
Open access to the Proceedings of the

13th USENIX Symposium on

Networked Systems Design and

Implementation (NSDI ’16)

is sponsored by USENIX.

Bitcoin-NG: A Scalable Blockchain Protocol

Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse, Cornell University

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal

This paper is included in the Proceedings of the

13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).

March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 45

Bitcoin-NG: A Scalable Blockchain Protocol∗

Ittay Eyal Adem Efe Gencer Emin Gün Sirer Robbert van Renesse
Cornell University

Abstract
Cryptocurrencies, based on and led by Bitcoin, have

shown promise as infrastructure for pseudonymous on-

line payments, cheap remittance, trustless digital as-

set exchange, and smart contracts. However, Bitcoin-

derived blockchain protocols have inherent scalability

limits that trade off between throughput and latency,

which withhold the realization of this potential.

This paper presents Bitcoin-NG (Next Generation), a

new blockchain protocol designed to scale. Bitcoin-NG

is a Byzantine fault tolerant blockchain protocol that is

robust to extreme churn and shares the same trust model

as Bitcoin.

In addition to Bitcoin-NG, we introduce several novel

metrics of interest in quantifying the security and effi-

ciency of Bitcoin-like blockchain protocols. We imple-

ment Bitcoin-NG and perform large-scale experiments

at 15% the size of the operational Bitcoin system, us-

ing unchanged clients of both protocols. These exper-

iments demonstrate that Bitcoin-NG scales optimally,

with bandwidth limited only by the capacity of the indi-

vidual nodes and latency limited only by the propagation

time of the network.

1 Introduction

Bitcoin has emerged as the first widely-deployed, de-

centralized global currency, and sparked hundreds of

copycat currencies. Overall, cryptocurrencies have gar-

nered much attention from the financial and tech sec-

tors, as well as academics; achieved wide market pen-

etration in underground economies [38]; reached a $12B

∗The authors are supported in part by AFOSR grants FA2386-

12-1-3008, F9550-06-0019, by the AFOSR MURI Science of Cy-

ber Security: Modeling, Composition, and Measurement as AFOSR

grant FA9550-11-1-0137, by NSF grants CNS-1601879, 0430161,

0964409, 1040689, 1047540, 1518779, 1561209, and CCF-0424422

(TRUST), by ONR grants N00014-01-1-0968 and N00014-09-1-0652,

by DARPA grants FA8750-10-2-0238 and FA8750-11-2-0256, by

MDCN/iAd grant 54083, and by grants from Microsoft Corporation,

Facebook Inc., and Amazon.com.

market cap; and attracted close to $1B in venture cap-

ital [15]. The core technological innovation power-

ing these systems is the Nakamoto consensus proto-

col for maintaining a distributed ledger known as the

blockchain. The blockchain technology provides a de-

centralized, open, Byzantine fault-tolerant transaction

mechanism, and promises to become the infrastructure

for a new generation of Internet interaction, including

anonymous online payments [14], remittance, and trans-

action of digital assets [16]. Ongoing work explores

smart digital contracts, enabling anonymous parties to

programmatically enforce complex agreements [31, 56].

Despite its potential, blockchain protocols face a sig-

nificant scalability barrier [51, 36, 19, 5]. The maximum

rate at which these systems can process transactions is

capped by the choice of two parameters: block size and

block interval. Increasing block size improves through-

put, but the resulting bigger blocks take longer to propa-

gate in the network. Reducing the block interval reduces

latency, but leads to instability where the system is in

disagreement and the blockchain is subject to reorganiza-

tion. Bitcoin currently targets a conservative 10 minutes

between blocks, yielding 10-minute expected latencies

for transactions to be encoded in the blockchain. The

block size is currently set at 1MB, yielding only 1 to 3.5

transactions per second for Bitcoin for typical transac-

tion sizes. Proposals for increasing the block size are

the topic of heated debate within the Bitcoin commu-

nity [47].

In this paper, we present Bitcoin-NG, a scalable

blockchain protocol, based on the same trust model as

Bitcoin. Bitcoin-NG’s latency is limited only by the

propagation delay of the network, and its bandwidth is

limited only by the processing capacity of the individual

nodes. Bitcoin-NG achieves this performance improve-

ment by decoupling Bitcoin’s blockchain operation into

two planes: leader election and transaction serialization.

It divides time into epochs, where each epoch has a sin-

gle leader. As in Bitcoin, leader election is performed

46 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

randomly and infrequently. Once a leader is chosen, it is

entitled to serialize transactions unilaterally until a new

leader is chosen, marking the end of the former’s epoch.

While this approach is a significant departure from

Bitcoin’s operation, Bitcoin-NG maintains Bitcoin’s se-

curity properties. Implicitly, leader election is already

taking place in Bitcoin. But in Bitcoin, the leader is in

charge of serializing history, making the entire duration

of time between leader elections a long system freeze.

In contrast, leader election in Bitcoin-NG is forward-

looking, and ensures that the system is able to continually

process transactions.

Evaluating the performance and functionality of new

consensus protocols is a challenging task. To help per-

form this quantitatively and provide a foundation for

the comparison of alternative consensus protocols, we

introduce several metrics to evaluate implementations

of Nakamoto consensus. These metrics capture perfor-

mance metrics such as protocol goodput and latency, as

well as various aspects of its security, including its ability

to maintain consensus and resist centralization.

We evaluate the performance of Bitcoin-NG on a large

emulation testbed consisting of 1000 nodes, amount-

ing to over 15% of the current operational Bitcoin net-

work [41]. This testbed enables us to run unchanged

clients, using realistic Internet latencies. We com-

pare Bitcoin-NG with the original Bitcoin client, and

demonstrate the critical trade-offs inherent in the original

Bitcoin protocol. Controlling for network bandwidth, re-

ducing Bitcoin’s latency by decreasing the block interval

and improving its throughput by increasing the block size

both yield adverse effects. In particular, fairness suffers,

giving large miners an advantage over small miners. This

anomaly leads to centralization, where the mining power

tends to be concentrated under a single controller, break-

ing the basic premise of the decentralized cryptocurrency

vision. Additionally, mining power is lost, making the

system more vulnerable to attacks. In contrast, Bitcoin-

NG improves latency and throughput to the maximum al-

lowed by network conditions and node processing limits,

while avoiding the fairness and mining power utilization

problems.

In summary, this paper makes three contributions.

First, it outlines the Bitcoin-NG scalable blockchain pro-

tocol, which achieves significantly higher throughput and

lower latency than Bitcoin while maintaining the Bit-

coin trust assumptions. Second, it introduces quantita-

tive metrics for evaluating Nakamoto consensus proto-

cols. These metrics are designed to ground the ongoing

discussion over parameter selection in Bitcoin-derived

currency. Finally, it quantifies, through large-scale ex-

periments, Bitcoin-NG’s robustness and scalability.

2 Model and Goal

The system is comprised of a set of nodes N connected

by a reliable peer-to-peer network. Each node can poll

a random oracle [6] as a random bit source. Nodes can

generate key-pairs, but there is no trusted public key in-

frastructure.

The system employs a cryptopuzzle system, defined

by a cryptographic hash function H. The solution to

a puzzle defined by the string y is a string x such that

H(y|x) — the hash of the concatenation of the two —

is smaller than some target. Each node i has a limited

amount of compute power, called mining power, mea-

sured by the number of potential puzzle solutions it can

try per second. A solution to a puzzle constitutes a proof

of work, as it statistically indicates the amount of work a

node had to perform in order to find it.

At any time t, a subset of nodes B(t)⊂ N are Byzan-

tine and behave arbitrarily, controlled by a single adver-

sary. The other nodes are honest — they abide by the

protocol. The mining power of each node i is m(i). The

mining power of the Byzantine nodes is less than 1/4 of

the total compute power at any given time:

∀t : ∑
b∈B(t)

m(b)<
1

4 ∑
n∈N

m(n)

because proof-of-work blockchains, Bitcoin-NG in-

cluded, are vulnerable to selfish mining by attackers

larger than 1/4 of the network [25].

Nakamoto Consensus

The nodes are to implement a replicated state machine

(RSM) [33, 50]. Properties of the system can be com-

pared to those of classical consensus [46]:

Termination There exists a time difference function

∆(·) such that, given a time t and a value 0 < ε < 1,

the probability is smaller than ε that at times t ′, t ′′ >
t +∆(ε) a node returns two different states for the

machine at time t.

Agreement There exists a time difference function ∆(·)
such that, given a 0 < ε < 1, the probability that at

time t two nodes return different states for t −∆(ε)
is smaller than ε .

