
Published online 24 October 2018 Nucleic Acids Research, 2019, Vol. 47, Database issue D1179–D1185

doi: 10.1093/nar/gky974

BitterDB: taste ligands and receptors database in 2019

Ayana Dagan-Wiener1,2,*, Antonella Di Pizio1,2, Ido Nissim1,2, Malkeet S. Bahia1,2,

Nitzan Dubovski1,2, Eitan Margulis1,2 and Masha Y. Niv1,2,*

The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment,

The Hebrew University, 76100 Rehovot, Israel and 1The Fritz Haber Center for Molecular Dynamics, The Hebrew

University, Jerusalem 91904, Israel

Received September 20, 2018; Revised October 03, 2018; Editorial Decision October 04, 2018; Accepted October 09, 2018

ABSTRACT

BitterDB (http://bitterdb.agri.huji.ac.il) was intro-

duced in 2012 as a central resource for informa-

tion on bitter-tasting molecules and their receptors.

The information in BitterDB is frequently used for

choosing suitable ligands for experimental studies,

for developing bitterness predictors, for analysis of

receptors promiscuity and more. Here, we describe

a major upgrade of the database, including signif-

icant increase in content as well as new features.

BitterDB now holds over 1000 bitter molecules, up

from the initial 550. When available, quantitative sen-

sory data on bitterness intensity as well as toxic-

ity information were added. For 270 molecules, at

least one associated bitter taste receptor (T2R) is re-

ported. The overall number of ligand–T2R associa-

tions is now close to 800. BitterDB was extended to

several species: in addition to human, it now holds

information on mouse, cat and chicken T2Rs, and

the compounds that activate them. BitterDB now pro-

vides a unique platform for structure-based studies

with high-quality homology models, known ligands,

and for the human receptors also data from mutage-

nesis experiments, information on frequently occur-

ring single nucleotide polymorphisms and links to

expression levels in different tissues.

INTRODUCTION

Bitter taste is one of the basic taste modalities, along with
sweet, sour, salty and umami (1,2). The taste modalities
are needed to interpret the nutritional value of food, and
play a major role in food choice and intake. Bitter taste is
recognized by a subfamily of G-protein coupled receptors
(GPCRs), called the T2Rs or TAS2Rs. The number of sub-
types varies in different species (from 3 in chicken to 50 in

frog (3)). Even mouse and human have a different number
of T2R subtypes, where orthologs are dif�cult or impossible
to assign (4). The connection to the number (and breadth
of tuning) of the bitter taste receptors in the species and
the habitat of the species is among the questions explored
in the chemosensory �eld of studies (5,6). Additional ques-
tions include the potential existence of different types of bit-
ter taste, the level of overlap between the compounds recog-
nized as bitter by different species, the quest for endogenous
ligands for extra-orally expressed bitter taste receptors (7–
10) and the chemical features associated with extreme bit-
terness. The data on bitter compounds and the associations
with the receptors that were gathered in the BitterDB (11)
enabled us (12) and others (13–15) to develop bitterness pre-
dictors. The BitterPredict bitterness predictor (12) has been
used to evaluate bitterness of toxic compounds, leading to
the conclusion that the link between bitterness and toxicity
may not be as strong as previously suggested (16).
The evaluation of bitterness of molecules is important

in drug discovery, particularly for pediatric drugs where
the compliance of bitter-tasting drug is a major obstacle
(17). Current practicemainly relies on humanpanels, BATA
tests using rats and electronic tongues (18). Thus, compar-
ison between human and rodent responses and analysis of
physicochemical andmolecular properties of bitterants is of
great importance. Further development of in silico predic-
tors has practical implications and holds potential to mini-
mize the use of animals and to reduce costs (19).
The study of interactions between bitterants and their

cognate T2Rs can provide additional tools for rational dis-
covery of bitter taste agonists and antagonists. T2Rs have
low similarity to Class AGPCRs and lack some of the typi-
cal ClassA features (20). Nevertheless, modeling T2R struc-
tures on Class A templates have been successful when inte-
grated with experimental techniques (21–23), and validated
homology models are available in the current BitterDB edi-
tion.
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Interestingly, multiple genetic polymorphisms in T2Rs,
which affect individual bitter taste perception, exist in the
population with high frequencies (24,25). The single nu-
cleotide polymorphisms (SNPs) in human TAS2R38 gene
have been widely investigated: differences in three amino
acids determine the ability to taste the bitterness of the
substances phenylthiocarbamide, 6-n-propylthiouracil (26)
and other related compounds. Many additional function-
ally important SNPs are known (27). Combining the data
on SNPs, site-directed mutagenesis and related T2Rs from
other species provide a broad view on structure–activity of
T2Rs.
BitterDB is currently the only freely electorally search-

