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Abstract

This paper presents a family of bitmap algorithms that ad-
dress the problem of counting the number of distinct header
patterns (flows) seen on a high speed link. Such counting
can be used to detect DoS attacks and port scans, and to
solve measurement problems. Counting is especially hard
when processing must be done within a packet arrival time
(8 nsec at OC-768 speeds) and, hence, may perform only
a small number of accesses to limited, fast memory. A
naive solution that maintains a hash table requires sev-
eral Mbytes because the number of flows can be above a
million. By contrast, our new probabilistic algorithms use
little memory and are fast. The reduction in memory is
particularly important for applications that run multiple
concurrent counting instances. For example, we replaced
the port scan detection component of the popular intrusion
detection system Snort with one of our new algorithms.
This reduced memory usage on a ten minute trace from 50
Mbytes to 5.6 Mbytes while maintaining a 99.77% proba-
bility of alarming on a scan within 6 seconds of when the
large-memory algorithm would. The best known prior algo-
rithm (probabilistic counting) takes 4 times more memory
on port scan detection and 8 times more on a measurement
application. This is possible because our algorithms can be
customized to take advantage of special features such as a
large number of instances that have very small counts or
prior knowledge of the likely range of the count.

1 Introduction

Internet links operate at high speeds, and past trends pre-
dict that these speeds will continue to increase rapidly.
Routers and intrusion detection devices that operate at up
to OC-768 speeds (40 Gbps) are currently being developed.
While the main bottlenecks (e.g., lookups, classification,
quality of service) in a traditional router are well under-
stood, what are the corresponding functions that should be
hardwired in the brave new world of security and measure-
ment? Ideally, we wish to abstract out functions that are
common to several security and measurement applications
and find efficient algorithms for these functions, especially
algorithms with a compact hardware implementation.

Toward this goal, this paper isolates and provides solu-
tions for an important problem that occurs in various net-
working applications: counting the number of active flows

among packets received on a link during a specified period of

time. A flow is defined by a set of header fields; two packets
belong to distinct flows if they have different values for the
specified header fields that define the flow. For example,
if we define a flow by source and destination IP addresses,
we can count the number of distinct source-destination IP
address pairs seen on a link over a given time period. Our
algorithms measure the number of active flows using a very
small amount of memory that can easily be stored in on-
chip SRAM or even processor registers. By contrast, naive
algorithms described below would require massive amounts
of memory necessitating the use of slow DRAM.

For example, a naive method to count source-destination
pairs would be to keep a counter together with a hash table
that stores all the distinct 64 bit source destination address
pairs seen thus far. When a packet arrives with source and
destination addresses say < S, D >, we search the hash
table for < S, D >; if there is no match, the counter is
incremented and < S, D > is added to the hash table.
Unfortunately, given that backbone links can have up to a
million flows [7] today, this naive scheme would minimally
require 64 Mbits of high speed memory1. Such large SRAM
memory is expensive or not feasible for a modern router.

There are more efficient general-purpose algorithms for
counting the number of distinct values in a multiset. In this
paper we not only present a general-purpose counting algo-
rithm – multiresolution bitmap – that has better accuracy
than the best known prior algorithm, probabilistic count-
ing [8], but introduce a whole family of counting algorithms
that further improve performance by taking advantage of
particularities of the specific counting application. Our
adaptive bitmap, using the fact that the number of active
flows doesn’t change very rapidly, can count the number of
distinct flows on a link that contains anywhere from 0 to
100 million flows with an average error of less than 1% using
only 2 Kbytes of memory. Our triggered bitmap, optimized
for running multiple concurrent instances of the counting
problem, many of which have small counts, is suitable for
detecting port scans and uses even less memory than run-
ning adaptive bitmap on each instance.

1.1 Problem Statement

A flow is defined by an identifier given by the values of
certain header fields2. The problem we wish to solve is

1It must at least store the flow identifier, which in this example is 64
bits, for each of a million flows.

2We can also generalize by allowing the identifier to be a function

of the header fields (e.g., using prefixes instead of addresses, based on
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counting the number of distinct flow identifiers (flow IDs)
seen in a specified measurement interval. For example,
an intrusion detection system looking for port scans could
count for each active source address the flows defined by
destination IP and port and suspect any source IP that
opens more than 3 flows in 12 seconds of scanning.

Also, while many applications define flows at the gran-
ularity of TCP connections, one may want to use other
definitions. For example when detecting DoS attacks we
may wish to count the number of distinct sources, not the
number of TCP connections. Thus in this paper we use
the term flow in this more generic way.

As we have seen, a naive solution using a hash table of
flow IDs is accurate but takes too much memory. In high
speed routers it is not only the cost of large, fast memories
that is a problem but also their power consumption and
the board space they take up on line cards. Thus, we seek
solutions that use a small amount of memory and have
high accuracy. Usually there is a tradeoff between memory
usage and accuracy. We want to find algorithms where
these tradeoffs are favorable. Also, since at high speeds the
per packet processing time is limited, it is important that
the algorithms use few memory accesses per packet. We
describe algorithms that use only 1 or 2 memory accesses3

and are simple enough to be implemented in hardware.

1.2 Motivation

Why is information about the number of flows useful? We
describe four possible categories of use.

Detecting port scans: Intrusion detection systems
warn of port scans when a source opens too many con-
nections within a given time4. The widely deployed Snort
intrusion detection system (IDS) [19] uses the naive ap-
proach of storing a record for each active connection. This
is an obvious waste since most of the connections are not
part of a port scan. Even for actual port scans, if the IDS
only reports the number of connections we don’t need to
keep a record for each connection. Since the number of
sources can be very high, it is desirable to find algorithms
that count the number of connections of each source us-
ing little memory. Further, if an algorithm can distinguish
quickly between suspected port scanners and normal traf-
fic, the IDS need not perform expensive operations (e.g.,
logging) on most of the traffic, thus becoming more scalable
in terms of memory usage and speed. This is particularly
important in the context of the recent race to provide wire-
speed intrusion detection [1].

Detecting denial of service (DoS) attacks: FlowS-
can by David Plonka [18] is a popular tool for visualizing
network traffic. It uses the number of active flows (see
Figure 1) to detect ongoing denial of service attacks. While

routing tables).
3Larger numbers of memory accesses are feasible at high speeds using

SRAM and pipelining, but this increases the cost of the solution.
4While distributed port scans are possible, they are harder because the

attacker has to control many endhosts it can scan from. If the number
of hosts is not very large, each will have to probe many port-destination
combinations thus running the risk of being detected.

Figure 1: The flow count provided by Dave Plonka’s FlowS-
can is used to detect denial of service attacks.

this works well at the edge of the network (i.e., the link
between a large university campus and the rest of the In-
ternet) it doesn’t scale to the core. Also it relies on massive
intermediate data (NetFlow) to compute compact results
– could we obtain the useful information more directly?
Mahajan et al. propose a mechanism that allows backbone
routers to limit the effect of (distributed) DoS attacks [13].
While the mechanism assumes that these routers can de-
tect an ongoing attack it does not give a concrete algorithm
for it. Estan and Varghese present algorithms that can
detect destination addresses or prefixes that receive large
amounts of traffic [4]. While these can identify the victims
of attacks it also gives many false positives because many
destinations have large amounts of legitimate traffic. To
differentiate between legitimate traffic and an attack we
can use the fact that DoS tools use fake source addresses
chosen at random5. If for each suspected victim we count
the number of sources of packets that come from some net-
works known to be sparsely populated, a large count is a
strong indication that a DoS attack is in progress.

