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Abstract

The sheer volume of new malware found each day is growing at
an exponential pace. This growth has created a need for automatic
malware triage techniques that determine what malware is simi-
lar, what malware is unique, and why. In this paper, we present
BitShred, a system for large-scale malware similarity analysis and
clustering, and for automatically uncovering semantic inter- and
intra-family relationships within clusters. The key idea behind Bit-
Shred is using feature hashing to dramatically reduce the high-
dimensional feature spaces that are common in malware analysis.
Feature hashing also allows us to mine correlated features between
malware families and samples using co-clustering techniques. Our
evaluation shows that BitShred speeds up typical malware triage
tasks by up to 2,365x and uses up to 82x less memory on a single
CPU, all with comparable accuracy to previous approaches. We
also develop a parallelized version of BitShred, and demonstrate
scalability within the Hadoop framework.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Invasive soft-

ware

General Terms

Design, Performance, Security
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1. INTRODUCTION
The volume of new malware, fueled by easy-to-use malware

morphing engines, is growing at an exponential pace [8]. In 2009
security vendors received upwards of 8,000 unique by hash mal-
ware samples per day [8], with the projected total to reach over
1,000,000 per day within the next 7 years. The sheer volume of
malware means we need automatic methods for large-scale mal-
ware triage techniques and systems.

At a high level, triage has two steps. First, per-sample malware
analysis is run on each sample to extract a set of features. Second,
malware are compared in a pairwise fashion to determine similarity,
e.g., in our work, like others, using the Jaccard distance. Once we
determine what malware are similar, and what are the important se-
mantic similarities and differences to known malware cases, triage
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can make informed decisions. For example, triage may perform
further in-depth analysis on one representative malware sample per
family that would be cost-prohibitive to do on the entire data set.

In this paper, we present BitShred, a system for large-scale mal-
ware similarity analysis and clustering, and for automatically un-
covering semantic inter- and intra-family relationships within clus-
ters. The main feature of BitShred is it is agnostic to the particu-
lar per-malware analysis routine, even when the extracted feature
set has a very large feature space. Malware authors and defend-
ers are caught in a cyclic battle where defenders invent ever-more
advanced and accurate per-malware analyses for feature extraction,
which are then defeated by new malware obfuscation algorithms.
The cyclic battle brings the need for malware triage techniques that
allow us to plug-in the latest or most appropriate analysis for fea-
ture extraction. We empirically show BitShred meets the desired re-
quirement by demonstrating BitShred on two previously proposed
per-sample analysis: dynamic behavior analysis from Bayer et al.

[13] where the feature space is 217, and static code reuse detection
as proposed in [9, 25, 38] where the feature space is 2128.

The main issues for handling large volumes of malware are (a)
efficiently representing malware features (so we can fit more in
main memory without paging), and (b) comparing feature sets be-
tween malware, and (c) determining which features are correlated
for malware groups. To give a sense of scale, currently over 8000
new malware per day are observed, requiring about 31 million com-
parisons to find families using hierarchical clustering. If we per-
form n-item analysis when n = 16 bytes, an exact representa-
tion of the features would require 2128 ( 295 gigabytes) per sample.
We could not perform all 31 million comparisons on previous data
structures in 24 hours on a single CPU.

The central idea in BitShred is to use feature hashing [36, 37, 39].
Feature hashing allows for dramatic dimensionality reduction, so
the hashed representation takes less room in memory, and is also
L1/L2 cache efficient. The catch is that feature hashing introduces
collisions in the reduced feature space. For example, we use a hash
function that compresses the 2128 feature space down to 218, there
will be an enormous number of collisions in the feature space. The
surprising thing is that with feature hashing, we need just a single
hash function for the dimensionality reduction of the feature space.
Requiring only single hash function as well as dimensionality re-
duction have immediate performance implications. This result is
backed by theory and experimentation that shows pairwise com-
parison, thus algorithms built on top like hierarchical clustering,
will be close to exact.

Feature hashing allows us to also simultaneously mine correlated
features between malware families and samples using co-clustering
techniques. Clustering alone acts like a blackbox, telling us only
that malware are grouped because they are similar. Co-clustering
goes one step further and tells us why malware are similar by simul-
taneously clustering features. For example, co-clustering allows us
to group two malware and to say the features that explain why they
are similar (e.g., a significant amount of shared code) and why they
are different (e.g., contacting different command and control hosts).



Contributions. Our main contribution is a system for performing
the triage tasks described above that scales to data sets orders of
magnitude larger than existing approaches. We present a theoretical
analysis showing that feature hashing with the Jaccard offers near
optimal results, and build a real system called BitShred that is in-
dependent of the particular per-malware analysis engine and works
even for high-dimensional feature sets. We extensively evaluate
BitShred’s scalability, speed and accuracy using two different per-
sample analysis: code similarity and dynamic behaviors. Our per-
formance evaluation shows that BitShred can cluster over 116,000
malware per day on a single node, and over 1.9 million per day
on a Hadoop cluster where we develop an optimal schedule that
minimizes communication overhead and provides uniform node
work. We also propose novel techniques based upon co-clustering
adapted to BitShred for identifying similar or distinguishing se-
mantic features in malware families.

2. THE CORE IDEA, FEATURE HASHING,

AND THE RELATION TO PREVIOUS

APPROACHES
We focus on any analysis that outputs a set of features that are

Boolean, or can be encoded as Boolean variables. For example, in
code reuse detection the features are whether a code fragment is
present or not. Real-value features can be encoded by bucketizing
them, where a Boolean feature is true if the feature falls within a
particular bucket. This allows us to plug in many types of analysis.

2.1 Feature Hashing & Malware Similarity
We compute malware similarity using the Jaccard similarity met-

ric. The Jaccard calculates the percentage of common features,
with the idea that the larger the sharing is, the more alike the mal-
ware are, and is used extensively in previous work [13, 32]. More
formally, given two feature sets ga and gb for malware sa and sb

respectively, the Jaccard similarity (i.e., index) is:

J(ga, gb) =
|ga ∩ gb|

|ga ∪ gb|
(1)

In order to motivate feature hashing, consider first using a stan-
dard implementation of Jaccard, e.g., as found in SimMetrics [5].
The advantage of this approach is the size of the feature data struc-
ture is linear in the number of features a malware sample actually
presents, e.g., if our feature space is of size 2128 but a particular
malware only has 230 features, the data structure is still only 230

in size. Unfortunately, set operations are not amenable to feature
extraction using co-clustering, and the set union and intersection
operations themselves are a bottleneck. In our experiments, we
could only cluster about 2,388 malware/day using this approach
(§ 5, labeled as exact Jaccard).

We take an approach of encoding features as a bitvector. The
Jaccard becomes fast CPU-friendly logic operations:

Jbv(fa, fb) =
S(fa ∧ fb)

S(fa ∨ fb)
(2)

where fi is the bitvector representation of the feature set for mal-
ware si and S(·) counts the number of set bits.

Feature hashing [36, 37, 39] is a specific way of encoding fea-
tures as a bitvector. Most existing implementations of bitvector
Jaccard, e.g., the one found in python, assume the feature space
is completely encoded using index variables where feature 1 cor-
responds to bit 1, feature 2 to bit 2, feature 3 to bit 3, and so on.
This scheme is impractical when the feature space is large, e.g., as
in our case where such an encoding would result in a per-malware
data structure that is gigabytes in size.

