: any reward allocation creates an incentive for some
miners to leave their pool and join other pools so as to in-
crease their expected reward. Furthermore, we show that
this instability becomes more severe as the network pro-
cesses high transaction loads. We thus expect that as more
people adopt Bitcoin, there will be a higher rate of miners
switching pools, resulting in a larger overhead for using the
system. Our analysis constitutes a practical application of
cooperative game theory in the context of automated agents,
which might be responsible for decision-making regarding
which pool to join, at any moment, so as to maximize pay-
offs. It illustrates the use of game theoretic tools applied to
a real-world software environment.

2. PRELIMINARIES

We start with a brief overview of Bitcoin.' Bitcoin is a de-
centralized crypto-currency. Two kinds of agents participate
in the Bitcoin network: clients, who trade in the currency,
and miners, who validate monetary transactions. We focus
on interactions among miners. The entire transaction his-
tory of Bitcoin is stored on a shared data structure called
the block chain. Every block in the block chain contains a
set of the recent transactions it approves. In addition, its
header contains, among other meta-data fields, a pointer to
its predecessor in the block chain, a compressed represen-
tation of its transaction set, and a “nonce” field which acts
as a proof of work. The blocks thus form a tree, rooted at
the “genesis block” which was created at Bitcoin’s inception,

!This is a partial description. A more detailed account can
be found in [30] and the Bitcoin Wiki.

Figure 1: An illustration of a block tree. Blocks in
the longest chain from the genesis block (dotted, A0)
to one of the leaves are black. Blocks that are not in
the longest chain are white. The next mined block
should refer to block A7 as its previous block.

with each block being a child of the block it references in its
header.

The process of adding a new block to the block chain is
called “mining a block”. For a block to be considered valid,
the value of the hash of its header must be lower than a
target threshold ¢. The nonce field can then be utilized to
modify the hash’s result to meet ¢t. The only known method
to find a suitable nonce is by random search.

A miner is an agent that continuously tries to mine blocks.
The more hashes a miner can compute per time unit, the
more likely she is to mine the next block. When a miner
mines a valid block, she publishes it to the Bitcoin network;
if the block is eventually extended and is part of the longest
chain, its creator is rewarded with bitcoins.

We assume a fixed reward per mined block. The probabil-
ity that a single hash based on a random nonce results in a
valid block is very low, and the number of mined blocks per
time unit of a miner can be well approximated as a Poisson
process.

A chain in the block tree is a path from a leaf block to the
genesis block. Under the Bitcoin protocol, the longest chain
is the only valid chain, so transactions that are not recorded
in a block that is contained in the longest chain are not
considered valid. Moreover, miners are only rewarded for
blocks in the longest chain, so they are incentivized to extend
the longest chain of which they are aware. The longest chain
rule is designed to allow miners to reach consensus on the
state of the chain and to mitigate attacks on the protocol,
such as double-spending [37]. We assume that miners are
honest and follow the protocol. Figure 1 illustrates a block
chain and the longest chain rule. Miners communicate over
TCP [17], and delays in communication are inevitable. The
delay between fellow miners might vary based on geographic
location, physical connection, hardware, software and the
size of the message [20]. For simplicity, we assume that the
delay between every two miners is fixed.

While a new block is created in the whole Bitcoin network
every 10 minutes, in expectation, a single agent (with limited
resources) is likely to wait a very long period of time before
creating a block, due to the size of the network. To achieve
more steady and predictable returns on their investment in
computational resources, miners collaborate and form teams
called pools, managed by some pool manager. When one of
the pool members succeeds in mining a block, the members
share its rewards, in proportion to their computational con-
tributions [36].

Internal communication within a pool is relatively effi-
cient, as the pool manager sends to its miners only block
headers, while they send back only suitable nonce fields.
This is in contrast to communication outside the pool, where
agents send entire blocks to one another.

Cooperative Games.

We analyze agent interactions in pools using cooperative
game theory. A (transferable utility) Coalitional Game [29]
is composed of a set of players I, |I| = n, and a charac-
teristic function v : 21 — R specifying the monetary value
that any coalition (a subset of the agents working as a team)
can achieve when cooperating. Intuitively, v (C) is the to-
tal utility that the members in C' C I can gain by work-
ing together. The characteristic function describes the total
payoff of every coalition, but it does not prescribe a way of
distributing these payoffs among the agents in the coalition.
Such a division is called an imputation. An imputation is
a vector z € RV that divides the gains of the grand coali-
tion I among all the agents, where), x; = v(I) and
x; > 0 is the payoff of player i. The most prominent solu-
tion concept that describes stability in coalitional games is
the core [25]. An imputation x is blocked by some coalition
B C I if the members of B can abandon the grand coali-
tion and achieve a higher utility, by working as a group of
their own, than the share currently allocated to them; that
is, v(B) > >, .5 ®i- An imputation z is in the core if it is
not blocked by any coalition, i.e., for any coalition C' C I we
have that 2 (C) > v (C) (where z (C) = >,).