General measurement: Counting the number of ac-
tive connections and the number of connections associated
with each source and destination IP address is part of the
CoralReef [11] traffic analysis suite. Other ways of count-
ing distinct values in given header fields can also provide
useful data. One could measure the number of sources us-
ing a protocol version or variant to get an accurate image of
protocol deployment. Alternatively, by counting the num-
ber of connections associated with each of the protocols
generating significant traffic we can compute the average

5If the attack uses few source addresses, it can be easily filtered out
once those addresses are identified. Identifying those addresses can be
done using previous techniques [4] because those few source addresses
must send a lot of traffic each for the attack to be effective.
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connection length for each protocol thus getting a better
view of its behavior. Dimensioning the various caches in
routers (packet classification caches, multicast route caches
for source-group (S-G) state, and ARP caches) also bene-
fits from prior measurements of typical workload.

Estimating the spreading rate of a worm: From
Aug 1 to Aug 12 2001, while trying to track the Code Red
worm [15], collecting packet headers for Code Red traffic on
a /8 network produced 0.5 GB per hour of compressed data.
To determine the rate at which the worm was spreading,
it was necessary to count the number of distinct Code Red
sources passing through the link. This was actually done
using a large log and a hash table which was expensive in
time and also inaccurate (because of losses in the log).

Thus, while counting the number of flows is usually insuf-
ficient by itself, it can provide a useful building block for
complex tasks. This paper extends an earlier conference
version [5]. The most important additions are a discussion
of hardware implementations of the bitmap counting algo-
rithms, a detailed discussion of the similarities and differ-
ences between our multiresolution bitmap and probabilistic
counting, and a discussion of more recent related work.

2 Related work

The networking problem of counting the number of distinct
flows has a well-studied equivalent in the database commu-
nity: counting the number of distinct database records (or
distinct values of an attribute). Thus, the major piece of
related work is a seminal algorithm, probabilistic counting,
due to Flajolet and Martin [8], introduced in the context
of databases. We use probabilistic counting as a base to
compare our algorithms against. Whang et al. address the
same problem and propose an algorithm [22] equivalent to
the simplest algorithm we describe (direct bitmap).

The insight behind probabilistic counting is to compute
a metric of how uncommon a certain record is and keep
track of the most uncommon records seen. If the algo-
rithm sees very uncommon records, it concludes that the
number of records is large. More precisely, for each record
the algorithm computes a hash function that maps it to an
L bit string (L is configurable). It then counts the number
of consecutive zeroes starting from the least significant po-
sition of the hash result and sets the corresponding bit in a
bitmap of size L. If the algorithm sees records that hash to
values ending in 0, 1 and 2 zeroes (the first three bits in the
bitmap are set, and the rest are not) it concludes that the
number of distinct records was c · 22 (c is a statistical cor-
rection factor), if it also sees hash values ending in 3 zeroes
it estimates c·23 and so on. This basic form can have an ac-
curacy of at most 50% because possible estimates are a fac-
tor of 2 from each other. Probabilistic counting divides the
hash values into nmap groups (nmap is configurable), runs
a separate instance of the basic algorithm for each group,
and averages over the estimates for the count provided by
each of them, thus reducing the error of its final estimate.
Durand and Flajolet have recently proposed [14] a variant

of probabilistic counting with better asymptotic memory
usage. We describe a family of algorithms that each out-
performs probabilistic counting by an order of magnitude
by exploiting application-specific characteristics.

In networking, there are general-purpose traffic measure-
ment systems such as Cisco’s NetFlow [16] or LFAP [17]
that report per-flow records for very fine-grained flows.
This is useful for traffic measurement and can be used to
count flows (and this is what FlowScan [18] does), but is
not optimized for such a purpose. Besides the large amount
of memory needed, in modern high-speed routers updating
state on every packet arrival is infeasible at high speeds.
Ideally, such state should be in high speed SRAM (which
is expensive and limited) to allow wire-speed forwarding.

Because NetFlow state is so large, Cisco routers write
NetFlow state to slower DRAM which slows down packet
processing. For high speeds, sampling needs to be turned
on: only the sampled packets result in updates to the flow
cache that keeps the per flow state. Unfortunately, sam-
pling has problems of its own since it affects the accuracy
of the measurement data. Sampling works reasonably for
estimating the traffic sent by large flows or large traffic ag-
gregates, but has extremely poor accuracy for estimating
the number of flows. This is because uniform sampling pro-
duces more samples of flows that send more traffic, thereby
biasing any simple estimator that counts the number of
flows in the sample and applies a correction.

Duffield et al. present two scalable methods for counting
the number of active TCP flows based on samples of the
traffic [2]. They rely on the fact that TCP turns the SYN
flag on only for the packets starting a connection. The
estimates are based on counts of the number of flows with
SYN packets in the sampled data. While this is a good
solution for TCP connections it cannot be applied to UDP
or when we use a different definition for flows (e.g., when
looking at protocol deployment statistics, we define a flow
as all packets with the same source IP). Also, counting
flows in the sampled data can still be a memory-consuming
operation that needs to be efficiently implemented.

The Snort [19] intrusion detection system (IDS) uses a
memory-intensive approach similar to NetFlow to detect
port scans: it maintains a record for each active connection
and a connection counter for each source IP. This problem
is solved more efficiently by the triggered bitmaps proposed
here. Venkataraman et al. [21] and Keys et al. [10] propose
even more memory efficient solutions to the same problem.
Kumar et al. [12] have used multiresolution techniques sim-
ilar to our multiresolution bitmap to solve the related but
different problem of counting packets in a flow.

3 A family of counting algorithms

Our family of algorithms for estimating the number of ac-
tive flows relies on updating a bitmap at run time. Different
members of the family have different rules for updating the
bitmap. At the end of the measurement interval (1 second,
1 minute, or even 1 hour), the bitmap is processed to yield
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an estimate for the number of active flows. Since we do not
keep per-flow state, all of our results are estimates. How-
ever, we prove analytically and show through experiments
on traces that our estimates are close to actual values. The
family contains three core algorithms and three derived al-
gorithms. Even though the first two core algorithms (direct
and virtual bitmap) were invented previously, we present
them here because they form the basis of our new algo-
rithms (multiresolution, adaptive, and triggered bitmaps),
and because we present new applications in a networking
context (as opposed to a database or wireless context).

We start in Section 3.1 with the first core algorithm, di-

rect bitmap, that uses a large amount of memory. Next,
in Section 3.2 we present the second core algorithm called
virtual bitmap that uses sampling over the flow ID space to
reduce the memory requirements. While virtual bitmap is
extremely accurate, it needs to be tuned for a given antic-
ipated range of the number of flows. We remove the “tun-
ing” restriction of virtual bitmap with our third algorithm
called multiresolution bitmap, described in Section 3.3, at
the cost of increased memory usage. Finally, in Section 3.4
we describe the two derived algorithms. In this section we
only describe the algorithms; we leave an analysis of the
algorithms to Section 4. Our algorithms are implemented
by the publicly available bmpcount library [3].

