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Introduction: Bitter peptides are short peptides with potential medical applications.
The huge potential behind its bitter taste remains to be tapped. To better explore the
value of bitter peptides in practice, we need a more effective classification method
for identifying bitter peptides.

Methods: In this study, we developed a Random forest (RF)-based model, called

Bitter-RF, using sequence information of the bitter peptide. Bitter-RF covers more
comprehensive and extensive information by integrating 10 features extracted from
the bitter peptides and achieves better results than the latest generation model on
independent validation set.

Results: The proposed model can improve the accurate classification of bitter

peptides (AUROC = 0.98 on independent set test) and enrich the practical application
of RF method in protein classification tasks which has not been used to build a
prediction model for bitter peptides.

Discussion: We hope the Bitter-RF could provide more conveniences to scholars for

bitter peptide research.
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1. Introduction

The bitter peptides, often produced in fermented, aged, and spoiled foods, are oligopeptides
with diverse structures. Studies have shown that hydrophobic amino acids and their positions
are crucial determinants for bitter peptides to exhibit bitter taste (1, 2). Experiments have found
that many toxins are bitter taste, so most mammals, including humans, avoid the intake of
toxins by avoiding bitter substances (3). However, some bitter substances may have medicinal
effects. In biomedical and clinical sciences, hormetic responses were of considerable importance.
Many drugs displayed hormetic-like biphasic dose responses and showed opposite effects at low
and high doses (4). In diabetic patients, the peptides in Momordica charantia (M. charantia)
can significantly regulate blood glucose concentration. A 68-residue insulin receptor binding
protein was isolated from M. charantia. MclRBP-19 in this protein can span the 50th-68th
residues, enhance the binding of insulin and IR, stimulate the phosphorylation of PDK1 and
Akt, and induce the expression of glucose transporter 4, thus promoting glucose clearance (5).
And frequent consumption of M. charantia peptide is beneficial to multiple organs of human
body (6). The active compound polypeptide K extracted from the seeds of M. charantia has
gastroprotective effects in some gastric ulcer models (7). Hence, bitter peptides, previously
avoided due to their potential toxicity, can be beneficial at the correct dosage. Consequently,
the bitter peptides may be very useful in medicine, making their identification extremely
important (8).
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Experimental methods for identifying bitter peptides have a solid
theoretical basis, but the operation is complex, time-consuming,
and inaccurate. Biological methods often involve the extraction of
bitter peptides from raw materials through gel separation, multiple
rounds of liquid chromatography separation, and purification.
Finally, Fourier transforms infrared spectroscopy (FTIR) was used
to identify bitter peptides. Generally, spectroscopic-based methods
have requirements for instruments, which are not universal (9, 10).
Therefore, the bitterness evaluation stage requires the participation
of human subjects, which may lead to inaccurate results (11, 12).
Bioinformatics-based methods for predicting bitter peptides have
the advantages of no professional instrument requirements, short
time consumption, and high prediction accuracy. Therefore, it is
imperative to develop a machine learning model for predicting
bitter peptides.

At present, computational methods have been carried out to
study peptides (13, 14). Models based on the quantitative structure of
bitter taste relationship (QSBR), including multiple linear regression,
the support vector machine (SVM), and artificial neural network
(ANN), have been used to predict bitter peptides (2, 15–21).
Specifically, based on 229 experimental bitterness values determined
by human sensory evaluations, Dragon 5.4 software was designed to
predict bitter peptides by extracting 1292 descriptors and reducing
descriptors to 244 using a home-developed toolbox. Then, the GA-
PLS method was used to select the six best-scoring descriptors for
the QSAR model construction. The six descriptors, including SPAN,
Mean square distance (MSD), E3s, G3p, Hats8U, and 3D-MoRSE,
represent the dimension of the molecule, the numbers of atoms,
weighted atomic electrical topological states, the 3rd-component
symmetry directional WHIM index (weighed by polarizability),
spatial autocorrelation-based descriptors and an indicator of size,
mass, and volume of the molecules.

Further, to improve prediction accuracy, four generations of
classification models based on bitter peptide sequences have been
developed. The first-generation model used dipeptide propensity
scores to predict bitter peptides by extracting a few characteristics
of bitter peptides (22). The second-generation model utilized deep
learning research methods. However, there may be problems with
information redundancy and overfitting (23). The third-generation
model integrated five peptide features to formulate bitter peptides,
but the representativeness should be further optimized (24, 25).
The fourth-generation model extracted feature extraction by deep
learning pre-training, and then built a prediction model based on
light gradient boosting machine (LGBM) (26).

