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Abstract: Semantic segmentation of high-spatial-resolution (HSR) remote sensing (RS) images has
been extensively studied, and most of the existing methods are based on convolutional neural
network (CNN) models. However, the CNN is regarded to have less power in global representation
modeling. In the past few years, methods using transformer have attracted increasing attention and
generate improved results in semantic segmentation of natural images, owing to their powerful ability
in global information acquisition. Nevertheless, these transformer-based methods exhibit limited
performance in semantic segmentation of RS images, probably because of the lack of comprehensive
understanding in the feature decoding process. In this paper, a novel transformer-based model named
the bi-decoder transformer segmentor for remote sensing (BiTSRS) is proposed, aiming at alleviating
the problem of flexible feature decoding, through a bi-decoder design for semantic segmentation of
RS images. In the proposed BiTSRS, the Swin transformer is adopted as encoder to take both global
and local representations into consideration, and a unique design module (ITM) is designed to deal
with the limitation of input size for Swin transformer. Furthermore, BiTSRS adopts a bi-decoder
structure consisting of a Dilated-Uper decoder and a fully deformable convolutional network (FDCN)
module embedded with focal loss, with which it is capable of decoding a wide range of features and
local detail deformations. Both ablation experiments and comparison experiments were conducted
on three representative RS images datasets. The ablation analysis demonstrates the contributions of
specifically designed modules in the proposed BiTSRS to performance improvement. The comparison
experimental results illustrate that the proposed BiTSRS clearly outperforms some state-of-the-art
semantic segmentation methods.

Keywords: remote sensing; semantic segmentation; global-local modeling; bi-decoder transformer

1. Introduction

Semantic segmentation, referring to pixel-level classification in a single image, plays an
important role in remote sensing (RS) image processing, with which better understanding
of RS images can be acquired for further applications, including resource exploitation,
geographical mapping, smart city planning, etc. [1–7]. Semantic segmentation of RS images
has been studied for a long time on low resolution datasets [8,9]. With the development
of high-resolution video satellites, studies on semantic segmentation are focusing on RS
images with high resolutions and large physical scales [10–13]. While the resolution of RS
images greatly expands the application scenarios of semantic segmentation, it also brings
new challenges to the existing methods.

RS semantic segmentation models were initially built according to semantic segmenta-
tion methods for natural scenes. After Alexnet won the championship in 2012 [14], models
based on convolutional neural networks (CNNs) became mainstream in computer vision
(CV) image processing tasks [15–19]. The original CNN-based semantic segmentation
methods employed a CNN for feature extraction, and images were divided into small
patches. As a result, each pixel was classified according to the information in the individual
patches [20–22]. Some works also tried to combine hand-crafted structures with a CNN.
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For example, in [23], the conditional random field (CRF) was embedded in fully connected
layers for segmentation. However, these patch-wise approaches could hardly achieve fine
pixel classification and were usually not end-to-end pipelines. Long et al. [24] proposed
a fully convolutional network (FCN) for semantic segmentation, which was proved to
be irreplaceable in pixel-wise classification, with much better performance than the other
fully-connected networks. Based on this, Ronneberger et al. [25] constructed the U-Net
with an encoder–decoder structure for downsampling and upsampling, which was widely
employed in later works. These two works demonstrated the effectiveness of CNN in an
encoder–decoder structure for semantic segmentation. Substantial studies with excellent
performance have been conducted on this basis, including U-Net++ [26], Deeplabv3+ [27],
PSPNet [28], etc.

These CNN-based models designed for natural scenes could also be used in RS image
segmentation tasks. However, the direct model migration totally ignored the characteristics
of RS images, which were usually characterized by higher resolutions, larger physical
scales, smaller objects, and more various class distributions. Consequently, to achieve better
performance in semantic segmentation of RS images, extra designs are usually introduced
into the above CNN-based models [29–34]. Additionally, some works use extra designs for
RS, regarding segmentation to detection when small objects are involved, especially for
wide-area motion imagery (WAMI) [35,36].

The original CNN-based models are frequently blamed for their lack of ability in
global representation modeling. In recent years, a transformer was introduced into a CV
field [37] as a substitute for a CNN for its remarkable capability in global representation
modeling, with the price of local information loss, hence resulting in precision descending.
To settle this problem, attempts have been made to introduce the characteristics of CNNs
into transformers [38–43]. A Swin transformer [43] employing window multi-head self-
attention (W-MSA) and shifted window multi-head self-attention (SW-MSA), both of which
are powerful structures for global and local feature extraction, is one of the most excellent
solutions. The Swin transformer is such an exceptional work that it has been adopted as the
backbone and produced promising experimental results in multi-field studies [44–49]. The
recently built models for semantic segmentation of RS images generally employed a Swin
transformer as the backbone, either focusing on introducing the properties of CNNs into
transformers or on rearranging the encoder format to deal with the concrete application
scenarios [47,48,50]. Nevertheless, the Swin transformer is designed to have a tiny input
scale for convenience (224 × 224 pixels or 384 × 384 pixels) such that a comparatively
lower time cost is required in the training process, and when it is applied to RS images,
the input images are usually large-scale (512 × 512 pixels or 1024 × 1024 pixels), which
may cause global information loss in feature extraction. Moreover, the delicate designs of
the decoder are commonly ignored in the existing RS segmentation models built on the
Swin transformer.