3.1 Direct bitmap

The direct bitmap is a simple algorithm for estimating the
number of flows. We use a hash function on the flow ID to
map each flow to a bit of the bitmap. At the beginning of
the measurement interval all bits are set to zero. Whenever
a packet comes in, the bit its flow ID hashes to is set to 1.
Note that all packets belonging to the same flow map to the
same bit, so each flow turns on at most one bit irrespective
of the number of packets it sends.

We could use the number of bits set as our estimate of
the number of flows, but this is inaccurate because two or
more flows can hash to the same bit. In Section 4.1, we
derive a more accurate estimate that takes into account
hash “collisions”6. Even with this better estimate, the al-
gorithm becomes very inaccurate when the number of flows
is much larger than the number of bits in the bitmap and
the bitmap is almost full. The only way to preserve ac-
curacy is to have a bitmap size that scales almost linearly
with the number of flows, which is often impractical.

3.2 Virtual bitmap

The virtual bitmap algorithm reduces the memory usage
by storing only a small portion of the big direct bitmap one
would need for accurate results (see Figure 2) and extrap-
olating the number of bits set. This can also be thought of
as sampling the flow ID space. The larger the number of

6We assume in our analysis that the hash function distributes the flows
randomly. In an adversarial setting, the attacker who knows the hash
function could produce flow identifiers that produce excessive collisions
thus evading detection. This is not possible if we use a random seed to
our hash function.

flows the smaller the portion of the flow ID space we cover.
Virtual bitmap generalizes direct bitmap: direct bitmap is
a virtual bitmap which covers the entire flow ID space.

Unfortunately, a virtual bitmap does require tuning the
“sampling factor” based on prior knowledge of the number
of flows. If it differs significantly from what we configured
the virtual bitmap for, the estimates are inaccurate. If the
number of flows is too large the virtual bitmap fills up and
has the same accuracy problems as an underdimensioned
direct bitmap. If the number of flows is too small we have
another problem: say the virtual bitmap covers 1% of the
flow ID space and there are 50 active flows - if none of them
hashes to the virtual bitmap, the algorithm will suppose
the number of flows is 0, if 1 hashes, the algorithm will
estimate 100, but it will never estimate 50. The optimal
sampling factor obtains the best tradeoff between “collision
errors” and “extrapolation errors”.

While, in general, one wants an algorithm that is accu-
rate over a wider range, we note that even an unadorned
virtual bitmap is useful. For example, a security applica-
tion may wish to trigger an alarm when the number of flows
crosses a threshold. The virtual bitmap can be tuned for
this threshold and uses less memory than other algorithms
that are accurate not just around the threshold, but over
a wider range for the number of flows.

In Section 4 we derive formulae for the average error of
the virtual bitmap estimates. The analysis also provides
insight for choosing the right sampling factor. Perhaps
surprisingly, the analysis also indicates that the average
error depends only on the number of bits and not on the
number of flows as long as the sampling factor is set to an
optimal value (e.g. with 215 bytes the average error is 3%).

3.3 Multiresolution bitmap

The virtual bitmap is simple to implement, uses little mem-
ory, and gives very accurate results, but requires us to know
in advance a reasonably narrow range for the number of
flows. An immediate solution to this shortcoming is to use
many virtual bitmaps, each using the same number of bits
of memory, but different sampling factors, so that each is
accurate for a different range of the number of active flows
(different “resolutions”). The union of all these ranges is
chosen to cover all possible values for the number of flows.
When we compute our estimate, we use the virtual bitmap
that is most accurate based on a simple rule that looks at
the number of bits set. The “lowest resolution” bitmap is
a direct bitmap that works well when there are very few
flows. The “higher resolution” bitmaps cover a smaller and
smaller portions of the flow ID space and work well when
the number of flows is larger. The problem with the naive
approach of using several virtual bitmaps is that instead of
updating one bitmap for each packet, we need to update
several, causing more memory accesses.

The main innovation in multiresolution bitmap is to main-
tain the advantages of multiple bitmaps configured for vari-
ous ranges while performing a single update for each incom-
ing packet. Figure 2 illustrates the direct bitmap, virtual

4



�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

����������������������������������������������������������������������������������

�
�
�
�

�
�
�
�

Multiple bitmaps

Virtual bitmap

Direct bitmap

000* 001* 010* 011* 100* 101*

Multiresolution bitmap

Entire flow ID space

Part covered by virtual bitmap

11000*

1111000

111111111101*

Figure 2: The multiresolution bitmap from this example
uses a single 7-bit hash function to decide which bit to
map a flow to. It gives results as accurate as the 3 vir-
tual bitmaps, thus covering a wide range for the number of
flows, but it performs a single memory update per packet.
Note that all the unfilled “tiles” from these bitmaps, de-
spite their different sizes represent one bit of memory.

bitmap, multiple bitmaps and multiresolution bitmap. Be-
fore explaining how the multiresolution bitmap works it
can help to switch to another way of thinking about how
the virtual bitmap operates. We can consider that instead
of generating an integer, the hash function covers a con-
tinuous interval. The virtual bitmap covers a portion of
this interval (the ratio of the sizes of the interval covered
by the virtual bitmap and the entire interval is the sam-
pling factor of the virtual bitmap). We divide the interval
corresponding to the virtual bitmap into equal sized sub-
intervals, each corresponding to a bit. A bit in the virtual
bitmap is set to 1 if the hash of the incoming packet maps
to the sub-interval corresponding to the bit. The multiple
bitmaps solution is shown below the virtual bitmap solu-
tion in Figure 2.

A multiresolution bitmap is essentially a combination of
multiple bitmaps of different “resolutions”, such that a sin-
gle hash is computed for each packet and only the highest
resolution bitmap it maps to is updated. Thus each bit-
map loses a portion of its bits which are covered by higher
resolution bitmaps. We call these regions with different res-
olutions components of the multiresolution bitmap. When
computing the estimate, based on the number of bits set in
each component, we choose one of them as “base”, estimate

the number of flows hashing to it and all finer components
and extrapolate. For example if the leftmost 6 bits match-
ing keys 000* to 101* in Figure 2 are set, they will not be
used. Instead, we can choose as base the next component
and based on the six bits in the next component and the
eight in the last one, estimate the number of flows hashing
to the last quarter of the hash space (11*) and estimate
the total number of flows by multiplying this number by 4.

In Section 4.3 we answer questions such as: how many
bits should each component have, how many components
do we need and what is the best ratio between the res-
olutions of neighboring components? In Appendix A we
show that multiresolution bitmaps are easy to implement
even in hardware. In Appendix B we compare our mul-
tiresolution bitmap to probabilistic counting showing that
while both algorithms use statistically equivalent hashes to
set bits, they interpret the data very differently, thus the
differences in the accuracy of the results.

3.4 Derived algorithms

In this section we describe two derived algorithms for count-
ing active flows. Adaptive bitmap, described Section 3.4.1,
achieves both the accuracy of virtual bitmap and the ro-
bustness of multiresolution bitmap by combining them and
relying on the stationarity of the number of flows. Trig-

gered bitmap described in Section 3.4.2 combines direct bit-
map and multiresolution bitmap to reduce the total amount
of memory used by multiple instances of flow counting
when most of the instances count few flows.

