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Abstract—To fully support the partial reconfiguration capabil-
ities of FPGAs, this paper introduces the tool and API BITMAN
for generating and manipulating configuration bitstreams. BIT-
MAN supports recent Xilinx FPGAs that can be used by the ISE
and Vivado tool suites of the FPGA vendor Xilinx, including latest
Virtex-6, 7 Series, UltraScale and UltraScale+ series FPGAs.

The functionality includes high-level commands such as cutting
out regions of a bitstream and placing or relocating modules on
an FPGA as well as low-level commands for modifying primitives
and for routing clock networks or rerouting signal connections
at run-time. All this is possible without the vendor CAD tools
for allowing BITMAN to be used even with embedded CPUs. The
paper describes the capabilities, API and performance evaluation
of BITMAN.

I. INTRODUCTION

FPGAs (Field Programmable Gate Array) have become
more and more popular as this technology promises a mas-
sively parallel computing capability at relatively good power
efficiency. For instance, Microsoft used FPGAs to accelerate
their Bing search engine and demonstrated 95% throughput
improvement at only 10% extra power [1].

However, compared to software development, FPGA de-
velopment remains too complex. Given a user specification,
a stack of transforming tool is executed for generating the
bitstream binary for the FPGA. As illustrated in Figure 1a,
this includes frontend design, logic synthesis, hardware imple-
mentation, and bitstream generation. All these processes take
substantial amount of time, and large designs could easily take
a day to complete.

High performance reconfigurable systems, such as proposed
in the projects EXTRA [2], ECOSCALE [3], or OpenStack-
enabled virtualized FPGA platform [4] require run-time alloca-
tion of hardware accelerators and heavily use partial run-time
reconfiguration of the FPGA resources. However, fully flexible
replacements are hard to achieve since a relocatable module
requires inter-communications to other modules as well as
fitting clock resources in order to work properly. This level
of automation does not exist in current vendor design flows.

To enable flexible module placement, bitstream manipula-
tion is essential. With a deep understanding of the bitstream
format, we are able to generate and parameterize a new design
without going back through the whole design flow. We can
change the configuration of FPGA primitives (e.g., LUT values
or memory (BRAM) contents), reroute wires, and reconfigure
clock buffers. Another application is relocation and duplication
of hardware modules. We can also support mapping overlay
architectures to fabrics as well as routing through physical
LUTs or FPGA resources [5]–[7]. The conventional flow is
summarized in Figure 1a and an alternative using bitstream
manipulation is suggested in Figure 1b.

In this work, we propose a generic methodology to analyze
and manipulate the Xilinx FPGA bitstreams, including latest
devices such as Zynq-7000 and Kintex UltraScale families.
We provide a low level API providing access to FPGA fabric
resources such as LUT/BRAM contents, routing and clock
resources. Furthermore, high level functions such as module
placement and relocation are fully supported.
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Fig. 1: New design flow using the bitstream manipulation tool. In
(b), we are running through the full design cycle only in case we
don’t have the needed bitstream available for implementing system
changes.

Besides a generic X-Y coordinate system abstraction for
defining geometrical parameters, BITMAN supports a coarse
abstraction in resource column of a definable height (which
in the case of Xilinx FPGAs will typically be the height
of a clock region which is the smallest vertically atomically
reconfigurable unit of these FPGAs). The module placement
has to consider the primitive layout of the fabric and we
adopted a string model approach as presented in [8].

The remaining of this paper is organized as follows. In
Section II, we review the role of the FPGA bitstream and
previous attempts to analyze and manipulate it. Section III
discusses about how we have implemented the proposed
methodology based on the bitstream format. Applications in
dynamic partial reconfiguration and overlay architecture will
be demonstrated and discussed in detailed in Section IV.
Section V will summarize the work.

II. BACKGROUND

A bitstream contains all information of a design which
is mapped, placed and routed on a dedicated FPGA chip.
However, bitstream manipulation needs to be done with care
since a corrupted bitstream may damage the device physically
and permanently [9]. Fortunately, bitstream manipulation also
enables powerful features such as updating designs at run-
time, fully flexible module replacements, or even composing
overlay architectures on-the-fly. To do this, we need detailed
information about the bitstream format.

Early efforts, such as JBit [10], JBG [11] and ParBit [12],
provided means to dynamically link and assemble partial hard-
ware modules into FPGA fabric. However, these approaches
are not supporting latest devices as well as not easily able to
reroute connections to modules and maintain clock resources.

