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Abstract 

In vivo bone strain data provide direct evidence of strain patterns in the cranium during biting.  

Compared to mammals, in vivo bone strains in lizard skulls are poorly documented. This paper 

presents strain data from the skulls of Anolis equestris, Gekko gecko, Iguana iguana and Salvator 

merianae during transducer biting. Analysis of variance was used to investigate effects of bite force, 

bite point, diet, cranial morphology and cranial kinesis on strain magnitudes. Within individuals the 

most consistent determinants of variance in bone strain magnitudes are gage location and bite 

point, with the importance of bite force varying between individuals. Inter-site variance in strain 

magnitudes—strain gradient—is present in all individuals, and varies with bite point. Between 

individuals within species, variance in strain magnitude is driven primarily by variation in bite force, 

not gage location or bite point, suggesting that inter-individual variation in patterns of strain 

magnitude is minimal. Between species, variation in strain magnitudes is significantly impacted by 

bite force and species membership, as well as by interactions between gage location, species, and 

bite point. Independent of bite force, species differences in cranial strain magnitudes may reflect 

selection for different cranial morphology in relation to feeding function, but what these 

performance criteria are is not clear. The relatively low strain magnitudes in Iguana and Uromastyx 

compared to other lizards may be related to their herbivorous diet. Cranial kinesis and the presence 

or absence of postorbital and supratemporal bars are not important determinants of inter-specific 

variation in strain magnitudes.  
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Introduction 

Data on in vivo bone strain magnitudes are crucial for understanding the relationships 

between animal behavior and skeletal design—form-function relationships. Bone tissue yields in the 

range of  4000 to 12,000  (Currey, 2004), suggesting that skeletal form should be adapted to keep 

strain magnitudes below these values, but attempts to identify more restrictive rules on maximum 

strain magnitudes have been unsuccessful. The theory of dynamic strain similarity, that similar safety 

factors to failure are maintained “by allometrically scaling the magnitude of the peak forces applied 

to them during vigorous locomotion” (Rubin and Lanyon, 1984), does not explain the diversity of 

safety factors in tetrapod limb bones associated with taxonomic, ontogenetic, physiological, and 

functional diversity (Biewener, 1993; Blob et al., 2014; Kawano et al., 2016; Main and Biewener, 

2004). In part this reflects the fact that repetitive loading of bones during cyclic behaviors lowers the 

strain magnitudes at which bone fails—human and bovine femoral bone loaded at 9,000  in 

tension fails after 10 cycles, but it will fail at only 6,000   after 10,000 cycles (Zioupos et al., 2001). 

The maximum strain magnitudes to which limb bones should be adapted probably vary with the 

frequency with which a given behavior is employed, predicting variation in bone safety factors across 

taxa, ages, behaviors or—the focus of this study—functional systems. 

To date, the majority of studies relating strain magnitudes to skeletal design have focused 

on the limb skeleton, which has one predominant function—transmission, amplification and 

resistance of muscle and substrate reaction forces during locomotion (Biewener, 2003; Main and 

Biewener, 2004). In contrast, the bones of the skull perform many functions, suggesting that 

optimality criteria driving skull evolution may be more diverse than those driving limb bone shape. 

This diversity in skull function has been invoked to explain the wide variation in strain magnitudes 

recorded from different parts of the skull during feeding.  In mammals, the neurocranial and 

circumorbital skeletons experience much lower strain magnitudes during feeding than the zygomatic 

bone or mandible (Hylander et al., 1991b; Ross and Metzger, 2004). Strain magnitudes in the brow 

ridges of cercopithecine monkeys during feeding are absolutely low (always < 500 and usually < 

200 ), and lower than those recorded simultaneously elsewhere in the facial skeleton (Hylander et 

al., 1991b). Indeed, strain magnitudes in primate mandibles are 3.5-6.5 times higher than those 

strains recorded from the circumorbital region simultaneously or during similar behaviors (Ross and 

Metzger, 2004). These data contradict the idea that the facial skeleton is optimized for “maximum 

strength with minimum material” during feeding; i.e., the bones of the brow ridges and other 

regions of the skull that experience low strain magnitudes during feeding could be significantly 
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reduced in size, or their shapes changed, without compromising their strength during feeding 

(Hylander and Johnson, 1997; Hylander et al., 1991a; Ross and Metzger, 2004).  

This conclusion may at first seem counter-intuitive: don’t low bone strain magnitudes during 

feeding suggest that a structure is well designed, not poorly designed for resisting feeding forces? 

Hylander and colleagues noted several problems with this line of reasoning (Hylander and Johnson, 

1997; Hylander et al., 1991b). It does not explain the diversity of strain magnitudes (and inferred 

safety factors) recorded from the facial skeleton during feeding: if low strained areas of the skeleton 

are well designed, must that mean that high strained areas are poorly designed? And if so, why has 

selection not provided mechanisms to reduce those strain magnitudes? After all, there are costs to 

moving bony structures during locomotion and feeding, costs to building them during development, 

and costs to maintaining and repairing them during life. Indeed, larger bones than necessary are not 

necessarily better as they can fail at lower stresses than smaller bones because their larger volume 

increases the probability that they accumulate microcracks that can grow into larger deficits that 

might cause bone yield or failure (Currey, 2002; Weibull, 1951).  

 Hence, if two regions of bone experience very different bone strain magnitudes during the 

same behavior, they are by definition not optimized for maximum strength with minimum material 

during that behavior, leading to the conclusion that either this optimality criterion is not equally 

important in both bones or regions, or the experimenter has not captured the full range of behaviors 

generating strain in that bone (Grőning et al., 2013). Perhaps the most difficult strain data to collect 

in vivo are those associated with infrequent traumatic events, such as blows or bites during 

predation or intra-specific agonistic interactions, which have been hypothesized to be important 

determinants of skull design in primates (Carrier, 2011; Hylander and Johnson, 1997; Hylander et al., 

1991b; Hylander and Ravosa, 1992). In the absence of in vivo strain data across the complete range 

of animal behaviors, and estimates of their frequency and ecological importance (Ross et al., 2016), 

some progress can be made by assuming that behaviors associated with relatively high strain 

magnitudes are likely to impose greater demands on skeletal design than behaviors associated with 

lower strain magnitudes—bone size and shape are expected to be more closely adapted to resist 

high strain than low strain magnitude loading regimes. This expectation applies not only across 

behaviors—different gaits (Biewener et al., 1983a; Biewener et al., 1983b; Blob and Biewener, 

1999); biting versus chewing, licking and yawning (Hylander, 1981; Ross et al., 2016)—but also 

between different phases of the same behavior. For example, the shapes of limb bones are expected 

to be more closely adapted to dissipating forces associated with stance phase than swing phase of 
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the gait cycle (Biewener, 2003), and mandible shape to dissipating forces associated with the power 

stroke than the opening phases of the gape cycle (Hylander et al., 1987). 