A more efficient encoding is to use Bloom filters, which we ini-
tially tried. A Bloom filter is a probabilistic data structure used
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Figure 1: Error with various k where m=8,192

to efficiently encode sets and perform set membership tests. Let
h1, h2, h3, ..., hk be a set of hash functions of type D → R and
|D| ≫ |R|, i.e., each hash is a compression function. A Bloom
filter calculates hi(x) = d and sets the d’th bit in the m-length
bitvector for all hash functions hi and each feature value x. To test
if an element x′ is in the feature set, you check that the hi(x

′) bit
is set for all i. If any are not set, then x′ is not in the set. Bloom
filters have false positives due to hash collisions, but never have a
false negative. The false positive rate is reduced, all things being
equal, by adding more hash functions.

Bloom filters did not work well. The catch in our problem set-
ting is we want to approximate the Jaccard, not perform set mem-
bership tests. We had naively estimated the error rate to be the
expected Bloom filter collisions in the numerator divided by the ex-
pected number of Bloom filter collisions in the denominator, which
is mathematically unsound: dividing two expected values will not
provide the proper expectation of the Jaccard expression.

Feature hashing is similar to Bloom filters where we compute
h(x) = d and set the d’th bit, except that only a single hash func-
tion is used. We call the hashed version of features the malware

fingerprint. Theorem 1 (§ 3.1) shows that the malware fingerprints
provide a near-optimal approximation of the true Jaccard index. To
the best of our knowledge, no previous work (e.g., [15]) has per-
formed similar analysis. Indeed, the proof shows that increasing
the number of hash functions increases error, which is why Bloom
filters don’t work well. This corresponds well to feature hashing,
where only one hash function is used. Further, requiring only one
hash has obvious performance improvement implications.

We also showed through simulations on random sets of n-grams,
the use of single hash function minimized the difference between
the Jaccard in Equation 1 and the bitvector Jaccard in Equation 2.
In particular, we created two sets that contain 1000 n-grams each,
with varying number of overlapping n-grams, and measured how
much the bitvector Jaccard differs from the Jaccard. Figure 1 shows
the average error as the fraction of common n-grams and the num-
ber of hash functions k vary (the standard deviation is very small
and therefore, not shown). We note that the error increases as k in-
creases, with minimum error achieved at k = 1, which is different
from the usual Bloom filter set membership tests.

The theoretical and empirical analysis motivates feature hash-
ing in BitShred. The main quality metric for our approach is how
well our approach approximates a full set representation vs per-
formance improvements. We show through numerous experiments
that our approach has extremely high accuracy with up to 2,365
times speedup on a single CPU.

2.2 Co-clustering in BitShred
A BitShred fingerprint is a m-length bitvector where the intuition

is a bit i is 1 if the particular malware sample has a feature gi, and 0
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Figure 2: M is co-clustered to identify the checkerboard sub-
matrix M

′ of highly correlated malware/feature pairs.

otherwise. Given n malware samples, the m-sized list of BitShred
fingerprints can be viewed as a matrix M of size n×m where each
row is a malware fingerprint, and each column is a particular fea-
ture. This intuition leads us to the idea of using co-clustering (aka
bi-clustering) to auto-correlate both features and malware simul-
taneously. Within the matrix, co-clustering does this by creating
sub-matrices among columns (features) and rows (malware) where
each sub-matrix is a highly correlated malware/feature pair.

Co-clustering allows us to discover substantial, non-trivial struc-
tural relationships between malware samples, many of which will
not be discovered with simpler approaches. For example, consider
how the following simple approaches for mining features between
two malware families would be limited:

• Identify all common features between families. In BitShred, this
is accomplished by taking the bitwise-and (∧) of the malware
fingerprints. However, we would miss identifying code that is
present in 99% of family 1 and 99% of family 2.

• Identify all distinctive features in a list of malware. In our set-
ting, this is accomplished with bitwise xor (⊕) of the finger-
prints. This would have limited value for the same reasons as
above.

• A third approach might be to cluster features either before or
after the malware fingerprints have been clustered. Note, how-
ever, this approach would also result in misleading information,
e.g., clustering features after the clustering malware fingerprints
would not reveal structural similarity across fingerprints in dif-
ferent families, and clustering features before the malware fin-
gerprints may result in poor malware clusters if there are many
feature clusters that are common to multiple groups of malware
fingerprint clusters.

We introduce some terminology to make co-clustering precise.
A matrix is homogeneous if the entries of the matrix are similar,
e.g., they are mostly 0 or mostly 1, and define the homogeneity of
a matrix to be the (larger) fraction of entries that have the same
value. Define a row-cluster to be a subset of the rows M (i.e.,
malware samples) that are grouped together, and a column-cluster

to be a subset of the columns (i.e., the features) that are grouped
together. The goal of co-clustering is to create a pair of row and
column labeling vectors:

r ∈ {1, 2, ..., k}n
and c ∈ {1, 2, ..., ℓ}m

The sub-matrices created are homogeneous, rectangular regions.
The number of rectangular regions is either given as input to the
algorithm, or determined by the algorithm with a penalty function
that trades off between the number of rectangles and the homogene-
ity achieved by these rectangles 1.

For example, Figure 2 shows a list of 5 malware BitShred finger-
prints where there are 5 possible features. The result is the 5 × 5
matrix M . Co-clustering automatically identifies the clustering to

1The goal is to make the minimum number of rectangles which
achieve the maximum homogeneity. For this reason, co-clustering
algorithms ensure that homogeneity of the rectangles is penalized
by the number of rectangles if they need to automatically determine
k and ℓ.

produce sub-matrices, as shown by the checkerboard M ′. The sub-
matrices are homogeneous, indicating highly-correlated feature/-
malware pairs. In this case the labeling vectors are r = (12122)T

and c = (21121)T . These vectors say that row 1 in M mapped to
row cluster 1 (above the horizontal bar) in M’, row 2 mapped to
row cluster 2 (below the horizontal bar), etc., and similar for the
column vectors for features. We can reach two clustering conclu-
sions. First, the row clusters indicate malware s1 and s3 are in one
family, and s2, s4, and s5 are in another family. The column clus-
ters say the distinguishing features between the two families are
features 2, 3, and 5.

2.3 Related Approaches
Feature Hashing and Locality Sensitive Hashing. Our main goal
is to increase scalability in malware comparison, as well as enable
data mining on co-occurring features. We are not alone. Bayer et

al. [13] has made significant strides in this area by using locality
sensitive hashing (LSH) [10]. The main idea in LSH is to define
a hash function h such that h(s1) = h(s2) if the two malware s1

and s2 are similar. The hash is run over all malware samples, and
only those with unique hash values are compared. LSH is comple-
mentary to feature hashing, because it reduces the number of items
while feature hashing reduces the number of features. While com-
plementary, our evaluation shows that using feature hashing alone
outperforms LSH alone by a factor of 2-to-1. Previous work has
shown this bears on theoretical analysis as well [36]. While in our
evaluation we focus on the effects of each algorithm independently,
both feature hashing and locality-sensitive hashing could be com-
bined in a real system.

Feature Hashing and graph analysis comparison. Others have
proposed malware similarity methods that do not use boolean fea-
tures. For example, the Zynamics BinDiff tool [7] and Hu et al.