Inspired by the previous four generations of models, we proposed
Bitter-RF, a novel machine learning method for predicting bitter
peptides. In total, ten kinds of feature information were extracted,
consisting of 1,337 features in the feature set. By deleting all zero
items, 1206 features were used for model learning. Here, we used five
machine learning models to learn the features. After comparison, the
RF method has the best classification effect. The schematic framework
of Bitter-RF for bitter peptide prediction is shown in Figure 1.

2. Materials and methods

2.1. Dataset source

The fundamental for constructing a powerful model is to generate
a high-quality benchmark dataset. To provide a reliable model and

make a fair comparison, we used the same dataset as the previous
four generation models (22–24), which can be obtained from http:
//pmlab.pythonanywhere.com/BERT4Bitter (accessed on 13 January
2022). This data was originally obtained by manually collecting
experimentally validated bitter peptides from various literatures
(22). The data contains 640 records, including 320 experimentally
validated bitter peptides and 320 non-bitter peptides, which were
randomly generated from BIOPEP. In order to objectively evaluate
the model, we divided the data into training set and independent set
at a ratio of 8:2. The training set contains 256 bitter peptides and 256
non-bitter peptides. The independent set contains 64 bitter peptides
and 64 non-bitter peptides.

2.2. Feature extraction

In a computational model based on machine learning methods
for biological sequence data, the coding methods of sequences,
which can reveal as much sequence information as possible, are
the most critical step (27–36). In the field of sequence analysis,
scholars have done a lot of works, and various of sequence descriptors
were proposed. Here, we used iLearnPlus to extract 10 types
of features of bitter peptides (37). The specific information was
described as follows.

2.2.1. Amino acid composition (AAC)

The AAC encoding calculates the frequencies of 20 natural amino
acids in a peptide sequence (38–42). The equation was shown as
follows.

f (t) =
N (t)
N

, t ∈ {A,C, ...,Y} (1)

where N(t) means the number of amino acid type t, and N means the
length of peptides.

2.2.2. Traditional pseudo-amino acid
composition (TPAAC)

The TPAAC descriptor is proposed by Chou, which is also called
the type1 pseudo-amino acid composition (43). Here, we use H0

1(i),
H0

2(i), and M0(i) (i = 1, 2, 3,, 20) to respectively represent the
original hydrophobicity values (44), original hydrophilicity values
(45) and original side chain masses of 20 natural amino acids. We
normalized these values based on the standard normal distribution,
as follows.
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Then, the correlation function for residues Ri and Rj can be
defined as:

2
(
Ri,Rj

)
=

1
3
{[
H1 (Ri)−H1

(
Rj
)]2
+
[
H2 (Ri)−H2

(
Rj
)]2

+
[
M (Ri)−M

(
Rj
)]2} (5)

The correlation function contains the three amino acid properties
mentioned above. By generalizing this function definition, an amino
acid property (Eq. 6) and a set of amino acid properties (Eq.7) are
defined.

2
(
Ri,Rj

)
=
[
H1 (Ri)−H1

(
Rj
)]2 (6)

2
(
Ri,Rj

)
=

1
n

n∑
n = 1

[
Hk (Ri)−Hk

(
Rj
)]2 (7)

where H (Ri) is the amino acid property of amino acid Ri after
standardization and Hk (Ri) is the k-th attribute in the amino acid
attribute set of amino acid Ri. And sequence order-correlated factors
were defined as:

θ1 =
1

N − 1

N−1∑
i = 1

2 (Ri,Ri+1) (8)

θ2 =
1

N − 2

N−2∑
i = 1

2 (Ri,Ri+2) (9)

. . .

θλ =
1

N − λ

N−λ∑
i = 1

2 (Ri,Ri+λ) (10)

where λ is a correlation parameter that can be adjusted, and λ should
be less than N, we set λ = 1. And traditional pseudo-amino acid
composition for a protein sequence can be defines as:

Xc =
fc∑20

r = 1 fr + ω
∑λ

j = 1 θj
, (1 < c < 20) (11)

Xc =
ωθc−20∑20

r = 1 fr + ω
∑λ

j = 1 θj
, (21 < c < 20+ λ) (12)

where ω is the weigthing factor and is set to 0.05 in this study.