Invoking this line of reasoning, skull bones that experience relatively low strain magnitudes 

during feeding must be designed to perform non-feeding functions, such as: insulating the visual 

system from unwanted displacements (Cartmill, 1972; Cartmill, 1980; Heesy, 2005; Ravosa et al., 

2000b; Ross, 1995a; Ross, 1996); augmenting areas for muscle attachment (Ross, 1995b); providing a 

rigid framework to maintain the volume of the respiratory passages (Ross, 1995b; Ross, 2001; Ross 

and Metzger, 2004); and protecting the brain and sense organs from “infrequent non-masticatory 

traumatic loads” (Carrier, 2011; Hylander and Johnson, 1992; Hylander and Johnson, 1997; Hylander 

et al., 1991a; Ravosa et al., 2000b). Areas such as the mammalian zygoma, which experiences high 

strain magnitudes during feeding, are expected to show closer matches between form and the 

mechanical demands of feeding (Behrents et al., 1978; Herring and Teng, 2000; Herring et al., 1996; 

Hylander et al., 1991b; Hylander and Ravosa, 1992; Lieberman et al., 2004; Ravosa, 1991; Ross, 

2001; Ross, 2008; Ross et al., 2011; Ross and Hylander, 1996; Ross and Metzger, 2004; Thomason et 

al., 2001).  

All of the examples given above come from mammals, predominantly primates: among non-

avian reptiles, strain data have only been extensively sampled from the skull of Alligator (Metzger et 

al., 2005; Porro et al., 2013), with limited data from the crania of Varanus and Uromastyx (Porro et 

al., 2014; Smith and Hylander, 1985). Consequently, the magnitude and determinants of variation in 

strain magnitudes across the crania of non-mammalian tetrapods are poorly understood, and we 

have little idea how the apparent principles of skull design in mammals might or might not apply to 

other tetrapod clades. This paper presents in vivo bone strain data from the frontal, parietal and 

maxilla of four species of lepidosaur: the insectivorous anole, Anolis equestris Merrem 1820 

(Dalrymple, 1980; Lister, 1981); the insectivorous gekkonid, Gekko gecko Linnaeus 1758; the 

herbivorous iguanid, Iguana iguana Linnaeus 1758; and the omnivorous teiid, Salvator  (previously 

Tupinambis) merianae Dumeril and Bibron 1839 (Colli et al., 1998). The data are used to address 

general questions regarding patterns of strain in non-mammalian crania. Do individuals in the same 

species share common patterns of strain magnitudes? How do bite force, bite point, species-specific 

cranial morphology and cranial kinesis impact strain magnitudes in lizard crania? What drives 

variation in strain magnitudes within and between individuals and species?   

We then address hypotheses regarding the effects of diet, cranial morphology and kinesis on 

lizard cranial strain magnitudes. Herbivorous lepidosaurs, like Iguana in our study, have light skulls, 

short snouts, large jaw elevator (adductor) muscles, and high bite forces (Herrel et al., 2007; 
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Metzger and Herrel, 2005; Stayton, 2006). Light skulls suggest that, when bite force is controlled for, 

the crania of our herbivorous species—Iguana—might experience higher strains compared with the 

other species studied here. Arguing against this prediction, Porro et al. (2014) reported low strain 

magnitudes in the herbivorous lizard Uromastyx, suggesting that this might reflect adaptation for 

avoiding fatigue failure of repetitively loaded bone (see above), assuming that herbivorous lizards 

perform more feeding cycles per day than carnivorous or omnivorous lizards. There are no data that 

we know of that speak to the validity of that assumption, but Porro et al.’s hypothesis predicts that 

Iguana should experience lower strains than the non-herbivorous species in our sample.   

Our data also allow us to make preliminary assessments of the impact of important variants 

in cranial architecture in lepidosaurs: the presence or absence of bars of bone and cranial kinesis.  

Gekko gecko displays streptostyly, mesokinesis, and metakinesis, and lacks the supratemporal (ST) 

and postorbital (PO) bars possessed by the other three species (Herrel et al., 1999; Metzger, 2002); 

Salvator may be streptostylic and mesokinetic (Barberena et al., 1970; Smith, 1980); Anolis equestris 

is streptostylic (AH, personal observations); and Iguana iguana is akinetic (Throckmorton, 1976). The 

precise effects of these interspecific differences in cranial morphology and kinesis are difficult to 

predict because of uncertainty regarding deformation regimes in lizard crania. One possibility is that 

the absence of ST and PO bars will result in higher strain magnitudes, either because there is less 

bone to absorb muscle and bite forces, or because the cranium is less rigid overall. Kinesis might be 

expected to be associated with lower strain magnitudes because strain energy is dissipated in 

viscoelastic sutural tissues. This might be associated with large differences in strain magnitudes 

between frontal and parietal bones, on either side of the mesokinetic joint. 

To control for effects of bite force and bite point, this study focuses on strain magnitudes 

recorded during transducer biting. Although transducer biting is not normal feeding behavior, it does 

allow the effects of bite force to be controlled while testing hypotheses regarding the effects of 

species-specific morphology on variation in bone strain magnitudes. Bite force impacts cranial bone 

strain magnitude through interactions with bite point, not only because the torques acting on the 

cranium change with bite point, but also because of relationships between bite point and bite force. 

In mammals, variation in bite force with bite point has been shown to be described by the 

constrained lever model which predicts that, because of constraints against tensile forces in the 

biting side jaw joint, bite forces at the most posterior (distal) teeth are lower than those in the 

middle of the postcanine tooth row (Greaves, 1978; Spencer, 1995; Spencer, 1998; Thompson et al., 

2003). Similar predictions have been made for “reptiles” (Druzinsky and Greaves, 1979). Here we 

evaluate whether the constrained lever model applies to lepidosaurs and test the hypothesis that 
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there are significant interactions between bite point and bite force in their effects on bone strain 

magnitudes in the lizard cranium.  

In sum, this study uses in vivo bone strain magnitude data collected simultaneously from 

multiple cranial sites, from multiple individuals from four lizard species with diverse cranial 

morphologies to address the following questions: 

 Controlling for bite force and bite point, do lizards show strain gradients—variation in strain 

magnitudes—across the cranium during biting? 

 Do individuals in the same species share common patterns of variation in strain magnitude 

across the cranium when bite force and bite point are controlled statistically?  

 When bite force and bite point are controlled, what are the effects of diet, species-specific 

cranial morphology and cranial kinesis on variation in strain magnitudes in lizard crania? 
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Materials and Methods 

Animal care 

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Chicago and the Salvator experiments were approved by the 

University of Antwerp Ethics Committee. Four adult Anolis equestris, Gekko gecko, and Iguana 

iguana were purchased through commercial dealers and housed in individual enclosures (152 x 61 x 

61 cm) in the Carlson Animal Resources Center at the University of Chicago. The housing room was 

maintained at appropriate ranges of ambient temperature (24 – 28 °C) and humidity (50 – 80%). 