Previously, Note et al. suggested to use the Xilinx De-
scription Language and cross-correlation algorithm to analyze
the Xilinx bitstream and reconstruct the netlist [13]. We are
not using the cross-correlation algorithm since all bitstream
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information can be derived precisely for CLB, DSP, BRAM,
and the interconnection fabric.

RapidSimth [14] released by the Brigham Young Univer-
sity can parse, manipulate, and export bitstreams for Xilinx
Virtex 4, Virtex 5 and Virtex 6. Moreover, in their latest
attempts, Kulkarni et al. provided a similar API for bitstream
manipulation to change the LUT contents and switch blocks
configuration in Virtex 5 and 7 Series devices as part of their
Dynamic Circuit Specialization system [15], [16]. Their works
were significant and we are aiming at generalizing it for later
devices since they do not support any newer FPGAs than the
7 Series. Additionally, [14]–[16] are based on the old Xilinx
ISE design suite which is obsolete for latest devices which do
not allow easily porting these tools to recent FPGAs. Instead
of using only Xilinx ISE, we can support both ISE and Vivado
design suites.

It is worth mentioning that since the UltraScale family,
later Xilinx devices are only supported on the Vivado design
tool. Our API provides a path to support latest Xilinx FPGA
members using TCL scripts supported in Vivado. Moreover,
we are not only targeting small bitstream manipulation but the
replacement of large modules in a complex system.

III. IMPLEMENTATION

In this section, we are taking a closer look into a bitstream’s
structure, frame address, resource description and how they are
being used in the BITMAN tool.

A. Bitstream Format
The FPGA bitstream consists of configuration commands

and configuration data. It has a header (including a bus width
detection pattern, a SYNC word, and some configuration
commands) and the actual configuration data (for all primitives
and the routing), which is followed by a footer. We refer
readers to configuration user guides from Xilinx vendor such
as [17] and [18] for further information about header, bus
width pattern and SYNC word. A footer may have CRC
values, if any, and a DESYNC word to indicate the end of
configuration data. In this work, we focus on the configuration
frames, the device description and on how an FPGA device is
reconfigured in order to help understanding how the bitstream
manipulation tool works.

1) Configuration memory frames: The configuration mem-
ory frames are atomic, non-divided elements in FPGA config-
uration data. Each frame has its own address, which consists
of a minor, major, and row address field as well as the block
type of the resource (e.g., the routing of BRAMs and the actual
BRAM content are stored in different sections of the bitstream,
each belonging to a different block type). Consequently, the
block type identifies if a resource is CLB (Configurable Logic
Block), BRAM content or CFG CLB [19]. Please note that
the allocation of the FPGA resources into block type may
vary across different device families of the vendor Xilinx and
BITMAN is designed very generic to take such family specific
properties into account.

The row address shows which row of clock regions the
resources belong to, while the major address specifies the
resource column. The minor address, in turn, defines a specific
configuration frame within a specific column of resources.

2) Device resource description: Xilinx FPGAs are orga-
nized as resource columns in terms of CLB, Block RAM,
DSP, clock and other I/O. Multiple columns are gathered
as a resource row. Figure 2 illustrates a Kintex UltraScale
XCKU025 device layout with details of one resource row.

Resource columns consist of frames for the configuration
of the corresponding primitives and for routing. Every column
provides routing resources such as switch boxes with routing
multiplexers. These routing resources are used for implement-
ing the signal wiring inside the FPGA fabric. The configuration
bits controlling the routing resources are encoded in the
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Fig. 2: Overview of Kintex UltraScale XCKU025’s device layout.
This device has in total 3 repetitive resource rows and 12 clock
regions. Figure adopted from Vivado Design Tool.

TABLE I: Resource information in the Xilinx Virtex-6, 7 Series and
UltraScale families.

Device family Virtex-6

Resource column CLB DSP BRAM

Block Type 0x000 0x000 0x001

# of frames for interconnect 28 28 28

# of frames for content 8 0 128

Device family 7 Series

Resource column CLB DSP BRAM

Block Type 0x000 0x000 0x001

# of frames for interconnect 28 28 28

# of frames for content 8 0 128

Device family UltraScale

Resource column CLB DSP BRAM

Block Type 0x000 0x000 0x001

# of frames for interconnect 58 4 (58 + 4)

# of frames for content 12 0 128

bitstream file together with the configuration of all other
primitives of the FPGA.

