
BiTR: Built-in Tamper Resilience

Seung Geol Choi1, Aggelos Kiayias2,�, and Tal Malkin3,��

1 University of Maryland
sgchoi@cs.umd.edu

2 University of Connecticut
aggelos@cse.uconn.edu

3 Columbia University
tal@cs.columbia.edu

Abstract. The assumption of the availability of tamper-proof hardware tokens
has been used extensively in the design of cryptographic primitives. For exam-
ple, Katz (Eurocrypt 2007) suggests them as an alternative to other setup as-
sumptions, towards achieving general UC-secure multi-party computation. On
the other hand, a lot of recent research has focused on protecting security of
various cryptographic primitives against physical attacks such as leakage and
tampering.

In this paper we put forward the notion of Built-in Tamper Resilience (BiTR)
for cryptographic protocols, capturing the idea that the protocol that is encap-
sulated in a hardware token is designed in such a way so that tampering gives
no advantage to an adversary. Our definition is within the UC model, and can
be viewed as unifying and extending several prior related works. We provide
a composition theorem for BiTR security of protocols, impossibility results, as
well as several BiTR constructions for specific cryptographic protocols or tam-
pering function classes. In particular, we achieve general UC-secure computation
based on a hardware token that may be susceptible to affine tampering attacks. We
also prove that two existing identification and signature schemes (by Schnorr and
Okamoto, respecitively) are already BiTR against affine attacks (without requir-
ing any modification or endcoding). We next observe that non-malleable codes
can be used as state encodings to achieve the BiTR property, and show new posi-
tive results for deterministic non-malleable encodings for various classes of tam-
pering functions.

1 Introduction

Security Against Physical Attacks. Traditionally, cryptographic schemes have been
analyzed assuming that an adversary has only black-box access to the underlying func-
tionality, and no way to manipulate the internal state. For example, traditional security
definitions for encryption schemes address an adversary who is given the public key —
but not the private key — and tries to guess something about the plaintext of a chal-
lenge ciphertext, by applying some black-box attack (e.g., CPA or CCA). In practical
situations, however, an adversary can often do more. For example, when using small

� Supported in part by NSF grants 0447808, 0831304, and 0831306.
�� Supported in part by NSF grants 0831094 and 0347839.

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 740–758, 2011.
c© International Association for Cryptologic Research 2011

BiTR: Built-in Tamper Resilience 741

portable devices such as smart-cards or mobile-phones, an adversary can take hold of
the device and apply a battery of attacks. One class of attacks are those that try to
recover information via side channels such as power consumption [29], electromag-
netic radiation [38], and timing [11]. To address these attacks, starting with the work
of [27,33] there has been a surge of recent research activity on leakage-resilient cryp-
tographic schemes. For example, refer to [41,37,1,22,10,19,32,9,31] and the references
therein. The present work addresses tampering attacks, where an adversary can modify
the secret data by applying various physical attacks (c.f., [2,8,7,40,4]). Currently, there
are only a few results in this area [23,26,21].

Hardware Tokens. As discussed above, cryptographic primitives have traditionally
been assumed to be tamper (and leakage) proof. In the context of larger cryptographic
protocols, there have been many works that (implicitly or explicitly) used secure hard-
ware as a tool to achieve security goals that could not be achieved otherwise. The work
most relevant to ours is that of Katz [28], who suggests to use tamper-proof hardware
tokens to achieve UC-secure [12] commitments. This allows achieving general feasi-
bility results for UC-secure well-formed multi-party computation, where the parties,
without any other setup assumptions, send each other tamper-proof hardware tokens
implementing specific two-party protocols. There were several follow-up works such
as [34,16,18,25,30,24,20], all of which assume a token that is tamper proof.

Given the wide applicability of tamper-proof tokens on one hand, and the reality of
tampering attacks on the other, we ask the following natural question:

Can we relax the tamper-proof assumption, and get security using tamperable
hardware tokens?

Clearly, for the most general interpretation of this question, the answer is typically
negative. For example, if the result of [28] was achievable with arbitrarily-tamperable
hardware token, that would give general UC-secure protocols in the “plain” model,
which is known to be impossible [13]. In this work we address the above question in
settings where the class of possible tampering functions and the class of protocols we
wish to put in a token and protect are restricted.

1.1 Our Contributions

BiTR Definition. We provide a definition of Built-in Tamper Resilience (BiTR) for two
party cryptographic protocols, capturing the idea that the protocol can be encapsulated
in a hardware token, whose state may be tamperable. Our definition is very general,
compatible with the UC setting [12], and implies that any BiTR protocol can be used as
a hardware token within larger UC-protocols. Our definition may be viewed as unifying
and generalizing previous definitions [23,26,21] and bringing them to the UC setting.

BiTR is a property of a cryptographic protocol M , which roughly says the follow-
ing. Any adversary that is able to apply tampering functions from the class T on a
token running M , can be simulated by an adversary that has no tampering capability,
independently of the environment in which the tokens may be deployed.

The strongest result one would ideally want is a general compiler that takes an arbi-
trary protocol and transforms it to an equivalent protocol that is BiTR against arbitrary

742 S.G. Choi, A. Kiayias, and T. Malkin

tampering functions, without having to encode the state into a larger one, and without
requiring any additional randomness.1 Since such a strong result is clearly impossible,
we provide several specific results that trade off these parameters (see below), as well
as the following composition theorem.

BiTR Composition. As BiTR is a protocol centric property, the natural question that
arises is whether it is preserved under composition. A useful result for a general theory
of BiTR cryptography would be a general composition theorem which allows combin-
ing a BiTR protocol calling a subroutine and a BiTR implementation of that subrou-
tine into one overall BiTR protocol. To this end, we characterize BiTR composition
of protocols by introducing the notion of modular-BiTR which captures the property
of being BiTR in the context of a larger protocol. We then prove that the property of
modular-BiTR is necessary and sufficient for construction of composite BiTR proto-
cols. At the same time we also derive a negative result, namely that modular-BiTR
protocols that preserve the BiTR property in any possible context (something we term
universal-BiTR) are unattainable assuming the existence of one-way functions, at least
for non-trivial protocols. These results thus settle the question of BiTR composability.

BiTR Constructions without State Encoding. We describe results for BiTR prim-
itives that require no state encodings. It may come as a surprise that it is possible
to prove a cryptographic protocol BiTR without any encoding and thus without any
validation of the secret protocol state whatsoever. This stems from the power of our
definitional framework for BiTR and the fact that it is can be achieved for specially
selected and designed protocols and classes of tampering functions. We define the class
Taff = {fa,b | a ∈ Z

∗
q , b ∈ Zq, fa,b(v) := av + b mod q}. That is, the adversary may

apply a modular affine function of his choice to tamper the state. Affine tampering is
an interesting class to consider as it has as special cases multiplication (e.g., shifting —
which may be the result of tampering shift-register based memory storage), or addition
(which may be result of bit flipping tampering).