2.2.3. Amphiphilic pseudo-amino acid
composition (APAAC)

The APAAC is a kind of PseAAC. It contains 20+2λ discrete
numbers: the first 20 numbers consist of conventional amino acids;
the next 2λ numbers are a set of correlation factors that reflect
different distribution patterns of hydrophobicity and hydrophilicity
along the peptide chain (46). This feature was described as follows.

Firstly, using H1 (i)(Eq.2) and H2 (i)(Eq.3) which are defined
in TPAAC to define hydrophobicity and hydrophilicity correlation
functions:

H1
i,j = H1 (i)H1

(
j
)

(13)

H2
i,j = H2 (i)H2

(
j
)

(14)

Secondly, sequence order factors can be formulated as:
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1
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H1
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1
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...
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Finally, the APAAC is defined as:

PC =
fc∑20

r = 1 fr + w
∑2λ

j = 1 τj
, (1 < c < 20) (21)

PC =
ωτu∑20

r = 1 fr + w
∑2λ

j = 1 τj
, (21 < u < 20+ 2λ) (22)

where w is the weighting factor, and it is set to 0.5 in
this study. This value refers to Chou’s work on protein cell
property prediction using this feature (43). And we set λ 1 in
this study.

2.2.4. Adaptive skip dinucleotide
composition (ASDC)

ASDC is a modified dipeptide composition, which takes full
account of the relevant information that exists between adjacent
residues and between intervening residues. The feature vector for
ASDC was defined as:

ASDC = (fv1, fv2, ..., fv400),

fvi =

∑L−1
g = 1 O

g
i∑400

i = 1
∑L−1

g = 1 O
g
i

(23)

where fvi means the occurrence frequency of all possible dipeptide
with ≤ L-1 intervening peptides.
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FIGURE 1

Schematic framework of the Bitter peptide prediction model (Bitter–RF). The main process of Bitter-RF design mainly includes the following steps: (A)
dataset collection, (B) feature fusion, (C) modeling with multiple machine learning methods, (D) Bitter-RF performance evaluation.

2.2.5. Di-peptide composition (DPC)

The DPC encoding describes the frequencies of 400 dipeptide
combination in peptide sequence (47). The calculation method was
shown as follows.

D (r, s) =
Nrs

N − 1
, r, s ∈ {A,C,D, ...,Y} (24)

where Nrs means the number of dipeptides combined by amino acid
types r and amino acid types s and N is the length of peptide.

2.2.6. Dipeptide deviation from expected
mean (DDE)

DDE includes three parameters: dipeptides composition (Dc),
theoretical mean (Tm), and theoretical variance (Tv). Dc is the same
as DPC’s calculation method.Tm and Tv were calculated as follows:

Tm (r, s) =
Cr

CN
×

Cs

CN
(25)

Tv (r, s) =
Tm (r, s) (1− Tm (r, s))

N − 1
(26)

where Cr means the number of codons for the amino acid types r,
and Cs means the number of codons for the amino acid types s.
CN includes total possible codons, which means not including the
three stop codons.

Using three parameters, DDE was calculated as follows:

DDE (r, s) =
Dc (r, s)− Tm (r, s)

Tv (r, s)
(27)

2.2.7. Grouped amino acid composition
(GAAC)

GAAC divides 20 amino acids into five groups based on
their physicochemical properties that are the aliphatic group (g1:

GAVLMI), aromatic group (g2: FYW), positive charge group (g3:
KRH), negative charged group (g4: DE) and uncharged group (g5:
STCPNQ). This feature describes the frequencies of these five groups
of amino acids and can be calculated as follows:

f
(
g
)
=

N
(
g
)

N
, G ∈

{
g1, g2, g3, g4, g5

}
(28)

where N
(
g
)

is the sum of the number of the amino acid which
belongs to group g, and N is the length of peptide sequence.

2.2.8. Grouped dipeptide composition
(GDPC)

GDPC is a variant of DPC based on the amino acid classification
already mentioned in GAAC. The feature consists of 25 descriptors,
calculated as follows:

f (r, s) =
Nrs

N − 1
, r, s ∈

{
g1, g2, g3, g4, g5

}
(29)

where Nrs is the number of dipeptides represented by amino acid type
groups r and s, and N is the length of peptide sequence.