The resource’s architecture as well as the number of frames
per column in one row stays the same in a family, but
commonly differs from family to family. For example, a CLB
on a 7 Series device has 8 frames for its content, but 12 frames
on a UltraScale counterpart. The number of frames for routing
is also different due to differences in the routing fabric. Table
I gives a summary on the number of frames for a couple of
device families that are all supported by BITMAN.

Figure 3 shows how a connection in a switch box is
encoded in the bitstream. We refer readers to see [20] for more
details on the implementation of switch matrix multiplexers on
modern FPGAs.

Figure 4 shows how a clock resource is encoded in the bit-
stream. By changing the configuration data, we could reroute
clock signals. BITMAN provides an API that allows reporting
and manipulating clock tree and other routing resources by
simply providing the resource column and the corresponding
clock routing wires to be connected or deleted.

In BITMAN, we can only manipulate the CLB, BRAM con-
tents, routing, and clock resources because this is sufficient for

2017 Design, Automation and Test in Europe (DATE) 895



INT_R_X1Y50/SE2END0 -> NR1BEG0
CLB col 01 row 50
Frame 07 :  00 00 00 40 00 00 00 00
Frame 15 :  00 00 00 80 00 00 00 00

INT_R_X1Y50/SS2END0 -> SS2BEG0
CLB col 01 row 50
Frame 06 :  00 00 08 00 00 00 00 00
Frame 14 :  00 00 04 00 00 00 00 00

Fig. 3: Different routings resulted in different bitstream encodings.

HCLK_L_X32Y78/HCLK_CK_OUTIN_L7 -> 
HCLK_LEAF_CLK_B_TOPL5
CLB col 01 row 75
Frame 01 :  00 08 09 B3 00 00 00 00

HCLK_L_X32Y78/HCLK_CK_OUTIN_L1 -> 
HCLK_LEAF_CLK_B_TOPL5
CLB col 01 row 75
Frame 01 :  80 00 09 BF 00 00 00 00

Fig. 4: Clock resource encodings in bitstream.

dynamically reconfiguring a partially reconfigurable module.
Other resources, including I/O blocks, Gigabit transceiver, or
hardened cores are commonly part of a static system that
usually does not require run-time adaptation though means
of reconfiguration.

B. Module Placement and Relocation
Module relocation is achieved by modifying address infor-

mation fields inside the bitstream. BITMAN also checks the
resource footprint of the FPGA primitives similar as proposed
in [8].

C. Bitstream Manipulation Tool
BITMAN can be used as an independent tool or integrated

to a controller as a software API. Table II shows BITMAN

API examples exposed to higher level applications.
Figure 5 shows the operation of BITMAN. The whole input

bitstream will be read and stored in a 2-D array FrameBuffer.
BITMAN also receives commands from higher level appli-
cations. (X, Y) coordinate system refers to a grid at CLB
granularity. Alternatively, a grid of the height of a clock region
in vertical dimension can be used instead for convenience. All
low level details of the bitstream are hidden from the user
and BITMAN translates user-friendly commands into low level
bitstream manipulation.

BITMAN is written in ANSI C and could be run on
different platforms, from a desktop computer with Intel Core
i7 to an embedded ARM Cortex-A9 or a softcore CPU. Its
performances in various examples will be evaluated in the next
Section.

TABLE II: BITMAN functions

High-level APIs Functionality

replace_FPGA_region(X0,
Y0, X1, Y1, X2, Y2)

Replace/duplicate a rectangular
FPGA region bounded by
bottom-left (X0,Y0) and
top-right (X1,Y1) to a new
region which starts at (X2,Y2).

Replace will clear configuration
data in the old region.

duplicate_FPGA_region(X0,
Y0, X1, Y1, X2, Y2)

reroute_wire(X, Y,
input, output)

Change configuration data of
switch box/clock multiplexer (X,
Y) to connect input to output.reroute_clock(X, Y,

input, output)
change_LUT_content(X, Y,
LUT, new_config)

Change the content of LUT
(LUT)/BRAM (X, Y) to the
new_config data.change_BRAM_content(X,

Y, new_config)
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Fig. 5: BITMAN process

IV. APPLICATIONS AND EVALUATION

With the bitstream manipulation tool introduced in the
previous section, we are going to discuss how it could bring
benefits to applications using dynamic partial reconfiguration.
Plain un-encrypted Xilinx FPGA bitstreams were used in
below examples. BITMAN supports compressed bitstreams as
generated by the Xilinx vendor tools, but does not support
encryption. The later can be implemented easily by a system
providing a secure storage mechanism.