To address these two issues, in this paper, a novel Swin-transformer-based model
named the bi-decoder transformer segmentor for remote sensing (BiTSRS) is proposed. The
BiTSRS is based on the Swin transformer and adopts an input transform module (ITM) to
deal with the problem of large-scale input images. With the ITM, the Swin transformer
is capable of extracting global and local features from small-scale feature maps instead
of original RS images, thereby avoiding the loss of global representations. Inspired by
UperNet [51] and FCN [24], the proposed BiTSRS employs a bi-decoder structure for hidden
feature decoding. The specifically designed bi-decoder structure consists of a Dilated-Uper
decoder and an FDCN decoder, which deal with the coarse and fine features in decoding,
respectively. Specifically, the Dilated-Uper decoder restores the scale, which is reduced
in the downsampling process of the encoder. Meanwhile, the FDCN decoder performs a
refinement, adopting deformable convolution for detailed semantic segmentation. With this
bi-decoder strategy, BiTSRS is capable of acquiring a wide range of semantic information
on RS images and deformable representations in detail. The main contributions of this
article can be summarized as follows.



Remote Sens. 2023, 15, 840 3 of 20

1. An improved transformer-based model is proposed that combines the Swin trans-
former and a bi-decoder structure to perform semantic segmentation of RS images.
This new framework is capable of modeling both global and local representations
while decoding coarse and fine features.

2. For larger-scale RS images, an input transform module (ITM) is proposed to transform
the inputs with large spatial scales to the ones with compatible scales for the Swin
transformer. The ITM is designed to be a plug-and-play module, which can be easily
implanted in the Swin transformer to make it more suitable for RS images.

3. A novel bi-decoder structure was specifically designed to decode the features extracted
by the Swin transformer encoder. With this bi-decoder structure, BiTSRS can decode
the features in a larger receptive field without losing the deformations in detail.

4. A more appropriate loss is considered to deal with the problems of complex back-
ground samples and class distribution of the segmentation process in the auxiliary
FDCN decoder. Such loss is illustrated to be more effective in distinguishing the hard
samples by introducing a focusing parameter.

The rest of this article is organized as follows. Section 2 introduces the related works
of semantic segmentation of RS images and methods using vision transformers. Then, the
overall framework of the proposed BiTSRS is presented in Section 3, each component of
which is concretely described. In Section 4, both comparison experiments and ablation
studies are applied, and the experimental results are presented and analyzed. Finally, the
conclusions are drawn in Section 5.

2. Related Works
2.1. Semantic Segmentation of RS Images with CNNs

Semantic segmentation denotes the pixel-level classification of a single image, namely,
labeling the image pixel by pixel according to semantic attributes. The CNN is widely
acknowledged because of its powerful ability to acquire deep features of images, and
thus it is also applied in semantic segmentation. The CNN-based methods for semantic
segmentation have been adequately studied, and numerous excellent works have been
proposed, such as FCN [24], U-net [25], and those presented in [26–28,52–54]. These general
semantic segmentation models have been successfully applied in various natural scenes,
including automatic driving, medical image processing, etc.

Nevertheless, some unique challenges arise when semantic segmentation is applied
to RS images, such as small-scale objects, complex background samples, and serious
class variances, which make direct migration of the semantic segmentation models for
natural scenes to RS images ineffective. Some works introduce these general CNN-based
models into semantic segmentation of RS images by adopting refinement strategies or
hand-crafted methods. Du et al. [55] introduced object-based image analysis (OBIA) into
RS images, and Mou et al. [56] adopted spatial and channel relation modules to capture
the relationships between pixels and channels. Another form of refinement was explored
in [57] by Zheng et al., who proposed a foreground-aware relation module to optimize
the foreground awareness. More recently, models combined with attention mechanism
were widely studied, aiming to impel the networks to focus more on significant foreground
objects rather than the complex background [32,33,58,59].

2.2. Semantic Segmentation of RS Images Using Transformer

The transformer is a pure attention architecture first proposed in natural language
processing (NLP) [60], aiming to capture more long-range dependencies between tokens.
Dosovitskiy et al. explored its feasibility in image processing and proved its effectiveness
in acquiring global relations of images [37]. Transformers have been widely applied in
downstream tasks, such as image classification [37], object detection [61], and semantic
segmentation [62–64]. The CNN backbone in FCN is replaced with the vision transformer
for segmentation in [62], and progressive upsampling (PUP) strategy was designed in [63]
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by using a vision transformer backbone. A new multilayer perceptron (MLP) was flexibly
developed in [64] for feature mapping based on vision transformer.

Transformers are also utilized for semantic segmentation of RS images as well. For
example, Xu et al. [50] proposed a lightweight transformer-based model for efficient seg-
mentation, and Ding et al. [65] introduced a context transformer to embed the contextual
information of pixels. Compared with the embedded attention mechanism in CNN models,
transformers are fully based on a self-attention mechanism, which is more suitable for
global relation capturing in RS images. However, the transformer-based models are more
likely to lose the local information, which is also crucial for RS image processing and analy-
sis. The Swin transformer [43] has W-MSA and SW-MSA blocks, in which self-attention is
calculated in individual windows and merged with window shifts. With this strategy, Swin
transformer is capable of extracting both global and local features, which is a better option
for semantic segmentation of RS images. He et al. [47] proposed a Swin-transformer-based
model embedded with a U-net structure, Gao et al. [48] fused a Swin transformer and CNN
for feature extraction, and Zhang et al. [49] proposed a transformer–CNN hybrid model,
for semantic segmentation of RS images. Although promising results have been achieved
in these works, more attention is paid to building a powerful encoder by combining CNN
with Swin transformer, rather than the delicate design of the decoder. Furthermore, RS
images usually have large spatial scales, yet the Swin transformer needs a small-scale
input. To handle these problems, a new Swin-transformer-based framework, bi-decoder
transformer for RS image semantic segmentation (BiTSRS), is proposed in this paper.