[21] use a similarity metric based upon isomorphisms between con-
trol flow and function call graphs. While we can compute call graph
similarity based upon features, e.g., how many basic blocks are in
common, our approach cannot readily be adapted to actually com-
puting the isomorphism. Hu et al. argue that although graph-based
isomorphism is expensive, it is less susceptible to being fooled by
polymorphism. In Hu et al. ’s implementation they return the 5
nearest neighbors, and achieve an 80% success rate in having 1 of
the 5 within the same family on a data set of 102,391 samples. The
query time was between 0.015s to 872s, with an average of 21s us-
ing 100MB of memory. We did not have access to their data set;
results for the same size of our data set for finding nearest neighbor
using the Jaccard are reported in § 5.1.

Classification vs. Clustering. Classification uses labeled samples
to learn a rule for assigning labels to new samples. Feature hashing
was previously used to build an efficient spam classifier [11], which
is trained with labeled (i.e., spam/not-spam) emails and then deter-
mines whether an incoming email is spam or not. On the contrary,
clustering groups unlabeled samples based on given similarity met-
rics. In our setting, (unlabeled) malware are grouped based upon
similar features – static code or dynamic behaviors. To the best of
our knowledge, ours is the first study to introduce clustering tech-
niques combining feature hashing with the Jaccard and to present a
theoretical proof of correctness.

2.4 Security and Rest of Paper
Security. Feature hashing, like LSH, uses a hash function which
must be kept secret. If the hash function is known, then an attacker
may be able to “fool” the algorithm into an atypical number of col-
lisions, thus potentially reducing the overall accuracy. This prob-
lem is mitigated by using a keyed hash function as is usual, e.g.,
picking a secret key k and computing h(k||sa||k) for item sa. For
simplicity, in the rest of this paper we refer to the hash as simply h
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instead of a keyed variant, with the expectation it is used as a keyed
function for security.

In the rest of this paper we describe BitShred, our system for
malware triage and semantic feature identification on very large
malware data sets based on the above ideas. We focus on the per-
formance of our hash feature approach vs. previously proposed
methods such as straight set-based analysis, winnowing, and local-
ity sensitive hashing. The main conclusion is that BitShred pro-
vides the same accuracy but better performance. Better perfor-
mance means we scale to much larger malware volumes, as well as
deal with current volumes much more quickly. We also show that
BitShred can be parallelized, which allows us to take advantage
of infrastructures like supercomputers and Hadoop as performance
requirements exceed that which can be provided by a single CPU.

Finally, we show BitShred in the context of an end-to-end sys-
tem for malware triage. In our data set BitShred has above 90% ac-
curacy at automatically identifying malware families and semantic
features. While malware authors can always add more obfuscation
and make analysis harder, thus decreasing accuracy of any system,
the core concepts in BitShred can “plug-in” any malware analy-
sis that outputs Boolean or (binary-encoded) integer-valued values,
and speed it up while retaining similar accuracy to the exact Jac-
card.

3. BITSHRED OVERVIEW
At a high level, BitShred takes in a set of malware, runs per-

malware analysis, and then performs inter-malware comparison,
correlation, and feature analysis, as shown in Figure 3. BitShred’s
job is to speed up subsequent correlation after using existing tech-
niques to perform per-sample feature extraction. In our implemen-
tation, we experiment with using n-grams as proposed in [9, 25, 38]
because the feature space is extremely large, and dynamic behavior
analysis from Bayer et al. [13] because it has been shown effective.

Throughout the rest of this paper we use si to denote malware
sample i, G to denote the set of all features, and gi to denote the
subset of all features G present in si.

We use full hierarchical clustering as a representative computa-
tionally expensive triage task. Hierarchical clustering has a lower
bound of s(s − 1)/2 comparisons for s malware to cluster [19].
Other problems, such as incremental clustering and finding nearest
neighbor, are algorithmically less expensive. For example, incre-
mental clustering, comparing incoming newly reported s′ malware
against s malware in a database, requires s′×s comparisons where
s′ ≪ s. The nearest neighbor to a malware si can be performed by
comparing it to all other samples, which is linear in s.

3.1 Single Node BitShred
In this section we describe the core components of BitShred:

BITSHRED-GEN, BITSHRED-JACCARD, BITSHRED-CLUSTER and
BITSHRED-SEMANTIC. In § 3.2, we show how the algorithm can
be parallelized, e.g., to run on top of Hadoop or multi-core systems.

• BITSHRED-GEN: G → F .

BITSHRED-GEN is an algorithm from the extracted feature set
gi ∈ G to fingerprints fi ∈ F for each malware sample si. A

BitShred fingerprint fi is a bit-vector of length m, initially set to 0.
BITSHRED-GEN performs feature hashing to represent feature sets
gi in fingerprints fi. More formally, for a particular feature set we
define a hash function h : χ → {0, 1}m where the domain χ is
the domain of possible features and m is the length of the bitvector.
We use djb2 [14] and reduce the result modulo m. (Data reduc-
tion techniques such as locality-sensitive hashing [13] and Win-
nowing [34] can be used to pare down the data set for which we
call BITSHRED-GEN and perform subsequent steps.)

• BITSHRED-JACCARD: F × F → R.

BITSHRED-JACCARD computes the similarity d ∈ [0, 1] between
fingerprints fa and fb using the bitvector Jaccard from Equation 2.
A similarity value of 1 means the two samples are identical, while
a similarity of 0 means the two samples share nothing in common
(in our setting, this means they share no features in G).

Formally, Theorem 1 states that BITSHRED-JACCARD well-ap-
proximates the Jaccard index.

Theorem 1. Let ga, gb denote two sets of size N with c common
elements, and fa, fb denote their respective fingerprints with bit-

vectors of length m and k hash functions. Let Y denote
S(fa∧fb)
S(fa∨fb)

.

Then, for m ≫ N , ǫ, ǫ2 ∈ (0, 1),

Pr[Y ≤
c(1 + ǫ2)

2N − c − mǫ
] ≥ 1 − e−mqǫ2

2
/3 − 2e−2ǫ2m2/Nk

and

Pr[Y ≥
c(1 − ǫ2)

(2N − c) + mǫ
] ≥ 1 − e−mqǫ2

2
/2 − 2e−2ǫ2m2/Nk

for q = 1 − 2
`

1 − 1
m

´kN
+
`

1 − 1
m

´k(2N−c)
.

We defer a full proof to the Appendix. Note that because the goal
of feature hashing is different from Bloom filters, our guarantees
are not in terms of the false positive rate for standard Bloom filters,
but instead are of how well our feature hashing data structure lets
us approximate the Jaccard index.

• BITSHRED-CLUSTER: (F × F × R list) × R → C.

BITSHRED-CLUSTER takes the list containing the similarity be-
tween each pair of malware samples, a threshold t, and outputs a
clustering C for the malware. BITSHRED-CLUSTER groups two
malware if their similarity d is greater than or equal to t: d ≥ t.
The threshold t is set by the desired precision tradeoff based upon
past experience. While a smaller t divides malware into a few gen-
eral families, a larger t discovers specific variants of a family. See
§ 5 for our experiments for different values of t.

BitShred currently uses an agglomerative hierarchical clustering
algorithm to produce clusters in that the number of clusters is typi-
cally not known in advance. Initially each malware sample si is as-
signed to its own cluster ci. The closest pair is selected and merged
into a cluster. We iterate the merging process until there is no pair
whose similarity exceeds the input threshold t. When there are mul-
tiple samples in a cluster, we define the similarity between cluster
cA and cluster cB as the maximum similarity between all possible
pairs (i.e., single-linkage), i.e., BITSHRED-JACCARD(cA, cB) =



Trojan.
KillAV-‐235

Trojan.
Downloader-‐71002

Trojan.
VB-‐5716

Trojan.
Downloader-‐57401

Trojan.
Downloader-‐10763

Trojan.
Popuper-‐4

Trojan.
Crypt-‐215

Trojan.
Spy-‐66720

(a) A typical matrix before co-clustering
Trojan.