Validity If the fraction of mining power of Byzantine

nodes is bounded by f , i.e., ∀t :
∑b∈B(t) m(b)

∑n∈N m(n) < f ,

then the average fraction of state machine transi-

tions that are not inputs of honest nodes is smaller

than f .

3 Bitcoin and its Blockchain Protocol

Bitcoin is a distributed, decentralized crypto-currency [7,

8, 9, 43], which implicitly defined and implemented

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 47

Nakamoto consensus. Bitcoin uses the blockchain pro-

tocol to serialize transactions of the Bitcoin currency

among its users. The replicated state machine maintains

the balances of the different users, and its transitions are

transactions that move funds among them. This state ma-

chine is managed by the system nodes, called miners.

Each user commands addresses, and sends Bitcoins

by forming a transaction from her address to another’s

address and sending it to the nodes. More explicitly, a

transaction is from the output of a previous transaction

to a specific address. An output is spent if it is the in-

put of another transaction. A client owns x Bitcoins at

time t if the aggregate of unspent outputs to its address

is x. Transactions are protected with cryptographic tech-

niques that ensure only the rightful owner of a Bitcoin

address can transfer funds from it. Miners accept trans-

actions only if their sources have not been spent, thereby

preventing users from double-spending their funds. The

miners commit the transactions into a global append-

only log called the blockchain.

The blockchain records transactions in units of blocks.

Each block includes a unique ID, and the ID of the pre-

ceding block. The first block, dubbed the genesis block,

is defined as part of the protocol. A valid block contains

(1) a solution to a cryptopuzzle involving the hash of

the previous block, (2) the hash (specifically, the Merkle

root) of the transactions in the current block, which have

to be valid, and (3) a special transaction, called the coin-

base, crediting the miner with the reward for solving the

cryptopuzzle. This process is called Bitcoin mining, and,

by slight abuse of terminology, we refer to the creation

of blocks as block mining. The specific cryptopuzzle is

a double-hash of the block header whose result has to be

smaller than a set value. The problem difficulty, set by

this value, is dynamically adjusted such that blocks are

generated at an average rate of one every ten minutes.

Mining When a miner creates a block, she is compen-

sated for her efforts with Bitcoins. This compensation

includes a per-transaction fee paid by the users whose

transactions are included, as well as an amount of new

Bitcoins that did not exist before.

Forks Any miner may add a valid block to the chain

by simply publishing it over an overlay network to all

other miners. If multiple miners create blocks with the

same preceding block, the chain is forked into branches,

forming a tree. Other miners may subsequently add new

valid blocks to any of these branches. When a miner

tries to add a new block after an existing block, we say

it mines on the existing block. If this block is a leaf of a

branch, we say he mines on the branch.

To resolve forks, the protocol prescribes on which

chain the miners should mine. The criterion is that the

winning chain is the heaviest one, that is, the one that

required (in expectancy) the most mining power to gen-

erate. All miners add blocks to the heaviest chain of

which they know, with random tie-breaking. We note

that choosing a longest branch at random is suggested

by Eyal and Sirer [25]. The operational client currently

chooses the first branch it has heard of, making it more

vulnerable in the general case. The heaviest chain a node

knows is the serialization of RSM inputs it knows, and

hence describes the RSM’s state. The formation of forks

is undesirable, as they indicate that there is no globally-

agreed RSM state.

Branches and blocks outside the main chain are called

pruned (and not orphans, as is common in informal dis-

cussions, since they have a parent in the block tree).

Transactions in pruned blocks are ignored. They can be

placed in the main chain at any later time, unless a con-

tradicting transaction (that spends the same outputs) was

placed there in the meantime.

Block dissemination over the Bitcoin overlay network

takes seconds, whereas the average mining interval is ten

minutes. Therefore, accidental bifurcation occurs on av-

erage about once every 60 blocks [18].

We are now ready to describe Bitcoin-NG.

4 Bitcoin-NG

Bitcoin-NG is a blockchain protocol that serializes trans-

actions, much like Bitcoin, but allows for better latency

and bandwidth without sacrificing other properties.

The protocol divides time into epochs. In each epoch,

a single leader is in charge of serializing state machine

transitions. To facilitate state propagation, leaders gener-

ate blocks. The protocol introduces two types of blocks:

key blocks for leader election and microblocks that con-

tain the ledger entries. Each block has a header that con-

tains, among other fields, the unique reference of its pre-

decessor; namely, a cryptographic hash of the predeces-

sor header.

We detail the operation of the protocol in this section

and explain its incentive system in Section 5.

4.1 Key Blocks and Leader Election

Key blocks are used to choose a leader. Like a Bitcoin

block, a key block contains the reference to the previ-

ous block (either a key block or a microblock, usually

the latter), the current Unix time, a coinbase transaction

to pay out the reward, a target value, and a nonce field

containing arbitrary bits. As in Bitcoin, for a key block

to be valid, the cryptographic hash of its header must be

smaller than the target value. Unlike Bitcoin, a key block

contains a public key that will be used in subsequent mi-

croblocks.

As in Bitcoin, for a miner to generate a key block, it

must iterate through nonce values until the crypto-puzzle

condition is met. Consequently, the interval between

48 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

sig𝐵𝐵sig𝐴𝐴 sig𝐴𝐴
10 minutes

10 seconds

sig𝐴𝐴 PK𝐵𝐵PK𝐴𝐴
fees 60%40%

Figure 1: Structure of the Bitcoin-NG chain. Mi-

croblocks (circles) are signed with the private key match-

ing the public key in the last key block (squares). Fee is

distributed 40% to the leader and 60% to the next one.

consecutive key blocks is exponentially distributed. To

maintain a set average rate, the difficulty is adjusted by

deterministically changing the target value based on the

Unix time in the key block headers.

In case of a fork, just as in Bitcoin, the nodes pick

the branch with the most work, aggregated over all key

blocks, with random tie breaking.

4.2 Microblocks

Once a node generates a key block it becomes the leader.

As a leader, the node is allowed to generate microblocks

at a set rate smaller than a predefined maximum. The

maximum rate is deterministic, and can be much higher

than the average interval between key blocks. The size

of microblocks is bounded by a predefined maximum.

Specifically, if the timestamp of a microblock is in the fu-

ture, or if its difference with its predecessor’s timestamp

is smaller than the minimum, then the microblock is in-

valid. This bound prohibits a leader (malicious, greedy,

or broken) from swamping the system with microblocks.

A microblock contains ledger entries and a header.

The header contains the reference to the previous block,

the current Unix time, a cryptographic hash of its ledger

entries, and a cryptographic signature of the header. The

signature uses the private key that matches the public key

in the latest key block in the chain. For a microblock to

be valid, all its entries must be valid according to the

specification of the state machine, and the signature has

to be valid. Figure 1 illustrates the structure.

Note that microblocks do not affect the weight of the

chain, as they do not contain proof of work. This is crit-

ical for keeping the incentives aligned, as explained in

Section 5.

4.3 Confirmation Time

When a miner generates a key block, he may not have

heard of all microblocks generated by the previous

leader. If microblock generation is frequent, this can

be the common case on leader switching. The result

is a short microblock fork, as illustrated in Figure 2.

Such a fork is observed by any node that receives the

𝐵𝐵1 𝐵𝐵2𝐴𝐴2
𝐴𝐴3𝐵𝐵𝐴𝐴1𝐴𝐴 𝐴𝐴4

Figure 2: When microblocks are frequent, short forks

occur on almost every leader switch.

to-be-pruned microblock (blocks A3 and A4 in the fig-

ure) before the new key block (block B in the figure). It

is resolved once the key block propagates to that node.

Therefore, a user that sees a microblock should wait for

the propagation time of the network before considering

it in the chain, to make sure it is not pruned by a new key

block.

4.4 Remuneration

To motivate mining, a leader is compensated for her ef-

forts by the protocol. Remuneration is comprised of two

parts. First, each key block entitles its generator a set

amount. Second, each ledger entry carries a fee. This

fee is split by the leader that places this entry in a mi-

croblock, and the subsequent leader that generates the

next key block. Specifically, the current leader earns 40%

of the fee, and the subsequent leader earns 60% of the

fee, as illustrated in Figure 1. The choice of this distribu-

tion is explained in Section 5.

In practice, the remuneration is implemented by hav-

ing each key block contain a single coinbase transaction

that mints new coins and deposits the funds to the current

and previous leaders. As in Bitcoin, this transaction can

only be spent after a maturity period of 100 key blocks,

to avoid non-mergeable transactions following a fork.