We prove three protocols BiTR with respect to this class, where the tamper resilience
is really “built-in” in the sense that no modification of the protocol or encoding of the
state are necessary. The first one is Schnorr’s identification (two-round) protocol [39].
The second is Okamoto’s signature scheme [35]. Both protocols are interesting on their
own (e.g., previous work [23] focused mostly on signature schemes), but the latter is
also useful for the third protocol we prove affine-BiTR, described next.

UC-Secure Computation from tamperable tokens. Katz’s approach [28] for building
UC-secure computation using hardware tokens allows a natural generalization that in-
volves a commitment scheme with a special property, we call a dual-mode parameter
generation (DPG) — depending on the mode of the parameter, the commitment scheme
is either statistically hiding or a trapdoor commitment. We then observe that any DPG-
commitment is sufficient for providing UC-secure multi-party computation assuming
tamper proof tokens. Following this track, we present a new DPG-commitment scheme

1 If an encoding ψ of the state is required, it is desirable that it is deterministic (randomness
may not be available in some systems or expensive to generate), and that it has as high rate as
possible. Ideally, an existing scheme can be proven BiTR as-is, without any state encoding at
all.

BiTR: Built-in Tamper Resilience 743

that is BiTR against affine tampering functions, that relies on discrete-log based prim-
itives including the digital signature scheme of Okamoto [35]. Thus, we obtain UC-
secure general computation using hardware tokens tamperable with affine functions.

BiTR Constructions with State Encoding. We next discuss how one can take advan-
tage of state consistency checks to design BiTR protocols. We observe first that non-
malleable codes, introduced by Dziembowski, Pietrzak and Wichs [21] can be used as
an encoding for proving the BiTR property of protocols. This gives rise to the prob-
lem of constructing such codes. Existing constructions [21] utilize randomness in cal-
culating the encoding; we provide new constructions for such encodings focusing on
purely deterministic constructions. In fact, when the protocol uses no randomness (e.g.,
a deterministic signing algorithm) or a finite amount of randomness (e.g., a prover in
the resettable zero-knowledge [14] setting), by using deterministic encodings the token
may dispense with the need of random number generation.

Our design approach takes advantage of a generalization of non-malleable encodings
(called δ-non-malleable), and we show how they can be constructible for any given set
of tampering functions (as long as they exist). Although inefficient for general tamper-
ing functions, the construction becomes useful if each function in the class T works
independently on small blocks (of logarithmic size). In this case, we show that a non-
malleable code for the overall state can be constructed efficiently by first applying Reed-
Solomon code to the overall state and then applying δ-non-malleable codes for small
blocks to the resulting codeword. We stress that this construction is intended as a feasi-
bility result.

1.2 Related Work

We briefly describe the most relevant previous works addressing protection against tam-
pering. We note that none of these works had addressed tampering in the context of
UC-secure protocols.

Gennaro et al. [23] considered a device with two separate components: one is tamper-
proof yet readable (circuitry), and the other is tamperable yet read-proof (memory).
They defined algorithmic tamper-proof (ATP) security and explored its possibility for
signature and decryption devices. Their definition of ATP security was given only for
the specific tasks of signature and encryption. In contrast, our definition is simulation
based, independent of the correctness or security objectives of the protocol, and we con-
sider general two-party protocols (and the implications in the UC framework [12,28]).

Ishai et al. [26] considered an adversary who can tamper with the wires of a circuit.
They showed a general compiler that outputs a self-destructing circuit that withstands
such a tampering adversary. Considering that memory corresponds to a subset of the
wires associated with the state in their model, the model seems stronger than ours (as
we consider only the state, not the computation circuit). However, the tampering attack
they considered is very limited: it modifies a bounded subset of the wires between each
invocation, which corresponds to tampering memory only partially.

Dziembowski et al. [21] introduced the notion of non-malleable codes and tamper
simulatability to address similar concerns as the present work. A distinguishing feature
of BiTR security from their approach is that BiTR is protocol-centric. As such, it allows

744 S.G. Choi, A. Kiayias, and T. Malkin

arguing about tamper resilience by taking advantage of specific protocol design features
that enable BiTR even without any encodings. Moreover, the positive results of [21]
require the introduction of additional circuitry or a randomness device; this may be
infeasible, uneconomical or even unsafe in practice — it could be introducing new
pathways for attacks. In contrast, our positive results do not require state encodings or
when they do, they do not rely on randomness.

Bellare and Kohno defined security against related key attacks (RKA) for block ci-
phers [6], and there has been follow-up work [5,3] (see also the references therein).
Roughly speaking, RKA-security as it applies to PRFs and encryption is a strengthen-
ing of the security definition of the underlying primitive (be it indistinguishability from
random functions or semantic security). RKA-security was only shown against tam-
pering that included addition or multiplication (but not both simultaneously). In fact,
RKA-security for PRFs as defined in [5] is different from BiTR when applied to PRFs.
A BiTR PRF is not necessarily RKA-secure since the BiTR simulator is allowed to
take some liberties that would violate key independence under tampering as required
by RKA-security. We do not pursue these relationships further here formally as it is
our intention to capture BiTR in a weakest possible sense and investigate how it cap-
tures naturally in a simulation-based fashion the concept of tamper resilience for any
cryptographic primitive.

2 BiTR Definitions

BiTR Protocols. Katz [28] modeled usage of a tamper-proof hardware token as an ideal
functionality Fwrap in the UC framework. Here, we slightly modify the functionality
so that it is parameterized by an interactive Turing machine (ITM) M for a two-party
protocol2 (see Fig. 1). The modification does not change the essence of the wrapper
functionality; it merely binds honest parties to the use of a specific embedded program.
Corrupted parties may embed an arbitrary program in the token by invoking Forge. We
also define a new functionalityFtwrap similar to Fwrap but with tampering allowed. Let
T be a collection of (randomized) functions. Let ψ = (E,D) be an encoding scheme3.
The essential difference between Ftwrap and Fwrap is the ability of the adversary to
tamper with the internal state of the hardware token — a function drawn from T is
applied on the internal state of the hardware token. This (weaker) ideal functionality
notion is fundamental for the definition of BiTR that comes next.

We define a security notion for a protocol M , called Built-in Tamper Resilience
(BiTR), which essentially requires that Ftwrap(M) is interchangeable with Fwrap(M).
We adopt the notations in the UC framework given by Canetti [12].