2.2.9. Sequence-order-coupling number
(SOCNumber)

The d-th rank sequence-order-coupling number was calculated as
follows:

τd =

N−d∑
i = 1

(
di,i+d

)2
, d = 1, 2, ..., nlag (30)

where di,i+d describes the distance between two amino acids at
positions i and i + d in a given distance matrix, nlag denotes
the maximum value of the lag (default value: 30) and N is the
length of the peptide sequence. The distance matrix used here from
both Schneider–Wrede physicochemical distance matrix (48) and
Grantham chemical distance matrix (49).
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2.2.10. Quasi-sequence-order (QSOrder)

For each amino acid, defined QSOrder as follows:

Xr =
fr∑20

r = 1 fr + w
∑nlag

d = 1 τd

, r = 1, 2, 3, ..., 20 (31)

where fr represent the normalized occurrence of amino acid which is
r typed, and the weighting factor w is defined as 0.1, and nlag denotes
the maximum value of the lag (default value: 30). τd is the same as the
definition in SOCNumber.

For other 30 quasi-sequence-order descriptors, defined QSOrder
as follows:

Xd =
wτd − 20∑20

r = 1 fr + w
∑nlag

d = 1 τd

, d = 21, 22, ..., 20+ nlag (32)

2.3. Random forest

RF algorithm is an ensemble of decision trees and has been widely
used for classification. Each tree depends on the value of a random
vector that is sampled independently and has the same distribution
for all trees in the forest. The introduction of randomness can reduce
the possibility of overfitting, improve the ability to resist noise, and
has strong adaptability to high-dimensional data.

RF algorithm has been applied to a variety of protein classification
problems (50–54).

2.4. Model evaluation metrics

To evaluate the training effect and prediction ability of the model,
we mainly used the Area Under the Receiver Operating Characteristic
curve value (AUROC), supplemented by Sensitivity (Sn), Specificity
(Sp), Matthew’s correlation coefficient (MCC), accuracy (ACC) (55–
72). These indexes can be formulated as follows:

Sn =
TP

(TP + FN)
(33)

Sp =
TN

(TN + FP)
(34)

MCC =
(TN × TP − FN × FP)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(35)

ACC =
(TP + TN)

(TP + TN + FP + FN)
(36)

where TP and FN represent the number that the bitter peptides are
predicted as true bitter peptides and non-bitter peptides, respectively.
On the contrary, TN and FP represent the number that the non-
bitter peptides are predicted as true non-bitter peptides and bitter
peptides, respectively. That is to say, bitter peptides were defined as
positive samples, and non-bitter peptides were defined as negative
samples in this work.

TABLE 1 Results of RF-based models using 10 single features.

Cross-validation Feature Dimension AUROC Sn Sp Acc Mcc

10-fold cross-validation AAC 20 0.91 0.85 0.84 0.85 0.69

TPAAC 21 0.90 0.83 0.78 0.80 0.61

APAAC 22 0.89 0.83 0.81 0.82 0.64

ASDC 400 0.88 0.89 0.68 0.79 0.59

DPC 400 0.86 0.87 0.64 0.76 0.53

DDE 400 0.83 0.84 0.73 0.78 0.57

GAAC 5 0.75 0.72 0.66 0.69 0.39

GDPC 25 0.78 0.75 0.71 0.73 0.46

SOCNumber 2 0.70 0.66 0.62 0.64 0.28

QSOrder 42 0.89 0.82 0.82 0.82 0.64

Independent set validation AAC 20 0.96 0.91 0.89 0.90 0.80

TPAAC 21 0.94 0.83 0.86 0.84 0.69

APAAC 22 0.97 0.89 0.91 0.90 0.80

ASDC 400 0.92 0.89 0.75 0.82 0.65

CKSAAGP 100 0.87 0.77 0.81 0.79 0.58

DPC 400 0.89 0.88 0.70 0.79 0.59

DDE 400 0.90 0.89 0.84 0.87 0.74

GAAC 5 0.76 0.83 0.64 0.73 0.48

GDPC 25 0.80 0.73 0.72 0.73 0.45

SOCNumber 2 0.73 0.59 0.69 0.64 0.28

QSOrder 42 0.95 0.92 0.84 0.88 0.77

Best performance metrics are shown in bold.
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TABLE 2 Features after feature reduction operation.