3. Method

In this section, a complete architecture of the proposed BiTSRS is presented, and the
concrete details of the novel modules, namely, ITM, Dilated-Uper decoder, and FDCN
decoder are described. The adopted focal loss is also explained, which is believed to be
more reasonable than the widely used cross-entropy loss.

As shown in Figure 1, the proposed BiTSRS consists of four crucial components: the
Input Transform Module (ITM), Swin transformer encoder, Dilated-Uper decoder, and
the auxiliary decoder FDCN. The proposed BiTSRS adopts the typical encoder–decoder
framework architecture, employing the Swin transformer as the encoder for deep feature
extraction and image internal correlation modeling, and two decoders for feature map
reconstruction. Specifically, the large-scale RS images are firstly transformed by ITM to
obtain appropriate inputs for Swin transformer encoder, and the Swin encoder calculates
the attention maps to acquire the global and local representations of the input images. Then,
the Dilated-Uper decoder and FDCN decoder are employed to reconstruct the hidden
representations of the Swin encoder, expanding the receptive field while preserving the
fine deformations of the feature maps.

3.1. Input Transform Module

The Input Transform Module (ITM) is designed to handle the problem of the Swin
transformer requiring small-scale inputs, even though RS images are usually large in scale.
It has been proved that better results can be achieved by dividing the sampling process into
several steps rather than sampling the feature maps directly [63]. Therefore, as depicted in
Figure 2, the input size is reduced by downsampling the RS images in the first two steps of
ITM. To fully utilize both semantic and appearance information of the input images, ITM
extracts features from different scales of RS images, and further aggregates these various
scales of feature maps with downsampling and upsampling. Downsampling is performed
by the transformer block, which is composed of two groups of a convolutional layer and
a batch normalization layer with residual connections, and upsampling is performed by
bilinear interpolation. A global average pooling (GAP) branch is also utilized to integrate
more scene understandings, while expecting more deep representation to compensate for
information loss in the previous scale reduction. It is notable that in the ITM, residual
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connections and lateral convolutions are employed to enhance the feature transmission
and smooth the feature maps progressively.
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Figure 1. The overall architecture of the proposed BiTSRS. The architecture includes three main parts:
an Input Transform Module (ITM) to transform large-scale inputs into small-scale feature maps, a
Swin transformer encoder to acquire global and local representations, and a bi-decoder structure to
decode coarse and fine information.
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Figure 2. The structure of ITM. The transform blocks with residual connections and the global
average pooling (GAP) are used to preserve the original information.

For a given RS image X ∈ RH×W×3, it is firstly transformed to feature map C1 with
the size of H/4×W/4× C. To utilize semantic information in deep layers, the feature map
C1 is downsampled to acquire feature maps with four different scales (C2, C3, C4, and C5).
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A GAP branch is also adopted in ITM to acquire better scene understanding for the entire
image. These four feature maps with different scales are finally resized to H/4×W/4, the
same scale as C2, and are then concatenated to form the final output Y serving as the input
of Swin transformer encoder.

The output Y of ITM can be then described as follows:

Y = Concat(P1, . . . , P4, F), (1)

where Concat(·) in the formula denotes the concatenation operations, P1, . . . , P4 denote the
four upsampled feature maps, and F denotes the output of GAP branch.

Before being fed into the Swin transformer encoder, the feature map Y is firstly divided
into non-overlapping patches by the patch partition module. Each patch is regarded as
a "token," and the patch size is set to 4 × 4. The split patches are then projected into
embedding features, using a linear projection in the patch embedding module.

3.2. Swin Transformer Encoder

Swin transformer is a widely used transformer architecture for feature extraction
that integrates the advantages of both the transformer and convolutional neural networks
(CNNs) [43]. To acquire abundant contextual information, the Swin transformer is adopted
in the proposed BiTSRS as the encoder after the ITM. Differently from ViT, the Swin
transformer combines the window block and shifted window block, enabling the Swin
encoder to obtain both global and local information of the input feature map. For a
hierarchical multi-scale representation, the Swin encoder merges the patches after each
stage. As a result, the scale of feature maps will get a 2× reduction, and the dimensions
will be doubled.

As shown in Figure 1, the main component of each Swin transformer stage is the
Swin transformer block, including a window block and a shifted window block. The
difference between them is that window block employs window multi-head self-attention
(W-MSA) and the shifted window block employs shifted window multi-head self-attention
(SW-MSA) for attention calculating. Specifically, instead of computing the attention in
each individual small patch, Swin transformer blocks use non-overlapped local windows
for attention calculation. However, separate W-MSA of fixed windows lacks connections
across windows, and thus, SW-MSA is proposed to strengthen the correlations between
windows, as illustrated in Figure 3. To balance the capability of image modeling and the
computational efficiency, the basic version of the Swin transformer is adopted in BiTSRS,
which consists of four stages with 2, 2, 18, and 2 Swin transformer blocks, respectively.