Definition 1 (BiTR protocol). The protocolM is (T , ψ)-BiTR if for any PPT A, there
exists a PPT S such that for any non-uniform PPT Z ,

IDEALFtwrap(M,T ,ψ),A,Z ≈ IDEALFwrap(M),S,Z ,

where ≈ denotes computational indistinguishability.

2 We will interchangeably use protocols and ITMs, if there is no confusion.
3 We will sometimes omit ψ from Ftwrap when it is obvious from the context.

BiTR: Built-in Tamper Resilience 745

Fwrap(M) is parameterized by a polynomial p and a security parameter k.
Create: Upon receiving 〈Create, sid, P, P ′,msg〉 from party P : Let msg′ = (Initialize,

msg). Run M(msg′) for at most p(k) steps. Let out be the response of M
(set out to ⊥ if M does not respond). Let s′ be the updated state of M . Send
〈Initialized, sid, P ′, out〉 to P , and 〈Create, sid, P, P ′, 1|s

′|〉 to P ′ and the adversary.
If there is no record (P, P ′, ∗, ∗), then store (P, P ′,M, s′).

Forge: Upon receiving 〈Forge, sid, P, P ′,M ′, s〉 from the adversary, if P is not corrupted,
do nothing. Otherwise, send 〈Create, sid, P, P ′, 1|s|〉 to P ′. If there is no record
(P, P ′, ∗, ∗), then store (P, P ′,M ′, s).

Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s). If
there is no such record, do nothing. Otherwise, do:

1. Run K(msg; s) for at most p(k) steps. Let out be the response of K (set out to ⊥
if K does not respond). Let s′ be the updated state of K. Send (sid, P, out) to P ′.

2. Update the record with (P, P ′,K, s′).
—————————————————————————————–

Ftwrap(M, T , ψ) is also parameterized by p and k (and ψ = (E,D) is an encoding scheme).
Create: As in Fwrap(M) with the only change that state s′ is stored as E(s′) in memory.
Forge: As in Fwrap(M).
Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s̃). If

there is no such record, do nothing. Otherwise, do:
1. (Tampering) If P ′ is corrupted and a record 〈sid, P, P ′, τ〉 exists, set s̃ = τ(s̃)

and erase the record.
2. (Decoding) If P is corrupted, set s = s̃; otherwise, set s = D(s̃). If s = ⊥, send

(sid, P,⊥) to P ′ and stop.
3. Run K(msg; s) for at most p(k) steps. Let out be the response of K (set out to ⊥

if K does not respond). Let s′ be the updated state of K. Send (sid, P, out) to P ′.
4. (Encoding) If P is corrupted, set s̃ = s′; otherwise set s̃ = E(s′). Update the

record with (P, P ′,K, s̃).
Tamper: Upon receiving 〈Tamper, sid, P, P ′, τ〉 from the adversary A, if P ′ is not cor-

rupted or τ �∈ T , do nothing. Otherwise make a record (sid, P, P ′, τ) (erasing any
previous record of the same form).

Fig. 1. Ideal functionalities Fwrap(M) and Ftwrap(M, T , ψ)

In case ψ = (id, id) (i.e., identify functions), we simply write T -BiTR. Note that this
definition is given through the ideal model, which implies (by the standard UC theorem)
that whenever a tamper-proof token wrapping M can be used, it can be replaced by a
T -tamperable token wrappingM .4 As a trivial example, every protocol is {id}-BiTR.

We note that the above definition is intended to capture in the weakest possible sense
the fact that a protocol is tamper resilient within an arbitrary environment. A feature of
the definition is that there is no restriction in the way the simulator accesses the under-
lying primitive (as long as no tampering is allowed). This enables, e.g., a signature to be
called BiTR even if simulating tampered signatures requires untampered signatures on
different chosen messages, or even on a larger number of chosen messages. We believe

4 One could also consider a definition that requires this in the context of a specific UC-protocol.
We believe our stronger definition, which holds for any UC-protocol using a token with M , is
the right definition for built-in tamper resilience.

746 S.G. Choi, A. Kiayias, and T. Malkin

that this is the correct requirement for the definition to capture that “if the underlying
primitive is secure without tampering, it is secure also with tampering” (in the signa-
ture example, security is unforgeability against any polynomial time chosen message
attack). Nonetheless, it can be arguably even better to achieve BiTR security through
a “tighter” simulation, where the BiTR simulator is somehow restricted to behave in a
manner that is closer to the way A operates (except for tampering of course) or possi-
bly even more restricted. For instance, one may restrict the number of times the token
is accessed by the simulator to be upper bounded by the number of times A accesses
the token. In fact all our positive results do satisfy this desired additional tighter simula-
tion property. Taking this logic even further, one may even require that once tampering
occurs the BiTR simulator can complete the simulation without accessing the token at
all — effectively suggesting that tampering trivializes the token and makes it entirely
simulatable. We believe that the ability of BiTR to be readily extended to capture such
more powerful scenarios highlights the robustness of our notion and, even though these
scenarios are not further pursued here, the present work provides the right basis for such
upcoming investigations.

2.1 Composition of BiTR ITMs

It is natural to ask if a modular design approach applies to BiTR protocols. To investi-
gate this question we need first to consider how to define the BiTR property in a setting
where protocols are allowed to call subroutines.

Consider an ITM M2 and another ITM M1 that calls M2 as a subroutine. We denote
by (M1;M2) the compound ITM. The internal state of (M1;M2) is represented by the
concatenation of the two states s1||s2 where s1 and s2 are the states of M1 and M2 at
a certain moment of the runtime respectively. Let Ftwrap(M1;M2, T1 × T2, ψ1 × ψ2)
denote an ideal functionality that permits tampering with functions from T1 for the state
of M1 and from T2 for the state of M2 while the states are encoded with ψ1 and ψ2

respectively. We can also consider a sequence of ITMs that call each other successively
M = (M1; . . . ;Mn). We next generalize the BiTR notion for an ITM Mi employed in
the context of M in a straightforward manner.

Definition 2 (modular BiTR protocol). Given M = (M1; . . . ;Mn), T = T1 × . . .×
Tn, and ψ = ψ1 × . . .×ψn, for some i ∈ [n], we say thatMi is modular-(Ti, ψi)-BiTR
with respect to M, T and ψ if for any PPT A there exists a PPT S such that for any
non-uniform PPT Z ,

IDEALFtwrap(M,Ti,ψ),A,Z ≈ IDEALFtwrap(M,Ti+1,ψ),S,Z ,

where Ti = {id} × . . .× {id} × Ti × . . .× Tn.

Roughly speaking, this definition requires that whatever the adversary can do by tam-
peringMi with Ti (on the left-hand side) should be also done without (on the right-hand
side) in the context of M, T , ψ. For simplicity, if M, T , ψ are clear from the context,
we will omit a reference to it and call an ITM Mi simply modular-(Ti, ψi)-BiTR.