Each enclosure was equipped with a heat lamp to provide a basking spot (38 °C) during the day and a 

UVB light to ensure proper vitamin D3 production. Animals were fed with crickets, worms, mice, 

and/or fruit every other day, and fresh water was provided daily. Three adult Salvator merianae 

were obtained through commercial dealers and housed in individual cages (120 x 80 x 80 cm) in a 

temperature-controlled room set at 25 °C in the Functional Morphology Laboratory, Department of 

Biology, University of Antwerp, Belgium. A basking spot at higher temperature (45°C) was available, 

the animals were fed with mice and/or fruit twice weekly, and water was available ad libitum.  Jaw 

length, a biomechanically relevant size variable for the feeding system, was measured from the tip of 

the retroarticular process to the tip of the jaw at the symphysis in vivo or from 3d reconstructions of 

CT scans of the animals post mortem (Table 2). 

Bone strain data 

Bone strain data were recorded using stacked delta rosette strain gages (SA-06-030WY-120, 

Micromeasurements, Raleigh, NC) wired, insulated, and gas sterilized using procedures described 

previously (Ross, 2001; Ross et al., 2011). Following anesthesia through an intramuscular injection of 

a mixture of ketamine and dexmedetomidine (respectively 50 mg/kg and 200 μg/kg body mass) 

(Chai et al., 2009), < 1 cm2 of skin overlying each gage site was removed, the periosteum elevated, 

the bone degreased with chloroform, and the gage bonded to the surface of the bone using 

cyanoacrylate adhesive. The lead wires were either tunneled under the skin to the nuchal region 

(Salvator) or run outside the skin to the nuchal area where they were sutured to the skin (other 

taxa). Strain gage sites are shown in Fig. 1 and Fig. S1 and include the mandible site in one Salvator. 

After placement of EMG electrodes (EMG data not presented in this study) the animals were 

returned to temporary housing cages for at least 12 hours prior to data recording.  Instrumentation 

effects were tested using pairwise comparisons between bite forces of individual animals before and 

after placement of strain gages and EMG electrodes.  
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Data collection 

The animals were manually restrained and simultaneous bite force and bone strain data 

were collected while the animals bit on a calibrated bite force transducer described previously 

(Herrel et al., 1999). Bite point (anterior midline; anterior one-third of non-midline tooth row, 

middle third and posterior third on left and right sides) was recorded on video tape or on the voice 

track of a tape recorder. Voltage changes in the strain gages were conditioned and amplified on 

Vishay 2310 bridge-amplifiers and the data acquired at 1 KHz through a National Instruments DAQ 

board run by MiDAS data acquisition software package (Xcitex, Cambridge, MA, USA) or the analog 

data collection module in a Vicon MX T40 (Vicon, Los Angeles, CA, USA), system, and were saved to a 

server for subsequent analysis.  

Bite force data analysis 

To assess whether our subjects are representative of their wider populations, bite forces 

recorded at the anterior midline bite point in the experimental animals were compared with those 

collected using the same methods from non-experimental, conspecific, captive Anolis, Iguana, Gekko 

and Salvator housed: in Prague, Czech Republic; Miami, USA; Paris, France; the University of 

Antwerp, Belgium; and the University of Tulane, New Orleans, USA (Fig. 2A). Salvator data were also 

collected from 125 semi-wild animals in a conservation breeding program (Instituto Brasileiro do 

Meio Ambiente e dos Recursos Naturais Renováveis, reg. 1-35-94-1088-8) in the Jacarezário, 

Universidade Estadual Paulista (Rio Claro, São Paulo, Brazil). There the lizards are kept in groups of 

5–10 individuals in outdoor pens (5 m x 10 m or 2 m x 2 m) with free access to water, ground 

shelters, and to shaded and sunny areas for thermoregulation. In spring and summer the animals are 

fed three times a week with ground beef, fruits, and/or one day old chickens.  

The simple lever model predicts that bite forces will increase at progressively posterior bite 

points, whereas the constrained lever model predicts that bite forces will increase as the bite point 

moves posteriorly, except at the most posterior bite points, where they will decrease. To determine 

which of these models best explains bite force distributions along the toothrow, a Jonckheere-

Terpstra (Jonckheere, 1954; Terpstra, 1952) test for an ordered difference in bite force medians was 

used, within each species and on each side of the tooth row.  
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Bone strain data analysis 

In IGOR Pro 4.0 (WaveMetrics, Inc., Lake Oswego, OR, USA) custom written software was used 

to convert the strain data from volts to microstrain (με = 10-6 ΔL/L) using shunt calibration files 

recorded during the experimental sessions, and to calculate the magnitudes of maximum (ε1) and 

(ε2) minimum principal strains (Hibbeler, 2000). The peak magnitudes of these variables during each 

bite were extracted to IBM SPSS Statistics for Windows, Version 24 (IBM Corp., Armonk, NY, USA) for 

statistical analyses.  

Univariate ANOVAs were used to investigate the factors driving variance in bone strain 

magnitudes at different sites in the cranium in the four lizard species. Separate models were 

calculated:  across gage locations and bite points within each individual; across gage locations, bite 

points and individuals within each species; and then across all factors, including species 

membership.  Species membership was treated as a random factor, i.e., the set of species from the 

clade Lepidosauria was randomly chosen with respect to the hypotheses. Because of the wide 

diversity in size and cranial design, the long branches joining them, and the fact that only four 

species were sampled, the species were assumed to be independent; i.e., phylogeny was not taken 

into account. Bite point (seven “levels” or locations: anterior midline; anterior, middle and posterior 

on left and right sides) was treated as a fixed factor because it has precisely defined locations 

replicated across individuals, because bite point effects apply only to those locations (assuming we 

sampled the tooth row densely enough), and because variation in bite point within each of the seven 

locations is random. Gage location was also treated as a fixed factor, with three locations (parietal, 

frontal, maxilla) because similar/homologous sites were sampled across species, and because we 

assume there is no variation in gage sites between individuals (Doncaster and Davey, 2007). The 

validity of this assumption depends on the level of precision one is prepared to accept: certainly the 

gages were placed on homologous bones in very similar places. The effects of this variation will 

emerge at the level of inter-individual variation within species. The degree to which the gage sites 

are “homologous” across species is debatable.  

Both bite force and animal size (jaw length) are plausible covariates of inherent interest 

(Doncaster and Davey, 2007): bite force is a covariate of muscle forces and joint reaction forces; and 

jaw length is a not only an indicator of the size of the skeleton resisting these forces, but it is also a 

covariate of muscle size (Metzger and Herrel, 2005). The effects of kinesis and herbivory on cranial 

strain magnitudes were estimated by comparing measured principal strain magnitudes and 

estimated marginal means from the ANOVAs, which remove the effects of bite force (as a covariate) 
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and bite point (random effect). Frontal and parietal gage sites were compared to assess the effects 

of mesokinesis; strains from Iguana were compared with those recorded from other, non-

herbivorous taxa to test for effects of diet and its associated suite of skull modifications. Type III 

sums of squares were used because of the interactions between factors. Interaction terms were 

included in the models: interaction effects are represented with an ‘X’; e.g., gage location X species 

interaction effects. ANOVAs were run in SPSS using the General Linear Models menu.  