4.5 Microblock Fork Prevention

Since microblocks do not require mining, they can be

generated cheaply and quickly by the leader, allowing

it to split the brain of the system, publishing differ-

ent replicated-state-machine states to different machines.

This allows for double spending attacks, where different

nodes believe the same coins were spent with different

transactions.

To demotivate such behavior, we use a dedicated

ledger entry that invalidates the revenue of fraudulent

leaders. Past work has used such entries in different

contexts [22, 4, 13]. In Bitcoin-NG, the entry is called

a poison transaction, and it contains the header of the

first block in the pruned branch as a proof of fraud. The

poison transaction has to be placed on the blockchain

within the maturity window of the misbehaving leader’s

key block, and before the revenue is spent by the mali-

cious leader. Besides invalidating the compensation sent

to the leader that generated the fork, a poison transaction

grants the current leader a fraction of that compensation,

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 49

e.g., 5%. The choice of this value is explained in Sec-

tion 5.

Only one poison transaction can be placed per cheater,

even if the cheater creates many forks. The cheater’s rev-

enue that is not relayed to the poisoner is lost.

5 Security Analysis

5.1 Incentives

This section describes how miners with capacity smaller

than 1/4 of the total network are incentivized to follow

the protocol. Specifically, miners are motivated to (1)

include transactions in their microblocks, (2) extend the

heaviest chain, and (3) extend the longest chain. Unlike

in Bitcoin, the latter two points are not identical.

Heaviest Chain Extension The motivation for extend-

ing the heaviest chain is the same as in Bitcoin. Since

the honest majority will extend the heaviest chain, it will

remain the main chain with high probability. A dishon-

est majority may arbitrarily switch to any branch and

win [32]. A minority choosing to mine on another branch

will not catch up with an honest majority, therefore it will

mine on the main chain to ensure its revenues. We there-

fore argue that the guarantees of Bitcoin-NG are similar

to those of Bitcoin [40] with respect to the Termination

and Agreement properties of Nakamoto consensus.

Microblocks carry no weight, not even as a secondary

index. If they did, it would increase the system’s vul-

nerability to selfish mining [24, 44, 49]. In selfish min-

ing, an attacker withholds blocks it has mined and pub-

lishes them judiciously to obtain a superior presence in

the main chain. If microblocks carried weight, an at-

tacker could keep secret microblocks and gain advantage

by mining on microblocks unpublished to anyone else.

We conclude that Bitcoin-NG does not introduce a

new vulnerability to selfish mining strategies, and so

Bitcoin-NG is resilient to selfish mining against attack-

ers with less than 1/4 of the mining power. We therefore

argue that the guarantees of Bitcoin-NG are similar to

those of Bitcoin with respect to the validity property of

Nakamoto consensus.

Transaction Inclusion A leader earns 40% of a trans-

action’s revenue by placing it in a microblock. However,

he could potentially improve his revenue by secretly try-

ing to earn 100% of the fee. To do so, first, the leader

creates a microblock with the transaction, but does not

publish it. Then, he tries to mine on top of this se-

cret microblock, while other miners mine on older mi-

croblocks. If the leader succeeds in mining the subse-

quent key block, he obtains 100% of the transaction fees.

Otherwise, he waits until the transaction is placed in a

microblock by another miner and tries to mine on top of

it.

Consider a miner whose mining power ratio out of

all mining power in the system is α . Denote by rleader

the revenue of the leader from a transaction, leaving

(1− rleader) for the next miner. In Bitcoin-NG, we have

rleader = 40%. The value of rleader has to be such that

the average revenue of a miner trying the above attack

is smaller than his revenue placing the transaction in a

public microblock as it should:

Win 100%
︷ ︸︸ ︷

α ×100%+

Lose 100%, but mine after txn
︷ ︸︸ ︷

(1−α)×α × (100%− rleader)< rleader ,

therefore rleader > 1− 1−α

1+α−α
2 . Assuming the power of

an attacker is bounded by 1/4 of the mining power, we

obtain rleader > 37%, hence rleader = 40% is within range.

Longest Chain Extension To increase his revenue

from a transaction, a miner could avoid the transaction’s

microblock and mine on a previous block. Then he

would place the transaction in its own microblock and

try mining the subsequent key block. His revenue in this

case must be smaller than his revenue by mining on the

transaction’s microblock as prescribed:

Place in
microblock
︷ ︸︸ ︷

rleader +

Mine next
key block

︷ ︸︸ ︷

α(100%− rleader)<

Mine on existing
microblock

︷ ︸︸ ︷

100%− rleader ,

therefore rleader <
1−α

2−α
. Assuming the power of an at-

tacker is bounded by 1/4 of the mining power, we obtain

rleader < 43%, hence rleader = 40% is within range.

Optimal Network Assumption Incentive compatibil-

ity cannot be maintained in Bitcoin-NG for an attacker

larger than about 29%. For larger attackers, the inter-

section of the two conditions is empty. But this limit

does not come into play in the general case, where

Bitcoin-NG, like Nakamoto’s blockchain with random

tie breaking [25], are secure only against attackers

smaller than 23.2% [49] due to selfish mining attacks.

However, under optimal network assumptions, Bit-

coin’s blockchain is more resilient than Bitcoin-NG: As-

suming a zero latency network where an attacker cannot

rush messages — i.e., receive a message and send its own

such that other nodes receive the attacker’s message be-

fore the original one — Bitcoin is believed to be secure

against selfish mining attackers of size up to almost 1/3.

Bypassing Fee Distribution We note that a user can

circumvent the 40− 60% transaction fee distribution by

paying no transaction fee, and instead paying the current

leader directly, using the coinbase address of the leader’s

key block. However, a user does not gain a significant ad-

vantage by doing so. As we have seen above, paying only

the current leader increases the direct motivation of the

current leader to place the transaction in a microblock,

but reduces the motivation of future miners to mine on

50 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

this microblock. Moreover, if the leader does not include

the transaction before the end of its epoch, subsequent

leaders will have no motivation to place the transaction.

Other motives for fee manipulation, such as paying a

large fee to encourage miners to choose a certain branch

after a fork, apply to Bitcoin as well as Bitcoin-NG, and

are outside the scope of this work.

5.2 Other concerns

Wallet Security The possibility of placing a poison

transaction allows an attacker that obtains a leader’s pri-

vate key to revoke his revenue retroactively and earn a

small amount. However, such an attacker is better off

trying to steal the full leader’s revenue when it becomes

available, therefore the introduction of the poison trans-

action does not add a significant vulnerability.

Censorship Resistance A central goal of Bitcoin is to

prevent a malicious discriminating miner from dropping

a user’s transactions. Censorship resistance is not im-

pacted by the frequent microblocks of Bitcoin-NG.

First, we note that a leader’s absolute power is lim-

ited to his epoch of leadership. A malicious leader can

perform a DoS attack by placing no transactions in mi-

croblocks. Similarly, a benign leader that crashes dur-

ing his epoch of leadership will publish no microblocks.

Their influence ends once the next leader publishes his

key block. The impact of such behaviors is therefore

similar to that in Bitcoin, where nodes may mine empty

blocks, but rarely do.

Assuming an honest majority and no backlog, a user

will have her transaction placed in the first block gener-

ated by an honest miner. Since at least 3/4 of the blocks

are generated by honest miners, the user will have to wait

for 4/3 blocks on average, or 13.33 minutes. Key block

intervals can be set to a rate that would reduce censorship

to the minimum allowed by the network without incur-

ring prohibitive deterioration of other metrics.

Resilience to Mining Power Variation Following Bit-

coin’s success, hundreds of alternative currencies were

created [57], most with Bitcoin’s exact blockchain struc-

ture, and many with the same proof-of-work mechanism.

To maintain a stable rate of blocks, different instances of

the blockchain tune their proof of work difficulty at dif-

ferent rates: Bitcoin once every 2016 blocks – about 2

weeks, Litecoin [37] every 2016 blocks (produced at a

higher rate) – about 3.5 days, and Ethereum [56] on ev-

ery block – about 12 seconds. However, whichever ad-

justment rate is chosen, these protocols are all sensitive

to sudden mining power drops. Such drops happen when

miners are incentivized to stop mining due to a drop in

the currency’s exchange rate, or to mine for a different

currency that becomes more profitable due to a change

in mining difficulty or exchange rate of either currency.

3 4
1

2’

2

3’ 4’ 5’ 6’

5 6 7

7’ 8’

Figure 3: Key block fork. Blocks B and C have the

same chain weight, and the fork is not resolved until key

block D is published.