As illustrated in Figure 3b, for a given input vector xl−1, which is actually the output
of the previous layer, the output xl can be calculated as follows:

x̂l = MSA(LN(xl−1)) + xl−1,

xl = MLP(LN(x̂l)) + x̂l .
(2)

Compared with the traditional attention mechanism, the two successive Swin transformer
blocks acquire attention information within individual windows and model the correlations
between the windows in a two-step process, which can be described as follows:

x̂l = W-MSA(LN(xl−1)) + xl−1,

xl = MLP(LN(x̂l)) + x̂l ,

x̂l+1 = SW-MSA(LN(xl)) + xl ,

xl+1 = MLP(LN(x̂l+1)) + x̂l+1,

(3)

where xl denotes the output of the window block and xl+1 denotes the output of the
shifted window block. In BiTSRS, the numbers of Swin transformer blocks in the four Swin
transformer stages are set to be 2, 2, 18, and 2, respectively.
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Figure 3. Illustration of different transformer blocks. (a) The standard transformer block. (b) Two
successive Swin transformer blocks, the window block and shifted window block, which compute
window multi-head self-attention (W-MSA) and shifted window multi-head self-attention (SW-MSA),
respectively. LN and MLP denote layer normalization and multi-layer perceptron, respectively.

3.3. Dilated-Uper Decoder

The hierarchical feature maps produced by the Swin transformer encoder are sent to
the Dilated-Uper decoder for semantic segmentation. Dilated convolution is widely used
in semantic segmentation to enlarge the receptive field of the network as compensation for
the limited local context of the convolutional neural networks. However, BiTSRS adopts the
ITM and the Swin transformer encoder to capture the long-range dependencies between
pixels, and the dilated convolution is exploited in the decoder to further enhance the
global context. Inspired by UperNet [51], the proposed BiTSRS employs two modules,
namely, Pyramid Pooling Module (PPM) [28] and Feature Pyramid Network (FPN) [66],
to reconstruct detailed features and on this basis, extra dilated convolution is applied to
enlarge the decoding receptive field. Specifically, as illustrated in Figure 4, the topmost
feature map of the hierarchical inputs is fed into PPM for pyramid pooling, and the
corresponding output is combined with the other three feature maps in the FPN.

The PPM employs a pyramid pooling strategy to acquire global scene understanding,
which helps with processing complex background samples. The pooling scales adopted
in the PPM are set as 1, 2, 3, and 6, respectively. The pyramid pooling results are resized,
concatenated, and convolved to generate a feature map with the same dimension as the
input. In the FPN, the feature maps are resized to a higher dimension with a lateral 1× 1
convolution, which is used for feature map smoothing and dimension matching. The three
resulting feature maps are combined with the output of PPM for further concatenating
and convolution.
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In Dilated-Uper decoder, extra convolutions are added before concatenating the out-
puts of FPN, which are used to construct hierarchical dilated convolutions. Apart from
applying the standard convolutions on the top two feature maps, the other two feature
maps are convolved with dilated filters with dilation rates of 2 and 4, respectively.

Dilated convolution pads the convolution kernel with zeros to generate a larger
receptive field and introduces a parameter r to represent the dilation rate. The formula of
1D dilated convolution can be described as follows:

g(x) =
L

∑
l

f (x + r · l)h(l), (4)

where x is a 1D vector, f (x) and g(x) are the input and output features, respectively; h(l) is
the dilation filter with length L; and r denotes the dilation rate. r is set as 1 when standard
convolution is used, and r = 2 represents filling one zero between each of two adjacent
elements of convolution kernel.

It is notable that the dilated convolutions are arranged following the hybrid dilated
convolution (HDC) principle, which can be interpreted as the fact that using a set of dilated
convolutions with certain hybrid dilation rates can entirely cover the input feature maps
without any holes and missing edges.

3.4. Fully Deformable Convolutional Network

The FDCN is designed as the auxiliary decoder of BiTSRS, taking input slightly
different from the one of Dilated-Uper decoder, which is the upsampled and concatenated
output of the Swin encoder. The Dilated-Uper decoder integrates more global context
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information, and the FDCN is designed to obtain more details of the input features in
decoding. Therefore, the FDCN adopts a more flexible convolution operation named
deformable convolution [67] to acquire detailed deformation of the hidden representations.
Deformable convolution adaptively samples the input features to adjust the receptive field
and thus alleviate multi-scale objects and their deformation. Deformable convolution is
defined as follows:

O(x0, y0) = ∑
(xn ,yn)∈R

w(xn, yn) · I|(x,y),

I|(x,y) = I(x0 + xn + δx, y0 + yn + δy),
(5)

where (x0, y0) is an element in the output feature map O, R is the grid of convolution
kernel, w(xn, yn) is the weight of the element (xn, yn) in the input feature map I, and (δx, δy)
are the offsets learned by deformable convolution. Specifically, deformable convolution
adopts a parallel convolution branch to learn the offset (δx, δy) for each element (xn, yn),
the kernel of which is applied over the same input feature map and is of the same spatial
scale as the current convolution kernel.

Considering the computation cost, in this work, a single-layer deformable convolution
is adopted in FDCN to decode the deformation of input features, which can help with better
performance by acquiring more detailed deformations. It is notable that the FDCN decoder
is only activated in the training process for network optimization and will not take effect
in the inference process. Specifically, the Dilated-Uper decoder and FDCN decoder were
both activated to acquire global context dependencies and detailed features, respectively,
for training and to obtain the final segmentation results; only the Dilated-Uper decoder
was used for inference.