The composition theorem below confirms that each ITM being modular BiTR is a
necessary and sufficient condition for the overall compound ITM being BiTR.

BiTR: Built-in Tamper Resilience 747

Theorem 1 (BiTR Composition Theorem). Consider protocols M1, . . . ,Mn with
M = (M1, . . . ,Mn) and T = T1 × . . . × Tn, and ψ = ψ1 × . . . × ψn. It holds
that Mi is modular-(Ti, ψi)-BiTR for i = 1, . . . , n, with respect to M, T , ψ if and only
if (M1; . . . ;Mn) is (T , ψ)-BiTR.

A natural task that arises next is to understand the modular-BiTR notion.

Context Sensitivity of Modular-BiTR Security. The modular-BiTR definition is
context-sensitive; an ITM may be modular BiTR in some contexts but not in others,
in particular depending on the overall compound token M . This naturally begs a ques-
tion whether there is a modular-BiTR ITM that is insensitive to the context. In this way,
akin to a universally composable protocol, a universally BiTR ITM could be used mod-
ularly together with any other ITM and still retain its BiTR property. To capture this we
formalize universal-BiTR security below, as well as a weaker variant of it that is called
universal-BiTR parent which applies only to ITMs used as the parent in a sequence of
ITMs.

Definition 3 (universal BiTR). If an ITM M is modular-(T , ψ)-BiTR with respect to
any possible M, T , ψ then we call M universal-(T , ψ)-BiTR. If M is modular-(T , ψ)-
BiTR whenever M is used as the parent ITM then we call it universal-(T , ψ)-BiTR
parent.

Not very surprisingly (and in a parallel to the case of UC protocols) this property is
very difficult to achieve. In fact, we show that if one-way functions exist then non-
trivial universal-BiTR ITMs do not exist. We first define non-triviality: an ITM M will
be called non-trivial if the set of its states can be partitioned into at least two sets S0, S1

and there exists a set of inputsA that produce distinct outputs depending when the ITM
M is called and its internal state belongs to S0 or S1. We call the pair of sets a state
partition for M and the set A the distinguishing input-set. Note that if an ITM is trivial
then for any partition of the set of states S0, S1 and any set of inputs A, the calling
of the ITM M on A produces identical output. This effectively means that the ITM M
does not utilize its internal state at all and obviously is BiTR by default. Regarding non-
trivial ITMs we next prove that they cannot be (T , ψ)-BiTR for any tampering function
τ that switches the state between the two sets S0, S1, i.e., τ(S0) ⊆ S1, τ(S1) ⊆ S0.
We call such tampering function state-switching for the ITM M . If an encoding ψ is
involved, we call τ state-switching for the encoding ψ. We are now ready to prove our
negative result.

Theorem 2. Assuming one-way functions exist, there is no non-trivial universal-(T , ψ)-
BiTR ITM M such that T contains a state-switching function for M and the encoding
ψ.

Roughly speaking, the theorem holds since a parent ITM M1 calling M2 can make
the message exchanges between them quite non-malleable by outputting a signature
on these messages. In this context, no non-trivial M2 can be modular-BiTR, and thus
M2 is not universal-BiTR. We note that the above theorem is quite final for the case
of universal BiTR ITMs. It leaves only the possibility of proving the universal-BiTR
property for trivial ITMs (that by default satisfy the notion) or for sets of functions that

748 S.G. Choi, A. Kiayias, and T. Malkin

are not state-switching, i.e., essentially they do not affect the output ofM and therefore
inconsequential. This state of affairs is not foreign to properties that are supposed to
universally compose. Indeed, in the case of UC-security large classes of functionalities
are not UC-realizable [15]. To counter this issue, in the UC-setting one may seek setup
assumptions to alleviate this problem, but in our setting setup assumptions should be
avoided. For this reason, proving the modular-BiTR property within a given context is
preferable.

On the other hand, the universal-BiTR parent property turns out to be feasible, and
thus this leaves a context insensitive property to be utilized for modular design of BiTR
protocols. We in fact take advantage of this, and jumping ahead, the parent ITM in
the compound ITM used to achieve general UC-secure MPC in Section 4 satisfies this
property and can be composed with any child ITM.

3 Affine BiTR Protocols without State Encoding

In this section, we show two protocols (for identification and signatures, respectively)
that are BiTR against certain tampering functions, without using any modification or
encoding. Specifically, we consider a tampering adversary that can modify the state of
the hardware with affine functions. Assuming the state of the hardware is represented
by variables of Zq for some prime q, the adversary can choose a tampering fa,b on a
variable v, which will change v into fa,b(v) = av + b mod q. Let Taff = {fa,b | a ∈
Z
∗
q , b ∈ Zq} and T 2

aff = Taff × Taff .

Schnorr Identification [39]. The Schnorr identification is a two-round two-party pro-
tocol between a prover and a verifier. The common input is y = gx, where g is a
generator of a cyclic group of size q, and the prover’s auxiliary input is x ∈ Zq . The
protocol proceeds as follows:

1. The prover picks a random t ∈ Zq and sends z = gt to the verifier.
2. The verifier picks a random c ∈ Zq and sends c to the prover, which in turn com-

putes s = cx+ t mod q and sends s to the verifier. The verifier checks if zyc = gs.

We consider an ITM M on the prover side wrapped as a hardware token. This ITM is
BiTR against affine functions. To see why it is BiTR, suppose that the adversary tampers
with the state changing x into ax+ b for some a and b. In the second round, the BiTR
simulator — given c, from the adversary, that is supposed to go to Ftwrap(M ; Taff)
— has to find out an appropriate c′ going to Fwrap(M) such that the simulator, on
receiving s′ = c′x + t from Fwrap(M), can output c(ax + b) + t that would come
from Ftwrap(M ; Taff). In summary, given (a, b, c, s′), but not x or t, the simulator has
to generate a correct output by controlling c′. It can do so by choosing c′ = ac and
outputting s′ + cb. Note that s′ + cb = c(ax+ b) + t.

Signature Scheme due to Okamoto [35]. The digital signature scheme of Okamoto
[35] was employed in the context of designing blind signatures. Here we show that
it is BiTR against affine functions. We give a brief description next. Let (G1,G2) be
a bilinear group as follows: (1) G1 and G2 are two cyclic groups of prime order q
possibly with G1 = G2; (2) h1 and h2 are generators of G1 and G2 respectively; (3)

BiTR: Built-in Tamper Resilience 749

Moka: The description of G1, G2, g2, u2, v2, and a collision-resistant hashing function H :
{0, 1}n→Z

∗
q are embedded in the program as a public parameter. The state is x ∈ Zq .