Feature Dimension Dimension after operation

AAC 20 20

TPAAC 21 21

APAAC 22 22

ASDC 400 366

DPC 400 303

DDE 400 400

GAAC 5 5

GDPC 25 25

SOCNumber 2 2

QSOrder 42 42

Total of features 1,337 1,206

Sn is the model’s sensitivity, representing the proportion of
correctly predicted positive samples to the total number of actual
positive samples (73–76). Sp is the model’s specificity, representing
the proportion of correctly predicted negative samples to the total
number of actual negative samples (77, 78). Here ACC, MCC
and AUROC are all comprehensive indicators. ACC represents
the proportion of correct predicted samples to the total samples.
And MCC is the correlation coefficient between the description
classification and the predicted classification. Its range is [-1, 1]. If
the value is 1, it means the model prediction performance is perfect.
If the value is -1, it means the prediction is completely opposite to the
actual. The AUROC indicator can be used as a standard for evaluating
the quality of the binary classification model (79–82). The closer the
value of AUROC is to 1, the better the classification effect.

3. Results and discussion

3.1. Single-feature-based results

Here, we used iLearnPlus to extract the above 10 features (AAC,
TPAAC, APAAC, ASDC, DPC, DDE, GAAC, GDPC, SOCNumber,
QSOrder) and then utilized them to train a RF-based predictive
model for accurately identifying Bitter peptides (37). Table 1 shows
the results of 10-fold cross-validation and independent set.

As can be seen, AAC is the best among all single features, with
AUROC of 0.91 and 0.96 in 10-fold cross-validation and independent
data test, while the worst was SOCNumber, with AUROC of 0.70

and 0.73. This result should show that SOCNumber has only two
dimensions, so this feature cannot afford enough information. Thus,
this feature may be used to fuse other features to supplement
additional information.

Amino acid composition is only a basic feature and does not
burden physicochemical properties. Therefore, we think that there is
still a large space for optimization. Previous studies have shown the
relationship between bitter peptides and factors such as amino acid
hydrophobicity and amino acid position. Some single features with
poor performance have rich information that AAC does not have and
can improve prediction performance. Therefore, we will study how
to optimize the parameters of characteristics in following section.

3.2. Fusion feature processing

By fusing the 10 features mentioned above, we will get a 1,337-
dimensional fusion feature. In this step, we de-zero the fusion feature.
When a column contains only zero, it has no practical effect on the
discrimination and is removed. After deleting all zero columns, 1206
features remain, as shown in detail in Table 2.

3.3. Fusion-feature–based results

In this study, we compared the prediction effect of the fusion
features and the three features with the highest independent set
validation AUROC value among the above 10 single features. It has
been proved that using the RF method to deal with fused features
does have more advantages in terms of predictive ability. Table 3 and
Figure 2 show the results of 10-fold cross-validation and independent
set validation.

It could be seen that, in 10-fold cross-validation and independent
set validation, the prediction performance of fusion features
was improved or remained unchanged compared with single
feature prediction. That is to say, the fusion features have better
predictive ability.

3.4. Comparison with other machine
learning methods on fusion features

To further validate the prediction model of the RF method for
bitter peptides, we compared it with some traditional machine

TABLE 3 Comparison between single-features and fusion feature using RF algorithm.

ML method Cross-validation Feature Dimension AUROC Sn Sp Acc Mcc

Random Forest 10-fold cross-validation AAC 20 0.91 0.85 0.84 0.85 0.69

APAAC 22 0.89 0.83 0.81 0.82 0.64

QSOrder 42 0.89 0.82 0.82 0.82 0.64

Fusion 1206 0.93 0.86 0.84 0.85 0.70

Independent set validation AAC 20 0.96 0.91 0.89 0.90 0.80

APAAC 22 0.97 0.89 0.91 0.90 0.80

QSOrder 42 0.95 0.92 0.84 0.88 0.77

Fusion 1206 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.
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FIGURE 2

The prediction results using different features. (A) AUROC curves of fused features using RF; (B) AUROC curves of fusion features and three
single-feature on independent data; (C) detailed results on training data using 10-fold cross-validation; (D) independent data validated results.

TABLE 4 Comparison of multiple machine learning methods using fusion features.

Cross-validation Feature ML method AUROC Sn Sp Acc Mcc

10-fold cross-validation Fusion SVM 0.67 0.51 0.80 0.66 0.34

Fusion LightGBM 0.92 0.85 0.85 0.85 0.70

Fusion DT 0.80 0.83 0.77 0.80 0.60

Fusion LR 0.82 0.74 0.77 0.76 0.52

Fusion RF 0.93 0.86 0.84 0.85 0.70

Independent set validation Fusion SVM 0.74 0.61 0.78 0.70 0.40

Fusion LightGBM 0.97 0.92 0.91 0.91 0.83

Fusion DT 0.94 0.94 0.84 0.89 0.78

Fusion LR 0.89 0.80 0.84 0.82 0.64

Fusion RF 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.

learning methods. Here, Support Vector Machines (SVM),
LightGBM, Decision Trees (DT), and Logistic Regression (LR)
were selected to build models for comparison. The prediction results
of each machine learning method are shown in Table 4 and Figure 3.
It can be seen that the RF method is superior to or equal to other
machine learning methods in various indicators, and has good
learning effect and prediction ability. Therefore, according to the
data characteristics provided by us, the RF method shows the best
predictive ability.