KillAV-‐235

Trojan.
Downloader-‐71002

Trojan.
VB-‐5716

Trojan.
Downloader-‐57401

Trojan.
Downloader-‐10763

Trojan.
Popuper-‐4

Trojan.
Crypt-‐215

Trojan.
Spy-‐66720

(b) 8 different kinds of Trojan

Adware.
Trymedia-‐6

Adware.
Downloader-‐92

Adware.Zango-‐1

(c) 3 different kinds of Adware

Figure 4: Semantic feature information. Grey dots represent 1 in
the binary matrix, i.e., the presence of a feature.

max{BITSHRED-JACCARD(fi, fj)|fi ∈ cA, fj ∈ cB}. We chose
a single-linkage approach as it is efficient and accurate in practice.

• BITSHRED-SEMANTIC: C × F → G′.

Based on the BITSHRED-CLUSTER results, BITSHRED-SEMANTIC

performs co-clustering on subset of fingerprints to cluster features
as well as malware samples. Co-clustering yields correlated features-
malware subgroups G′ which shows the common or distinct fea-
tures among malware samples, as discussed in § 2.2.

We have adapted the cross-associations algorithm [16], redesigned
for the Map-Reduce framework [30], to BitShred fingerprints. The
basic steps are row iterations and column iterations. A row iteration
fixes a current column group and iterates over each row, updating
r to find the “best” grouping. In our algorithm, we seek to swap
each row to a row group that would maximize homogeneity of the
resulting rectangles. The column iteration is similar, where rows
are fixed. The algorithm performs a local optimal search (finding a
globally optimal co-clustering is NP-hard [30]).

Unlike typical co-clustering problems, co-clustering in BitShred
needs to operate on hashed features, i.e., recall that our fingerprints
are not the features themselves, but hashes of these features. How-
ever, because our feature hashing is designed to approximately pre-
serve structural similarities and differences between malware sam-
ples, we can apply co-clustering on our hashed features (just as if
they were regular features) and still extract the structural relation-
ships between the malware samples, and with the increased com-
putational efficiency that comes from feature hashing.

Figure 4a shows a matrix before co-clustering where each row is
a malware fingerprint and each column is a particular feature. Fig-
ure 4b and Figure 4c graphically depict the results of co-clustering
on 8 different kinds of Trojan and 3 different kinds of Adware,

respectively. Co-clustering reveals the semantic feature informa-
tion, i.e., the checkerboard patterns which describe distinguishing
or common features across the malware families. We discuss both
inter- and intra-family feature extraction in detail in § 5.3.

3.2 Distributed BitShred

3.2.1 BITSHRED-SCHEDULE

There are two things we parallelize in BitShred: fingerprint gen-
eration in Phase 1, and the s(s − 1)/2 fingerprint comparisons in
Phase 2 during clustering. Parallelizing fingerprint generation is
straight-forward: given s malware samples and r resources, we as-
sign s/r malware to each node and run BITSHRED-GEN on each
assigned sample.

Parallelizing BITSHRED-JACCARD in a resource and communi-
cation-efficient manner requires more thought. There are s(s −
1)/2 comparisons, and every comparison takes the same fixed time,
so if every node does s(s − 1)/2r comparisons all nodes do equal
work. Unlike BITSHRED-JACCARD, comparisons between variable
length of two sets take time (computation) depending on the length,
thus distributing uniform node work is not simple.

To accomplish this we first observe that while the first malware
needs to be compared against all other malware (i.e., s − 1 finger-
print comparisons), each of the remaining malware require fewer
than s − 1 comparisons each. In particular, malware i requires
only s − i comparisons, and malware s − i requires s − (s − i)
comparisons. The main insight is to pair the comparisons for mal-
ware i with s − i, so that the total comparisons for each pair is
s − i + s − (s − i) = s. If we pair together the comparisons
for malware i with s − i, the total comparisons for each pair is
s − i + s − (s − i) = s. Thus, for each node to do uniform
work, BITSHRED-SCHEDULE ensures that the s − i comparisons
for malware i are scheduled on the same node as the s − (s − i)
comparisons for malware s−i. BITSHRED-SCHEDULE then simply
divides up the pairs among the r nodes.

Although there may be other protocols for distributing compu-
tations, we note that this approach is simple, and optimal in the
sense that there all nodes do equal work and there is no inter-node
communication during the s2 Jaccard calculations.

3.2.2 BitShred on Hadoop

Our distributed implementation uses the Hadoop implementation
of MapReduce [1, 17]. MapReduce is distributed computing tech-
nique for taking advantage of a large computer nodes to carry out
large data analysis tasks. In MapReduce, functions are defined with
respect to 〈key,value〉 pairs. MapReduce takes a list of 〈key,value〉
pairs, and returns a list of values. MapReduce is implemented by
defining two functions:

1. MAP: 〈Ki, Vi〉 → 〈Ko, Vo〉 list. In the MAP step the master
Hadoop node takes the input pair of type 〈Ki, Vi〉 and parti-
tions into a list of independent chunks of work. Each chunk
of work is then distributed to a node, which may in turn ap-
ply MAP to further delegate or partition the set of work to
complete. The process of mapping forms a multi-level tree
structure where leaf nodes are individual units of work, each
of which can be completed in parallel. When a unit of work
is completed by a node, the output 〈Ko, Vo〉 is passed to RE-
DUCE.

2. REDUCE: 〈Ko, Vo〉 list → Vf list. In the REDUCE step the
list of answers from the partitioned work units are combined
and assembled to a list of answers of type Vf .

We also take advantage of the Hadoop distributed file system
(HDFS) to share common data among nodes.

In phase 1, distributed BitShred produces fingerprints using the
Hadoop by defining the following MapReduce functions:



1. MAP: 〈Ki, si〉 list → 〈Ki, fi〉 list. Each MAP task is as-
signed the subset of malware samples si and creates finger-
prints fi to be stored on HDFS. Fingerprint files are named
as Ki representing the index to the corresponding malware
samples.

2. REDUCE. In this step, no REDUCE step is needed.

In phase 2, distributed BitShred runs BITSHRED-JACCARD across
all Hadoop nodes by defining the following functions:

1. MAP: 〈Ki, fi〉 list → 〈R, (sa, sb)〉 list MAP tasks read fin-
gerprint data files created during phase 1 and runs BITSHRED-
JACCARD on each fingerprint pair, outputting the similarity
d ∈ R.

2. REDUCE: 〈R, (sa, sb)〉 list → sorted 〈R, (sa, sb)〉 list RE-
DUCE gathers the list of the similarity values for each pair
and returns a sorted list of pairs based upon similarity.

This phase returns a sorted list of malware pairs by similarity
using standard Hadoop sorting. The sorted list is essential for the
agglomerative single linkage clustering. In particular, malware si’s
family is defined as the set of malware whose distance is less than
θ, thus all malware in the sorted list with similarity > θ are in the
cluster.