Initialization
- Upon receiving a message (Initialize), choose x ∈R Zq , and g2, u2, v2 ∈R G2 and output
(g2, w2, u2, v2).

Message Handling
- Upon receiving a message (Sign,m), Choose random r, s ∈ Z

∗
q such that x + r �= 0

(mod q). Compute σ = (g
H(m)
1 u1v

s
1)

1/(x+r) and output (σ, r, s).

Fig. 2. Okamoto signature Moka

ψ is an isomorphism from G2 to G1 such that ψ(h2) = h1; (4) e is a non-degenerate
bilinear map e : G1 × G2→GT where |GT | = p, ∀u ∈ G1 ∀v ∈ G2 ∀a, b ∈ Z :
e(ua, ub) = e(u, v)ab.

The signature scheme below is secure against a chosen message attack under the
Strong Diffie-Hellman assumption [35].

– Key Generation: Randomly select generators g2, u2, v2 ∈ G2 and compute g1 =
ψ(g2), u1 = ψ(u2), and v1 = ψ(v2). Choose a random x ∈ Z

∗
q and compute

w2 = gx2 . Verification key is (g1, g2, w2, u2, v2). Signing key is x.
– Signature of a message m ∈ Z

∗
q : Choose random r, s ∈ Z

∗
q . The signature is

(σ, r, s) where σ = (gm1 u1v
s
1)1/(x+r) and x+ r �= 0 (mod q).

– Verification of (m,σ, r, s): Check that m, r, s,∈ Z
∗
q , σ ∈ G1, σ �= 1, and

e(σ,w2g
r
2) = e(g1, gm2 u2v

s
2).

The signature token is described in Fig. 2. Similarly to the ITM for Schnorr signature
scheme, this token can be shown to be BiTR against affine functions.

Theorem 3. ITM Moka in Fig. 2 is Taff-BiTR.

4 UC Secure Computation from Tamperable Tokens

In this section we examine the problem of achieving UC-secure computation relying
on tamperable (rather than tamper-proof) tokens. Our starting point is the result of Katz
[28], obtaining a UC commitment scheme (and general UC-secure computation) in the
Fwrap(M)-hybrid for an ITMM , which unfortunately, is not BiTR. However, we man-
aged to change M so that the modified ITM M ′ is BiTR against affine functions, thus
obtaining a UC commitment in the Ftwrap(M ′)-hybrid. Along the way, we present a
generalization of Katz’s scheme for building commitment schemes we call commit-
ments with dual-mode parameter generation.

4.1 Katz’s Commitment Scheme and its Generalization.

Intuitively, the UC-secure commitment scheme given by Katz [28] uses the tamper-
proof hardware token to give the simulator the advantage over the adversary to force the

750 S.G. Choi, A. Kiayias, and T. Malkin

commitment scheme to become extractable (in case the sender is corrupted) or equivo-
cal (in case the receiver is corrupted). In spirit, this idea can be traced to mixed commit-
ment schemes introduced in [17], although the two results differ greatly in techniques.

We abstract the approach of [28] to build UC commitments in Fig. 3. The UC com-
mitment scheme is based on a primitive that we call commitment with dual-mode pa-
rameter generation (DPG-commitment for short).

Commitment Phase:

1. Each of the sender and the receiver calls Fwrap(M) with a Create message.
2. Each party executes the procedure dual-mode parameter generation with the

Fwrap(M). Let pS be the parameter the receiver obtained, and pR be one the sender
obtained. The parameters pR and pS are exchanged.

3. The sender commits to a message m by sending 〈C1, C2, π〉, where C1 is a commit-
ment tom based on the parameter pS,C2 is a statistically-binding commitment tom,
and π is WI proof that (1) C1 and C2 commits to the same message, or (2) pR was
generated in the extraction mode.

Opening Phase:

1. The sender reveals 〈m,π′〉, where m is the committed message, π′ is WI proof that
(1) C2 commits to m, or (2) pR was generated in the extraction mode.

Fig. 3. A UC Commitment that uses a DPG-commitment scheme Π with protocol M in the
Fwrap(M)-hybrid model.

A DPG-commitment is a commitment scheme whose parameter is generated by an
interactive protocol M that is wrapped in a hardware token. Formally we define the
following:

Definition 4 (DPG-Commitment scheme). A commitment schemeΠ=(Com,Decom)
that is parameterized by p, has a dual mode parameter generation (DPG-commitment)
if there are ITMs M and P that form a two party protocol 〈P,M〉 and have the follow-
ing properties:

– (Normal mode) For any PPT P ∗, with overwhelming probability, the output of
〈P ∗,M〉 satisfies that if it is not ⊥ then it contains a parameter p over which the
commitment scheme Π is unconditionally hiding.

– (Extraction mode) For any M∗ with the same I/O as M , there is a PPT S that re-
turns (p, t) such that the commitment schemeΠ with the parameter p is a trapdoor
commitment scheme with trapdoor t and the parameter generated by S is compu-
tationally indistinguishable from the parameter generated by 〈P,M∗〉.

It is worth noting that DPG-commitments are very different from the mixed commit-
ments of [17]. For one thing, contrary to mixed commitments, DPG-commitments do
not have equivocal parameters. Moreover, mixed commitments have parameters that
with overwhelming probability become extractable based on a trapdoor hidden in the
common reference string. In contrast, DPG-commitments become extractable due to
the manipulation of the parameter generation protocolM (specifically the ability of the

BiTR: Built-in Tamper Resilience 751

simulator to rewind it). Now using the same arguments as in [28] it is possible to show
that the commitment scheme in figure 3 is a UC-commitment provided that the under-
lying scheme used forC1 is a DPG-commitment. We briefly sketch the proof argument.
When the sender is corrupted, the simulator has to extract the committed message. This
can be done by making pS extractable. Then, given a commitment 〈C1, C2, π〉 from
the adversary, the simulator can extract the message committed to from C1 using the
trapdoor of pS. When the receiver is corrupted, the simulator can make the commitment
equivocal by causing pR to be extractable. Using the trapdoor for pR as witness, the
simulator can generate a WI proofs π and π′ with respect to the condition (2) and thus
open the commitment to an arbitrary message.