To further improve the effectiveness of this refinement branch, a focal loss is employed
in the FDCN (as shown in Equation (6)), which is expected to focus on hard samples in
segmentation by introducing a focusing parameter γ. The losses are defined as follows:

lossce = −log(pt),

loss f ocal = −(1− pt)
γlog(pt),

pt =

{
p̂, if y = 1,
1− p̂, otherwise,

(6)

where p̂ is the prediction probability, y is the corresponding label, lossce is the cross-entropy
loss, and loss f ocal is the focal loss. Consequently, the loss function of the entire network can
be written as follows:

losstotal = lossD-U + αlossFDCN , (7)

where lossD-U denotes the cross-entropy loss employed by the Dilated-Uper decoder,
lossFDCN denotes the focal loss employed by the FDCN decoder, and α is the balance
coefficient of the loss function for the reason that the focal loss is far smaller than the
cross-entropy loss.

4. Experiments
4.1. Datasets

The experiments were conducted on three RS datasets, including the ISPRS Vaihingen
dataset, the ISPRS Potsdam dataset, and the LoveDA dataset. The two ISPRS datasets
are widely used for RS semantic segmentation tasks, and the LoveDA dataset is a newly
released dataset which is more challenging. The details are described as follows.

(1) Vaihingen Dataset: The ISPRS Vaihingen and Potsdam datasets [68] are both com-
monly evaluated benchmarks in the semantic segmentation of RS images. The Vaihingen
dataset is a small-scale dataset with 33 true orthophoto (TOP) images which are collected
by advanced airborne sensors and usually divided into small images for training and
testing. The Vaihingen dataset covers an area of 1.38 km2 with 6 different classes of objects,
including buildings, trees, low vegetation, cars, clutters, and impervious surfaces. The
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Vaihingen dataset has a ground sampling distance (GSD) of 0.09 m, making it a high-
resolution dataset. The scales of the TOP images range from 1887 to 3816 pixels; and each
TOP image has infrared (IR), red (R), and green (G) channels to compose the pseudo-color
image. In the experiments, 16 images were selected for training and 17 images for testing,
following the common practice. For convenient processing, the TOP images were cropped
into 512 × 512 pixels with a stride size of 256 pixels.

(2) Potsdam Dataset: Compared with the Vaihingen dataset, the size of Potsdam dataset
is slightly larger, having 38 TOP images collected by advanced airborne sensors. The
Potsdam dataset covers an area of 3.42 km2 with the same 6 classes as the Vaihingen
dataset and a GSD of 0.05 m. The TOP images of the Potsdam dataset with fixed size of
6000 × 6000 pixels were also cropped into 512 × 512 pixels with a stride size of 256 pixels.
Particularly, 24 images were utilized for training, and the remaining 14 images were used
for testing, following the previous studies [48,69,70].

(3) LoveDA Dataset: Land-cover Domain Adaptive semantic segmentation (LoveDA)
dataset [71] is a recently released remote sensing dataset with high resolution. Unlike the
Vaihingen dataset and Potsdam dataset with a comparatively small scale, the LoveDA
dataset contains 5987 images collected with spaceborne sensors, covering an area of
536.15 km2 with 7 classes, including buildings, roads, water, barren, forest, agriculture, and
background. The size of each image in the LoveDA dataset is 1024 × 1024 pixels with a
GSD of 0.3 m. Following the official dataset split, 2522 images were used for training and
1669 images for testing in this work.

4.2. Evaluation Metrics

To quantitatively measure and compare the performances in semantic segmentation,
the mean intersection over union (mIoU) and the mean accuracy (mAcc) were employed as
evaluation metrics in this work.

(1) mIoU: The mean intersection over union (mIoU) is one of the most commonly used
evaluation metrics for semantic segmentation. With the confusing matrix shown in Table 1,
the mIoU can be defined as follows:

mIoU =
1
N

N

∑
i

TPi
TPi + FPi + FNi

, (8)

where N is the number of classes. The four items, including true positive (TP), false positive
(FP), false negative (FN), and true negative (TN), represent the relationships between
ground truth and predictions.

Table 1. Relationships between ground truth and prediction, which are represented by TP, FP, FN,
and TN.

Prediction

Positive Negative

Ground Positive TP FN

Truth Negative FP TN

(2) mAcc: The mean accuracy (mAcc) is also an effective evaluation metric for semantic
segmentation which is similar to the accuracy in classification tasks. With the confusion
matrix, the mAcc can be defined as follows:

mAcc =
1
N

N

∑
i

TPi
TPi + FNi

. (9)
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4.3. Implementation Details

(1) Training Configuration: To provide a consistent input, the input images in the
LoveDA dataset are resized into 512 × 512 pixels, which is the same size as images in
the ISPRS Vaihingen and Potsdam datasets. Random resizing, clipping and flipping, and
photometric distortion and band normalization were employed for data augmentation. The
proposed BiTSRS and the compared models were implemented based on the PyTorch frame-
work. The Adaptive momentum estimation with weight decay (AdamW) [72] optimizer
was employed for model training, with the learning rate of 6× 10−5 and the weight decay
of 0.01. To guarantee a reasonable number of training iterations, a polynomial learning
rate [73] with a linear warm-up was adopted for the first 1500 iterations with a warm-up
ratio of 10−6, and the maximum number of iterations was set to 16,000 for the entire training
process. The polynomial policy in the rest of the iterations can be described as follows:

lr(t) = lr0 × (
t
T
)power, (10)

where lr(t) denotes the learning rate in time t, lr0 is the initial learning rate, T is the total
number of iterations, and power is the power of adopted polynomial. Furthermore, for a
fair comparison, the following experiments did not employ pretrained models, namely, all
methods in the experiments were trained from scratch.