Such changes are especially problematic for small alt-

coins. When their value rises, they observe a rapid rise in

mining power, and subsequently a drop in mining power

once the difficulty rises. Then, since the difficulty is high,

the remaining miners need a longer time to generate the

next block, potentially orders of magnitude longer.

In Bitcoin-NG, difficulty adjustments can create a sim-

ilar problem; however, it only affects key blocks. Mi-

croblocks are generated at the same constant rate. As a

consequence, in case of a sudden mining power drop,

Bitcoin-NG’s censorship resistance is reduced, as key

blocks are generated infrequently. If a malicious miner

becomes a leader, it will generate microblocks until an

honest leader finds a key block. Nevertheless, transaction

processing continues at the same rate, in microblocks.

Additionally, even until the difficulty is tuned to a correct

value, the ratio of time during which malicious miners

are leaders remains proportional to their mining power.

Forks When issuing microblocks at a high frequency,

Bitcoin-NG observes a fork almost on every key block

generation, as the previous leader keeps generating mi-

croblocks until it receives the key block (Figure 2).

These forks are resolved quickly — once the new key

block arrives at a node, it switches to the new leader.

In comparison, when running Bitcoin at such high fre-

quency, forks are only resolved by the heaviest chain ex-

tension rule, and since different miners may mine on dif-

ferent branches, branches remain extant for a longer time

compared to Bitcoin-NG.

Bitcoin-NG may also experience key block forks,

where multiple key blocks are generated after the same

prefix of key blocks, as shown in Figure 3. This rarely

happens, due to the low frequency and quick propagation

of the small key blocks. The duration of such a fork may

be long, lasting until the next key block. The result is

therefore infrequent, but long, key block forks.

Although such long forks are undesirable, they are not

dangerous. The knowledge of the fork is propagated

through the network, and once it reaches the nodes, they

are aware of the undetermined state. All transactions that

appear only on one branch are therefore uncertain until

one branch gains a lead.

Double Spending Double-spending attacks remain a

vulnerability in Bitcoin-NG, though to a lesser extent

than in Bitcoin.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 51

Consider a Nakamoto blockchain and a Bitcoin-

NG blockchain with the same bandwidth, where the

Nakamoto block interval is the same as the key-block

interval. A double-spending attacker publishes a trans-

action tA, receives a service from a merchant, and pub-

lishes an alternative conflicting transaction tB. A mer-

chant that requires very high confidence should wait for

several Nakamoto blocks, or an equivalent number of

Bitcoin-NG key blocks. With lower confidence require-

ments, the guarantees of the protocols differ.

In Nakamoto’s blockchain, blocks are infrequent, and

transactions are collected by miners until they find a

block. Until that time, a transaction tA can be replaced by

another transaction tB without cost. Publication of con-

flicting transactions with different destinations is prohib-

ited by the standard Bitcoin software, which also warns

the user of conflicting transactions propagating in the

network [30].

In contrast, in Bitcoin-NG, microblocks are frequent,

and so a leader commits to a transaction by placing it in

a microblock. It cannot place tB without forming a fork

and subsequently losing all of its prize from its leader-

ship epoch via a poison transaction.

Other attacks are still possible, where a miner mines

before the microblock of transaction tA and later places

a conflicting tB. Here, the attacker loses the fees of

all transactions in pruned microblocks, but this may be

worthwhile since the loot from the double-spend can be

arbitrarily high. An attacker can mine to prune the chain

in advance, and then place a conflicting transaction, or

try to prune after the fact.

Reasoning about such attacks calls for a formaliza-

tion of the attacker’s incentives and power. We defer

formal analysis that quantifies the security guarantees of

Bitcoin-NG and Nakamoto’s blockchain to future work.

In practice, merchants perform risk analysis to choose a

strategy appropriate for their business.

6 Metrics

We now detail novel metrics by which blockchains can

be evaluated. These metrics are designed to evaluate the

unique properties of Nakamoto consensus.

Consensus Delay Intuitively, consensus delay is the

time it takes for a system to reach agreement. We start

by defining, for a specific execution and time, how long

back nodes have to look to find a point where they agree

on the state.

In a specific execution of an algorithm, given a time t

and a ratio 0 < ε ≤ 1, the ε point consensus delay is the

smallest time difference ∆ such that at least ε · |N | of

the nodes at time t report the same state machine transi-

tion prefix up to time t −∆. An example for the Bitcoin

protocol is illustrated in Figure 4.

Δ1
𝑎𝑎:𝑏𝑏: 3𝑐𝑐:

1

2 31 Δ2

𝑡𝑡2𝑡𝑡1
21

2

Figure 4: Point-consensus delay example with three Bit-

coin nodes a, b, and c that generate blocks at heights 1, 2,

and 3 (explosions) and learn that these blocks are in the

main chain (clouds). Intervals ∆1 and ∆2 are the 50%-

point consensus delays at times t1 and t2, respectively:

At least a majority of the nodes at ti agree on the history

until ti −∆i.

The consensus delay is the best point-consensus-delay

the system achieves for a certain fraction of the time, on

average. More formally, the (ε,δ) consensus delay of a

system is the δ -percentile ε-point-consensus-delay. For

example, if 90% of the time, 50% of the nodes agree on

the state of the state machine 10 seconds ago (but not less

than that), then the (50%,90%)-consensus delay is 10

seconds.

Fairness We calculate two ratios: (1) the ratio of tran-

sitions not coming from the largest miner with respect

to all transitions, and (2) the ratio of mining power not

owned by the largest miner with respect to all mining

power. We call the ratio of these ratios the fairness.

Optimally the fairness is 1.0: The largest miner and

the non-largest miners’ representation in the transitions

set should be the same as their respective mining powers.

Mining Power Utilization The security of a proof-of-

work system derives from the mining power used to se-

cure it; that is, the mining power an attacker has to out-

run to obtain disproportionate control. The mining power

utilization is the ratio between the mining power that

secures the system and the total mining power. Min-

ing power wasted on work that does not appear on the

blockchain accounts for the difference.

Subjective Time to Prune Due to the probabilistic na-

ture of Nakamoto consensus, a node may learn of a state

machine transition and subsequently learn that this tran-

sition has not occurred – that it was pruned from history.

This is the case with pruned branches in Bitcoin.

The δ time to prune is the δ -percentile of the differ-

ence between the time a node learns about a transition

that will eventually be pruned, and the time it learns that

this transition has not occurred. This implies what time a

user has to wait to be confident a transition has occurred.

Note that this metric only considers transitions that are

eventually pruned. Figure 5 illustrates an example with

the Nakamoto Blockchain.

52 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Time to prune

3 4
1

2’
0𝑡𝑡 Time to win

2
3’

Figure 5: A fork in the blockchain with blocks drawn at

their generation times, on a time X axis. Subjective time

to prune is measured from when a node learns of a block

in a branch until it realizes what the main chain is. Time

to win is measured from the creation time of a block until

the last time a node generated a conflicting block.

Time to Win The δ time to win is the δ percentile of

the difference between the first time a node believes a

never-to-be-pruned-transition has occurred and the last

time a (different) node disagrees, believing an alternative

transition has occurred. It is zero if there are no disagree-

ments, or if the latter time is earlier. Figure 5 illustrates

an example for the Bitcoin protocol.

7 Experimental Setup

We evaluate Bitcoin and Bitcoin-NG with 1000-node ex-

periments running in real time on an emulated network.

Implementation For Bitcoin we run the standard

client (release 0.10.0), hereinafter Bitcoin, with minimal

instrumentation to log sufficient information.

We implemented all Bitcoin-NG elements that are sig-

nificant for a performance analysis in the absence of an

adversary, by modifying the standard Bitcoin client (re-

lease 0.10.0). We did not implement the fee distribu-

tion and the microblock signature check. Both elements

have negligible impact on performance — fee distribu-

tion requires about one fixed point operation per trans-

action and signature checking adds several milliseconds

per microblock.

Simulated Mining The time it takes a miner to find

a solution follows a geometric probability distribution,

which can be approximated as an exponential distribu-

tion due to the improbability of a success in each guess

and the rate of guessing.

In our experiments we replace the proof of work mech-

anism with a scheduler that triggers block generation at

different miners with exponentially distributed intervals.

Mining Power The probability of mining a block is

proportional on average to the mining power used for

solving the cryptopuzzle. Since blocks are generated

at average set intervals and the total amount of min-

ing power is large, the interval between block genera-

tion events of a small miner is extremely large. A single

home miner using dedicated hardware is unlikely to mine

a block for years [54].