Cooperative Games with Coalition Structures.

In many domains several teams may form, creating a
structure of coalitions. Cooperative games with Coalition
Structures have been used by artificial intelligence researchers
to model agent collaboration and team formation [21, 39, 40,
42]. A coalition structure is a partition of the agent set I
into disjoint sets called teams. That is, S = {C1,...,Cn} is
a coalition structure over I iff |J;*, C; = I and for all ¢ # j,
C; N C; = (. We denote by CS (I) the set of all possible
coalition structures over I. In some settings, the value of a
coalition depends on the structure of the other coalitions. A
cooperative game with coalition structures is defined by a
partition function [33] that takes as input a coalition struc-
ture S € CS () and a coalition C' € S and outputs a value
v (8,C) = vs (C), ie., it determines the utility of a coali-
tion C under the partition of other agents, as given by S.
Similar to transferable utility coalitional games, agents need
to divide the gains of each team in the coalition structure.
An imputation associated with S is a vector z € R/l such
that for all 4 € I, z; > 0, and for every C' € § it holds that
z (C) = vs (C'). An imputation associated with S is in the
CS-core of S if for every C C I we have z (C) > vs,, (C),
where Sc = {CYU{{D\C} : D € S, D\C # 0}. Intuitively,
an imputation is in the CS-core of S if there is no agent
subset that can gain by leaving their teams and forming a
new team.

D-Stability.

Requiring that no agent subset can gain by leaving their
teams and forming a new team is quite a strong demand.
In some situations, not every agent subset can collaborate
and form a new team. To address this, we define a defection
function [2]. A defection function is a function, D : CS (I) —
2 that associates with each coalition structure in CS (I) a
set of coalitions. Intuitively, for a coalition structure S, and
a coalition C' € I, we say that the agents in C can defect
from S only if C' € D(S). An imputation associated with S
is D-stable if for every C' € D (S) we have z (C) > vs, (C).

Figure 2: An example of a network with 9 miners
and 3 pools. The small circles represent the miners
and the large circles represent the pool managers;
edges represent overlay connections between nodes.

In addition, we define the D-CS-core of S as the set of all
the D-stable imputations that are associated with S.

In this paper we focus on the defection function Djss that
allows one coalition to merge with a subset of another coali-
tion, or for a subset of a coalition to split from its coalition.

For a coalition structure S € CS (I) we define Dyss (S) :=
Das (S) U Dg (S), where Dy (S) is the set of all possible
merges between a coalition and a (possibly trivial) subset
of another, and Dg (S) is the set of all possible splits of a
coalition into two (possibly trivial) subsets. Formally, we
define Das (S) := {C|D1 C C C D1 UD2,D1,D; € S}, and
Ds (S) :={C|C Cc D,D € S}.

3. A NETWORK OF MINERS

We model the mining pool interactions as a miner net-
work. A miner network is a tuple I' = (M,S,P,D,d,\),
where M = {1,...,n} is the set of miners; S is the partition
of some of the miners into pools (where each element in S is a
team of miners constituting a single pool); P = {p1,...,pn}
is the distribution of the computational power among the
miners — if p; is agent i’s fraction of computational power
then Vi € M, p; € [0,1], and 3, pi = 1; D > 0 is
the delay in communication, in seconds, between machines
of different pools (delay between pools); d > 0 is the delay
between machines in the same pool (delay within a pool);
and X is the expected number of blocks mined by the net-
work, per second. We assume that every miner ¢ € M mines
blocks according to a Poisson process with parameter p;A\.
A miner that does not participate in a pool is referred to as
a solo miner. In our model, miners in a pool communicate
only through the pool manager. Hence, if miner ¢ in pool C}
mined block B at time ¢, then at time ¢ +d her pool manager
knows B was mined. At this point, if B extends the longest
chain then the pool manager publishes it to the rest of the
network, and updates its participants about the header of
the next block to mine. Upon which, at time ¢4 2d the other
miners in pool C; will learn of B, and at time ¢t +d + D the
other pool managers and solo miners will learn of B. An
illustration of a network with 9 miners and 3 pools is given
in Figure 2.