(2) Experimental Environment: All the experiments were conducted on a Linux Ubuntu
18.04 LTS server with a single NVIDIA GeForce RTX 3080 GPU with 10,018 MB of memory.

4.4. Ablation Analysis

A simple framework including a Swin transformer encoder and an UperNet-style
decoder without any proposed extra designs was employed as the baseline [43]. To
illustrate the effectiveness of the proposed model, the following ablation experiments
were performed.

(1) Baseline: The baseline model simply combined the Swin transformer with the
UperNet in the encoder–decoder structure, in which the Swin transformer encoder was
used to extract features of the input images, and the UperNet was utilized to restore the
resolution and generate the segmentation results.

(2) Effectiveness of Input Transform Module: The motivation of designing the ITM was to
make the size of input images more appropriate for the Swin transformer encoder. With
cascaded ITM, the designed framework is capable of performing semantic segmentation on
RS images with large spatial scales, conveniently using the pretrained weights of the Swin
transformer trained on the ImageNet dataset. The results for the comparison are shown in
Table 2. The first group depicts the results of the baseline model, which loads the pretrained
weights (denotes as with pr) with or without the ITM. The middle group is the comparison
when the baseline model does not load the pretrained weights with or without the ITM. Ad-
ditionally, the bottom group is the comparison of the baseline model loading the pretrained
weights with or without the ITM, when an input with a larger size of 1024 × 1024 pixels
is employed (a smaller size input with 512 × 512 pixels was employed in the previous
two groups). It can be observed that when the pretrained Swin transformer;s weights are
loaded, improvements of 2.12% in mIoU and 0.28% in mAcc can be obtained by employing
the ITM. Even without the pretrained weights, improvements of 1.56% in mIoU and 1.21%
in mAcc can still be obtained by employing the ITM. Furthermore, when the framework
is applied on larger-scale RS images with a size of 1024 × 1024 pixels, improvements of
2.25% in mIoU and 0.73% in mAcc can also be achieved. The experimental results illustrate
that the designed ITM can effectively improve the performance of RS image semantic
segmentation, especially for large-scale RS images. Even without pretrained weights, the
use of ITM still leads to a salient improvement in semantic segmentation performance.
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Table 2. Ablation analysis of input transform module on the LoveDA dataset. The maximum value
of each column is shown in bold.

Framework
IoU (%) Evaluation Metrics

Background Building Road Water Barren Forest Agricultural mIoU (%) mAcc (%)

baseline with pr 54.45 60.77 56.04 68.63 28.13 43.93 48.99 51.56 66.58
baseline + ITM

with pr 54.43 61.56 58.19 73.32 32.38 43.99 51.86 53.68 66.86

baseline 53.4 45.08 48.61 57.13 24.41 42.71 51.43 46.11 59.55
baseline + ITM 52.24 51.34 51.2 65.98 21.29 40.44 51.24 47.67 60.76

baseline with pr
(1024) 53.56 62.31 57.76 71.2 30.44 45.07 49.56 52.84 66.9

baseline + ITM
with pr (1024) 54.81 66.97 57.65 73.01 33.32 44.93 54.93 55.09 67.63

(3) Effectiveness of the Bi-decoder Design: In this part, the baseline with ITM was em-
ployed as the fundamental framework, and the performance improvements of the three
specific components (Dilated-Uper decoder, FDCN, and focal loss) in the framework are
discussed. The experimental results are shown in Table 3. It can be observed that enclosing
any one of the three specific designs in the baseline framework can lead to a performance
improvement in semantic segmentation. Improvements could also be observed when
their arbitrary combinations were employed in the framework. The best performance was
achieved by combining all the three designs in the framework: there were improvements
of 2.94% in mIoU and 3.25% in mAcc. These improvements can be attributed to their
outstanding capabilities in receptive field expansion, image deformation acquisition, and
handling the problem of training sample imbalance.

Table 3. Ablation Analysis of the proposed designs on the LoveDA dataset. The maximum value of
each column is shown in bold.

Adopted Designs Evaluation Metrics

D-U Decoder FDCN Focal Loss mIoU (%) mAcc (%)

baseline with ITM 47.67 60.76

X 48.4 61.34
X 48.26 62.32

X 48.53 60.61

X X 48.77 62.28
X X 50.1 62.24

X X 49.44 62.26

X X X 50.61 64.01

4.5. Comparison With Some State-of-the-Art Methods

To further demonstrate the effectiveness and superiority of the proposed BiTSRS,
12 state-of-the-art algorithms were adopted for the comparison, including 7 algorithms
proposed for general scene segmentation, i.e., FCN [24], U-net [25], PSPNet [28],
DeepLabv3+ [27], HRNet [11], and SETR [63], BeiT [74]; and 5 algorithms specially designed
for RS images, i.e., STransFuse [48], UNetFormer [75], SwinB-CNN [49], and ST-UNet [47].
The baseline mentioned of our proposed BiTSRS is also included in the comparison. It is
noted that all the CNN-based methods are highly optimized versions based on the official
implementations. For example, dilated convolution in the ResNet50 backbone is employed
in CNN-based methods, such as FCN, U-net, and PSPNet, for better performance.