0

10%

20%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ra
tio

 o
f

 M
in

in
g

Po
w

er

Mining Pools (Descending Mining Power)

Figure 6: Error bars represent the 75th, 50th and 25th

percentiles of the corresponding batch.

Consequently, mining power tends to centralize in the

form of industrial mining and open mining pools. In-

dustrial miners are companies that operate large-scale

mining facilities. Smaller miners that run private min-

ing rigs typically join forces and form mining pools. All

members of a pool work together to mine each block,

and share their revenues when one of them successfully

mines a block.

To reflect in our setup the varying power of miners,

we examined the hash power distribution among Bitcoin

mining entities. The information we require for the anal-

ysis, the identity of the entities generating each block,

is voluntarily provided by miners. We used a public

API [10] to gather this information for the year ending

on August 31, 2015. We note that about 9% of the blocks

are unidentified. We considered each such block as gen-

erated by a different individual miner.

For each week of the year, we calculate the weekly

mining power of each entity, and assign rank 1 to the

largest weekly mining power, rank 2 to the second

largest, and so on. Figure 6 shows the weekly mining

power of each entity by rank up to 20. Bars of the same

shade at different ranks show the distribution of a spe-

cific week. Each batch of bars represents the collection

of ratios for the nth highest block generating pool. We

note that the ranks of different entities is not preserved

throughout the weeks. The y-axis represents the weekly

ratio of blocks generated by a pool.

To model the size distribution of mining entities, we

approximate it with an exponential distribution with an

exponent of −0.27. It yields a 0.99 coefficient of deter-

mination compared with the medians of each rank.

Network The structure of Bitcoin’s overlay network

is complicated, and much of it is intentionally hidden

to preserve Bitcoin’s security against denial of service

(DoS) and to maintain participants’ privacy. (Other

work [29, 41] discusses details on the peer-to-peer net-

work.) Nodes do not reveal their neighbors, but provide

superset of nodes they have discovered. Many of the

nodes are hidden behind firewalls making it difficult to

even estimate the full size of the network. The latency

among nodes is unknown. Moreover, for many of the

metrics that we measure, a critical measure is the time it

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 53

 0
 5

 10
 15
 20
 25
 30
 35
 40

20k 40k 60k 80k 100k

Pr
op

ag
at

io
n

La
te

nc
y

[s
ec

]

Block Size [Byte]

Percentile 75
Percentile 50
Percentile 25

Figure 7: In our system, block propagation time grows

linearly with block size. This qualitatively matches the

linear relation observed in measurements of the opera-

tional Bitcoin network [18].

takes between the generation of a block by some miner

and the time at which another miner starts mining on it.

The block not only has to be propagated and verified by

the second miner, but that second miner must also prop-

agate the details to its mining hardware. In the case of

mining pools with many distant worker miners, this may

incur a non-negligible delay.

Lacking an existing model of the system, we construct

a random network by connecting each node to at least 5

other nodes, chosen uniformly at random. We measured

the latency to all visible Bitcoin nodes from a single van-

tage point on April 7th, 2015, and created a latency his-

togram. We then set the latency among each pair of

nodes in the experiments based on this histogram. The

bandwidth is set to about 100kbit/sec among each pair of

nodes.

To verify the validity of our setup and topology, we

compare Bitcoin’s propagation properties in our setup

and in the operational system. We perform experiments

with different block sizes while changing the block fre-

quency so that the transaction-per-second load is con-

stant. Figure 7 shows a linear relation between the block

size and the propagation time, similar to the linear re-

lation measured in the Bitcoin operational network by

Decker and Wattenhofer [18].

No Transaction Propagation The goal of this work is

to optimize the consensus mechanism of the Blockchain.

However, when generating blocks at high frequencies,

the overhead of filling in the blocks by generating and

propagating transactions becomes a dominant factor with

Bitcoin’s current implementation. This is not an inherent

property of Bitcoin’s protocol, or of a Blockchain proto-

col in general. To reduce the noise caused by the transac-

tion generation and propagation mechanism, we reduce

transaction handling to the minimum. Before starting an

experiment, we initialize the blockchain with artificial

transactions and top up the mempools (the data struc-

ture storing yet-to-be-serialized transactions) of all nodes

with the same set of transactions. The transactions are of

identical size; the operational Bitcoin system as of today,

at 1MB blocks every 10 minutes, has a bandwidth of 3.5

such transactions per second.

8 Evaluation

We evaluate Bitcoin-NG and compare it with Bitcoin in

two sets of experiments, varying block frequency and

block size.

Overall, the experiments show that it is possible to

improve Bitcoin’s consensus delay and bandwidth by

tuning its parameters, but its performance deteriorates

dangerously on all security-related metrics. Bitcoin-NG

qualitatively outperforms Bitcoin, as it suffers no such

deterioration, while enjoying superior performance in al-

most all metrics across the entire measured range. The

bandwidth of Bitcoin-NG is only limited by the process-

ing speed of the individual nodes, as higher throughput

does not introduce key-block forks. The consensus delay

is determined directly by the network propagation time,

because in the common case all nodes agree on the main

chain once they receive the latest key block.

In the experiments that follow, we choose the 90th

percentile. Lower percentiles maintain the same trends,

and very low percentiles show excellent performance –

there is always a small subset of nodes that has the cor-

rect chain. However, with higher percentiles, the results

are lost in the noise. With 1000 nodes and at high per-

centiles, e.g., 99%, we are measuring the 10th slowest

node. Since there are always a few nodes that lag be-

hind, either consistently or temporarily, the results then

are dominated by this random behavior, and the trends

are not visible.

We measure the metrics we introduced by instantiat-

ing them to Nakamoto’s blockchain and to Bitcoin-NG

as follows.

Consensus delay We take the (90%,90%)-consensus

delay based on block generation times. Point-con-

sensus-delay for Bitcoin is illustrated in Figure 4.

As mentioned in Section 5, a user who requires

high confidence (e.g., 99%) will not gain better la-

tency with Bitcoin-NG, and must wait for several

key blocks to accept a transaction as completed.

The guarantees in such cases are similar to those

of Bitcoin with the same block interval as Bitcoin-

NG’s key-block interval.

Fairness We calculate the proportion of (1) the ratio of

blocks in the main chain not generated by the largest

miner with respect to all blocks in the main chain,

and (2) the ratio of blocks not generated by the

largest miner with respect to all generated blocks.

Mining power utilization We calculate the proportion

between the aggregate work of the main chain

54 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0
 50

 100
 150
 200
 250
 300
 350
 400

0.01 0.1 1

Ti
m

e
to

 P
ru

ne
 [s

ec
]

(p
er

ce
nt

ile
 9

0)

Block Frequency [1/sec]

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0.01 0.1 1

Ti
m

e
to

 W
in

 [s
ec

]
(p

er
ce

nt
ile

 9
0)

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1

M
in

in
g

Po
w

er
 U

til
iz

at
io

n

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1

Fa
irn

es
s

 1

 10

 100

 0.01 0.1 1

Co
ns

en
su

s
La

te
nc

y
[s

ec
]

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0.01 0.1 1

Tr
an

sa
ct

io
n

Fr
eq

ue
nc

y
Bitcoin

Bitcoin-NG

Figure 8: Reducing latency.

blocks and all blocks. In Bitcoin-NG, difficulty is

only accrued in key blocks, so microblock forks do

not reduce mining power utilization.

Time to prune For each node and for each branch, we

measure the time it took for the node to prune this

branch. This is the time between the receipt of the

first branch block and the receipt of the main chain

block that is longer than this branch (Figure 5). We

take the 90th percentile of all samples.

Time to win We take the 90th percentile of the time

from the generation of each main-chain block to the

last time another miner generates a block that is not

its descendant (Figure 5).

Experiments We run multiple experiments with differ-

ent parameters. The figures show the average value for

each group of measurements with error bars marking the

extreme values. The sampled values are shown as mark-

ers.

For each execution we run for 50-100 Bitcoin blocks

or Bitcoin-NG microblocks. We perform multiple short

runs since all transactions are preloaded for each ex-

ecution. The mean key-block interval in our experi-

ments is 10 seconds, so each experiment includes leader

changes. We do not consider cases where key-block

forks occur, since in reality one would choose a much

larger key-block interval, e.g., 10 minutes, making key-

block forks extremely rare (more rare than with the op-

erational Bitcoin system).