We follow the notations of Sompolinsky and Zohar [43];
for a given miner network, I, we define 8 = 3 (I") to be the
rate of block addition to the longest chain per second.

For every miner i, we denote by v; = v(T'), € [0,1] the
probability that a block belonging to the longest chain was
mined by miner i. For every pool C; € S we define v¢, =
Ziecj ~i- As miners are only rewarded for blocks in the

longest chain, a miner ¢ has an incentive to increase 7;.

LEMMA 1. LetT' = (M,S,P,D,d,\) be a miner network
with |/M| > 1 miners, D > 0 and d > 0. For every solo
miner i, it holds that X > B (T') > p;\.

Proor. The left-hand side inequality holds because in
the best case, every block is in the longest chain. As for the
right-hand side, any sequence of blocks created by the same
agent is necessarily of increasing height, hence the growth
rate of the longest chain is lower bounded by any solo miner’s
block creation rate. [

LEMMA 2. Let T' = (M, {M},P,D,d,\), be a miner
network with one pool and no solo miners. Then B (I') =
Tha

PrOOF. Under this miner network the pool manager’s
longest chain coincides with the network’s. Let block B be
the last block that was created and accepted by the man-
ager as extending the longest chain. Upon its acceptance,
it takes d seconds for the manager to update the miners
(including B’s creator) with the new block-header to mine;
any block created during this interval will be ignored by the
manager as outdated. After A\™! seconds, in expectation, a
new block C' is created, which points at B as its predeces-
sor, and it takes an additional d seconds for the manager to
learn about C, during which, again, any additional created
block will be wasted. Thus the expected time lag between
consecutive lengthening of the longest chain is 2d + A" sec-
onds, which 1implies that the longest chain’s growth rate is
(2d+A"Y)" =555 O

Retargeting Only transactions on the longest chain are
considered valid, so the volume of transactions the Bitcoin
network can process is determined by the rate of block ad-
dition to the longest chain, rather than the total number
of blocks mined. Given a target rate 8 for longest chain
growth in a miner network I', the protocol parameters are
set so that 8 (I') = 8.2 This is achieved by determining the
threshold ¢ below which the value should be, after the hash.
Requiring a larger run of zeros in the value under the hash
(i.e., a lower threshold t) makes fewer possible nonces from
the space be successful ones, raising the computational bur-
den on the miners. Adjusting the threshold to get a desired
value of B (I") = B is referred to as retargeting [16].

4. THE TWO MINER CASE

We extend the analysis of miner networks with two miners
(and no pools) from Sompolinsky and Zohar [43].

THEOREM 3 (SOMPOLINSKY AND ZOHAR). Let T' be a
miner network with two solo miners. Then

(Ap1)* €272 — (Apa)® 22722
/\p162Dp1)\ _)\pzeQng)\

p=p) =

(1)

and when p1 = p2 = 3 it holds that 8 (I') = AZEEx.

THEOREM 4. LetI" be a miner network with two solo min-
ers. Then
2 2DAp; _ S |
pie p1p2 (2 2D p1 1 2DApz _3

22D 22D
pre=s APl — pyestar2

1) (2)

0l (F)l =

2We abuse the notation and use 8 to denote both the pa-
rameter and the function.

Figure 3: v, as a function of D), for p; = 0.55, py =
0.45.

The theorem implies that v(I"), =1 —~(I"),. When p; =
_ 1 :) :) _ _ 1

p2 = 5, using L’Hopital’s rule we get 1 = 72 = 5. The

proof uses similar techniques to Sompolinsky and Zohar [43],

and is omitted due to space constraints.

Corollary 1. Let I' be a miner network with two solo min-
ers. If p; > % then v; > p; and if DA > 0 then ~; > p;.

FEzxzample 1. Consider a miner network with two solo min-
ers, the first with 55% of the hash rate (computational power)
and the second with 45%. 71 as a function of DX is given
in Figure 3. This shows that even when the hash rate is
relatively similar among the miners, as DA grows the big-
ger miner’s share in the longest chain, hence in revenues,
grows eventually to 100%. Note that if the network suffers
no delays (DX = 0) the share of every miner is precisely the
proportion of computational power held by her.

S. MINING IN COALITION STRUCTURES

We propose a model of the miners and pool interactions
as a cooperative game with coalition structures.