4. IMPLEMENTATION
We have implemented single-node BitShred in 2000 lines of C

code. Since BitShred is agnostic to the particular per-malware anal-
ysis methods, we only need individualized routines for extracting
raw input features, before converting into fingerprints. In case of
static code analysis, BitShred divides executable code section iden-
tified by GNU BFD library into n-grams and hashes each n-gram to
create fingerprints. For dynamic behavior analysis, BitShred sim-
ply parses input behavior profile logs and hashes every behavior
profile to generate fingerprints. We use berkeley DB to store
and manage fingerprints database. After building the database, Bit-
Shred retrieves fingerprints from the database to calculate the Jac-
card similarity between fingerprints. After applying an agglomera-
tive hierarchical clustering algorithm, malware families are formed.
We use graphviz and Cluto [24] for visualizing the clustering and
family trees generated as shown in Figure 10, 11.

Distributed BitShred is implemented in 500 lines of Java code.
We implemented a parser for extracting section information from
Portable Executable header information because there is no BFD

library for Java. In our implementation, we perform a further op-
timization that groups several fingerprints into a single HDFS disk
block in order to optimize I/O. In the Hadoop infrastructure we use,
the HDFS block size is 64MB. We optimize for this block size by
dividing the input malware set so each node works on 2,048 mal-
ware samples at a time because 64MB = 32KB × 2048. That is,
each MAP task is given 2,048 samples (si, si+1, · · · si+2047) and
generates a single file containing all fingerprints. We can simi-
larly optimize for other block sizes and different bit-vector lengths,
e.g, 64KB bit vectors result in batching 1,024 malware samples per
node.

Distributed co-clustering is implemented in 1200 lines of Java
code. We implemented a python-wrapper to iterate row and column
operations to find an optimal co-clustering.

5. EVALUATION
We have evaluated BitShred for speed and accuracy using two

types of per-sample analysis for features. First, we use a static
code reuse detection approach where features are code fragments,
and two malware are considered similar if they share common code
fragments. Second, we use a dynamic analysis feature set where
features are displayed behaviors, and two malware are considered
similar if they have exhibit similar behaviors. Note that similarity

is a set comparison, so order does not matter (e.g., re-ordering basic
blocks is unlikely to affect the results). We stress that we are not
advocating a particular approach such as static or dynamic analy-
sis, but instead demonstrating how BitShred could be used once an
analysis was selected.

Equipment. All single-node experiments were performed on a
Linux 2.6.32-23 machine (Intel Core2 6600 / 4GB memory) using
only a single core. The distributed experiments were performed on
a Hadoop using 64 worker nodes, each with 8 cores, 16 GB DRAM,
4 1TB disks and 10GbE connectivity between nodes [2]. 53 nodes
had a 2.83GhZ E5440 processor, and 11 had a 3GhZ E5450 pro-
cessor. Each node is configured to allow up to 6 map tasks and up
to 4 reduce tasks at one time.

Malware Dataset. We performed our experiments on a malware
data set collected from a variety of open repositories such as Mal-
ware Analysis System (aka CWSandbox) [3], Offsensive Comput-
ing [4], and from our Universities infrastructure-wide security in-
frastructure inbetween 2009-2010. Our total data set consists of
655,360 unique samples by MD5 hash.

5.1 BitShred with Code Reuse as Features
Setup. Our static experiments are based upon reports that malware
authors reuse code as they invent new malware samples [9, 25, 38].
Since malware is traditionally a binary-level analysis, not a source
analysis, our implementation uses n-grams to represent binary code
fragments. Malware similarity is determined by the percentage of
n-grams shared.

We chose n-grams based analysis because it is one previously
proposed approach that demonstrates a high dimensionality feature
space. We set n = 16, so there are 2128 possible n-gram features.
We chose 16 based upon experiments that show it would cover at
least a few instructions (not shown for space reasons). We can use
other features such as basic blocks, etc. as well by first building the
appropriate feature and then defining a hash function on it; all pos-
sible extensions of the per-sample analysis is out of scope for this
work. Surprisingly, even this simple analysis had over 90% accu-
racy when the malware is unpacked using off-the-shelf unpackers.
Pragmatically, n-gram analysis also has the advantage of not re-
quiring disassembling, building a control flow graph, etc., all of
which are known hard problems on malware.

Single Node Performance. Table 1 shows BitShred’s performance
using a single node in terms of speed, memory consumed, and the
resulting error rate. We limited our experiment to clustering 1,000
malware samples (which requires 499,500 pairwise comparisons)
in order to keep the exact Jaccard time reasonable. The “exact Jac-
card” row shows the overall performance when computing the set
operations as shown in Equation 1 using the SimMetrics library [5].
Clustering using exact Jaccard took more than 4 hours, and required
644.13MB of memory. This works out to about 33 malware com-
parisons/sec and 2,388 malware clustered per day.

We performed two performance measurements with BitShred:
one with 32KB fingerprints and one with 64KB fingerprints. With
64KB fingerprints, BitShred ran about 317 times faster than exact
Jaccard. With 32KB fingerprints, BitShred runs about 2 times faster
compared to 64KB fingerprints, and about 631 times faster than
exact Jaccard.

Since BitShred uses feature hashing, hash collisions may impact
the accuracy of the Jaccard distance computations. The overall er-
ror rate in the distance computations is a function of the fingerprint
length, the size of the feature space, and the percentage of code
that is similar. The statement in Theorem 1 formally expresses this
tradeoff. We also made two empirical measurements. First, we
computed the average error on all pairs, which worked out to be
about 2% with 64KB fingerprints and 4% with 32KB fingerprints.



Size of
fingerprints

Time to compare
every pair

Average error on
all pairs

Average error on
similar (>0.5) pairs

Malware compar-
isons per second

Malware clus-
tered per day

EXACT JACCARD 644.13MB 4h 12m 16s - - 33 2,388

BS64K 62.50MB 48s 0.0199 0.0017 10,472 42,538

BS32K 31.25MB 24s 0.0403 0.0050 20,812 59,970

WINNOW (W4) 66.97MB 41m 5s 0.0019 0.0109 203 5,918

WINNOW (W12) 30.16MB 20m 35s 0.0081 0.0128 404 8,360

BS32K (W4) 31.25MB 24s 0.0159 0.0009 20,812 59,970

BS32K (W12) 31.25MB 24s 0.0062 0.0039 20,812 59,970

BS8K (W4) 7.81MB 6s 0.0649 0.0086 78,047 116,131

BS8K (W12) 7.81MB 6s 0.0247 0.0016 78,047 116,131

Table 1: BitShred (BS) vs. Jaccard vs. Winnowing. We show BitShred with several different fingerprint sizes.

The error goes up as the fingerprint size shrinks because there is a
higher chance of collisions. We also computed the average error
on pairs with a similarity of at least 50%, and found the error to
be less than 1% of the true Jaccard. Note that the second metric
(i.e., average error on pairs with higher similarity), is the more im-
portant metric – these are the numbers with the most impact on the
accuracy, as these are the numbers that will primarily decide which
family a malware sample belongs to. Thus, BitShred is a very close
approximation indeed.

BitShred vs. Winnowing. In this paper so far we have consid-
ered techniques that provide an exact ranking between all pairs of
malware. Nonetheless, malware practitioners are constantly facing
hard choices on how much time to spend given finite computing
resources, thus may want faster but approximate over theoretically
correct but slower clustering. LSH is one type of data reduction
technique that improves performance. Here we discuss another
called Winnowing.