A. Module relocation and duplication
A partial module might spread across a number of CLB

and/or BRAM columns. It is worth mentioning that the recon-
figuration of a module can be carried out without affecting
surrounding modules or static system. In particular if some of
the routing resources within a reconfigurable region implement
static routing (e.g., for crossing signals of the surrounding sys-
tem through a reconfigurable area), this is permitted and will
have no side-effects due to a partial reconfigurable process.
This requires routing constraints on the static routing through
reconfigurable regions that can be generated with the GoAhead
tool [9].

B. Rerouting
We are able to reroute clock signals by reconfiguring clock

multiplexers in BUFG or BUFHCLK cells. By doing this, a
relocatable module could be disabled/enabled or maintained

BitMan tool

Fig. 6: An example of module relocation.
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Fig. 7: Conventional CAM (a) vs. LUT-modifiable CAM (b).

its operation at a different frequency. This is also needed to
keep the routing of the clock resources that belong to the static
system untouched when partially reconfiguring a module.

Figure 6 shows an example of module relocation. There are
2 steps to achieve this moving: 1) relocate the whole module
resource (fixed arrow), and 2) reroute clock signals for the
relocatable module (dashed arrow). While simple systems may
use one clock resources, BITMAN is designed for complete
real-world systems that use a plurality of clock networks (e.g.,
for different memory controllers, NIC interfaces, PCIe, etc.).
Any other routing resource including interconnection could be
changed accordingly.

Table III show BITMAN performances on an ARM Cortex-
A9 platform. In this experiment, a 2MB bitstream of the Zynq-
7000 XC7Z010 device was used, and we have manipulated
configuration data of an LUT, a CLB, a BRAM content, or a
routing primitive, respectively.

C. LUT/BRAM content modification
BITMAN supports updating the content of LUTs and

BRAMs in FPGA fabric on-the-fly. Application examples for
this are changing coefficients in digital filters, updating keys
in cryptography systems or swapping binaries stored in on-
FPGA memory using the configuration interface rather than
some extra user logic. An example with LUT update for FIR
coefficients was mentioned in [15].

For demonstration the usefulness of LUT content modifica-
tions, we looked into an application where we compare an IP
address with a masked reference IP. While the logic savings
are less significant, it can be seen that the CAM approach in
Figure 7b results in a carry chain that is only about a third as
long as the conventional approach in Figure 7a.

D. Hardware mapping and linking for the overlay architecture
In [7], an approach for rapidly building overlay CGRA

(Coarse Grained Reconfigurable Array) is presented where a
small number of physically implemented PE modules were
replicated for building large CGRAs with a hundred or more
PEs. This approach tries to amortize CAD tool time for one PE
to build large scale systems. With the help of stitching together
fully placed and routed PE tiles, CAD tool times could be
reduced by 9.3 times.

However, the stitching itself in [7] was carried out at the
netlist level which requires a time-consuming netlist transla-
tion process that we circumvented by stitching PE tiles directly
at the bitstream level. To demonstrate BITMAN, we repeated
the same experiments but instead of stitching at the netlist
level, the stitching was performed at the bitstream level. As
shown in Table IV, this reduces the whole bitstream generation
process into the range of seconds.

V. CONCLUSION

In this paper, we introduced the tool and API BITMAN that
permits complete bitstream manipulation tasks to be carried

TABLE III: BITMAN performances on various platforms

Processing time (μs)
System configuration LUT CLB BRAM Routing

Dual-core ARM Cortex-A9 @
866MHz and 512MB RAM -
Linux 3.18

45 94 229 54

TABLE IV: BITMAN performance on overlay architecture’s support

BITMAN Rapid
Overlay
Builder [7]

Numbers of PEs 101 101

Time (seconds) 2.24 2259

out at run-time for all latest FPGAs of the vendor Xilinx with-
out the need of running complex and time-consuming CAD
tools. Various use cases were demonstrated and discussed
to show BITMAN tool’s advantages. This includes module
relocation and duplication, modifying switch matrix and LUT
settings as well as stitching together CGRAs from a PE library.

The results of BITMAN are configuration bitstreams that
can be directly sent to the FPGA through any available
configuration port (e.g., ICAP, or PCAP). BITMAN is available
as a command line tool on Windows for x86 machines as well
as a shared library on Linux for ARM (as provided on Zynq-
7000 and UltraScale+ FPGAs) under [21].
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