8.1 Block Frequency

First, we run experiments targeted at improving the con-

sensus delay. For Bitcoin, we vary the frequency of block

generation by reducing the proof-of-work difficulty. For

Bitcoin-NG, keeping the key block generation at one ev-

ery 100 seconds, we vary the frequency of microblock

generation. For each frequency, we choose the block

size (microblock size for Bitcoin-NG) such that the pay-

load throughput is identical to that of Bitcoin’s opera-

tional system, that is, one 1MB block every 10 minutes.

Figure 8 shows the results.

We confirm that the bandwidth, measured as transac-

tion frequency, is close to 3.5, the operational Bitcoin

rate of for such transactions. In our experiments, Bit-

coin’s bandwidth is smaller than that of Bitcoin-NG, giv-

ing Bitcoin an advantage with respect to the other met-

rics.

As expected, a higher block frequency reduces Bit-

coin’s consensus latency as transactions are placed in the

ledger at a higher frequency. Time to prune improves

significantly as block frequency increases. Nevertheless,

Bitcoin’s frequent forks leave it with higher consensus

latency and time to prune than Bitcoin-NG. We note that

although they can be made arbitrarily rare, key block

forks do occur. Such key-block forks are only resolved

once one branch has more key blocks than the others, re-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 55

sulting in a long time to prune if key block intervals are

long.

Bitcoin’s mining power utilization drops quickly as

frequency increases, tending towards 1/4, the size of the

largest miner. At the extreme, block generation is so

fast that by the time a miner learns of a block generated

by another miner, that other miner has generated more

blocks. Then, only the largest miner generates main

chain blocks, and the other miners catch up. This also

implies the deterioration of fairness, as forks are likely to

be resolved by the largest miner extending its preferred

branch. As miners struggle to catch up with the leading

pack, slow miners mine on old blocks and the time to win

metric increases.

Since contention in Bitcoin-NG is limited to key block

generation, forks remain rare despite high frequencies

of microblocks. Increasing the microblock frequency

achieves reduction of both consensus delay and time to

prune. All other metrics are unaffected and remain at the

optimal level.

In the low-frequency experiments of Bitcoin-NG, we

observe a slight mining power utilization decrease and

time to prune increase. This is an artifact of the exper-

imental setup. We run the experiments over a set num-

ber of blocks, therefore these low contention experiments

run for an extended period, enough to observe key block

forks. Note, however, that a realistic Bitcoin-NG imple-

mentation can space the key blocks much further apart

without affecting performance. Then, due to their small

size, key-block forks are highly unlikely, even more so

than with standard blocks of Nakamoto’s blockchain at

the same rate, due to the small size of the key blocks.

8.2 Block Size

To study bandwidth scalability, we run experiments with

different block sizes. We use high frequencies, simi-

lar to those of Ethereum [12], setting Bitcoin’s block

frequency to 1/10sec and Bitcoin-NG’s microblock fre-

quency to 1/10sec and key block frequency to 1/100sec.

Figure 9 shows the result.

As expected, the transaction frequency increases with

block size; the horizontal line shows the operational Bit-

coin rate.

Large blocks take longer to verify and propagate.

Therefore, although block frequency is constant, the time

it takes for a miner to learn of a new block is longer, and

so the chance for forks increases.

These experiments demonstrate the expected trade-off

between bandwidth and latency. Consensus latency in-

creases due to forks, as it takes longer to choose the main

chain. The time to win also increases, as blocks take

longer to catch up with the larger blocks, as does time to

prune due to the many forks.

 0
 50

 100
 150
 200
 250
 300

1280 2.5k 5k 10k 20k 40k 80k

Ti
m

e
to

 P
ru

ne
 [s

ec
]

Block Size [Byte, log scale]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1280 2.5k 5k 10k 20k 40k 80k

Ti
m

e
to

 W
in

 [s
ec

]
(p

er
ce

nt
ile

 9
0)

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1280 2.5k 5k 10k 20k 40k 80k

M
in

in
g

Po
w

er
 U

til
iz

at
io

n
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

1280 2.5k 5k 10k 20k 40k 80k

Fa
irn

es
s

 0

 50

 100

 150

 200

 250

1280 2.5k 5k 10k 20k 40k 80k

Co
ns

en
su

s
La

te
nc

y
[s

ec
]

 0
 2
 4
 6
 8

 10
 12
 14

1280 2.5k 5k 10k 20k 40k 80k

Tr
an

sa
ct

io
n

Fr
eq

ue
nc

y

Bitcoin
Bitcoin-NG

Figure 9: Increasing throughput.

While this trade-off may be acceptable, allowing for

some hunt for a sweet spot on the trade-off curve, the

real problem pertains to security. The forks cause signif-

icant mining power loss, reaching about 80% at Bitcoin’s

56 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

bandwidth (though at a higher block frequency), making

the system vulnerable to attackers that are much smaller.

Even more detrimental is the reduction in fairness.

Even a minor degradation in fairness is dangerous, since

it provides incentives to miners to avoid losses by join-

ing forces to enjoy the advantage of mining in a larger

pool. This leads to centralization of the mining power,

obviating Bitcoin’s security properties.

Bitcoin-NG demonstrates qualitative improvement,

suffering no significant degradation in the security-

related metrics of fairness and mining power. Under

heavy load, however, the clients are approaching their

processing capacity, making it hard for them to keep up,

and we observe degradation in consensus latency and

time to prune.

9 Related Work

Model As in Bitcoin [43] and enhancements

thereof [56, 51, 36], the goal of Bitcoin-NG is to

implement an RSM in an open system. The exact

assumptions and guarantees are explored in different

works [11, 40, 26]. Our model is similar to those of

Aspnes et al. [2] and Garay et al. [26], and our definition

of Nakamoto Consensus is similar to that of Garay

et al. [26]. These are different from the model and

goal of classical Byzantine fault tolerant RSMs. The

latter, by and large, (1) assume static or slow-to-change

membership, allowing for quorum systems and recon-

figurations thereof, and (2) do not guarantee fairness

of representation of honest parties in the state machine

transitions.

The problem of leader election was apparently first

formulated and solved in 1977 by Gerard LeLann [34].

In 1982, Hector Garcia-Molina addressed the problem in

a distributed system that admits failures [27]. Since then

leader election has been extensively used to improve the

performance of distributed systems (e.g., [20, 42]). In

these classical consensus protocols, the leader’s role is to

propose decisions that have to be confirmed by a quorum.

This can be compared to blockchain protocols where the

block of a leader (as defined here) is confirmed in retro-

spect by subsequent blocks of subsequent leaders.

GHOST The GHOST protocol of Sompolinsky et

al. [51] improves on Bitcoin’s scalability by changing its

chain selection rule. While, in Bitcoin, the chain with the

most work (accumulated over all chain blocks, based on

their proofs of work) is the main chain, with GHOST, at

a fork, a node chooses the side whose sub-tree contains

more work (accumulated over all sub-tree blocks). The

benefit is that the heaviest sub-tree choice takes into ac-

count proof of work that does not end up in the main

chain. Thus, GHOST improves both fairness and the

mining power utilization under high contention.

However, in GHOST, blocks on pruned subtrees only

affect the selection rule at the branch point. The Bitcoin-

NG protocol maintains a small fork rate at high band-

width and throughput, allowing for better mining power

utilization and fairness. Moreover, to use GHOST in an

operational system, a challenge remains. In Bitcoin, at

any given time, at least one node knows what the main

chain is since it knows all of its blocks. In GHOST,

this is not the case, and it is possible that no single node

has enough information to determine which is the main

chain. Our technical report [23] provides an example.

One solution to finding the true main chain in GHOST

is to propagate all blocks, or all block headers [51].

However, this exposes the system to denial-of-service at-

tacks, as a malicious node can overwhelm the network

with low-difficulty blocks. There may be heuristics to

avoid the security danger; we do not address this ques-

tion, but have evaluated the system by implementing it,

propagating all blocks. Under these conditions, GHOST

performs worse than Bitcoin as the overhead of propa-

gating all blocks outweighs the benefits of the chain se-

lection rule. Nevertheless, a practical implementation of

GHOST, overcoming remaining challenges, can be used

to complement Bitcoin-NG and allow for a higher fre-

quency of key blocks.

Inclusive Blockchains Lewenberg et al. [36] replace

the blockchain structure with a directed acyclic graph.