Winnowing, the algorithm used by the MOSS plagiarism detec-
tion tool, is a fuzzing hashing technique that selects a subset of
features from a sample for analysis [34]. Let w be a window mea-
sured in some way, e.g., w statements, w consecutive n-grams, w
behaviors, etc. Winnowing guarantees at least one shared unit in
any window of length at least w + n − 1 will be included in the
feature set [34]. In our evaluation we measure Winnowing because
a) MOSS is well-known, and b) it corresponds to similarity detec-
tion based upon code as proposed in previous work [9, 25, 38],
thus is directly related to our approach, and c) it is guaranteed to be
within 33% of an upper bound on performance algorithms for sim-
ilarity detection [34]. We compared in two settings: BitShred vs.
Winnowing as in previous work, and BitShred extended to include
Winnowing. Table 1 also shows these results for window sizes 4
(denoted as W4) and 12 (denoted as W12).

BitShred beats straight Winnowing. We reimplemented Win-
nowing as detailed in [34] using a 32-bit hash function as the orig-
inal implementation is not public. For the purpose of performance
comparison, we computed the similarity using SimMetrics library.
BitShred is anywhere from 26-102 times faster, while requiring less
memory. Winnowing does have a slightly better error rate, though
none of the error rates is very high. A more interesting case is to
consider pre-processing the feature set with Winnowing and then
applying BitShred. With Winnowing applied, we can reduce the
BitShred fingerprint size down to 8KB, allowing all 1,000 samples
to be clustered in 6 seconds.

Figure 5 relates all experiments with respect to the total num-
ber of malware clustered per day. Recall there are about 8,000 new
malware found per day. BitShred deals easily with current volumes,
and has room to spare for future growth. Figure 5 also shows on
the right-hand y-axis one reason BitShred is faster. Recall we men-
tioned exact Jaccard computations are slow in part because they
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Figure 5: Overall malware clustered-per-day capabilities. We also
report relative L1/L2 cache misses.

use set operations. These, in turn, are not efficient on real archi-
tectures. BitShred’s bitvector fingerprints, on the other hand, are
L1/L2 cache friendly.

Distributed BitShred. We have implemented the Hadoop version
of BitShred, and performed several experiments to measure overall
scalability and throughput. We use up to 655,360 samples in this
experiment. Note all samples were unpacked as the goal of this
experiment is to measure overall performance and not accuracy.

Figure 6 shows the BITSHRED-GEN fingerprint generation time.
In this experiment, we utilized 80 map tasks for small datasets
(20,480 ∼ 81,920) and 320 map tasks for large datasets (163,840
∼ 655,360). The total time to create fingerprints for all samples
was 5m 45s with BS8K (W12) and 4m 40s with BS32K (W1).
The graph also shows a linear trend in the fingerprint generation
time, e.g., halving the total number of samples to 327,680 samples
approximately halves the generation time to about 2m 54s and 2m
25s, respectively. BITSHRED-GEN performance slightly dropped
at 163,840 samples because the startup and shutdown overhead of
each map dominates the benefit of utilizing more maps.

Figure 7 shows the amount of time for computing the pairwise
distance for the same sample set. We utilized 200 map tasks for
small datasets and 320 map tasks for large datasets. Given the
values in the graph, we can work out the number of comparisons
per second. For example, 163,840 samples requires approximately
1.3 × 1010 comparisons, and takes 10m 15s with BS8K (W12),
which works out to 21,823,888 comparisons/sec. 327,680 samples
requires about 5.4 × 1010 comparisons, and takes 40m 55s with
BS8K (W12), which works out to a similar 21,868,402 compar-
isons/sec.
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Figure 7: Performance of Distributed BITSHRED-JACCARD

Overall, the distributed version achieved a pairwise comparison
throughput of about 1.9 × 1012 per day. This works out to full

hierarchical clustering over 1.9 million malware per day. In the
case of incremental clustering, this works out to comparing over
190,000 malware per day against 10 million known malware that
are already in a database.

Triage Tasks. Three common triage tasks are to automatically
identify malware families via clustering [13], to identify the near-
est neighbors to a particular malware sample [21], and to visualize
malware by creating phylogenetic trees [23]. In this experiment
we explore using BitShred with n-grams as the extracted features.
While we stress that we are not advocating n-gram analysis, we
also note it is interesting to see what the actual quality would be
in such a system. We repeat these analysis in § 5.2 using dynamic
behavior features.

• Clustering. We refer to how close a particular clustering is to the
“correct” clustering with respect to labeled data set as the quality of
a clustering. Overall quality will heavily depend upon the feature
extraction tool (e.g., static or dynamic), the particular data set (e.g.,
because malware analysis often relies upon undecidable questions),
and the quality of the reference data set.

To create a reference clustering data set, we used 30∼40 dif-
ferent anti-virus labels provided by VirusTotal [6]. First, we chose
samples that were detected as malware by at least 20 anti-virus pro-
grams to get more reliable labels. We normalized and tokenized
all the labels; then, we assigned the family name based upon only
the tokens occurring at the majority of the detecting anti-virus pro-
grams. As a result, we had 3,935 samples.

The overall clustering quality is measured with respect to two
metrics: precision and recall. Precision measures how well mal-
ware in separate families are put in different clusters, and recall
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Figure 8: Precision and Recall (3,935 samples)
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Figure 9: Precision and Recall (131,072 samples)

measures how well malware within the same family are put into
the same cluster. Formally, precision and recall are defined as:

Precision = 1
s

Pc
i=1 max(|Ci ∩ R1|, ..., |Ci ∩ Rr|)

Recall = 1
s

Pr
i=1 max(|C1 ∩ Ri|, ..., |Cn ∩ Ri|)

We clustered the reference data set 3,935 samples based upon
n-grams. Figure 8 shows the overall quality of BitShred with Win-
nowing (BS32K (W4)). Surprisingly, simple n-gram analysis did
quite well. When t = 0.6, BS32K (W4) clustering produced 200
clusters with a precision of 0.932 and a recall of 0.928 in 8 minutes.

For a larger-scale experiment, we unpacked 131,072 malware
samples using off-the-shelf unpackers. We then clustered the mal-
ware and compared the identified families to a reference clustering
using ClamAV labels 2. Figure 9 shows the overall results with Bit-
Shred with Winnowing (BS32K (W12)). When t = 0.57, BS32K
(W12) clustering produced 7,073 clusters with a precision of 0.942
and a recall of 0.922. It took about 27m with 256 map tasks.

• Nearest Neighbor. Hu et al. describe finding the nearest k-
neighbors to a given sample as a common triage task [21] (§2.3).
We have implemented similar functionality in BitShred by compar-
ing the given malware to all other malware. We performed experi-
ments finding the 5 nearest neighbors to randomly chosen malware
samples on the 102,391 malware data set. We achieved the same
94.2% precision and 92.2% recall as above. The average time to
find the neighbors was 6.8s (w/ BS8K) and 27s (w/ BS32K), using
25MB memory, with variance always under 1s.

• Visualization. We also have implemented several ways to visual-
ize clustering within BitShred. First, we can create boxed malware

2Considerable amount of manual work is required to prepare a ref-
erence data set. For this reason, we simply used ClamAV as a ref-
erence for 131,072 samples.



Figure 10: Clustering graph when t = 0.57
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Figure 11: Lineage tree for a single malware family

graphs where each square represents a malware family, with circles
representing individual samples. Figure 10 shows a clustering of
20,000 malware samples when t = 0.57 3. In the figure we can see
larger families with many malware in the center, with the size of
the family decreasing as we move to the edges. At the very edge
are malware samples that cluster with no family.