Particularly, training settings are inconsistent among the RS-specific methods; for
example, the cropped size of the image is 1024 × 1024 in UNetFormer [75], 256 × 256
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in ST-UNet [47], and 300 × 300 in SwinB-CNN [49]. In addition, test-time augmentation
(TTA) strategies are used in UNetFormer [75] and not in other methods. Furthermore, the
number of epochs is also different among the methods; for example, there are 100 epochs in
ST-UNet [47], 50 epochs in UNetFormer [75], and 16,000 iterations in SwinB-CNN [49]. To
make a fair comparison, the RS-specific methods, including UNetFormer, SwinB-CNN, and
ST-UNet, were re-trained and re-evaluated under the same experimental settings, including
without pretrained weights and testing augmentation, with the same cropped size of the
image and number of epochs, etc. As STransFuse [48] does not provide the source code
temporarily, its results were directly taken from its paper, since our experimental settings
were as same as those in [48].

Three commonly used RS image datasets were used in the comparison experiments,
including the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the LoveDA dataset.
The comparison results on Vaihingen dataset are listed in Table 4. It can be observed that
the proposed BiTSRS achieved the highest mAcc and mIoU on the Vaihingen dataset. From
the perspective of the IoU of each class, the proposed BiTSRS achieves an obviously higher
IoU for the clutter class, and a comparable IoU for the other five classes to those of the
other methods. This is also confirmed by the visualization results depicted in Figure 5.
The proposed BiTSRS can effectively segment the clutter class, which is actually the most
challenging class in the Vaihingen dataset, and this can be confirmed by the last rows of the
visualization images.

Table 4. Comparison with some state-of-the-art methods on the ISPRS Vaihingen dataset. The
maximum value of each column is shown in bold.

Methods
IoU (%) Evaluation Metrics

Impervious Surface Building Low Vegetation Tree Car Clutter mIoU (%) mAcc (%)

FCN [24] 83.48 89.82 69.63 79.31 73.12 0.77 66.02 73.27
U-net [25] 77.16 81.44 59.44 73.11 42.86 2.66 56.11 64.46

PSPNet [28] 81.35 86.66 69.83 78.72 57.51 25.87 66.66 73.86
DeepLabv3+ [27] 77.43 85.1 61.13 73.44 54.59 33.5 64.2 72.63

HRNet [11] 79.2 85.85 64.76 74.04 53.68 24.84 63.73 72.82
SETR [63] 79.83 86.81 66.61 75.11 50.02 22.97 63.56 72.43
BeiT [74] 76.44 81.61 63.28 73.22 44.35 16.37 59.21 67.97

UNetFormer [75] 79.24 86.18 64.24 73.87 55.24 24.67 63.91 72.63
SwinB-CNN [49] 80.63 84.97 63.52 75.14 52.7 25.65 63.77 73.08
STransFuse [48] 78.97 84.27 65.35 74.69 62.79 - 66.66 -

ST-UNet [47] 82.74 87.11 68.82 78.18 57.62 29.15 67.27 74.81

baseline [43] 82.19 88.22 68.31 78.08 47.9 19.08 63.96 71.29
BiTSRS 83.17 87.99 67.32 77.64 64.58 36.98 69.61 77.76

The comparison results for the Potsdam dataset are shown in Table 5. The highest
mIoU and mAcc were both achieved by the proposed BiTSRS. It can be observed that
BiTSRS outperforms the other methods for all classes except the tree class and building
class. Similarly to its performance on the Vaihingen dataset, BiTSRS can segment the
clutter class more accurately than the other methods, which is consistent with visualization
results in Figure 6. With a larger scale than the Vaihingen dataset, the Potsdam dataset
has more sufficient data for training, so that better performance is achieved than for the
Vaihingen dataset.

Differently from the Vaihingen and Potsdam datasets, semantic segmentation on
LoveDA dataset is far more challenging, because of its more complex background samples,
inconsistent class distributions, and multi-scale objects. The comparison results on the
LoveDA dataset are shown in Table 6, and it can be seen that the proposed BiTSRS still
clearly outperforms the other methods by producing the best mIoU and mAcc. Particularly,
for the most challenging class in LoveDA dataset, the barren class, the proposed BiTSRS
achieves the highest IoU, which can be also observed in Figure 7.
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Impervious surface Building Low vegetation Tree Car Clutter

Image Ground truth (a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Comparison of visualization results on the ISPRS Vaihingen dataset. (a) FCN.
(b) DeepLabv3+. (c) SETR. (d) HRNet. (e) UNetFormer. (f) ST-UNet. (g) Baseline. (h) BiTSRS.

Table 5. Comparison with some state-of-the-art methods on the ISPRS Potsdam dataset. The
maximum value of each column is shown in bold.

Methods
IoU (%) Evaluation Metrics

Impervious Surface Building Low Vegetation Tree Car Clutter mIoU (%) mAcc (%)

FCN [24] 84.38 90.14 70.93 72.79 91.3 28.46 73 81.51
U-net [25] 74.99 77.73 66.48 67.41 82.28 14.91 63.97 73.44

PSPNet [28] 82.34 88.58 70.22 69.55 87.58 33.82 72.02 82.04
DeepLabv3+ [27] 82.82 90.94 72.2 73.51 82.55 36.73 73.12 82.4

HRNet [11] 82.92 89.86 72.87 73.71 81.54 36.9 72.97 81.75
SETR [63] 80.73 89.46 71.11 72.49 71.82 34.76 70.06 79.33
BeiT [74] 75.86 81.75 66.65 61.71 75.41 25.62 64.5 75.43

UNetFormer [75] 81.49 88.86 70.72 72.49 78.68 34.95 71.2 80.35
SwinB-CNN [49] 80.03 86.51 69.35 73.05 87.19 34.22 71.73 81.86
STransFuse [48] 81.41 88.53 70.81 71.84 79.39 - 71.46 -