RESULTS 

Bite force is affected by instrumentation, size and bite point 

The bite forces of the Anolis and Gekko subjects (Table S1) fell within the range of values 

obtained from non-experimental animals but the bite forces of the captive Salvator were lower than 

those of similarly sized semi-wild animals (Fig. 2A). Our experimental Iguana individuals were smaller 

than the non-experimental animals for which data were available, making meaningful comparisons 

impossible.  Effects of instrumentation (strain gage and EMG electrode placement) on bite force 

magnitudes were estimated in one Anolis, one Iguana, and four Gekko using a univariate ANOVA. 

Controlling for bite point there were significant decreases in bite force associated with 

instrumentation in all individuals except one Gekko and the Iguana (Table 1).  

In all species, an independent samples test rejected the null hypothesis that bite force is the 

same at all bite points in the tooth row (Table 2, Fig. 2B, Fig. S2). Jonckheere-Terpstra tests for an 

ordered difference in bite force medians reveal that there is a significant effect of bite point on bite 

forces on both sides in all species except for right bites in Gekko and Iguana. The constrained lever 

model predicted rank order of bite force magnitude on both left and right sides in Gekko and Anolis, 

and on left sides in Iguana and Salvator, whereas the simple lever model only predicted rank order 

of bite forces in Anolis (both sides), Gekko (left side), and Iguana (left side). These results suggest 

that either model may apply to lepidosaurs, they confirm the effects of bite point on bite force (and 

plausibly bone strain magnitudes), and they necessitate the inclusion of bite point as a factor in the 

ANOVA analyses reported below. Bivariate correlations between log10 bite force and log10 jaw length 

between individuals within species are not significant, but across all individuals and bite points both 

mean and maximum bite forces are correlated with jaw length at P < 0.007 (rmean, 0.825; rmax, 0.885) 

(Fig. S2). These analyses suggest that animal size and bite force are correlated, so bite force was 

included in our analyses as a covariate and jaw length was excluded. 
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Gage location and bite point drive variance in cranial bone strain magnitudes within individuals  

Strain magnitude data for all individuals are given in Table S2. Within each individual, 

ANOVA was used to test for effects of gage location, bite point, and bite force on mean ε1 and ε2 

magnitudes separately. In one Gekko (1398975), one Iguana (1392969), two Anolis (1386575, 

1386576), and one Salvator (# 3), bite force was not a significant covariate with either mean ε1 or ε2 

magnitude. In two Salvator (# 1 and 4) bite force was not a significant covariate with mean ε2 

magnitude but it was with mean ε1 magnitude. In the rest of the individuals (two Anolis, two Iguana, 

two Gekko) bite force was a significant covariate with both mean ε1 and ε2 magnitudes. In most 

individuals bite point had a significant impact on means of both ε1 and ε2 magnitudes, the exceptions 

being two Salvator, one Anolis and one Gekko, in which bite point affected mean ε1 but not ε2 

magnitudes. In most individuals, gage location also had a significant effect on both mean ε1 and ε2 

magnitudes, and in all individuals it had an effect on either mean ε1 or ε2 magnitudes. Bite point X 

gage site interactions were significant in all individuals except the individuals where gage site or bite 

point effects were not significant.  

In summary, within individuals the most consistent determinants of variance in cranial bone 

strain magnitudes are strain gage location, bite point and their interaction, with the importance of 

bite force varying between individuals. These results reveal that inter-site variance in bone strain 

magnitudes—strain gradient—is present in all the individuals studied here, and the nature of this 

gradient varies with bite point.  

Bite force drives variance in cranial bone strain magnitudes between individuals within species  

Within each species ANOVAs were used to model the effects of individual, gage location, 

bite point, and bite force on mean ε1 and ε2 magnitudes separately. Within all species, individual was 

not a significant factor and bite force was a significant covariate of both mean ε1 and ε2 magnitudes. 

In Gekko and Iguana, gage location did not affect inter-individual variation in either mean ε1 or ε2 

magnitudes, and in Anolis and Salvator gage location only had a significant effect on inter-individual 

variation in mean ε1 magnitudes. Bite point had a significant effect only on ε1 magnitudes in Salvator 

and ε2 magnitudes in Anolis. Thus, the most consistent determinant of variance in cranial bone strain 

magnitudes within species is bite force, not individual, gage location or bite point. These results 

reveal that the strain gradients documented in the previous section are consistent across individuals 

within species. 
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Species membership, bite force, and diet, but not kinesis, drive variance in cranial bone strain 

magnitudes between species 

ANOVA was used to model the effects of species membership, bite force (covariate), bite 

point, and gage location on mean ε1 and ε2 magnitudes (Table 3). Mean ε1 and ε2 magnitudes were 

significantly impacted by species membership, bite force, gage location X species interaction effects, 

and bite point X gage location X species interactions. ε1 magnitudes were also impacted by bite point 

X gage interactions. Independently, bite point and gage location did not significantly affect strain 

magnitudes.  

The estimated marginal means from this ANOVA (Table 3) falsify the hypothesis that our 

herbivorous species (Iguana) experiences higher strains than the other taxa. Indeed, the reverse is 

true. Pairwise comparisons reveal that, controlling for bite force and bite point, Iguana has 

significantly lower, not higher, estimated marginal mean ε1 strain magnitudes than the other three 

species, and significantly lower mean ε2 strain magnitudes than Anolis and Gekko.  Nor do the data 

support the hypothesis that absence of the ST and PO bars is associated with higher cranial strain 

magnitudes or the presence of kinesis is associated with lower strain magnitudes: Gekko (kinetic) 

and Anolis (akinetic) do not differ from each other in estimated principal strain marginal means, but 

both experience significantly higher estimated mean ε2 strain magnitudes than Iguana and Salvator 

(both akinetic).   

The effect of mesokinesis on cranial strain magnitudes was also tested by comparing 

marginal means from an ANOVA of principal strain magnitudes at frontal and parietal gage sites, 

accounting for the effects of bite force (as a covariate) and bite point (random effect) (Table 5). 

There is no effect of the presence of mesokinesis on the ratios of principal strains at the frontal gage 

site to that at the parietal gage site. In the akinetic Iguana—the largest species—principal strains in 

the frontal were nine to fourteen times larger than in the parietal, whereas in both the akinetic 

Anolis and the highly kinetic Gekko, strains in the frontal were 1.5 to 2.6 times larger than in the 

parietal. Hence, principal strain magnitudes are always several times higher in the frontal than in the 

parietal, regardless of the presence or absence of mesokinesis between frontal and parietal bones.  
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DISCUSSION 

The data presented here have some limitations: not all gage combinations were recorded 

from all animals, manual restraint of the Salvator appears to have deformed the cranium, requiring 

us to exclude some of the data; the data are from transducer biting, not feeding; and 

instrumentation may have resulted in lower bite forces in some individuals. Nevertheless, these data 

represent a significant advance in our understanding of in vivo cranial function of lizards during 

feeding.  