3.4.1 Adaptive bitmap

Can we build an algorithm that provides the best of both
worlds: the accuracy of a well tuned virtual bitmap with
the wide range of multiresolution bitmaps? Adaptive bit-
map is such an algorithm that combines a large virtual bit-
map and a small multiresolution bitmap. It relies on a sim-
ple observation: measurements show that the number of ac-
tive flows does not change dramatically from one measure-
ment interval to the other (so it is not suitable for tracking
say attacks where sudden changes are expected). We use
the small multiresolution bitmap to detect changes in the
order of magnitude of the count, and the virtual bitmap for
precise counting within the currently expected range. The
number of flows we expect is the number of flows measured
in the previous measurement interval. Assuming “quasi-
stationarity”, the algorithm is accurate most of the time
because it uses the large, well-tuned virtual bitmap for esti-
mating the number of flows. At startup and in the unlikely
case of dramatic changes in the number of active flows the
multiresolution bitmap provides a less accurate estimate.

Updating these two bitmaps separately would require
two memory updates per packet, but we can avoid the
need for multiple updates by combining the two bitmaps
into one. Specifically, we use a multiresolution bitmap in
which r adjacent components are replaced by a single large
component consisting of a virtual bitmap (where r is a con-
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figuration parameter). The location of the virtual bitmap
within the multiresolution bitmap (i.e. which components
it replaces) is determined by the current estimate of the
count. If the current number of flows is small, we replace
coarse components with the virtual bitmap. If the number
of flows is large, we replace fine components with the vir-
tual bitmap. The update of the bitmap happens exactly as
in the case of the multiresolution bitmap, except that the
logic is changed slightly when the hash value maps to the
virtual bitmap component.

3.4.2 Triggered bitmap

Consider the concrete example of detecting port scans. If
one used a multiresolution bitmap per active source to
count the number of connections, the multiresolution bit-
map would need to be able to handle a large number of
connections because port scans can use very many connec-
tions. The size of such a multiresolution bitmap can be
quite large. However, most of the traffic is not port scans
and most sources open only one or two connections. Thus
using a large bitmap for each source is wasteful.

The triggered bitmap combines a very small direct bit-
map with a large multiresolution bitmap. All sources are
allocated a small direct bitmap. Once the number of bits
set in the small direct bitmap exceeds a certain trigger
value, a large multiresolution bitmap is allocated for that
source and it is used for counting the connections from
there on. Our estimate for the number of connections is
the sum of the flows counted by the small direct bitmap
and the multiresolution bitmap. This way we have accu-
rate results for all sources but only pay the cost of a large
multiresolution bitmap for sources with many connections.

As described so far, this algorithm introduces a subtle
error that makes a small change necessary. If a flow is ac-
tive both before and after the large multiresolution bitmap
is allocated it gets counted by both the direct bitmap and
the multiresolution bitmap. Only using the multiresolu-
tion bitmap for our final estimate is not a solution either
because we would not count the flows that were active only
before the multiresolution bitmap was allocated. To avoid
this problem we change the algorithm the following way:
after the multiresolution bitmap is allocated, we only map
to it flows that do not map to one of the bits already set in
the direct bitmap. This way if the flows that set the bits in
the direct bitmap send more packets, they will not influence
the multiresolution bitmap. It’s true that the multiresolu-
tion bitmap doesn’t catch all the new flows, just the ones
that map to one of the bits not set in the direct bitmap.
This is equivalent to the “sampling factor” of the virtual
bitmap and we can compensate for it (see Section 4.1).

4 Algorithm Analysis

In this section we provide the analyses of the statistical
behavior of the bitmaps used by our algorithms. We focus
on three types of results. In Section 4.1, we derive formu-
lae for estimating the number of active flows based on the

observed bitmaps. In Section 4.2, we analytically charac-
terize the accuracy of the algorithms by deriving formulae
for the average error of the estimates. In Section 4.3, we
use the analysis to derive rules for dimensioning the vari-
ous bitmaps so that we achieve the desired accuracy over
the desired range for the number of flows.

4.1 Estimate Formulae

Direct bitmap: To derive a formula for estimating the
number of active flows for a direct bitmap we have to take
into account collisions. Let b be the size of the bitmap.
The probability that a given flow hashes to a given bit is
p = 1/b. Assuming that n is the number of active flows, the
probability that no flow hashes to a given bit is pz = (1 −
p)n ≈ (1/e)n/b. By linearity of expectation this formula
gives us the expected number of bits not set at the end of
the measurement interval E[z] = bpz ≈ b(1/e)n/b. If the
number of zero bits is z, Equation 1 gives our estimate n̂
for the number of active flows. Whang et al. also show that
this is the maximum likelihood estimator for the number
of active flows [22].

n̂ = b ln

(
b

z

)
(1)

Virtual bitmap: Let α be the “sampling factor” (the
ratio of the sizes of the interval covered by the virtual bit-
map b and the entire hash space h). The probability for
a given flow to hash to the virtual bitmap is equal to the
sampling factor pv = α = b/h. Let m be the number of
flows that actually hash to the virtual bitmap. Its pro-
bability distribution is binomial with an expected value of
E[m] = αn. We can use Equation 1 to estimate m and
based on that we obtain Equation 2 for the estimate of
the number of active flows n.

n̂ =
1

α
b ln

(
b

z

)
= h ln

(
b

z

)
(2)

Multiresolution bitmap: The multiresolution bitmap
is a combination of c components, each tuned to provide
accurate estimates over a particular range. When we com-
pute our estimate we don’t know in advance which com-
ponent is the one that provides the most accurate esti-
mate (we call this the base component). As we will see in
Section 4.2, we obtain the smallest error by choosing as the
base component the coarsest component that has no more
than setmax bits (lines 1 to 5 in Figure 3). setmax is a pre-
computed threshold based on the analysis from Section 4.2.
Once we have the base component, we estimate the number
of flows m hashing to the base and all the higher resolu-
tion ones using Equation 1 and add them together (lines
13 to 17 in Figure 3). To obtain the result we only need to
perform the multiplication corresponding to the sampling
factor (lines 18 and 19). Other parameters used by this
algorithm are the ratio k between the resolutions of neigh-
boring components and blast the number of bits in the last
component (which is different from b).
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ESTIMATEFLOWCOUNT
1 base = c − 1
2 while base > 0 and bitsSet(component[base]) ≤ setmax

3 base = base− 1
4 endwhile
5 base = base + 1
6 if base == c and bitsSet(component[c]) > setlastmax)
7 if bitsSet(component[c]) == blast

8 return “Cannot give estimate”
9 else
10 warning “Estimate might be inaccurate”
11 endif
12 endif
13 m = 0
14 for i = base to c − 1
15 m = m + b ln(b/bitsZero(component[i]))
16 endfor
17 m = m + blast ln(blast/bitsZero(component[c]))
18 factor = kbase−1

19 return factor ∗ m

Figure 3: Algorithm for computing the estimate of the
number of active flows for a multiresolution bitmap. We
first pick the base component that gives the best accuracy
then add the estimates for the number of flows hashing to it
and higher resolution components and finally extrapolate.