Definition 1. A Miner Coalitional Game with Coalition
Structures is defined by the tuple C = (M, P, D, d, 8), where
M is the set of miners (players); P is the distribution of com-
putational power among the miners; D is the delay between
pools and d is the delay within a pool; B is the desired
rate of longest chain growth. For a given coalition struc-
ture S € CS(M), let I' = (M,S,P,D,d,\) be a miner
network such that S(I') = 8. For every C' € S we set
vs (C) = y(I')g. vs(C) is the pool’s share in the longest
chain.

We now present our main insight into games with coalition
structure: under some quite general assumptions on the par-
tition function v, there is no stable way for coalitions to di-
vide their revenues among their agents. The instability here
amounts to the Dy;s-CS-core of the game being empty.

Definition 2. w € R is a weight vector associated with
a set of players I, if w; > 0 for all ¢ € I and Zie] w; = 1.
For every C € I, we denote w(C) = 3, w;.

Definition 3. We say that v is:

e Constant-Sum, if there exists ¢ € ®' such that for
every S € CS(I) it holds that . svs (C) = c.

e Nonlinear with respect to a weight vector w € RHI
if for every S € CS(I) such that maxcesw (C) >
minces w (C), it holds that for C; € arg maxces w (C)
we have: vs (Ci) > w (Ci) - Y ceg vs (C).

)

e Monotonic, if for every S € CS (I), such that S =
{C1,...,Cn} (m > 2) and vs (C1) < -+ < vs (Cw):
vs (Cl) + vs (CQ) < VSo (C) for C = Cy UCs.

THEOREM 5. Let v be a partition function of a coalitional
game with coalition structures. If v is constant-sum and
nonlinear with respect to a weight vector w satisfying Vi €
I:w; < %, then for every coalition structure the CS-core is
empty.

PRrROOF. Let v be a partition function as in the conditions
of the theorem, let S € CS(I) be a coalition structure of I
and let be an imputation associated with S; we will show
that there exists C' C I such that vs, (C') > z (C). Assume
without loss of generality that I = {1,...,n}, and that for
every S € SC(I), Y gesvs (S) =1

For every i let €; = x; — w; and without loss of generality
assume that ¢ < gg9 < .-+ < g,. Note that Zie[g =
DierTi— D e ;wi =1 =1=0. Let C = I\{n}. €, >0,
hence Y, e < 0 and z(C) < w(C). Y,ccwi > 3,
wy < 1. In addition, vs,, (C) > w(C) because v is nonlinear,
therefore vs,, (C) >z (C). O

as

The following examples show that all conditions in Theo-
rem 5 are required.

Ezample 2. Let w € R be a weight vector and consider
the game with the partition function: vs (C) =2if S = {I}
and vs (C) = _ e
Spesev®
v is not constant-sum. The imputation x; = 2w; associated
with the coalition structure S = {I} is stable.

otherwise. v is nonlinear in w but

Ezample 3. Consider a game with |I| = n players with
the partition function vs(C) = |—S‘ for every S € CS(I) and
C € §. v is constant-sum, however v is not nonlinear as
for every weight vector there must be some C C I, such
that [C] = [2F] and w(C) > %7 yet vs(C) < w(C) for
every S € CS(I) such that C' € S. The imputation z; = 1
associated with every coalition structure is stable.

Ezample 4. Consider a game with |I| = n players de-
scribed by the partition function vs (C) = 1if 1 € C, and
vs (C') = 0 otherwise. v is constant-sum and nonlinear with
respect to the weight vector w; = 0.6 and w; = % for
i # 1. The imputation z1 = 1 and z; = 0 for 7 # 1, associ-
ated with every coalition structure is stable.

While Theorem 5 provides sufficient conditions for the
emptiness of the CS-core, it does not imply the emptiness
of the Dy;s-CS-core. Indeed, in some cases there might be
an imputation associated with a coalition structure that is
not in the CS-core, but is Dyss-stable.

Ezxample 5. Consider the game described in Table 1. In
the game there are 8 players of three types. The payoff of
every coalition in the right column is according to the order
of the coalition structure in the left column. The game is
constant-sum, because for every S € CS(I), Y csvs (C) =
100, and it is nonlinear with respect to, for example, the
weight vector w, = QL and wp = 1—10, wp = %. The im-
putation (3, 3,3, 3,10, 34, 10, 34) associated with Sy is Dasg-
stable — any merge of two coalitions or a split of a coalition
does not result in a better outcome for the deviators.