Bite force data may corroborate the constrained lever model in lepidosaurs 

The distribution of bite forces across bite points in these lepidosaurs is explained at least as 

well, and in some cases better, by the constrained lever model than by the simple lever model. The 

constrained lever model proposes that balancing side (non-biting side) muscle activity must be 

reduced during biting at the most posterior bite points in order to avoid tensile forces in the biting 

side jaw joint (Druzinsky and Greaves, 1979; Greaves, 1978; Spencer, 1995; Spencer, 1998; 

Thompson et al., 2003). This model predicts lower bite forces at the most posterior (more distal) 

teeth than in the middle of the postcanine tooth row, a prediction broadly consistent with the data 

presented here. Corroboration of this hypothesis in lepidosaurs would suggest that, as in mammals, 

models of muscle recruitment during biting by lepidosaurs should take into account effects of both 

bite point and joint reaction forces (Curtis et al., 2010; Shi et al., 2012). It also implies that, if the 

constrained lever model applies broadly across amniotes, then sensorimotor mechanisms 

modulating bite point-specific muscle recruitment might also be similarly distributed. In mammals, 

sensory afferents from muscle spindles and the periodontal ligament connecting the teeth to the 

mandible are essential for feed-forward and feed-back regulation of bite force, respectively (Komuro 

et al., 2001; Ottenhoff et al., 1992a; Ottenhoff et al., 1992b; Trulsson, 2006): the roles of spindle 

afferents and afferents in intra-cranial, intra-mandibular, and craniomandibular joints for 

modulation of bite force in lepidosaurs and Caiman (McIntosh et al., 2002) remain to be evaluated.  

An alternative explanation for the decrease in bite force at the most posterior bite points is 

the effect of gape distance on the part of the jaw elevator muscle length tension curves. The bite 

force transducer plates were a constant distance apart in all trials, so that, depending on the axis of 

rotation of the jaw, or jaw/quadrate system, at more posterior bite points the jaw elevator muscles 

may have been most highly stretched. It is possible that this stretched the muscles beyond the 
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optimal region of their length tension curves, resulting in lower maximum bite forces. Future studies 

of the effects of bite point on bite force should control for this effect to determine whether gape 

effects or the constrained lever model best explain the lower bite forces at the most posterior bite 

points. Investigation of the location of the axis of rotation of lizards would be of interest in this 

regard (cf. Iriarte-Diaz et al., 2017). 

Determinants of strain magnitude in lepidosaur crania 

We asked whether, when bite force and bite point are statistically controlled, do lizards 

show strain gradients—variation in strain magnitudes—across the cranium during biting? If lizard 

crania were optimized for maximum strength during feeding with minimum material then strain 

magnitudes would be fairly uniform across the cranium during feeding, and the crania of all species 

would experience similar strain magnitudes during feeding. Of course, biting on different regions of 

the toothrow must necessarily be associated with different strain magnitudes in different parts of 

the cranium because torques and compressive, tensile and shearing forces vary with bite point. 

However, once these factors are taken into account (by eliciting powerful bites across a range of bite 

locations in vivo), if the crania are optimized for maximum strength during feeding with minimum 

material there should not be strain gradients—differences in strain magnitudes across gage 

locations.  In fact, within individuals, the most consistent determinants of variance in bone strain 

magnitudes during transducer biting are strain gage location, bite point, and gage location X bite 

force interactions: cranial bone strain magnitudes vary across the cranium; i.e., there are strain 

“gradients”.  

We also asked whether individuals in the same species share common patterns of variation 

in strain magnitude across the cranium when bite force and bite point are statistically controlled. 

Indeed, between individuals, within species, the most consistent determinant of variance in cranial 

bone strain magnitudes is bite force, not gage location, individual, or bite point. The importance of 

bite force in driving cranial bone strain magnitudes between individuals (and species, see below) is 

not surprising: higher bite forces exert larger compressive, tensile, and shearing forces at gage sites, 

as well as larger bending and twisting moments about the gage sites, and must also be associated 

with higher muscle and joint reaction forces. Moreover, the fact that gage location is not a 

significant determinant of inter-individual variation in strain magnitudes suggests that the patterns 

of strain recorded from these individuals—including the variation between gage locations—are 

consistent representations of species-specific patterns.  
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Finally, we asked: when bite force and bite point are controlled, what are the effects of diet, 

species-specific cranial morphology and cranial kinesis on variation in strain magnitudes in lizard 

crania? Between species, in vivo bone strain magnitudes in the cranium are significantly impacted by 

bite force and species membership independently, as well as by gage location X species, gage 

location X bite point (ε1 magnitudes), and gage location X bite point X species interaction effects. 

Bite point and gage location did not significantly affect interspecific variation in strain magnitudes 

independent of these interaction effects. Species level differences in cranial strain magnitudes 

(independent of bite force) argue against the idea that selection designs all lizard crania to a 

common optimality criterion of maximum strength during feeding for minimum material. This 

interspecific variation may reflect selection for different cranial morphology:feeding function 

relationships—different cranial “designs”—but what the specific performance criteria might be is 

not clear. Iguana displayed lower overall 1 strain magnitudes than the other three species, and 

Iguana and Salvator displayed lower  strain magnitudes than Anolis and Gekko (Table 4). The only 

other species-level effects are species X bite force and species X bite force X bite point interaction 

effects.  

Possible species-level effects on strain magnitudes include the presence of supratemporal 

and postorbital bars, as well as varying degrees of kinesis. Previous bone strain studies of kinesis in 

Varanus exanthematicus used single element gages to measure strain across the top of the 

frontoparietal suture (mesokinetic hinge joint) and rosette gages to record strain of several hundred 

microstrain from the frontal bone rostral to the joint during feeding sequences (Smith and Hylander, 

1985). In the present study, strains recorded from the frontal and parietal bones on either side of 

the frontoparietal suture were recorded during transducer biting, not feeding. Strain magnitudes 

were uniformly higher in the frontal than in the parietal, often by two orders of magnitude, 

regardless of the presence or absence of mesokinesis, or supratemporal or postorbital bars (Table 5). 

This suggests that the distribution of strain magnitudes in the roof of the lepidosaur cranium are not 

significantly different between those animals with and without mesokinesis, arguing against the 

hypothesis that kinetic crania have lower frontal and parietal stress and strain magnitudes. 

Another possible source of interspecific variation in strain magnitudes is dietary effects. 

Herbivorous lepidosaurs have lighter skulls, shorter snouts, larger jaw elevator muscles, and higher 

bite forces (Herrel et al., 2007; Metzger and Herrel, 2005; Stayton, 2006). We hypothesized that this 

might predict higher strains in the crania of our herbivorous species—Iguana—than the other 

species, but the opposite was true: Iguana had the lowest strains of all the species. Low strains may 

represent increased resistance to fatigue effects in Iguana crania, as suggested for Uromastyx  
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(Porro et al., 2014), a hypothesis that would be supported if Iguana are shown to chew more 

frequently than non-herbivorous lepidosaurs. Fatigue effects explain strain magnitudes in a wide 

variety of situations (reviewed by Ross and Metzger, 2004), so their importance for lepidosaur 

cranial form would not be surprising. Interactions between diet and overall size (see below) would 

not be unexpected—herbivorous lizards might both chew more and be larger. However, size related 

effects on diet and feeding behavior, including number of chewing cycles per day, are certainly 

complex in mammals (Ross et al., 2009), and better data are needed before fatigue effects on lizard 

cranial form can be advocated. 