Another way to visualize the results using BitShred is to create
phylogenetic family trees based upon similarity [23]. The more
alike two malware samples are, the closer they are on the tree.
Figure 11 depicts an example tree created from our data set, la-
beled with ClamAV nodes. It is interesting to note ClamAV la-
bels the malware as coming from three families: Spy, Dropper, and
Ardamax. We manually confirmed that indeed all three were ex-
tremely similar and should be considered of the same family, e.g.,
Trojan.Ardamax-305 and Trojan.Spy-42659 are in different Cla-
mAV families, but only differ in 1 byte.

5.2 BitShred with Dynamic Behaviors as
Features

Static analysis may be fooled by advanced obfuscation techniques,
which has led researchers to propose a variety of dynamic behavior-
based malware analysis approaches, e.g., [12, 13, 28, 29, 33, 35].
One popular variant of this approach is to load the malware into
a clean virtual machine. The VM is started, and observed behav-
iors such as system calls, conditional checks, etc. are recorded as
features.

Bayer et al. provided us with their implementation of clustering,
and the 2658 behavior profiles they used to measure accuracy from

3We pick 20,000 samples because larger numbers created graphs
that hung our, and potentially the reviewers’, PDF reader.
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Figure 12: Clustering quality based upon behavior profiles

# of
profiles

Clustering Elapsed Time
Required
Memory (max)

2,658
BAYER-EXACT 16s 86MB

BITSHRED-EXACT 4s 12MB

75,692

BAYER-LSH 2h 25m 44s 4.3GB

BITSHRED-SETBITS 24m 35s 89MB

BITSHRED-EXACT 1h 2m 51s 89MB

Table 2: Scalability of Systems

their paper [13]. In this data set, each behavior profile is a list of
feature index numbers. The total number of features was 172260.
In our experiments, we used only a 1KB fingerprint size since the
number of features was relatively small.

As shown in Table 2, an exact clustering took 16s and 86MB of
memory using the code from Bayer et al. BitShred took 4s (4x as
fast) and used 12MB of memory ( 7x less memory). The average
error was 2% using the 1KB fingerprint. Figure 12 depicts the exact
clustering vs BitShred as a function of precision and recall. Both
had the same precision of .99 and recall of .98 when t = .61. Over-
all, BitShred is faster and uses less memory, while not sacrificing
accuracy for dynamic analysis feature sets.

Although Bayer et al. made the 2658 profiles they used for accu-
racy, they did not provide all 75,692 profiles they used when mea-
suring performance. In order to measure performance on this size
of data, we synthetically generated 73,034 variants using the 2658
as a basis. We then ran the code from Bayer et al. on 75,692 profiles
using the same parameters as described in [13]: k = 10, l = 90,
and t = 0.7. BAYER-LSH took 2h 25m 44s using 4.3GB of mem-
ory and performed 236,132,556 distance computations. BITSHRED-
SETBITS

4 took 24m 35s (5.9x as fast) using 89MB of memory
(49x less memory) and computed similarity of 1,021,322,219 pairs
when t = 0.7. (Note that BITSHRED-SETBITS performed 4.3x
more distance computations.) Even BITSHRED-EXACT at 1h 2m
51s outperformed (2.3x as fast) BAYER-LSH.

5.3 Semantic Feature Information
Finally, we used the co-clustering phase in BitShred to iden-

tify semantic distinguishing features among malware families. We
performed a variety of experiments and found that, overall, co-
clustering automatically identified both inter-family and intra-family
semantic features. Typical features identified included distinguish-
ing register keys set and internet hosts contacted.

Co-clustering of Behavior-Based Profiles. We performed a full
co-clustering on the entire dynamic analysis data set from § 5.2.

4We sorted the samples based upon the number of set bits in fin-
gerprints. Then each sample only needed to be compared to the
samples whose number of set bits are within the input threshold.



(a) A typical matrix before co-clustering.
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Figure 13: Feature extraction by co-clustering. Grey dots represent
1 in the binary matrix, i.e., the presence of a feature.

Figure 13a depicts the malware/feature matrix before co-clustering.
We then co-clustered, which took 15 minutes.

Figure 13b shows the complete results. The checkerboard pattern
corresponds to the sub-matrices identified as being homogeneous,
i.e., corresponding malware/feature pairs that are highly correlated.
For example, the large dark sub-matrix labeled g8 corresponds to
the fact that most malware had the same memory-mapped files in-
cluding WS2HELP.dll, icmp.dll, and ws2_32.dll. The sub-matrix
g9 shows a commonality between two families, but no others. The
commonality corresponds to opening the file \Device\KsecDD.

Figure 13c focuses on only the 717 samples in the Allaple mal-
ware family. One semantic feature, labeled g3, is that almost all
samples use the same memory-mapped files such as winrnr.dll,
WS2HELP.dll, icmp.dll, and ws2_32.dll. More importantly, we
also found that many family members were distinguished by the
register entry they create (e.g., HKLM\SOFTWARE\CLASSES\-
CLSID\{7BDAB28A-B77E-2A87-868A-C8DD2D3C52D3} in one
sample) and the IP address they connect to, e.g., one sample con-
nected to 24.249.139.x while another connected to 24.249.150.y
(shown as g4).

Co-clustering of n-gram features. We also experimented with
co-clustering using the n-gram features. Figure 13d shows intra-
family co-clustering for the Trojan.OnlineGames malware family.
The features labeled g2 correspond to all code from the code entry
to a particular point that overlap. The feature set g1 corresponds to
new functionality in a few variants that makes tcp connections to a
new host not found in previous variants.

We also performed inter-family analysis. In this set of experi-
ments we envision that an analyst uses co-clustering to mine dif-
ferences and similarities between malware family members or be-
tween malware families. We picked the Trojan.Dropper, Trojan.Spy,
Trojan.OnlineGames, and Adware.Downloader families, which have
1280 total members. The total time taken by co-clustering was 10
minutes (about 2s per sample), with about 1 minute for each col-
umn and row iteration. We used 10 maps for each row iteration and
64 maps for column iteration.

Figure 13e shows the resulting co-clustering. Trojan.Dropper
and Trojan.Spy were grouped together by co-clustering. This is
accurate: we manually confirmed that the samples we have from
those families are not well-distinguished. The submatrix labeled g5

is one distinguishing feature corresponding to Adware.Downloader
connecting to a particular host on the internet. The submatrix la-
beled g6 corresponds to data section fragments shared between
the Trojan family, but not present in Adware. The submatrix la-
beled g7 corresponds to shared code for comparing memory loca-
tions. This code is shared between Adware.Downloader and Tro-
jan.OnlineGames, but not Trojan.Spy/Trojan.Downloader.

6. RELATED WORK
We are not the first to propose the need for large-scale mal-

ware analysis and triage, e.g., [13, 21, 31] have similar goals.
As discussed in § 2.3, the main difference in our work is scal-
ability and co-clustering to automatically identify semantic fea-
tures. Our work builds on per-sample analysis and feature extrac-
tion, which is an extremely active area of research including un-
packing research [18, 20, 27, 33, 35], and even entire conferences
like DIMVA.

While we focus on analyzing malware binaries, Perdisci et al.