S1 = {{a},{a},{a},{a},{b,c},{b,c}} (3,3, 3,3,44,44)

Sy = {{a},{a},{a},{a},{b,b,c,c}} (4,4,4,4,84)

Sz = {{a},{a},{a},{a},{c},{b,b,c}} (4,4,4,4,30,54)

Sz = {{a},{a},{a},{a},{b},{b,c,c}} (4,4,4,4,10,74)

Sy = {{a},{a},{a},{a},{b},{c}{b,c}} | (3,3,3,3,10,34,44)
S5 = ({al.{aT.{al. (b, T, {a:0.c}] (1.1,4,41,47)

Se = {{a} {a} {a,a} {b,c} {b,c}} (2,2,6,45, 45)

Table 1: The Djs-CS-core of S; is not empty as
(3,3,3,3,10,34,10, 34) is Dyg-stable

The next theorem provides sufficient conditions for the
emptiness of the Dyss-CS-core.

THEOREM 6. Let v be a partition function of a coalitional
game with coalition structures. If v is constant-sum, mono-
tonic and nonlinear with respect to a weight vector such that
for every i € I: w; < %, then for every coalition structure
the Dass-CS-core is empty.

PROOF. Let v be a partition function as in the conditions
of the theorem, let S € CS(I) be a coalition structure of I
and let be an imputation associated with S; we will show
that there exists C' € Dy s (S) such that vs, (C) > z (C).
Assume without loss of generality that I = {1,...,n}, and
that for every § € SC(I), Y gesvs (S) = 1.

If |S| > 3, write S = {C1,...,Cy} such that vs (C1) <
-+ <ws (Cr). Let C = C1UC2. The imputation x satisfies
z(C) = x(C1) + 2(C2) = vs (C1) +vs (C2). As C is a merge
of two coalitions in S we have that C' € Dys (S). Finally,
v is monotonic, thus vs, (C) > vs (C1) + vs (C2), therefore
VSo (C) >z (C).

If |S| <2, let €; = z; —w; (as in the proof of Theorem 5),
and assume that ey < e3 < -+ <e,. Then for C = I\{n}
we have, vs, (C) >z (C). If |S| =1 then C is the result of
a split from the grand coalition, and if |S| = 2 then C is the
result of a merge between the two coalitions, hence in both
cases C' € Dys (S). O

LEMMA 7. Let C = (M, P,D,d,B3) be a Miner Coali-
tional Game with Coalition Structures for which D,5 > 0,
and Vi: p; € (0,1). Assume that d is smaller than some
dy (a bound that depends on P,D, and B). Then for all
S € CS(M) and for all C,C; € S, if p(Ci) > p(Cj) then
vs(Cy) « vs(C))
p(Cy) p(Cj) !

ProoOF SKETCH. Fix M, P, D and 3. We will prove the
result for the case d = 0, and will then define d; to be the
maximal positive d which satisfies the required property.

Indeed, let & € CS(M) be a coalition structure, and let
A > 0 such that B(I') = f for the miner network I' =
(M, 8,P,D,d,\). For every C € S, we denote by as(C)
the probability that a block that was mined by one of the
members of C will end up in the longest chain. Note that
for every pool it holds that 8- v (I'), = A - p(C) - as(C)
as both sides of the equation are the expected number of
blocks that were mined by the pool C' that are in the longest
chain, in every second. Therefore, we need to show that if
p(Cs) > p(Cj) then as (C;) > as (C)).

When d = 0 there is no delay within the pools and every
pool acts as one miner. In this case, if p(C;) > p(C;) then
as(Ci) > as(Cj), because in a case of a conflict between
the pools, the next block that will be created is more likely
to belong to the stronger pool C;; and because D > 0 the
probability of a conflict is positive. We can thus define d1

as the maximal delay within the pools such that for every
coalition structure S € CS(M) and for every C;,C; € S,
p(C;) > p(C;) implies as(Ci) > as(C;). O

LEMMA 8. Let 'y = (M,S,P,D,0, ;) (k=1,2) be two
miner networks, with A1 > X2, S = {C1,...,Cn} (m >
2), p(Ch) < .-+ < p(Cnm), and p(C1) < p(Cm) Then,
'Y(Fl)cl +7(F1)C2 < 7(F2)cl +7(F2)02~

We omit the quite involved proof due to lack of space.

LEMMA 9. Let C = (M,P,D,d,B) be as in Lemma 7.
Assume that d is smaller than some d2 (a bound that depends
on P,D, and B). Then for every S € CS(M) with S =
{C1,...,Cm} (m>2) andp(C1) <--- < p(Cm), vs (C1)+
vs (C2) < wvsg (C) for C = C1UCs.