Adaptive bitmap: The algorithm for adaptive bitmap
is very similar to multiresolution bitmap. The main differ-
ence is that we use different threshold for selecting the big
component as base. For brevity, we omit the algorithm.

Triggered bitmap: If the triggered bitmap did not al-
locate a multiresolution bitmap, we simply use the formula
for direct bitmaps (Equation 1). Let’s use g for the num-
ber of bits that have to be set in the direct bitmap before
the multiresolution bitmap is allocated and d for the total
number of bits in the direct bitmap. If the multiresolution
bitmap is deployed, we use the algorithm from Figure 3
to compute the number of flows hashing to the multires-
olution bitmap, multiply that by d/(d − g) and add the
estimate of the direct bitmap.

4.2 Accuracy

To determine the accuracy of these algorithms we look at
the standard error of our estimate n̂, that is the standard
deviation of the ratio n̂/n. We also refer to this quantity
as the average (relative) error SD[n̂/n] = SD[n̂]/n. One
parameter that is useful in these analyses is the flow density
ρ defined as the average number of flows that hash to a bit.

Direct bitmap: While our formula for estimating the
number of active flows accounts for the expected collisions
it doesn’t always give exact results because the number of
collisions is random. Equation 3 approximates the average
error of a direct bitmap based on the Taylor expansion
of Equation 1 as derived by Whang et al. [22]. The result
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Figure 4: When the flow density is too low, the “sampling
error” takes over, when it is too high “collision error” is the
main factor. We get the best accuracy for a flow density of
around ρ = 1.6. The estimate from Equation 4 matches
well the experimental results being slightly conservative
(larger). See Section 5.1 for details of the experiment.

is not exact because because less significant terms of the
Taylor expansion were omitted. Whang et al. also show
that the approximation does not lead to serious inaccura-
cies for configurations one expects to see in practice. They
also show that the distribution of the number of bits set
is asymptotically normal so errors much larger than the
standard error are very unlikely [22]. For example, for a
direct bitmap configured to operate at an average error of
10% for flow densities up to ρ = 2, the value of the aver-
age error we get by including the next term of the Taylor
series is only 2% away from the approximation (i.e., the
actual average error can be at most 10.2% instead of 10%).
The inaccuracy introduced by the approximation decreases
further as the number of bits increases.

SD

[
n̂

n

]
≈

√
eρ − ρ − 1

ρ
√

b
(3)

Virtual bitmap: Besides the randomness in the col-
lisions, there is another source of error for the virtual bit-
map: we assume that the ratio between the number of flows
that hash to the physical bitmap and all flows is exactly the
sampling factor while due to the randomness of the process
the number can differ. Detailed analysis of these two errors
and how they interact is available [5]. Equation 4 takes
into account their cumulative effect on the result. When
the flow density is too large the error increases exponen-
tially because of the collision errors. When it is too small,
the error increases as the sampling errors take over. Our
analysis also shows that the terms ignored by the approxi-
mations do not contribute significantly and that the bound
is tight. Figure 4 presents a typical result comparing the
measured average error from simulations on traces of actual
traffic to the value from Equation 4.
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Figure 5: The large virtual bitmap replaces 6 of the compo-
nents of the multiresolution bitmap. The size of the normal
components is b = 64 bits and the size of the large virtual
bitmap is v = 1627 bits. The adaptive bitmap guarantees
an average error of at most 10% over the whole range, but if
the number of flows falls into the “sweet spot” the average
error can be as low as 3.1%

SD

[
n̂

n

]
/

√
eρ − 1

ρ
√

b
(4)

Multiresolution bitmap: To compute the average er-
ror of the estimate of the multiresolution bitmap, we should
take into account separately the collision errors of all com-
ponents finer than the base. This would result for a dif-
ferent formula for each component that would be used as
base. Equation 5 is a slightly weaker bound that holds
for all components but the last one as long as the num-
ber of bits in the last component blast is large enough [3].
Equation 5 bounds quite tightly the average error for a
normal component. For the last component of the mul-
tiresolution bitmap we use Equation 4 directly.

SD

[
n̂

n

]
/

√
k−1

k

(
eρ + eρ/k − 2

)
+ eρ/k2 − 1

ρ
√

bk
k−1

(5)

Adaptive bitmap: The error of the estimates of the
adaptive bitmap depends strongly on the number of flows:
the errors are much larger if the number of flows is unex-
pectedly large or small. The exact formulas, omitted for
brevity are not very different from the ones seen so far. We
give an example instead. Figure 5 gives the average error as
predicted by our formulae for the adaptive bitmap we use in
for measurements (Section 5.3). We first represent the av-
erage error of the original multiresolution bitmap and then
the average error we obtain by replacing various groups of
8 consecutive components with the virtual bitmap. It is
apparent from this figure that by changing which compo-
nents are replaced by the virtual bitmap we can change the
range for which the adaptive bitmap is accurate.

Algorithm Memory (bits) Parameters

Direct bitmap < N/ ln(Nǫ2 + 1) b
Virtual bitmap 1.544/ǫ2 b, α
Multires. bmp. 0.919 ln(Nǫ2)/ǫ2 + ct. b, c, k, blast

Adaptive bmp. ' 1.544/ǫ2 b, c, k, blast, v

Table 1: The user specifies an acceptable relative error ǫ,
and a maximum number of flows to count N with the given
error (for virtual bitmap N is the number of flows for which
maximum accuracy is achieved). Based on these numbers,
one can compute the configuration parameters which also
determine the amount of memory required. Using k = 2
gives low memory usage, and the values of 3 and 4 only
rarely result in slightly lower memory.

4.3 Configuring the bitmaps

In this section we address the configuration details and im-
plicitly the memory needs of the bitmap algorithms. The
publicly available library implementing the bitmap algo-
rithms described in this paper [3] also has scripts imple-
menting the numerical computations for configuring them,
discussed in this section. The two main parameters we use
to configure the bitmaps are the maximum number of flows
one wants them to count N and the acceptable average rel-

ative error ǫ. We base our computations on the formulas
of the previous section.

Direct bitmap: If we would keep ρ = N/b constant
as N increased ǫ would improve proportionally to 1/

√
N

(which is proportional to 1/
√

b). So as N increases the flow
density that gives us the desired accuracy also increases.
Therefore by ignoring the constant term under the square
root in Equation 3 we get a tight bound on how b scales.
ǫ2 / (eρ −ρ)/(ρ2b) so ǫ2N +1 / eρ/ρ < eρ. From here ρ >
ln(ǫ2N +1) and thus b < N/ ln(ǫ2N +1). We claim that for
large values of N while this closed form bound is not tight
it is not very far off either. For example for N = 1, 000, 000
and ǫ = 10% the bound gives 108,572 bits while the actual
value is 85,711 bits. Of course, for configuring a direct
bitmap we recommend solving Equation 3 numerically for
b (with ρ replaced by N/b).