There still is a main chain, but its blocks may refer to

pruned branches to include their transactions. Analysis

demonstrates considerable improvement of fairness and

mining power utilization. Bitcoin-NG achieves optimal

fairness and mining power utilization. Using Bitcoin-NG

with an inclusive blockchain to increase key block fre-

quency may prove problematic: Decommissioned lead-

ers could retroactively introduce transactions and have

them included by the current leader. This could allow for

DoS and double-spending attacks.

Faster Bitcoin Significant effort by Bitcoin’s core de-

velopers is put into improving the performance of the

Bitcoin client and technical aspects of its protocol. While

this work can provide significant improvement and en-

able better scaling, it does not eliminate the inherent lim-

itation that stems from forks forming at high rates.

Stathakopoulou et al. suggest reducing propagation

delay in the Bitcoin network [53]. However, their

suggestions imply significant compromises on security.

First, they have nodes propagate transaction inventories

before they know the actual transactions in each inven-

tory; this allows an attacker to swamp the network at no

cost by publishing transaction IDs for non-existent trans-

actions. Second, they form a network by having nodes

prefer connections with close neighbors — exactly the

opposite of the current security-oriented algorithm.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 57

Improving the efficiency of the client [1, 45, 55] can

improve propagation time and reduce the collision win-

dow (time before A hears B found a block). However, the

improvement is limited — a processing speed increase of

x% (e.g., x = 200% with [55]) allows for block size in-

crease of x% at the same fork rate. Bitcoin-NG provides

a qualitative improvement that removes the fork rate de-

pendency on block size or rate.

Corallo [17] has built a centralized fast relay for Bit-

coin, parallel to the standard peer-to-peer network. It

significantly improves network throughput and latency

but increases centralized control and reduces fairness —

miners outside the fast relay are at a disadvantage.

Off-chain solutions An alternative to improving the

bandwidth and latency of the blockchain is to perform

transactions off the chain. This basic premise appar-

ently originated in Hearn and Spilman’s two-point chan-

nel protocol [28]. The Lightning network [48] and du-

plex micropayment channels [19] allow for payment net-

works layered on top of a blockchain. The security and

privacy guarantees of such payment networks differ from

those of Bitcoin; as an extreme example, if the nodes

performing transactions over a channel crash, all their

transactions are lost, as they were never stored in the

blockchain. Moreover, the efficacy of such solutions de-

pends on properties of the emergent payment network, its

topology, the amount of value locked in payment chan-

nels, as well as the protocol’s ability to discover and use

payment paths. Overall, these solutions may be suitable

for targeted use cases where the additional layer may re-

duce the number of transactions seen at the lower layers,

but, unlike Bitcoin-NG, they do not address the funda-

mental problem of scaling a Nakamoto-consensus RSM.

Another proposition for improving performance is that

of federated chains, known as side chains [4], where

transactions can move coins from one chain to another.

Sidechains provide extensibility, as different chains can

offer different features. However, their contribution for

efficiency is limited, as they incur high latencies for

crossing chains; moreover, when the payor has funds on

one sidechain and the payee would like to spend them on

another, the funds have to cross the main chain in order

to get the value to their intended destination.

Analysis Given a cryptopuzzle difficulty and a topol-

ogy, Sompolinsky et al. [52] calculate upper and lower

bounds for the growth rate of the Bitcoin main chain.

This analysis can be translated to the expected forking

frequency at different difficulty levels when there are ex-

actly two miners. Our experiments target a larger number

of miners, modeled according to Bitcoin’s operational

system, that tune difficulty arbitrarily to reach a target

main chain extension rate.

Miller and Jansen [39] describe a methodology for

evaluating a large-scale Bitcoin blockchain system on a

single machine using an event-driven simulator. To fa-

cilitate manageable experiment times, they replace time-

consuming cryptographic operations with a delay of an

appropriate length. In our experiments, we run the

original operational client directly on the operating sys-

tem, emulating only the network properties and mining

events.

Incentives Incentive compatibility has been a key is-

sue in the investigation of cryptocurrencies. Babaioff

et al. [3] suggest a mechanism to motivate transaction

propagation. Lewenberg et al. [35] propose an alterna-

tive to the chain structure to motivate the participation

of badly-connected miners. Eyal [21] shows that a nat-

ural incentive system deters the formation of large open

mining pools.

10 Conclusion

As Bitcoin and related cryptocurrencies have become

surprisingly popular, they have hit scalability limits. The

technical debate to improve scalability has been ham-

pered by a perceived inherent trade-off between perfor-

mance metrics and security goals of the system. Con-

sequently, the discussions have become acrimonious,

long-term solutions have seemed elusive, and the current

sentiment has centered around short-term, incremental,

compromise solutions.

Bitcoin-NG shows that it is possible to improve the

scalability of blockchain protocols to the point where the

consensus latency is limited solely by the network di-

ameter and the throughput bottleneck lies only in node

processing power. Such scaling is key in allowing for

blockchain technology to fulfill its promise of imple-

menting trustless consensus for a variety of demanding

applications including payments, digital asset transac-

tions, and smart contracts — at global scale.

Acknowledgments The authors thank Ayush Dubey,

Gregory Maxwell, Malte Möser, Weijia Song, the pa-

per’s shepherd Jay Lorch, and the anonymous review-

ers for their comments on earlier versions of this

manuscript.

58 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

References

[1] ANDRESEN, G. O(1) block propagation.

https://gist.github.com/gavinandresen/

#file-blockpropagation-md, retrieved July. 2015.

[2] ASPNES, J. Randomized protocols for asynchronous consensus.

Distributed Computing 16, 2-3 (2003), 165–175.

[3] BABAIOFF, M., DOBZINSKI, S., OREN, S., AND ZOHAR, A.

On Bitcoin and red balloons. In ACM Conference on Electronic

Commerce (Valencia, Spain, 2012), pp. 56–73.

[4] BACK, A., CORALLO, M., DASHJR, L., FRIEDENBACH, M.,

MAXWELL, G., MILLER, A., POELSTRA, A., TIMN, J., AND

WUILLE, P. Enabling blockchain innovations with pegged

sidechains. http://cs.umd.edu/projects/coinscope/

coinscope.pdf, 2014.

[5] BAMERT, T., DECKER, C., ELSEN, L., WATTENHOFER, R.,

AND WELTEN, S. Have a snack, pay with Bitcoins. In Peer-

to-Peer Computing (P2P), 2013 IEEE Thirteenth International

Conference on (2013), IEEE, pp. 1–5.

[6] BELLARE, M., AND ROGAWAY, P. Random oracles are practi-

cal: A paradigm for designing efficient protocols. In Proceedings

of the 1st ACM conference on Computer and communications se-

curity (1993), ACM, pp. 62–73.

[7] BITCOIN COMMUNITY. Bitcoin source. https://github.

com/bitcoin/bitcoin, retrieved Mar. 2015.

[8] BITCOIN COMMUNITY. Protocol rules. https://en.

bitcoin.it/wiki/Protocol_rules, retrieved Sep. 2013.

[9] BITCOIN COMMUNITY. Protocol specification. https://

en.bitcoin.it/wiki/Protocol_specification, retrieved

Sep. 2013.

[10] BLOCKTRAIL. BlockTrail API. https://www.blocktrail.

com/api/docs#api_data, retrieved Sep. 2015.

[11] BONNEAU, J., MILLER, A., CLARK, J., NARAYANAN, A.,

KROLL, J. A., AND FELTEN, E. W. Research perspectives on

Bitcoin and second-generation cryptocurrencies. In Symposium

on Security and Privacy (San Jose, CA, USA, 2015), IEEE.

[12] BUTERIN, V. A next generation smart contract & decen-

tralized application platform. https://www.ethereum.org/

pdfs/EthereumWhitePaper.pdf/, retrieved Feb. 2015, 2013.

[13] BUTERIN, V. Slasher: A punitive proof-of-stake algo-

rithm. https://blog.ethereum.org/2014/01/15/

slasher-a-punitive-proof-of-stake-algorithm/,

January 2015.

[14] CNNMONEY STAFF. The Ashley Madison hack...in 2 min-

utes. http://money.cnn.com/2015/08/24/technology/

ashley-madison-hack-in-2-minutes/, retrieved

Sep. 2015.

[15] COINDESK. Bitcoin venture capital. http://www.coindesk.

com/bitcoin-venture-capital/, retrieved Sep. 2015.

[16] COLORED COINS PROJECT. Colored Coins. http://

coloredcoins.org/, retrieved Sep. 2015.

[17] CORALLO, M. High-speed Bitcoin relay network.

http://sourceforge.net/p/bitcoin/mailman/

message/31604935/, November 2013.