ST-UNet [47] 83.02 90.88 72.54 75.04 83.34 38.15 73.83 82.84

baseline [43] 83.34 88.55 73 73.88 85.35 30.38 72.42 80.41
BiTSRS 84.67 90.86 74.63 75.44 88.11 39.26 75.5 83.57

It is also worth noting that the simple FCN method can achieve better results for
almost all classes on the Vaihingen dataset, though it has the lowest mIoU for the clutter
class. However, for large and complex datasets, i.e., the Potsdam dataset and LoveDA
dataset, the FCN performs comparably or even worse than the other methods, indicating
that its architecture is not robust for generalization. However, the highly developed CNN-
based methods, such as Deeplabv3+ and HRNet, in contrast, are more robust, producing
promising results on the three datasets. The general transformer-based methods, such
as SETR and BeiT, cannot achieve promising results on all the three datasets, which may
be mainly because the unique characteristic of RS images are not specifically considered
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when designing these networks. The RS-specific transformer-based methods, such as
UNetFormer, SwinB-CNN, and ST-UNet, can achieve better performances than other
algorithms when they are re-trained and re-evaluated under the same experimental settings
as the proposed BiTSRS. For example, the UNetFormer can produce promising results
even though it is a real-time method with the smallest model size. Particularly, the Swin-
transformer-based methods are more competitive for RS image semantic segmentation; e.g.,
ST-UNet achieves the best performance among all the compared algorithms. This is mainly
because the Swin-transformer structure can better acquire the semantic information in RS
images. However, even for the best transformer-based algorithm, i.e., ST-UNet, it is inferior
to the proposed BiTSRS.

Impervious surface Building Low vegetation Tree Car Clutter

Image Ground truth (a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Comparison of visualization results on the ISPRS Potsdam dataset. (a) FCN. (b)
DeepLabv3+. (c) SETR. (d) HRNet. (e) UNetFormer. (f) ST-UNet. (g) Baseline. (h) BiTSRS.

Table 6. Comparison with some state-of-the-art methods on the LoveDA dataset. The maximum
value of each column is shown in bold.

Methods
IoU (%) Evaluation Metrics

Background Building Road Water Barren Forest Agricultural mIoU (%) mAcc (%)

FCN [24] 52.34 58.89 44.02 54.95 23.99 33.72 47.66 45.08 55.5
U-net [25] 51.7 54.28 51.06 62.11 18.19 36.32 50.05 46.24 57.79

PSPNet [28] 49.79 43.84 41.66 61.43 12.28 36.53 43.07 41.23 53.84
DeepLabv3+ [27] 50.97 60.68 51.76 52.3 28.87 36.01 48.8 47.05 58.87

HRNet [11] 52.32 54.31 53.28 69.05 19.71 38.59 53.54 48.68 61.0
SETR [63] 47.65 42.21 37.2 56.22 20.03 33.47 32.32 38.44 53.32
BeiT [74] 48.85 53.01 47.03 48.59 19.73 36.85 41.85 42.27 58.04

UNetFormer [75] 48.18 56.75 51.17 53.22 12.05 38.06 44.52 43.42 56.27
SwinB-CNN [49] 50.66 56.66 44.91 53.81 31.46 40.3 43.67 45.92 59.05

ST-UNet [47] 48.46 57.2 52.89 65.52 27.68 36.19 56.58 49.22 63.66

baseline [43] 53.4 45.08 48.61 57.13 24.41 42.71 51.43 46.11 59.55
BiTSRS 49.52 55.69 54.32 68.27 32.57 39.99 53.93 50.61 64.01
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Building Road Water Barren Forest Agriculture Background

Image Ground truth (a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Comparison of visualization results on the LoveDA dataset. (a) FCN. (b) DeepLabv3+. (c)
SETR. (d) HRNet. (e) UNetFormer. (f) ST-UNet. (g) Baseline. (h) BiTSRS.

In summary, the proposed BiTSRS clearly outperforms the compared state-of-the-art
methods on all the three datasets, which demonstrates its effectiveness. Specifically, the
three delicately designed modules of BiTSRS (ITM, Dilated-Uper decoder, and FDCN) make
effective contributions to performance improvement in RS image semantic segmentation.
Furthermore, the outstanding capability of BiTSRS in challenging class segmentation
illustrates the superiority of the proposed bi-decoder structure, which makes BiTSRS more
robust to the challenging and complex samples by acquiring a wide range of receptive
fields and more detailed features.

5. Conclusions

In this work, a novel transformer-based semantic segmentation method for RS images,
named BiTSRS, was proposed to address the challenges in RS image semantic segmentation.
In the proposed BiTSRS, the RS images with large spatial scales are flexibly transformed
to appropriate scales with ITM, and then both global and local features of the images are
extracted by the Swin transformer encoder. Furthermore, a bi-decoder structure, including
a Dilated-Uper decoder and FDCN embedded with focal loss, was designed to acquire both
a wide range of receptive fields and detailed deformations for the segmentation task, and to
generate the final segmentation prediction. The experimental results on three challenging
RS datasets demonstrated the effectiveness and advancement of the proposed BiTSRS in
semantic segmentation of RS images, especially for segmentation of hard classes that are
easily confused. With the ablation analysis, each component of BiTSRS was discussed in
detail to illustrate its contribution to the overall performance improvement. The strategies
designed in this work provide insights for future research, and further improvements can
be expected by exploring more advanced transformer-based models and more effective
loss functions.
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