Salvator merianae and Iguana iguana are larger than Anolis equestris and Gekko gecko and it 

is possible that overall cranial size impacts strain magnitudes in the cranium. Ravosa et al. noted a 

negative allometry of peak principal strains in pairwise comparisons within cercopithecine primates 

(Macaca and Papio) and galagos (Otolemur crassicaudatus and O. garnetti) (Ravosa et al., 2000a), a 

pattern replicated in lemurids Eulemur fulvus and Varecia variegata (Ross, 2008) (unpublished data). 

Allometry of circumorbital strain magnitudes could be due to allometry of the external forces acting 

on the cranium, allometry in optimality criteria (i.e., differences in the optimality criteria influencing 

form at different body sizes), or allometry of the extent to which optimality criteria actually matter 

for cranial design (Ross and Metzger, 2004). Choosing between these explanations will require more 

data than are currently available, especially from studies of taxa with a wider range and finer 

gradation of diets.  

Notably, gage location and bite point do not drive interspecific variation in cranial strain 

magnitudes independently of interaction effects with bite point and/or species membership, and 

bite point does not impact strain magnitude variation independently of gage location. This suggests 

that strain magnitudes are influenced by species-specific factors other than cranial morphology, such 

as patterns of muscle recruitment and associated joint reaction forces (Porro et al., 2011).  Analysis 

of EMG data collected during these experiments will be of interest. 

Strain magnitudes in the lepidosaur parietal and frontal are similar to or higher than those in the 

maxilla.  

Our results reveal that the strain magnitudes in the frontal and parietal bones of the lizards 

studied here are usually higher than those in the maxilla. The presence of high biting strains in the 

parietal and frontal bones indirectly overlying the braincase suggests that the morphology (size and 

shape) of these bones may be more optimized for maximum strength with minimum material during 

feeding than are the bones of the braincase in mammals (Table 6).  Where known, the calvarial 
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bones of mammals experience lower strains than the facial skeleton (Behrents et al., 1978; Herring 

and Teng, 2000; Thomason et al., 2001), suggesting that the calvarial strength needed to protect 

their relatively enlarged brains against infrequent impact loads exceeds that necessary for a feeding 

system optimized for maximum strength with minimum material .  In support of this hypothesis, it is 

noteworthy that mammals with relatively smaller brains (Ovis) experience higher strain magnitudes 

in the calvaria during feeding (1 up to 635 ) (Thomason et al., 2001) than primates (Behrents et 

al., 1978), reflecting increased influence of feeding system design criteria on the calvaria.   

The Alligator cranium may also be less well optimized for maximum strength with minimum 

material, as some parts of the cranium appear to experience higher strains than others (Metzger et 

al., 2005; Ross and Metzger, 2004). It is possible that the aquatic habits of Alligator alleviate 

selective pressure to minimize skull mass, or maybe the need to quickly move the head laterally to 

capture prey in an aquatic environment imposes other design constraints on the cranium (Busbey, 

1995; Metzger et al., 2005). Certainly the cross-sectional shape of the snout is not optimal for 

resisting bending moments associated with high magnitude bite forces, suggesting that the 

mechanical needs of moving through an aquatic environment trump those associated with resisting 

biting stresses (Erickson et al., 2012). To compensate for this sub-optimal cross-sectional shape, 

alligators exhibit an extensive hard palate and overlapping scarf joints between some of the bones 

(Busbey, 1989; Busbey, 1995). However, it is important to note that the majority of the cranial bone 

strain data from Alligator (Metzger et al., 2005; Porro et al., 2011) and lizards (presented here) were 

collected during transducer biting, whereas the majority of mammal data were collected during 

feeding. Strong conclusions about the biological significance of differences in strain magnitudes 

between these clades must await better controlled experiments. 

Conclusions 

In vivo bone strain data from the crania of four species of lizards reveal that, like mammals and 

alligators, bone strain magnitudes vary across the cranium of lepidosaurs. Although the mammal 

data were collected primarily during feeding, and those from alligators and lizards are mostly 

collected during transducer biting, the regional variability in bone strain magnitudes indicates that 

cranial design in tetrapod skulls is not dominated by the criterion of maximum strength with 

minimum material during feeding. The data presented here also suggest that there are species-

specific patterns of variation in cranial bone strain magnitudes that are not obviously related to 

patterns of cranial kinesis, or to the presence or absence of postorbital and supratemporal bars, and 

future work should consider these features in the context of overall cranial architecture. Strain 

magnitudes are larger in the frontal than the parietal, and usually larger in the frontal than in the 
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maxilla. This may reflect differences in optimality criteria between lizard and mammal crania, but 

better data are needed to confirm these clade level differences.  
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TableS 

 

 

Table 1.  Tests of instrumentation effects.   

  

  

Pre-instrumentation bite 

force (N) 

Post-instrumentation bite 

force (N) 

Instrumentation 

effect Significant effect? 

Species individual bite point n Mean Max. 

Std. 

Dev. n Mean Max. 

Std. 

Dev. 

Absolute 

(N) 

% of pre-

instr. F1 P 

Anolis 1386575 anterior midline 4 36.31 47.07 7.894 13 26.39 38.07 8.959 -9.93 -27.33 27.451 0.000 

Jaw length (mm) 44.79 L anterior 4 65.73 67.13 2.281 13 35.04 47.87 6.963 -30.69 -46.70    

  

 

L middle 6 94.50 117.78 16.117 1 60.59 60.59 

 

-33.91 -35.88   

   

 

R anterior 3 62.95 65.38 2.143 8 32.76 47.45 15.187 -30.19 -47.96   

   

 

R posterior 1 87.24 87.24 . 8 71.61 101.61 19.276 -15.63 -17.92   

 Gekko 1398971 anterior midline 5 11.33 13.50 1.777 10 5.58 6.68 0.988 -5.75 -50.73 101.017 0.000 

Jaw length (mm) 32.31 L anterior 6 15.16 17.67 1.850 21 7.11 12.70 2.659 -8.05 -53.08   

   

 

L posterior 6 13.08 14.56 1.277 11 7.59 12.54 3.120 -5.50 -42.01    

  

 

R anterior 3 11.95 13.79 1.861 7 6.78 17.05 1.789 -5.17 -43.28   

   

 

R posterior 5 15.73 17.05 0.888 15 9.09 14.46 3.635 -6.65 -42.25   

 Gekko 1398972 L anterior 4 7.09 9.59 2.539 5 4.13 4.76 0.566 -2.96 -41.70 13.470 0.003 

Jaw length (mm) 26.89 R posterior 1 9.21 9.21 

 

5 4.82 5.19 0.326 -4.39 -47.68    

Gekko 1398973 anterior midline 4 12.10 17.84 6.568 6 15.33 18.52 2.510 3.23 26.65 0.238 0.628 

Jaw length (mm) 30.16 L anterior 12 14.48 19.05 5.080 2 11.51 16.15 6.568 -2.97 -20.52    

  

 

L posterior 10 19.00 24.96 4.512 6 14.50 18.84 3.387 -4.50 -23.67   

   

 