We next briefly argue that the construction suggested in [28] amounts to a DPG-
commitment scheme. The token operates over a multiplicative cyclic group of prime
order. In the first round, a party generates a cyclic group and sends to the token the
group description and random elements g and h of the group; then, the token sends
back a Pedersen commitment c = com(g1, g2) to random g1, g2 [36].5 In the second
final round, the party sends a random h1, h2, and then the token opens the commitment
c and outputs the signature on (g, h, ĝ1, ĝ2) where ĝ1 = g1h1 and ĝ2 = g2h2. With
parameter (g, h, ĝ1, ĝ2), commitmentC1 to a bit b is defined as (gr1hr2 , ĝ1r1 ĝ2r2gb) for
randomly-chosen r1, r2 ∈ Zq . It is well-known (and easy to check) that if the parameter
is a Diffie-Hellman (DH) tuple and r = logg ĝ1 = logh ĝ2 is known, then b can be
efficiently extracted from the commitment. On the other hand, if it is a random tuple,
this commitment scheme is perfectly hiding. Extraction mode is achieved by rewinding
the code of a malicious tokenM∗. Specifically for a givenM∗, the simulator S proceeds
by picking a random DH tuple (g, h, ĝ1 = gt, ĝ2 = ht) and running M∗ once to reach
a successful termination and learn the values g1, g2. Subsequently, it rewinds M∗ right
before the second round and selects h1 = ĝ1/g1 and h2 = ĝ2/g2. This will result in
the parameter produced by M∗ to be equal to the DH tuple, i.e., a parameter that is
extractable with trapdoor t.

4.2 UC-Secure Commitment Scheme from a Tamperable Token

It is easy to see that the following result holds using the BiTR security properties.

Corollary 4. If an ITM M , achieving parameters for DPG-commitment scheme, is T -
BiTR, then there exists a UC-secure commitment scheme in the Ftwrap(M, T)-hybrid
model.

Therefore, if the token used in [28] is Taff -BiTR, then we obtain a UC-secure com-
mitment scheme in the Ftwrap(M, Taff)-hybrid model. Unfortunately, the token is not
Taff-BiTR. We explain the issue below. Recall that in the first round the token sends
a commitment to g1, g2. Suppose that g1 = gr1 and g2 = gr2 and that the values r1
and r2 are stored as state in the token after the first round. Suppose in addition that by
tampering with an affine function the adversary causes the state to become (ar1 + b, r2)
for some a and b. Then, in the second round, the simulator — given h1 and h2 from

5 We use a slightly different notation compared to [28] to unify the presentation with our BiTR
token that is shown later.

752 S.G. Choi, A. Kiayias, and T. Malkin

Let G be the cyclic multiplicative group of size q defined by a safe prime p = 2q + 1 and
g be a generator of G. The description of G is embedded in the program. The state is
(r1, r2, s1, s2) ∈ Z

4
q. It uses a signature ITM K as a subprotocol.

Initialization
- Upon receiving a message (Initialize), call K with (Initialize), sets the state to all 0s and
output whatever K outputs.

Message Handling
- Upon receiving a message h0: Check h0 is a generator of G. If the checking fails, output
⊥. Otherwise, pick ri, si ∈R Zq and compute Pedersen commitments comi = gsih

X(gi)
0

for i = 1, 2, where gi = gri and X is defined as: X (α) = α if α > p/2, p−α otherwise.
Output (com1, com2).
- Upon receiving a message (h, h1, h2, x1, x2): Check h, h1, h2 ∈ G, x1, x2 ∈ Z

∗
q . If the

checking fails, output ⊥. Otherwise, let gi = gri and compute ĝi = gxi
i hi for i = 1, 2.

CallK with (Sign, (P, P ′, p, g, h, ĝ1, ĝ2)) to get a signature σ. Output (g1, g2, s1, s2, σ).
Pick ri, si ∈R Zq for i = 1, 2.

Fig. 4. Dual parameter generating ITM Mdpg that is universal-BiTR parent

the adversary — has to send Fwrap appropriate messages h′1 and h2 so that it can ma-
nipulate the output from Fwrap as if the result is from Ftwrap. Here the signature on
(g, h, ĝ1, ĝ2) is a critical obstacle, since the simulator cannot modify it (otherwise, it
violates unforgeability of signature schemes). This means that for simulation to be suc-
cessful it should hold that ĝ1 = gar1+bh1 = gr1h′1, i.e., the simulator should select
h′1 = g(a−1)r1+bh1. Unfortunately, the simulator does not know r1 when it is supposed
to send h′1.

By slightly changing the token above, however, we manage to obtain a DPG-achieving
ITM Mdpg that is BiTR against affine tampering functions. Its description is given
in Fig. 4. First, we show Mdpg achieves parameters for DPG-commitment. Roughly
speaking, the protocol in the normal mode generates a random tuple (g, h, ĝ1, ĝ2), by
multiplying random numbers g1 and g2 (from Mdpg) and random numbers h1 and h2

(from the party). Therefore, the probability that the tuple (g, h, ĝ1, ĝ2) is a DH tuple is
negligible since ĝ1 and ĝ2 are uniformly distributed. In the extraction mode, however,
the simulator emulating Fwrap can rewind the ITM to cause (g, h, ĝ1, ĝ2) to be a DH
tuple. Specifically, the simulator picks a random DH tuple (g, h, ĝ1, ĝ2) and, after find-
ing out the values g1, g2, rewinds the machine right before the second round and sends
hi = ĝi/g

xi

i for i = 1, 2. Under the DDH assumption, parameters from the normal
mode and from the extraction mode are indistinguishable.

More importantly, Mdpg is BiTR against affine tampering functions. To achieve
BiTR security, we introduce x1 and x2. As before, suppose that the state for g1 is
changed from r1 to ar1 + b. In the second round, the simulator — given h1 and x1

— has to send appropriate h′1 and x′1 to Fwrap such that ĝ1 = g(ar1+b)x1h1 = gr1x
′
1h′1.

This means that h′1 = gzh1 where z = (ar1x1 + bx1 − r1x
′
1). The good news is that

although the simulator doesn’t know r1, it does know how to pick x′1 to satisfy the equa-
tion: x′1 = ax1. The value h′1 can be computed subsequently from the above equation.

BiTR: Built-in Tamper Resilience 753

Theorem 5. The ITM Mdpg in Fig. 4 is T 4
aff-BiTR.

Furthermore, the way the ITM Mdpg uses a signature scheme is simple enough (it sim-
ply passes through whatever it receives from the signature token) and we can easily
extend the above lemma to prove that Mdpg is universal BiTR parent. We also show
that the ITM for the Okamoto signature schemeMoka is modular-Taff-BiTR when used
with Mdpg.

Lemma 6. ITM Moka in Fig. 2 is modular-Taff-BiTR with respect to (Mdpg;Moka).

Applying the composition theorem (Theorem 1) along with Theorem 5 and Lemma
6 to the above scheme, we obtain a BiTR token that gives a UC commitment based on
corollary 4.

Corollary 7. (Mdpg;Moka) is T 5
aff -BiTR.