[32] have explored clustering based upon network behavior fea-
tures. Their similarity metric is based upon the weighted combi-
nation of Euclidean distance, Levenshtein distance, and Jaccard
distance. While BitShred could compute Hamming distance and
Jaccard distance, we leave adapting the analysis, implementation,
and experimentation for other distance metrics as future work.



Li et al. [26] argue it is difficult to get ground truth for clus-
tering accuracy. In our setting the main metric is how close the
feature-hashed version of clustering comes to the quality of an ex-
act Jaccard clustering, which is different than looking for ground
truth. Nonetheless, we do report overall clustering accuracy, where
all the caveats from [26] apply.

7. CONCLUSION
In this paper we have presented BitShred, a system for large-

scale malware triage and similarity detection. The key idea behind
BitShred is using feature hashing to reduce the high-dimensional
feature space in malware analysis, which is supported by theoret-
ical and empirical analysis. Our approach makes inter-malware
comparisons in typical large-scale triage tasks such as clustering
and finding nearest neighbors up to 2,365x faster than existing meth-
ods while using less memory. As a result, BitShred scales to current
and future malware volumes where previous approaches do not. We
have also developed a distributed version of BitShred where 2x the
hardware gives 2x the performance. In our tests, we show we can
scale to up to clustering over 1.9 million malware per day. Finally,
we have developed novel techniques based upon co-clustering to
extract semantic features between malware samples and families.
The extracted features provide insight into the fundamental differ-
ences and similarities between and within malware data sets.
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APPENDIX

A. PROOF OF THEOREM 1
Our analysis shows that with high probability, the Jaccard index

|gi∩gj |

|gi∪gj |
is well approximated by the

S(fi∧fj)

S(fi∨fj)
, where fi and fj are

the fingerprints of gi and gj . Throughout this analysis, we let c
denote the number of shared elements between sets gi and gj ; note

that the Jaccard index
|gi∩gj |

|gi∪gj |
is then c

2N−c
. The focus of our anal-

ysis is to show that the ratio
S(fi∧fj)

S(fi∨fj)
is close to c

2N−c
with high

probability (unlike other analyses [22] that restrict their focus to
computing the expected value of S(fi ∧ fj)). We make the usual
assumption that the hash functions used are k-wise independent.

We first consider the union gi ∪ gj . We note that the bitvector
obtained by computing the bitwise-or of the two fingerprints fi and
fj is equivalent to the bitvector that would be obtained by directly
inserting all the elements in gi ∪ gj , if the same k hash functions
are used on a bitvector of the same size.

Let the random variable U denote the number of bits set to 1
in fi ∨ fj . Note that the set gi ∪ gj contains 2N − c elements.
If these elements are inserted into a bitvector of size m with k
hash functions, the probability qu that a bit is set to 1 is: 1 −
`

1 − 1
m

´k(2N−c)
. We can use this to compute the expected value

of U :

E[U ] = mqu = m

 

1 −

„

1 −
1

m

«k(2N−c)
!

(3)

As U is tightly concentrated around its expectation [15], we get:

Pr[|U − E[U ]| ≥ ǫm] ≤ 2e−2ǫ2m2/(2N−c)k ≤ 2e−2ǫ2m2/Nk.

Next, we consider the intersection gi ∩ gj . Let the random vari-
able I denote the number of bits set to 1 in fi ∧ fj . A bit z is set
in fi ∧ fj in one of two ways: (1) it may be set by some element
in gi ∩ gj , or (2) it may be set by some element in gi − (gi ∩ gj)
and by some element gj − (gi ∩ gj). Let Iz denote the indicator
variable for bit z in fi ∧ fj . Then,

Pr[Iz = 1] =

 

1 −

„

1 −
1

m

«kc
!

+

„

1 −
1

m

«kc
 

1 −

„

1 −
1

m

«k(|gi|−c)
!

·

 

1 −

„

1 −
1

m

«k(|gj |−c)
!

which may be simplified as:

1 −

„

1 −
1

m

«kN

−

„

1 −
1

m

«kN

+

„

1 −
1

m

«k(2N−c)

.

With linearity of expectation, we can compute E[I] as
P

z Pr[Iz =
1], which reduces to:

E[I] = m

 

1 − 2

„

1 −
1

m

«kN

+

„

1 −
1

m

«k(2N−c)
!

. (4)

Note that the random variables I1, I2 . . . Im are negatively de-
pendent, and so we can apply Chernoff-Hoeffding bounds to com-
pute the probability that I deviates significantly from E[I]: e.g.,

Pr[I ≥ E[I](1 + ǫ2) ≤ e−mqǫ2
2
/3, where q = 1−

`

1 − 1
m

´kN
−

`

1 − 1
m

´kN
+
`

1 − 1
m

´k(2N−c)
.

We now turn to the ratio
S(fi∧fj)

S(fi∨fj)
; let the random variable Y de-

note this ratio. We have just shown that U and I are both likely to
remain close to their expected values, and we can use this to com-
pute upper and lower bounds on Y – since U and I lie within an
additive or multiplicative factor of their expectations with probabil-

ity at least 1 − 2e−mqǫ2
2
/3 and 1 − 2e−2ǫ2m2/Nk respectively, we

can derive upper and lower bounds on Y that hold with probability

at least 1 − 2e−mqǫ2
2
/3 − 2e−2ǫ2m2/Nk.

To do this, we first simplify the quantities E[U ] and E[I]. As-
suming that m ≫ 2kN , we can approximate E[U ] and E[I] by
discarding the higher-order terms in each of binomials in 3 and 4:

E[U ] ≥ m

„

1 −

„

1 −
k(2N − c)

m

««

= mk

„

2N − c

m

«

= k(2N − c).

Likewise, we can approximate E[I] as:

E[I] ≤ m

„

1 − 2

„

1 −
kN

m

«

+

„

1 −
k(2N − c)

m

««

= mk
“ c

m

”

= ck.

Using these approximations for E[I] & E[U ], we see that Y ≤
c(1+ǫ2)

2N−c−mǫ
, with probability at least 1−e−mqǫ2

2
/3−2e−2ǫ2m2/Nk.

We can compute a similar lower bound for Y , i.e., Y ≥ c(1−ǫ2)
(2N−c)+mǫ

,

with probability at least 1− e−mqǫ2
2
/2 − 2e−2ǫ2m2/Nk. Thus, this

shows that with high probability, the ratio
S(fi∧fj)

S(fi∨fj)
is close to the

Jaccard index c
2N−c

, for appropriately chosen values of m and k.
We have thus proven our Theorem 1.

Lastly, we give an example to illustrate our bounds in our appli-
cation scenario. Suppose we set ǫm ≥ 5, m ≈ 1000N , k = 6.
Then, our analysis shows us that with probability at least 95%,

Y ∈

„

c(1− 1
√

2c
)

2N−c+5
,

c(1+ 4
√

c
)

2N−c−5

«

, i.e., that ratio of the bits set to the

union is very close to the Jaccard index.

B. EXTENSION
Containment. BITSHRED-JACCARD measures the proportional sim-
ilarity between features. However, we may want to also measure
when one feature set is contained within another, e.g., whether one
malware is completely contained in another code. For example,
suppose malware A is the composition of two malware samples B
and C, and suppose |B| ≫ |C|. Then the similarity between A and
C will be proportionally very low. An alternative similarity metric
for this case can be given as:

BITSHRED-JACCARDc(fa, fb) =
S(fa ∧ fb)

S(fb)
,

when fi is the fingerprint for malware si and |sa| ≫ |sb|.
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