R posterior 4 8.18 15.54 5.151 2 10.91 12.56 2.335 2.73 33.31   

 Gekko 1398974 anterior midline 2 6.31 9.10 3.951 2 7.99 10.03 2.884 1.67 26.53 16.017 0.001 
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Jaw length (mm) 31.50 L posterior 5 18.91 20.74 1.128 6 13.41 16.35 1.918 -5.49 -29.06    

  

 

R anterior 1 15.15 15.15 . 3 9.16 12.03 4.202 -5.99 -39.55   

   

 

R posterior 1 13.43 13.43 . 5 9.85 11.45 1.178 -3.58 -26.65   

 Iguana 1398975 anterior midline 2 20.44 21.89 2.051 1 20.28 20.28 

 

-0.17 -0.81 

  Jaw length (mm) 44.16 L anterior 10 18.99 34.26 12.346 7 23.46 34.40 11.613 4.46 23.50 0.117 0.735 

  

 

L posterior 8 19.98 30.86 8.217 2 29.04 29.14 0.148 9.06 45.34   

   

 

R posterior 7 33.00 45.99 10.809 4 17.66 35.18 11.783 -15.34 -46.48   

   

            

  

   

            

  

   

              

 

1F-tests of the effect of instrumentation based on linearly independent, pairwise comparisons 

among estimated marginal means. 

     

Abbreviations: max., maximum; N, newtons; pre-instr., pre-instrumented 
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Table 2. Summary of Jonckheere-Terpstra tests for ordered differences in bite force. 

 

    

  

Left bites Right bites 

Species Rank order model 

  

    Anolis Bite point effect1 <0.001 <0.001 

 

Simple lever2 <0.001 <0.001 

 

Constrained lever3 <0.001 <0.001 

Gekko Bite point effect1 0.003 ns 

 

Simple lever2 0.008 ns 

 

Constrained lever3 0.008 0.007 

Iguana Bite point effect1 <0.000 ns 

 

Simple lever2 <0.001 ns 

 

Constrained lever3 <0.001 ns 

Salvator Bite point effect1 <0.000 0.008 

 

Simple lever2 ns ns 

 

Constrained lever3 <0.001 ns 

    p values are probability that null hypotheses are correct; i.e.,      
1 that median bite forces are the same across bite points   
2 that bite forces are the same across simple lever model ranks  
3 that bite forces are the same across constrained lever model ranks.  
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Table 3. ANOVA models of determinants of log10 principal strain magnitudes in Gekko, Anolis, Iguana and Salvator; species, random factor; bite 

point and gage location, fixed factors; bite force, covariate.  

 
 

log10 1 
     

log10 2   

    

Source 

Type III 
Sum of 
Squares f 

Mean 
Square F Sig. 

Partial 
Eta 

Square 

Type III 
Sum of 
Squares f 

Mean 
Square F Sig. 

Partial 
Eta 

Square 

Intercept Hypothesis 278.13 1.00 278.13 204.648 0.000 0.984 183.09 1.00 183.09 48.797 0.005 0.939 

Error 4.49 3.31 1.36       11.84 3.16 3.75       

log10 bite force Hypothesis 10.63 1.00 10.63 110.294 0.000 0.079 13.25 1.00 13.25 114.254 0.000 0.090 

Error 123.61 1283.00 0.10       133.92 1155.00 0.12       

Bite point Hypothesis 3.67 6.00 0.61 2.455 0.053 0.376 5.11 6.00 0.85 1.157 0.395 0.391 

Error 6.10 24.50 0.25       7.95 10.81 0.74       

gage Hypothesis 21.10 5.00 4.22 2.704 0.149 0.729 31.88 3.00 10.63 2.484 0.202 0.655 

Error 7.85 5.03 1.56       16.81 3.93 4.28       

species Hypothesis 20.78 3.00 6.93 5.479 0.045 0.758 54.00 3.00 18.00 8.523 0.023 0.843 

Error 6.64 5.25 1.26       10.06 4.76 2.11       

Bite point * 
gage 

Hypothesis 24.42 25.00 0.98 2.393 0.018 0.712 17.07 18.00 0.95 1.388 0.236 0.548 

Error 9.88 24.20 0.41       14.10 20.63 0.68       

Bite point * 
species 

Hypothesis 6.80 17.00 0.40 1.017 0.474 0.411 8.88 11.00 0.81 1.244 0.320 0.393 

Error 9.74 24.78 0.39       13.68 21.08 0.65       

gage * species Hypothesis 9.38 5.00 1.88 6.332 0.000 0.505 17.33 4.00 4.33 9.377 0.000 0.597 

Error 9.18 31.00 0.30       11.71 25.35 0.46       

Bite point * 
gage * species 

Hypothesis 10.67 22.00 0.48 5.032 0 0.079 14.80 20.00 0.74 6.383 0.000 0.100 

Error 123.61 1283.00 0.10       133.92 1155.00 0.12       
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Table 4. Species-level estimated marginal means of principal strains across all gage sites from ANOVA in Table 3. 

 1 estimated marginal means 
  

2 estimated marginal means 
 

species 

  

Std. Error 

  
 

log10 meanb, d Std. Error 

  

mean 

() log10 meana, c 
Lower 
Bound 

Upper 
Bound 

mean 

() 
Lower 
Bound 

Upper 
Bound 

Anolis 360.6 2.557 0.031 2.496 2.619 463.4 2.666 0.035 2.598 2.734 

Gekko 457.1 2.66 0.036 2.590 2.730 482.0 2.683 0.039 2.606 2.760 

Iguana 157.8 2.198 0.016 2.167 2.230 90.6 1.957 0.018 1.922 1.991 

Salvator 452.9 2.656 0.039 2.580 2.733 157.0 2.196 0.139 1.923 2.469 

a. Covariates evaluated at log10 bite force = 1.36. 

b. Covariates evaluated at log10 bite force = 1.33. 

c. Pairwise comparisons: Iguana 1 estimated marginal mean differs from all others at p < 0.001 

d. Pairwise comparisons: Iguana and Salvator 2 estimated marginal means differ from Anolis and Gekko at p < 0.001 
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Table 5. Estimated marginal means from ANOVAs of principal strain magnitudes at frontal and parietal gage sites across Gekko, Anolis and 

Iguana: Species, random factor; bite point and gage location, fixed factors; bite force, covariate. 

 

 

  

Species principal 

strain 

gage sites mean () frontal:parietal ratio Mean 

(log10) 

Std. 

Error 

Lower 

Bound 

Upper 

Bound 

Gekko 1 frontal 727.8 2.1 2.86 0.064 2.737 2.987 

    parietal 343.6   2.54 0.064 2.411 2.661 

  2 frontal -709.6 2.6 2.85 0.072 2.710 2.992 

    parietal -273.5   2.44 0.072 2.297 2.578 

Anolis 1 frontal 445.7 1.8 2.65 0.055 2.540 2.757 

  
parietal 252.3  2.40 0.063 2.278 2.525 

 

2 frontal -538.3 1.5 2.73 0.062 2.609 2.853 

  
parietal -356.5  2.55 0.071 2.413 2.691 

Iguana 1 frontal 389.9 9.1 2.59 0.027 2.538 2.645 

  
parietal 42.7  1.63 0.028 1.576 1.685 

 

2 frontal -306.9 14.1 2.49 0.031 2.427 2.548 

  
parietal -21.8  1.34 0.031 1.277 1.398 
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Table 6. Summary of in vivo cranial bone strain data from tetrapods. 