5 BiTR Protocols against General Classes of Tampering Functions

5.1 BiTR Protocols from Non-malleable Codes

In this section we will see how the BiTR property can be derived by implementing an
integrity check in the form of an encoding ψ. A useful tool for this objective is the no-
tion of non-malleable codes [21]. A pair of procedures (E,D) is a non-malleable code
with respect to tampering functions T , if there is an algorithm S that detects whether
the state becomes invalid, given only the tampering function t. In particular S should
satisfy the following property: for all x ∈ {0, 1}n and t ∈ T , if x = D(t(E(x))) (i.e.,
x stays the same even after applying the tampering t), it holds that S(t) = � with over-
whelming probability, while otherwise S(t) is statistically (or computationally) close
to D(t(E(x))). By encoding the state of a protocol with a non-malleable code it is pos-
sible to show the following restatement of Theorem 6.1 of [21] under the BiTR security
framework.

Theorem 8 ([21]). Let T be a class of tampering functions over {0, 1}m and (E,D,S)
be a non-malleable code with respect to T , where E : {0, 1}n → {0, 1}m, D :
{0, 1}m → {0, 1}n and S are efficient procedures. Let M be any ITM whose state
is of length n. Then M is (T , ψ)-BiTR where ψ = (E,D).

The above theorem suggests the importance of the problem of constructing non-malleable
codes for a given class of tampering functions T . Some positive answers to this diffi-
cult question are given in [21] for a class of tampering functions that operate on each
one of the bits of the state independently; they also provide a general feasibility result
for tampering families of bounded size (with an inefficient construction); an important
characteristic of those solutions is relying on the randomness of the encoding. Here we
show a different set of positive results by considering the case of deterministic non-
malleable codes, i.e., the setting where (E,D) are both deterministic functions.

In our result we will utilize a relaxation of non-malleable codes: (E,D, Predict)
is called a δ-non-malleable code with distance ε if for any x ∈ {0, 1}n and t ∈ T ,
it holds that (i) D(E(x)) = x, (ii) the probability that D(t(E(x))) is neither x nor

754 S.G. Choi, A. Kiayias, and T. Malkin

⊥ is at most δ,6 and (iii) Predict(·) outputs either � or ⊥, and |Pr[D
(
t(E(x))

)
=

x] − Pr[Predict(t) = �]| ≤ ε. It is easy to see that if ε, δ are negligible the resulting
code is non-malleable: given that δ is negligible, property (ii) suggests that D will
return either the correct value or fail, and thus in case it fails, Predict(·) will return ⊥
with about the same probability due to (iii). We call δ the crossover threshold and ε the
predictability distance.

5.2 Constructing Deterministic Non-malleable Codes

Inefficient Construction for Any T . We now consider the problem of constructing a
δ-non-malleable code E : {0, 1}n→{0, 1}m for a given class of tampering functions
and parameters δ, ε. We will only consider the case when δ > ε as the other case is not
useful. We note that the construction is inefficient for large m and n, but it becomes
efficient for logarithmic values of m,n. Following this we utilize it in the construction
of deterministic non-malleable codes.

For a given t ∈ T consider the graph G that is defined with vertex set V = {0, 1}m
with each edge (u1, u2) having weight wt(u1, u2) = Pr[t(u1) = u2].7 Finding a good
δ-non-malleable code amounts to finding a partition S, S = V \ S of G satisfying the
following properties that for each t ∈ T :

– For all u, v ∈ S, it holds that wt(u, v) ≤ δ.
– Either (i) ∀u ∈ S :

∑
v∈S wt(u, v) ≥ 1 − ε or (ii) ∀u ∈ S :

∑
v∈S wt(u, v) ≤ ε.

If S satisfies condition (i) (resp., condition (ii)) for a given t ∈ T , we will say that S is
a repeller (resp., an attractor) with respect to t.

We next provide a simple algorithm that is guaranteed to produce a code of non-zero
rate if such exists. Consider all pairs of vertices {u1, u2} and classify them according to
whether they are repellers or attractors with parameters δ, ε. Note that testing whether
these sets are repellers or attractors requires O(|V |) steps. We perform the same for all
tampering functions t ∈ T and then consider only those sets that appear in the list of
all tampering functions. Finally, we improve the size of such a selected pair by moving
vertices from S to S provided that the repeller or attractor property is maintained. We
note that this approach will enable us to reach a local maximum code nevertheless it is
not guaranteed to find an optimal code.

Assume now that the output of the above procedure is the set C ⊆ V = {0, 1}m. We
next set n = �log2 |C|� and considerE : {0, 1}n → {0, 1}m an arbitrary injection from
{0, 1}n to C. The decoding D is defined as the inverse of E when restricted on C, and
⊥ everywhere else. We next define Predict as follows. On input t, if C is an attractor,
then output ok; otherwise output ⊥ (i.e., for the case C is an repeller).

6 The tampering t may change the codeword x into another valid codeword.
7 In the above description, we assumed the probabilities Pr[t(c) = u] are known. If they are

not known, they can be estimated using standard techniques. In particular, to evaluate the
probability of an event A, repeat k independent experiments of A and denote the success ratio
of the k experiments as p̂. Let Xi be the probability that the i-th execution of the event A is
successful. The expected value of Y =

∑k
i=1Xi is k · p. Using the Chernoff bound it follows

that |p̂− p| ≤ 1/N with probability 1 − γ provided that k = Ω(N2 ln(γ−1)).

BiTR: Built-in Tamper Resilience 755

The rate of the constructed code is n/m, while the time-complexity of construct-
ing E,D, Predict(·) is 2O(n)|T |. The size of the circuit evaluating each one of these
functions is respectively 2n, 2m, |T |.

Theorem 9. Fix any class of functions T . If there exists a code (E,D, Predict) with
rate > 0 that is δ-non-malleable w.r.t. T and distance ε, then such a code is produced
by the above procedure.

When does a deterministic non-malleable code exist? The basic idea of the con-
struction above was to search for a one-sided set of codewords and use it to define the
non-malleable code. The necessity of one-sidedness is easy to see since if the property
fails, i.e., ε < qu,t < 1 − ε for some t and u, the requirement on Predict cannot hold
in general since it cannot predict with high probability what would happen in the real
world after tampering a state that is encoded as u. We now provide two illustrative ex-
amples and discuss the existence (and rate) of a deterministic non-malleable encoding
for them.

Example 1: Set Functions. If T contains a function t that sets the i-th bit of u ∈ {0, 1}m
to 0, it follows that the code C we construct must obey that either all codewords have
the i-th bit set to 0 or all of them have the bit set to 1. This means that the inclusion
of any bit setting function in T cuts the size of the code |C| by half. There is no non-
malleable code when the collection T contains Set functions for every bit position (this
is consistent with the impossibility result of [23] for algorithmic tamper proof security
when Set functions are allowed for tampering).