Virtual bitmap: The average error of the virtual bit-
map given by Equation 4 is minimized by a certain value
of the flow density. Solving numerically we get ρoptimal =
1.594 and this corresponds to around 20.3% of the bits
of the bitmap being not set. By substituting, we obtain
the average error for this “sweet spot” flow density ǫ /
1.243/

√
b. By inverting this we obtain the formula from

Table 1 for the number of bits of physical memory we need
to achieve a certain accuracy. When we need to configure
the virtual bitmap as a trigger, we set the sampling fac-
tor α such that at the threshold the flow density is 1.594.
For this application, if we have 155 bits, the average error
of our estimate is at most 10% no matter how large the
threshold is. If we have 1,716, the average error is at most
3%, and if we have 15,442 it is at most 1%. If we want
the virtual bitmap to have at most a certain error for a
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k setmax/b coefficient f(k) f(k)/ ln(k)

2 0.9311 0.6367 0.9186
3 0.9463 1.0318 0.9392
4 0.9568 1.3470 0.9717

Table 2: The threshold setmax used to decide which com-
ponent to use is proportional to the component size b =
f(k)/ǫ2 which depends on the desired accuracy. f(k)/ ln(k)
is the asymptotic memory usage for various values for the
ratio between resolutions of neighboring components k.

r v/b improvement

2 2.3626 1.1725
3 4.4861 1.4488
4 8.0603 1.8468
5 14.3252 2.4029
6 25.5510 3.1709
7 45.9411 4.2265
8 83.3330 5.6754
9 152.4217 7.6641
10 280.8654 10.3959
11 520.9068 14.1524
12 971.5300 19.3240

Table 3: As we increase the number of components r re-
placed by the virtual bitmap, the size of the virtual bitmap
v almost doubles for each new component replaced. The
ratio between the average error of the large virtual bit-
map and the multiresolution bitmap also increases, but at
a slower rate than the size of the virtual bitmap.

range of flow counts between Nmin and Nmax, we need to
solve the problem numerically by finding a ρmin < ρoptimal

and a ρmax > ρoptimal so that ρmax/ρmin = Nmax/Nmin

and ρmin and ρmax produce the same error. Once we have
these values, we can compute the sampling factor for the
virtual bitmap and the number of bits.

Multiresolution bitmap: For brevity we omit the full
discussion of the configuration of the multiresolution bit-
map since it is available elsewhere [5]. From Equation 5
we get the rule for choosing the size of the bitmap com-
ponents as b = f(k)/ǫ2 where the coefficient f(k) depends
on k. Table 2 also gives the coefficients to compute the
threshold setmax used by the algorithm (Figure 3) to se-
lect the base component is setmax = b(1 − e−ρmax). Given
N , the highest number of flows for which the multiresolu-
tion bitmap must stay accurate, the number of components
is c = 2 + ⌈logk(N/(ρmaxb))⌉. For some configurations, by
increasing the size of the last component, blast, one can re-
duce the number of components by one without increasing
the total memory required [3]. The ratio f(k)/ ln(k) gives
the asymptotic memory usage for a certain choice of k and
we can see from Table 2 that k = 2 is the best choice. For
a few configurations k = 3 needs slightly lower memory
as it “fits better” N , because the number of components
c must be integer. As described in Appendix A, hardware

Name No. of flows Length Encr.
(min/avg/max) (s)

MAG+ 93,437 / 98,424 / 105,814 4515 no
MAG 99,264 / 100,105 / 101,038 90 no
COS 17,716 / 18,070 / 18,537 90 yes
IND 1,964 / 2,164 / 2,349 90 yes

Table 4: The traces used for our measurements

implementation of the multiresolution bitmap is easier if
we restrict k and b to powers of two. For a few hardware
configurations, k = 4 gives slightly lower memory usage.

Adaptive bitmap: For brevity we omit the detailed
discussion of the configuration of the adaptive bitmap. In
Table 3 we report the costs and benefits of the adaptive
bitmap. The first column lists the number r of normal
components we replace with the large one. The next col-
umn lists the number of bits the large component needs to
have (compared to the number of bits of a normal com-
ponent) to ensure that the adaptive bitmap never has a
worse average error than the original multiresolution bit-
map. The third column lists the ratio between the average
error of multiresolution bitmap and the “sweet spot” av-
erage error of the adaptive bitmap. The memory usage
reported in Table 1 is derived based on the observation
that most of the memory of the adaptive bitmap is used
by the “virtual bitmap” component.

5 Measurement results

We group our measurements into 4 sections corresponding
to the 4 important algorithms presented: virtual bitmap,
multiresolution bitmap, adaptive bitmap and triggered bit-
map. Some measurements are geared toward checking the
correctness of our theoretical analysis and others toward
comparing the performance of our algorithms with proba-
bilistic counting and other existing solutions.

For our experiments, we used 3 packet traces, an unen-
crypted one from CAIDA captured on the 6th of August
2001 on an OC-48 backbone link and two encrypted traces
from the MOAT project of NLANR captured on the 11th
of November 2002 on the connection points of two univer-
sity campuses to the Internet. The unencrypted trace is
very long; for some experiments we also used a 90 second
slice of the unencrypted trace as a fourth trace. We usually
set the measurement interval to 5 seconds. We chose 5 sec-
onds because it appears to be a plausible interval someone
would use when looking at the number of active flows: it is
larger than the round-trip times we can expect in the In-
ternet but not significantly larger than the duration of the
shortest flows. In all experiments we defined the flows by
the 5-tuple of source and destination IP addresses, ports,
and protocol. Table 4 gives a summary description of the
traces we used. All algorithms used equivalent CRC-based
hash functions with random generator functions. Unless
otherwise specified, the experiments have been repeated
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20 times with different hash functions and the reported av-
erage and maximum errors are over the different runs and
the different measurement intervals in the trace.

5.1 Virtual bitmap

We performed experiments to check the validity of Equa-
tion 3 for various configurations on many traces. Figure 4
shows a typical result. More results can be found in the
technical report version of the paper [6]. Our measure-
ments confirm that Equation 3 gives a tight and slightly
conservative bound on the average error (conservative in
the sense that actual errors are usually somewhat smaller
than predicted by the formula). The results also confirm
that we get the best average error for a virtual bitmap of
a given size when the flow density is around ρ = 1.6.

We also compare the average error of the virtual bitmap
to probabilistic counting using the same amount of mem-
ory for a variety of configurations and traces. Because our
major contributions are the remaining schemes, we provide
here only one sample result. For the COS trace, using 1,716
bits our analysis predicts an expected error 3%. The ac-
tual average error (computed as square root of the average
of squares) for virtual bitmap is only 2.773% with a max-
imum of 9.467%. This is not just a further confirmation
that Equation 3 gives a tight bound on the average error,
but it also shows that errors much larger than the average
error are very unlikely. On the other hand, probabilis-
tic counting configured to handle up to 100,000 flows had
an average error of 6.731% with a maximum of 27.336%.
While this is an unfair comparison in general (virtual bit-
map requires knowing in advance the range of final count
values so that we can set α to a value that ensures that ρ
is close to 1.6), it does fairly indicate our major message:
a problem-specific counting method for a specific problem
like threshold detection can significantly outperform a one-
size-fits-all technique like probabilistic counting.

5.2 Multiresolution bitmap

This set of experiments compares the average error of the
multiresolution bitmap and probabilistic counting. A mean-
ingful comparison is possible if we compare the two algo-
rithms over the whole range for the number of flows. Since
our traces have a pretty constant number of flows, we use
a synthetic trace for this experiment. We used the actual
packet headers from the MAG+ trace to generate a trace
that has a different number of flows in each measurement
interval: from 10 to 1,000,000 in increments of 10% with
a jitter of 1% added to avoid any possible effects of “syn-
chronizations” with certain series of numbers.