3.5. Comparison with existed models

To evaluate the predictive ability of Bitter-RF, we compared
it with the existing four sequence-based models. The first model
is iBitter-SCM which was constructed based on the dipeptide
propensity score, the second model is BERT4Bitter using deep
learning method, the third model is iBitter-Fuse by combining fuses
features with SVM, and the fourth model was iBitter-DRLF by
selecting features through deep learning (22–24, 26). Here, Bitter-RF
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FIGURE 3

Performance evaluation of different machine learning models using (A) 10-fold cross-validation and (B) independent testing.

TABLE 5 Performance comparison of Bitter-RF with the existing methods.

Cross-validation Classifier AUROC Sn Sp Acc Mcc

10-fold cross-validation iBitter-SCM 0.90 0.91 0.83 0.87 0.75

BERT4Bitter 0.92 0.87 0.85 0.86 0.73

iBitter-Fuse 0.94 0.92 0.92 0.92 0.84

iBitter-DRLF 0.95 0.89 0.89 0.89 0.78

Bitter-RF 0.93 0.86 0.84 0.85 0.70

Independent set validation iBitter-SCM 0.90 0.84 0.84 0.84 0.69

BERT4Bitter 0.96 0.94 0.91 0.92 0.84

iBitter-Fuse 0.93 0.94 0.92 0.93 0.86

iBitter-DRLF 0.98 0.92 0.98 0.94 0.89

Bitter-RF 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.

FIGURE 4

Radar plot for comparing Bitter-RF with other published models using (A) 10-fold cross-validation and (B) independent testing.
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model used the same bitter peptide and non-bitter peptide sequences
as the previous four models. We further extended the types of
extracted features on the basis of the third model, and used the RF
method for modeling. By referring to relevant literatures, we obtained
the performance indicators of the four models. The comparison
results have been shown in Table 5 and Figure 4.

The performance comparison between Bitter-RF model and the
four models showed that the results of Bitter-RF model in 10-fold
cross-validation are similar to BERT4Bitter, and slightly lower than
iBitter-Fuse. However, the results of Bitter-RF model on independent
data are generally better than those of the first three models, and
are comparable to those of the fourth model. Bitter-RF model has
the same Sn index as the previous two generation models, which
is superior to the first generation model. The indexes of Sp, ACC
and MCC are better than those of the previous three generations.
Furthermore, the AUROC of Bitter-RF model is 5% higher than that
of iBitter-Fuse. Although the prediction performance of Bitter-RF is
close to that of iBitter-DRLF, we used a traditional machine learning
method, which consumes less computing resources. To sum up,
Bitter-RF model shows stronger prediction performance and better
practical application ability.

To our knowledge, we could not find any alternative bitterness
classification studies allowing us to assess the intrinsic robustness
of the bitter/non-bitter classification and therefore it cannot be
excluded that the model may be affected by the inherent bias of
training/test set data.

4. Conclusion

Compared with other proteins, there is still much room for
related research on bitter peptides, and it has shown potential medical
benefits. To better study bitter peptides, we developed a novel model
Bitter-RF for predicting bitter peptides, which uses information from
multiple perspectives, including sequence internal information and
physicochemical properties. By comparison, we concluded that fused
features could produce better performance than single features, RF is
more suitable for bitter peptide prediction, and Bitter-RF has more
application advantages than the four published models. Our research
further enriches the application of RF method in the field of protein
classification. And Bitter-RF model’s better results also show that
enrich physical and chemical properties, location information and
other characteristics play an important role in the identification of
bitter peptides, which can provide biologists with more directions for
biological experiments to verify bitter peptides.

However, one may notice that the features were not optimized. In
the future, we will use various of feature selection techniques (83–86)
to pick out the best features for improving model’s performance.

Based on the proposed method, a free and easy-to-use python
package has been built and accessible at GitHub: https://github.
com/ZhangYufei01/Bitter-RF.git, which can help scholars to identify
bitter peptides.
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