Example 2: Differential Fault Analysis [8]. Consider a single function t which flips
each 1-bit to a 0-bit with probability β. Consider a code C ⊆ {0, 1}m for which it
holds that all codewords in C have Hamming distance at least r between each other
and 0m ∈ C. Then it is easy to see that δ, the probability of crossover, is at most βr.
Further, now suppose that t is applied to an arbitrary codeword u in C other than 0m.
We observe that the number of 1’s in u is at least r (otherwise it would have been too
close to 0m). It follows that t will change some of these 1’s to 0’s, with probability at
least 1 − (1 − β)r . It follows that we can predict the effect of the application of t with
this probability when we restrict to codewords in C \ {0m}. In summary, any code C
over {0, 1}m with minimum distance r that contains 0m allows for a βr-non-malleable
code with (1 − β)r for t using the code C \ {0m}.

We can extend the above to the case when a compositions of t are allowed. Note
that a sequence of a applications of t will flip each 1-bit to a 0-bit with probability
β + (1 − β)β + . . .+ (1 − β)a−1β = 1 − (1 − β)a. The encoding now has crossover
(1 − (1 − β)a)r ≤ e−(1−β)ar. Thus, from e−(1−β)ar ≤ δ, we obtain r ≥ (1/(1 −
β))a ln(1/δ), i.e., when β is bounded away from 1, the minimum distance of the code
grows exponentially with a.

Efficient Construction for Localized T . Now, we show a simple way to use the
(inefficient) construction of the beginning of the section with constant rate and any
cross-over δ < 1/2, to achieve an efficient construction with negligible cross-over (and
thus, BiTR security for any protocolM whose state is encoded with the resulting code),
when the class contains only functions that can be split into independent tampering

756 S.G. Choi, A. Kiayias, and T. Malkin

of local (i.e., logarithmically small) blocks. Here we consider a tampering class T of
polynomial size. Roughly speaking, the construction is achieved first by applying a
Reed-Solomon code to the overall state and then by applying the δ-non-malleable code
to the resulting codeword in small blocks. Let T � denote T ×· · ·×T (with
 repetitions).

Theorem 10. Let k be a security parameter. Let T be a class of functions over {0, 1}m
with m = O(log k) for which a δ-non-malleable code exists and is efficiently con-
structible with rate r. Then there is an efficiently constructible deterministic
non-malleable code w.r.t. T � for any rate less than (1−δ)r provided
/ log
 = ω(log k).

Acknowledgement. We are grateful to Li-Yang Tan and Daniel Wichs for useful dis-
cussions regarding this work.

References

1. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-
Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer,
Heidelberg (2009)

2. Anderson, R.J., Kuhn, M.G.: Tamper resistance – a cautionary note. In: The Second USENIX
Workshop on Electronic Commerce Proceedings, Oakland, California, pp. 1–11 (18-21,
1996)

3. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and appli-
cations. In: Innovations in Computer Science - ICS 2011, pp. 45–60 (2011)

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerers ap-
prentice guide to fault attacks. Cryptology ePrint Archive, Report 2004/100 (2004),
http://eprint.iacr.org/

5. Bellare, M., Cash, D.: Pseudorandom Functions and Permutations Provably Secure against
Related-Key Attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684.
Springer, Heidelberg (2010)

6. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: Rka-prps, Rka-prfs,
and Applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506.
Springer, Heidelberg (2003)

7. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. J. Cryptology 14(2), 101–119 (2001)

9. Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)

10. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket:
Public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 501–510
(2010)

11. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks 48(5),
701–716 (2005)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS, pp. 136–145 (2001)

13. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

14. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended
abstract). In: STOC, pp. 235–244 (2000)

http://eprint.iacr.org/

BiTR: Built-in Tamper Resilience 757

15. Canetti, R., Kushilevitz, E., Lindell, Y.: On the Limitations of Universally Composable Two-
Party Computation Without Set-Up Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)

16. Chandran, N., Goyal, V., Sahai, A.: New Constructions for UC Secure Computation Us-
ing Tamper-Proof Hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 545–562. Springer, Heidelberg (2008)

17. Damgård, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Composable
Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

18. Damgård, I., Nielsen, J.B., Wichs, D.: Isolated Proofs of Knowledge and Isolated Zero
Knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 509–526.
Springer, Heidelberg (2008)

19. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous
memory attacks. In: FOCS, pp. 511–520 (2010)

20. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and Composable Security
Using a Single Stateful Tamper-Proof Hardware Token. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 164–181. Springer, Heidelberg (2011)

21. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)
22. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-Resilient Signatures. In: Miccian-

cio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010)
23. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof

(ATP) Security: Theoretical Foundations for Security against Hardware Tampering. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)

24. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive Locking, Zero-Knowledge PCPs,
and Unconditional Cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 173–190. Springer, Heidelberg (2010)

25. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding Cryptography on
Tamper-Proof Hardware Tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 308–326. Springer, Heidelberg (2010)

26. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private Circuits II: Keeping Secrets in Tam-
perable Circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327.
Springer, Heidelberg (2006)

27. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing At-
tacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidel-
berg (2003)

28. Katz, J.: Universally Composable Multi-party Computation Using Tamper-Proof Hardware.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg
(2007)

29. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

30. Kolesnikov, V.: Truly Efficient String Oblivious Transfer Using Resettable Tamper-Proof
Tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342. Springer, Hei-
delberg (2010)

31. Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In: STOC, pp. 725–734
(2011)

32. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures Resilient to Continual Leakage
on Memory and Computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106.
Springer, Heidelberg (2011)

33. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

758 S.G. Choi, A. Kiayias, and T. Malkin

34. Moran, T., Segev, G.: David and Goliath Commitments: UC Computation for Asymmetric
Parties Using Tamper-Proof Hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

35. Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Oracles. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg
(2006)

36. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

37. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

38. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-
Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140,
pp. 200–210. Springer, Heidelberg (2001)

39. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174
(1991)

40. Skorobogatov, S.P.: Semi-invasive attacks – A new approach to hardware security analy-
sis. Tech. Rep. UCAM-CL-TR-630, University of Cambridge, Computer Laboratory (April
2005), http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

41. Standaert, F.X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-
Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 443–461. Springer, Heidelberg (2009)

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

	BiTR: Built-in Tamper Resilience
	Introduction
	Our Contributions
	Related Work

	BiTR Definitions
	Composition of BiTR ITMs

	Affine BiTR Protocols without State Encoding
	UC Secure Computation from Tamperable Tokens
	Katz's Commitment Scheme and its Generalization.
	UC-Secure Commitment Scheme from a Tamperable Token

	BiTR Protocols against General Classes of Tampering Functions
	BiTR Protocols from Non-malleable Codes
	Constructing Deterministic Non-malleable Codes

	References