    

1 

 


 

max  
 

Species Individual Gage location behavior mean max mean max mean max 

Primates1 

 

Frontal bone2 

       
Papio anubis 1 Dorsal interorbital mastication 161 215 -51 -68 212 283 

Hylander et al., 1991 

  

incision 167 230 -42 -60 209 290 

Macaca fascicularis 5A Dorsal interorbital mastication 292 462 -119 -189 411 651 

Hylander et al., 1991 

  

incision 235 298 -68 -88 303 386 

 

6 Dorsal interorbital mastication 148 210 -37 -52 185 263 

   

incision 216 311 -49 -75 266 386 

 

2A Dorsal interorbital mastication 133 227 -72 -120 204 347 

   

incision 189 270 -70 -98 259 369 

 

4 Dorsal interorbital mastication 51 91 -21 -35 72 126 

   

incision 62 86 -23 -32 85 118 

Aotus trivirgatus 1 Dorsal interorbital mastication 168 356 -145 -307 313 654 

Ross and Hylander 1996  

 

incision 78 105 -177 -245 255 346 

 

2 Dorsal interorbital mastication 35 114 -105 -194 140 248 

   

incision 81 89 -168 -340 216 425 

Otolemur garnetti 1 Dorsal interorbital mastication 361 587 -383 -634 745 1221 

Otolemur crassicaudatus 2 Dorsal interorbital mastication 183 378 -315 -698 498 1076 

Ravosa et al., 2000 3 Dorsal interorbital mastication 312 354 -209 -235 642 918 

Eulemur fulvus Ba (exp 76) Dorsal interorbital mastication 62 110 -69 -147 130 256 

Ross, unpublished Be (exp 78) Dorsal interorbital mastication 34 104 -40 -145 73 225 

 

Ma (exp 79) Dorsal interorbital mastication 44 109 -53 -136 96 237 

Varecia variegata D (Exp 97) Dorsal interorbital mastication 23 88 -44 -156 65 242 

Ross, unpublished B (exp 94) Dorsal interorbital mastication 21 39 -137 -369 148 393 

Sus scrofa 147 frontal mastication 124 

 

-74 

 

198 

 Herring and Teng, 2000 154 frontal mastication 21 

 

-27 

 

48 

 

 

157 frontal mastication 47 

 

-58 

 

105 

 

 

158 frontal mastication 52 

 

-31 

 

83 
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162 frontal mastication 18 

 

-25 

 

43 

 

 

164 frontal mastication 30 

 

-66 

 

96 

 

 

165 frontal mastication 54 

 

-69 

 

123 

 
Procavia capensis H2 Dorsal interorbital mastication 273 

 

-159 

 

432 

 Lieberman et al., 2004 H3 Dorsal interorbital mastication 16 

 

-231 

 

247 

 
Ovis3,4 1 frontal mastication 515 635 -469 -575 984 1210 

Thomason et al., 2001 2 frontal mastication 271 356 -115 -358 386 714 

 

3 frontal mastication 351 492 -235 -339 586 831 

 

4 frontal mastication 412 504 -325 -412 737 916 

 

5 frontal mastication 227 345 -210 -312 437 657 

 

2 maxilla mastication 711 955 -29 -147 740 1102 

 

3 maxilla mastication 204 257 -170 -379 374 636 

 

4 maxilla mastication 479 593 -32 -49 511 642 

 

5 maxilla mastication 280 424 -96 -143 376 567 

Alligator e64 frontal biting 631 1388 -216.00 -391 858 1778 

Metzger et al ., 2005 

         
Anolis 1380233 frontal biting 379 582 -306 -939 681 1368 

This study 1380234 frontal biting 993 2091 -682 -1386 1675 3458 

 

1386575 frontal biting 475 742 -863 -1266 1307 1762 

 

1386576 frontal biting 842 1321 -1195 -2303 2036 3624 

Gekko 1398971 frontal biting 739 1887 -692 -1460 1431 3246 

This study 1398972 frontal biting 662 817 -634 -808 1295 1550 

 

1398973 frontal biting 424 575 -419 -619 840 1103 

 

1398974 frontal biting 940 2063 -842 -1208 1774 2987 

Iguana 1390109 frontal biting 457 1188 -384 -930 841 2037 

This study 1392969 frontal biting 517 845 -492 -822 1008 1393 

 

1398975 frontal biting 451 886 -295 -572 744 1130 

Salvator 1 frontal biting 1004 1998 -278 -809 1256 2807 

This study 3 frontal biting 454 777 -218 -359 668 1135 

 

4 frontal biting 231 521 -287 -1226 509 1738 
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          Notes             
1 For each individual we used experiment with largest values; within experiments cycle with largest value of 1 was chosen.  
2 Strain magnitudes in these regions were even lower than the dorsal interorbital region. 
3  Row with largest 1 or 2 value        
4 Thomason et al. used single element gages, so mandibular "1" and "2 " underestimate principal strains.       
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Figures 

 

Figure 1. Strain gage locations in all experimental individuals. Radiographs of Anolis, Iguana and Gekko 

were made post mortem, Salvator radiographs are stills from videoradiographic sequences made during 

the recording sessions. Images not to scale: lower jaw lengths are given in Table 2. Exp.: Experiment 

numbers, before instrumentation (P) or after the animals were instrumented with gages and EMG 

electrodes (I). Dorsoventral views are from the top so that the animal’s right is to the right.   
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Figure 2. Bite force data from experimental animals and conspecifics. (A) Maximum bite force in 

newtons (N) at anterior bite point plotted against lower jaw length (mm), colored by species.  Dashed 

arrows, intra-individual decreases in bite force associated with instrumentation. (B) Bite force (N) by 

species and bite point. Bars, species means; whiskers, species maxima. Red lines and markers illustrate 

the rank order of bite force predicted by the simple and constrained lever models. Two models were run 

for left and right sides separately: one predicting that posterior bite points would be associated with bite 

forces higher than middle bite points (as predicted by a simple lever model); and one predicting that 

posterior bite points forces would fall below middle but above anterior bite forces (constrained lever 

model). 
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Figure S1. 

Strain gage locations in Salvator illustrated on reconstructions of CT scans of two of the experimental individuals. 

White lines overlie gage locations, revealed by metallic densities of solder dots and gage elements.
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Figure S2. 

Top row: Maximum and mean bite force by species and bite point.  

Bite forces at the posterior bite points are lower than those at the middle bite points, as predicted by the constrained lever model. 

Bottom row. Maximum and mean bite force for each individual, plotted against jaw length; 

both correlations are significant at P < 0.007; means, r = 0.825; max, r = 0.885.
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Table S1. Mean and maximal bite forces recorded from individuals and species.

Table S2. Bite force and strain data 

Click here to Download Table S1 

Click here to Download Table S2 
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http://www.biologists.com/JEB_Movies/JEB180240/TableS1.xlsx
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