We ran experiments with multiresolution bitmaps tuned
to give an average error of 1%, 3% and 10% for up to
1,000,000 flows and probabilistic counting configured for
the same range with the same memory. For each configu-
ration we had 500 runs with different hash functions.

Figure 6 shows the results of the experiments. We can
see that in all three experiments, the average error of the
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Figure 6(a): Configured for an average error of 10%
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Figure 6(b): Configured for an average error of 3%
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Figure 6(c): Configured for an average error of 1%

Figure 6: Comparing multiresolution bitmap and proba-
bilistic counting.

multiresolution bitmap is better than predicted for small
values, because we have no “sampling error” when the num-
ber of flows is small. We explain the periodic “fluctuations”
of average error from Figure 6(a) by occasional incorrect
choice of the base component. The peaks correspond to
where components are least accurate and hand off to each
other. The peaks are more pronounced in this figure than
the others because due to the small number of bits in each
component, it happens more often that not the best com-
ponent is used as a base for the estimation. In Figure 6(b)
and especially in Figure 6(c) there is a visible decrease in
the error for the multiresolution bitmap when the number
of flows approaches the upper limit. The reason is that the
last component is much larger than the normal ones and
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Trace Adaptive bitmap Probabilistic counting
(min/avg/max) (min/avg/max)

MAG+ -4.402/1.066/4.717% -9.525/2.820/13.262%
COS -1.879/0.748/1.950% -6.946/2.759/7.621%
IND -1.767/0.601/1.772% 2.400/10.214/17.724%

Table 5: Comparison of adaptive bitmap and probabilistic
counting, each using 16Kbits of memory

provides more accurate results.
Probabilistic counting is worse than the multiresolution

bitmap, especially for small values. We show in Appendix B
that the data collected by the two algorithms is equivalent,
so it might be surprising that their accuracies are so diffe-
rent. We attribute the large errors of probabilistic counting
for low values to the way it evaluates the collected data.
The ability of multiresolution bitmap to be accurate on
the low end of the range too can lead to simpler, more ro-
bust systems. We attribute the worse error of probabilistic
counting for higher values mostly to the suboptimal dimen-
sioning of the algorithm (as recommended in [8]).

5.3 Adaptive bitmap

The experiments from this section compare adaptive bit-
map and probabilistic counting on all three traces. The
results are presented in Table 5. All of the algorithms were
configured to use 16 Kbits of memory.

The algorithms were configured to give the best possi-
ble average error and work up to 100,000,000 flows. For
the adaptive bitmap we used as a base a multiresolution
bitmap with an average error of 10% with k = 2, b = 64,
c = 19 and blast = 169. The virtual bitmap component is
15, 063 bits large and replaces 9 components of the mul-
tiresolution bitmap. For the adaptive bitmap we did not
include in our computations the first measurement interval
when the adaptive bitmap was not tuned to the traffic. For
the probabilistic counting we used nmap = 744 bitmaps of
L = 22 bits each. Adaptive bitmap is roughly 3 times
more accurate than probabilistic counting. For the IND
trace which has a very small number of active flows prob-
abilistic counting has very bad error and is actually biased
towards overestimating. This is the same as the problem
we noticed in the previous section. The major message
here is that an adaptive bitmap can achieve almost the
same benefits of virtual bitmap (e.g., order of magnitude
reduction in memory for same accuracy) when the number
of flows does not vary dramatically.

5.4 Triggered bitmap

So far, all our measurements have focused on one instance
of the counting problem to be used as a building block
for solving more complex problems. The experiments from
this section give a better image of how our algorithms can
affect the resource consumption of an entire system.

We first address port scan detection that uses a large

Measurement Snort Prob. Triggered
interval count. bmp.

12 sec 1,968K 2,474K 381K
600 sec 50,791K 22,876K 5,725K

Table 6: The memory usage of port scan detection algo-
rithms (Kbytes)

number (one per source) of instances of the counting prob-
lem multiplying the impact of any memory our algorithm
can save. We use a definition of a port scan equivalent to
the definition in the default Snort configuration: a source
is flagged as a port scanner if it has at least 4 connections
in a 12 second measurement interval. In the second experi-
ment we extend the measurement interval to 10 minutes to
evaluate the algorithms against this more demanding def-
inition. We ignore many of the details of the operation of
Snort (e.g., reliance on TCP flags to classify connections)
and concentrate on the core task of counting connections.

For the triggered bitmap we chose a configuration that
is convenient to implement on a 32-bit machine: a direct
bitmap of 4 bytes and a multiresolution bitmap with 11
components of 4 bytes each (except the last one which is
8 bytes). The multiresolution bitmap is allocated after
8 bits are set in the direct bitmap. By our analysis the
multiresolution bitmap should ensure an average error of
at most 14.1% for up to 43,817 connections and at most
15.5% for up to 175,269 connections.

We used two configurations, one with a 12 second prefix
and one with a 600 second prefix of the MAG+ trace. For
each configuration we had 20 runs of with the triggered
bitmap algorithm, using different random hash functions.
The average of the error for flows that had at least 4 con-
nections was 13.6%.7 Our algorithm reported 84.6% of the
sources with 4 connections as reaching the threshold, 98.1%
of those with 5, and all (100%) of the sources that had at
least 8 connections. In Table 6 we report the maximum of
triggered bitmap over the 20 runs. Triggered bitmap uses
roughly 5 times less memory than Snort with the first con-
figuration. For the more ambitious second configuration
the gain increases to a factor of 9. In both cases triggered
bitmap used less memory than probabilistic counting.

What do these results mean to a security analyst? Snort,
of course, uses the classical measure of detecting n connec-
tions with a maximum inter-event spacing of t. By default,
Snort uses values such as n=4, t=3. Our technique uses
significantly less memory at the expense of possibly missing
port scanners. However, the probability of a port scanner
not being detected decreases exponentially with the num-
ber of connections it opens. For example, the probability
is 1.87% at 5 connections, 0.23% at 6, 0.03% at 7, etc.
Using Snort’s timing requirements, a fifth event must ar-

7This is an average over all sources. We did notice some “peculiarities”:
for sources that had 4 connections the average error was around 10.5% ,
for those with 5 around 11%, for those with 6 connections it was 18%, for
those with 8 around 11.5% while for all others the averages were roughly
in the range 14%- 15.5%. We explain these as effects of having such a
small direct bitmap.
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rive within t = 3 seconds of the fourth event if the scan
continues. Thus, we detect a continuing scan with proba-
bility 98.13% within 3 seconds and 99.77% within 6 sec-
onds. Note also that port scans are usually the result of a
brute-force network exploration such as Nmap [9] or Code
Red [15]. Such tools frequently touch not just a handful of
addresses, but an entire block of contiguous addresses.

Finally, note that because our algorithms reduce the
memory usage by as much as an order of magnitude, they
also enable detection of stealthy slow scans using the same
amount of memory that naive algorithms use for fast scans.
Because the memory required for each source is greatly re-
duced with our algorithms, we can afford to count more
sources at a time. We can avoid timing-out state as aggres-
sively as Snort and keep counting sources with longer inter-
arrival times between events. Finding these more stealthy
port scans is a goal of many detection systems [20].