[18] DECKER, C., AND WATTENHOFER, R. Information propagation

in the Bitcoin network. In IEEE P2P (Trento, Italy, 2013).

[19] DECKER, C., AND WATTENHOFER, R. A fast and scalable pay-

ment network with Bitcoin Duplex Micropayment Channels. In

Stabilization, Safety, and Security of Distributed Systems - 17th

International Symposium, SSS 2015, Edmonton, AB, Canada, Au-

gust 18-21, 2015, Proceedings (2015), Springer, pp. 3–18.

[20] DWORK, C., LYNCH, N. A., AND STOCKMEYER, L. J. Con-

sensus in the presence of partial synchrony. J. ACM 35, 2 (1988),

288–323.

[21] EYAL, I. The miner’s dilemma. In IEEE Symposium on Security

and Privacy (2015), pp. 89–103.

[22] EYAL, I., BIRMAN, K., AND VAN RENESSE, R. Cache serial-

izability: Reducing inconsistency in edge transactions. In 35th

IEEE International Conference on Distributed Computing Sys-

tems (2015), pp. 686–695.

[23] EYAL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE,

R. Bitcoin-ng: A scalable blockchain protocol. arXiv preprint

arXiv:1510.02037 (2015).

[24] EYAL, I., AND SIRER, E. G. Bitcoin is broken.

http://hackingdistributed.com/2013/11/04/

bitcoin-is-broken/, 2013.

[25] EYAL, I., AND SIRER, E. G. Majority is not enough: Bitcoin

mining is vulnerable. In Financial Cryptography and Data Secu-

rity (2014).

[26] GARAY, J. A., KIAYIAS, A., AND LEONARDOS, N. The Bit-

coin backbone protocol: Analysis and applications. In Advances

in Cryptology - EUROCRYPT 2015 - 34th Annual International

Conference on the Theory and Applications of Cryptographic

Techniques (2015), pp. 281–310.

[27] GARCIA-MOLINA, H. Elections in a distributed computing sys-

tem. Computers, IEEE Transactions on 100, 1 (1982), 48–59.

[28] HEARN, M., AND SPILMAN, J. Rapidly-adjusted (mi-

cro)payments to a pre-determined party. https://en.

bitcoin.it/wiki/Contract, retrieved Sep. 2015.

[29] HEILMAN, E., KENDLER, A., ZOHAR, A., AND GOLDBERG,

S. Eclipse attacks on Bitcoin’s peer-to-peer network. In 24th

USENIX Security Symposium, USENIX Security 15, Washington,

D.C., USA, August 12-14, 2015. (2015), pp. 129–144.

[30] KARAME, G. O., ANDROULAKI, E., AND CAPKUN, S. Double-

spending fast payments in bitcoin. In Proceedings of the 2012

ACM Conference on Computer and Communications Security

(2012), CCS ’12, ACM, pp. 906–917.

[31] KOSBA, A., MILLER, A., SHI, E., WEN, Z., AND PAPAMAN-

THOU, C. Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. Cryptology ePrint Archive,

Report 2015/675, 2015. http://eprint.iacr.org/.

[32] KROLL, J. A., DAVEY, I. C., AND FELTEN, E. W. The eco-

nomics of Bitcoin mining or, Bitcoin in the presence of adver-

saries. In Workshop on the Economics of Information Security

(2013).

[33] LAMPORT, L. Using time instead of timeout for fault-tolerant

distributed systems. ACM Transactions on Programming Lan-

guages and Systems 6, 2 (Apr. 1984), 254–280.

[34] LE LANN, G. Distributed systems-towards a formal approach.

In IFIP Congress (1977), vol. 7, Toronto, pp. 155–160.

[35] LEWENBERG, Y., BACHRACH, Y., SOMPOLINSKY, Y., ZOHAR,

A., AND ROSENSCHEIN, J. S. Bitcoin mining pools: A cooper-

ative game theoretic analysis. In Proceedings of the 2015 Inter-

national Conference on Autonomous Agents and Multiagent Sys-

tems (2015), International Foundation for Autonomous Agents

and Multiagent Systems, pp. 919–927.

[36] LEWENBERG, Y., SOMPOLINSKY, Y., AND ZOHAR, A. Inclu-

sive block chain protocols. In Financial Cryptography (Puerto

Rico, 2015).

[37] LITECOIN PROJECT. Litecoin, open source P2P digital currency.

https://litecoin.org, retrieved Nov. 2014.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 59

[38] MEIKLEJOHN, S., POMAROLE, M., JORDAN, G.,

LEVCHENKO, K., MCCOY, D., VOELKER, G. M., AND

SAVAGE, S. A fistful of bitcoins: characterizing payments

among men with no names. In Proceedings of the 2013 Internet

Measurement Conference, IMC 2013, Barcelona, Spain, October

23-25, 2013 (2013), pp. 127–140.

[39] MILLER, A., AND JANSEN, R. Shadow-Bitcoin: Scalable sim-

ulation via direct execution of multi-threaded applications. IACR

Cryptology ePrint Archive 2015 (2015), 469.

[40] MILLER, A., AND JR., L. J. J. Anonymous Byzantine consensus

from moderately-hard puzzles: A model for Bitcoin. https://

socrates1024.s3.amazonaws.com/consensus.pdf, 2009.

[41] MILLER, A., LITTON, J., PACHULSKI, A., GUPTA, N., LEVIN,

D., SPRING, N., AND BHATTACHARJEE, B. Preprint: Discover-

ing Bitcoins public topology and influential nodes. http://cs.

umd.edu/projects/coinscope/coinscope.pdf, 2015.

[42] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. Egali-

tarian Paxos. In ACM Symposium on Operating Systems Princi-

ples (2012).

[43] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.

http://www.bitcoin.org/bitcoin.pdf, 2008.

[44] NAYAK, K., KUMAR, S., MILLER, A., AND SHI, E. Stub-

born mining: Generalizing selfish mining and combining with

an eclipse attack. IACR Cryptology ePrint Archive 2015 (2015),

796.

[45] PAZMIÑO, J. E., AND DA SILVA RODRIGUES, C. K. Simply

dividing a Bitcoin network node may reduce transaction verifi-

cation time. The SIJ Transactions on Computer Networks and

Communication Engineering (CNCE) 3, 2 (February 2015), 17–

21.

[46] PEASE, M. C., SHOSTAK, R. E., AND LAMPORT, L. Reaching

agreement in the presence of faults. J. ACM 27, 2 (1980), 228–

234.

[47] PECK, M. E. Adam Back says the Bitcoin fork is a coup.

http://spectrum.ieee.org/tech-talk/computing/

networks/the-bitcoin-for-is-a-coup, Aug 2015.

[48] POON, J., AND DRYJA, T. The Bitcoin Lightning Net-

work. http://lightning.network/lightning-network.

pdf, February 2015. Draft 0.5.

[49] SAPIRSHTEIN, A., SOMPOLINSKY, Y., AND ZOHAR, A. Opti-

mal selfish mining strategies in Bitcoin. CoRR abs/1507.06183

(2015).

[50] SCHNEIDER, F. B. Implementing fault-tolerant services using

the state machine approach: A tutorial. ACM Computing Surveys

22, 4 (Dec. 1990), 299–319.

[51] SOMPOLINSKY, Y., AND ZOHAR, A. Accelerating Bitcoin’s

transaction processing. fast money grows on trees, not chains. In

Financial Cryptography (Puerto Rico, 2015).

[52] SOMPOLINSKY, Y., AND ZOHAR, A. Secure high-rate trans-

action processing in Bitcoin. In Financial Cryptography and

Data Security - 19th International Conference, FC 2015, San

Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers

(2015), pp. 507–527.

[53] STATHAKOPOULOU, C. A faster Bitcoin network. Tech. rep.,

ETH, Zürich, January 2015. Semester Thesis, supervised by C.

Decker and R. Wattenhofer.

[54] SWANSON, E. Bitcoin mining calculator. http://www.

alloscomp.com/bitcoin/calculator, retrieved Sep. 2013.

[55] THE BITCOIN COMMUNITY. Release notes, bitcoin 0.12.0.

https://github.com/bitcoin/bitcoin/blob/0.12/

doc/release-notes.md, Feb 2012.

[56] THE ETHEREUM COMMUNITY. Ethereum white paper. https:

//github.com/ethereum/wiki/wiki/White-Paper, re-

trieved July. 2015.

[57] WIKIPEDIA. List of cryptocurrencies. https:

//en.wikipedia.org/wiki/List_of_cryptocurrencies,

retrieved Oct. 2013.