PrROOF SKETCH. We use a similar technique to the proof
of Lemma 7. Fix M, P, D and 8, and let S = {C1,...,Cn}
be a coalition structure as in the conditions of the lemma.
Let C = CiUCy and 8§’ = S¢. If p(C1) = p(Cy,) then
Lemma 7 implies that vs (C1) + vs (C2) < vss (C). As-
sume therefore that p(C1) < p(Cm). Let A1, A2 > 0 such
that for the miner networks I's;1 = (M, S, P, D,d, A1) and
Isio = (M,S8 P,D,d,\2), it holds that 3(T's;1) = 8 and
B(Ts 2) = B. In addition, consider the miner network
Fs2 = (M,S,P,D,d,A2). Note that A1 > X2 as I's/ 5 is
a more concentrated network than I's;. Using the pre-
vious lemma we have: vs (C1) + vs (C2) = 7(F371)01 +
Y (F$,1)02 <7 (F$72)cl +7 (F572)02~

We claim that ’)/(FS’Q)C1 =+ ’y(l—‘s,z)ol < ’Y(FS/J)C =
vss (C). Indeed, the merge of the two pools eliminates the
conflicts between the pools, and in a case of a conflict with
another pool, the two pools now have more hash power. We
can thus conclude that vs (C1) + vs (C2) < vs (C).

Upon which we define d2 as the maximal positive d for
which this property is satisfied, namely, vs (C1) +vs (C1) <
vs, (C) for every coalition structure S = {C1,...,Cn}. O

THEOREM 10. LetC = (M, P, D,d,3) be as in Lemma 7,
and let di and da2 be the bounds obtained in Lemma 7 and
Lemma 9, respectively. If d < min{di,d2} then the partition
function of C is constant-sum, monotonic and nonlinear with
respect to P.

ProOOF. The partition function is constant-sum because
for every S € CS(M) : Y csvs(C) = 1. Lemma 9 im-
plies that the partition function is monotonic, as d < da.
Let w € R be the weight vector w; = p;; we show that
the partition function is nonlinear with respect to w. Let
S € CS(M) be a coalition structure with maxces w (C) >
minces w (C), and let C; € argmaxcesw (C). We have
d < di, and therefore by Lemma 7:

vs(C

L= 3 cesvs(C) =2 cesp(C) ;((c))
vs(Ci) _ vs(Cy _ vs(Cy
< 2eesp(©) ;((ci>) = ;f((ci)> 2cesp(C) = ;i(ci))

Consequently, vs (C;) > p(C;) = w (C;), and the partition
function is nonlinear. [

We finally arrive at the main result of this section, the
emptiness of the Dp;s-CS-Core. Combining the previous
theorems we conclude:

Corollary 2. Let C = (M,P,D,d,) be as in the theo-
rem. If for all ¢: p; € (O, %), then for every coalition struc-
ture the Dyss-CS-Core is empty.

6. MINING AS A COOPERATIVE GAME

In order to apply the result of the previous section to
the Bitcoin world, we need to investigate the behavior of
the partition function v. Unfortunately, the topology of the
Bitcoin miner network is unknown and keeps changing. To
avoid the intractable analysis of the general case, where any
topology is possible, we deviate from the coalition structure
setup, and model instead the miner and pool interactions as
a transferable utility coalitional game. In these games, the
value of a coalition depends solely on the members of that
coalition, with no dependence on the other players. To adapt
this model to the Bitcoin world, where inter-pool effects are
possible, we allow only one coalition to form, and fix the
topology of its environment as one which consists of solo
miners only.

We then investigate the conditions on the network under
which the core of the game is empty. The constriction to
the simple notion of core means that only the stability of
the grand coalition is taken into consideration.

The game’s network is denoted by C = (M, P, D,d, B),
as above. For |M| > 2 we make the following simplifying
assumptions. First, we assume that all miners hold the same
computational power: p; = % where n = |[M]|. Secondly, we
assume the following form of v: for any C' C M with | M| =
1, v(C) = 1; v(M) = 1. In order to represent C’s value
for the general case, we approximate its share of the longest
chain, using Equation 2, and assign this approximation of
e to v(C).

We apply Theorem 4 to a hypothetical two solo miner
network, I'y whose parameters as set as follows. Denote

_lCx _ n—|C]| n—4d\
rroaionoand as = = A m T Engs . The first

miner in I'y (representing the pool C' in the original network)
holds