6 Conclusions

Using a suitably general definition of a flow, counting the
number of active flows is at the core of a wide variety of se-
curity and networking applications such as detecting port
scans and denial of service attacks, tracking worm infec-
tions, calibrating caching, etc. In this paper we provide a
family of bitmap algorithms solving the flow counting prob-
lem using extremely small amounts of memory. Most of the
algorithms can be implemented at wire speeds (8 nsec per
packet for OC-768) using SRAM since they access at most
one memory location per packet, and can be implemented
using simple hardware (CRC based hash functions, multi-
pliers, and multiplexers). With the exception of direct and
virtual bitmap, the other algorithms are introduced for the
first time in this paper.

The most popular algorithm for counting distinct values
is probabilistic counting. Our algorithms need less memory
to produce results of the same accuracy. This translates
into savings of scarce, fast memory (SRAM) for hardware
implementations. It also helps systems that use cheaper
DRAM to scale to larger instances of the problem.

In comparing head-on with probabilistic counting, our
multiresolution algorithm works under the same assump-
tions and provides an error orders of magnitude lower when
the number of flows is small and is slightly better for higher
values. However, we believe our biggest contribution is as
follows. By exposing the simple building blocks and anal-
ysis behind multiresolution counting, we have provided a
family of customizable counting algorithms (Table 7) that
application and hardware designers can use to reduce mem-
ory even further by exploiting application characteristics.

Thus, virtual bitmap is well-suited for triggers such as
detecting DoS attacks, and uses 215 bytes to achieve an
error of 2.773% compared to 2,076 bytes for probabilistic
counting. Adaptive bitmap is suited to flow measurement
applications and exploits stationarity to require 8 times
less memory than probabilistic counting on sample traces.
Triggered bitmap is suited to running multiple instances

of counting where many instances have small count values
(e.g., port scanning) requiring only 5.6 Mbytes on a 10
minute trace compared to the 49.6 Mbytes required by the
naive algorithm and 22.3 Mbytes required by probabilistic
counting. Using triggered bitmap resulted in a reduction
by 29% in the running time and a factor of seven in the total
memory usage of a traffic analysis application from the
CoralReef suite. Given that low-memory counting appears
to be useful in applications beyond networking which have
different characteristics, we hope that the base algorithms
in this paper will be combined in other interesting ways in
architecture, operating systems, and even databases.
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Setting Algorithm Application

General counting Multiresolution bitmap Tracking worm infections
Accuracy important only Virtual bitmap Triggers (e.g. for

over a narrow range detecting DoS attacks)
Count is probably in a Adaptive bitmap Measurement

narrow range (stationarity)
Small memory usage as Triggered bitmap Detecting port scans
long as count is small

Table 7: The family of bitmap counting algorithms: each algorithm is best suited for a different setting.
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A A hardware implementation of

the multiresolution bitmap

The implementation of multiresolution bitmap is much sim-
pler than its analysis. The most time critical per packet
part of the algorithm is updating the bitmap. The hash
function on the flow IDs can be implemented with com-
binatorial logic that is easy to pipeline. Computing the
address of the bit to get updated is also quite simple in
hardware if three constraints are met: ratio of the reso-
lutions of neighboring components k, the size of the last
component and bk/(k− 1) need to be powers of two. Thus
for the multiresolution bitmap example in Figure 2 (b = 6,
k = 4) one can map the incoming packets to the proper
sub-interval by computing a 7-bit hash function and us-
ing simple additional combinatorial logic. If the first two
bits of the hash are not “11”, the first 3 bits decide which
of the sub-intervals in the coarsest component the packet
maps to. Otherwise if the third and fourth bit are not 11
(but the first two are), bits from 3 to 5 decide which sub-
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Figure 7: Hardware for selecting the bit to be set

interval in the intermediate component the packet maps to.
If the first 4 bits are 1, bits from 5 to 7 map the packet to
the appropriate subinterval in the finest component.

Figure 7 presents a possible hardware implementation
for the logic circuit that computes the address of the bit
the current packet maps to. The input to the circuit is the
7 bit hash function Hash[0..6] that based on the flow ID of
the packet. Its output is a 5 bit address Addr[0..4] of the
bit that will be set. The leftmost bit in the multiresolution
bitmap of Figure 2 has an address of 0 and the rightmost
has an address of 19. The “select resolution” block selects
the component with the appropriate resolution based on
the first 4 bits of the hash. If the coarsest component is
used, the output Res[0,1] will have a value of 0 and if the
finest component is used its value will be 2. This block can
be implemented with few gates. The “X 6” block multiplies
this value by 6 and it can be implemented using an adder
and a shift register. The “Select offset” block selects which
of the bits within the hash to use to find the offset of the
bit within the component. It can be implemented with a
16:4 multiplexer. The final adder adds the base and the
offset to get the bit’s address.

B Multi-resolution bitmap versus

probabilistic counting

Even though it might seem surprising at first, the data
collected by a multi-resolution bitmap with k = 2 and no
stretching of the last component (blast = bk/(k − 1)) is
statistically equivalent to the data collected by a matching
configuration of the probabilistic counting algorithm (un-
der the assumption of perfect hash functions). The pro-
bability of the incoming packet to hash to component i is
1/2i for all components but the last for which it is 1/2c−1.
Each component but the last has b bits.

The probability that the packet hashes to a given bit
at component i is 1/2i ∗ 1/b = 1/(b ∗ 2i) (this also holds
for the last component). Therefore, for each i from 1 to
c− 1 we have b bits that have a probability of 1/(b ∗ 2i) of
“catching” the incoming packet plus we have 2b bits that
have the probability 1/(b ∗ 2c) of “catching” the incoming
packet. All incoming packets map to exactly one bit.

Probabilistic counting of Flajolet and Martin uses nmap
bitmaps of size L. Each bitmap has a probability of 1/nmap
of “catching” a random database record. Within each bit-
map, bit i has a probability of 1/2i of catching the record.
The last bit acts as a “catch-all” for all numbers of con-
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Figure 8: Probabilistic counting groups bits horizontally,
so bitmaps have bits with different probabilities of being
set. Multiresolution bitmaps group bits vertically so com-
ponents have bits with the same probability of being set.

secutive zeroes of L or more in the hash, so it has a pro-
bability of 1/2L−1 of catching the packet. Overall for each
i from 1 to L − 2 we have nmap bits that have a probabi-
lity of 1/(nmap∗ 2i) of “catching” the record plus we have
2 ∗ nmap bits that have a probability of 1/(nmap ∗ 2L−1)
of “catching” the record.

We can see in Figure 8 that when b = nmap and c = L−1
the two algorithms have the same number of bits and the
probability distribution of bits getting set is the same.
Thus the data collected by the two algorithms is statisti-
cally equivalent. Yet, there is a significant difference in the
accuracy of their estimates (Section 5.2) because of the way
the data is interpreted. As both analysis and experiments
show, this leads to our algorithm being more accurate when
the number of flows is small. Another difference is that we
have tighter rules for configuring the algorithm which re-
sult in somewhat more accurate experimental results when
the number of flows is large.
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