able repository, which holds bitter taste compounds and re-
ceptors. It is widely used by academia and industry as a
handy electronic resource to check for compound bitter-
ness, and obtains the relevant citations and activity data.
BitterDB offers a large representative dataset of bitter
compounds to employ in chemoinformatics analyses. The
database is routinely updated with data from the literature
and is open to uploads from users. In addition to the con-
tinuous growth, several new features have been added in the
current BitterDB edition, as detailed below.

DATABASE ADDITIONS AND IMPROVEMENTS

Bitter compounds

BitterDB in 2019 contains 1041 compounds (increase of 2-
fold from original BitterDB), including 50 short peptides,
which were cited in the literature as bitter for human and/or
were shown to activate at least one bitter taste receptor
(in one of the four organisms––human, chicken, mouse or
cat). The compounds were collected from over 100 pub-
lications (3-fold increase from previous version) that have
been manually reviewed. The molecular properties, iden-
ti�ers (SMILES, InChIKey, IUPAC name, CAS number
and AA sequences for peptides), cross-links, bitter category
(bittersweet, extremely bitter etc.) and several �le formats
for download as described in (11) are available for each
compound. Experimental rat LD50 values extracted from
the Acute Oral Toxicity Database (28) (see ‘Materials and
Methods’ section) were added when available, as estimates
for compounds’ toxicity.
In addition to the existing qualitative bitterness category,

quantitative sensory data about compounds bitterness were
added as a new feature. The quantitative sensory data were
collected for more than 200molecules from over 33 publica-
tions in which sensory tests to detect compound bitterness
were performed. For such compounds, BitterDB now pro-
vides recognition threshold concentration, EC50 or recog-
nition threshold concentration per kg of body weight and
reference to the publication in which the sensory test was
performed.
An important part of BitterDB is the associations be-

tween bitter compounds and their corresponding bitter
taste receptors. BitterDB now holds over 800 interactions
based on in vitro experimental activity measures such as
EC50 or effective threshold, usually detected using HEK
cells transfected to heterologously expressed T2Rs, where
activation by ligands is monitored by calcium imaging
(23,29) or other cell-based methods (30).

Finally, when available, BitterDB provides a link to the
compound entry in PubChem (31), ZINC (32), DrugBank
(33) and IUPHAR/BPS Guide to PHARMACOLOGY
database (34).

Not only human

While originally the BitterDB included data related to hu-
man only, it is expanded now to additional species and in-
cludes data for chicken (Gallus gallus), mouse (Mus mus-
culus) and cat (Felis catus) 3, 35 and 12 bitter taste re-
ceptors, respectively, and their currently known ligands
(22 81 17 ligands, respectively). The BitterDB interface
was updated to support the multi-species addition, and it
offers the users two modes: organism-speci�c mode (hu-
man, mouse chicken or cat) and all-species mode. In the
organism-speci�c mode, database functionally is reduced to
the available data relevant for the selected organism only.
For example, if the user switches to ‘mouse’ mode in the
browse tables, only mouse bitter taste receptors or com-
pounds that activate mouse bitter taste receptors will be
shown.

Bitter taste receptors

For each receptor, the BitterDB provides known ligands,
sequence, molecular weight (MW) and genome location as
previously described (11). The current version also contains
new features for structure-based studies:
3D homology models for the human, chicken and part

of the more studied mouse receptors are now available for
view and download. These models are a result of an ex-
tensive modeling integrated with experimental validations
(6,22,23)). For the human bitter taste receptors, we added
data about common SNPs. For each receptor, the related
SNPs are summarized in a table with links to the relevant
dbSNP page (35). Furthermore, we expanded the data re-
garding mutagenesis experiments from ∼20 publications.
For each receptor that such data exist, we generated a table
that summarizes the residues that were mutated and refer-
ences to the related publications. The residues involved in
SNPs or mutagenesis experiments are also marked on the
2D protein diagram.
The bitter taste receptors in BitterDB are cross-linked

with UniProt (36), GPCRDB (37) and UCSC (38) (when
possible). The human bitter receptors are linked also
with the Human Protein Atlas (www.proteinatlas.org) (39),
which provides important data about the tissues that ex-
press bitter taste receptors and to GeneCards (40).

Table 1 summarizes the increase in content and features in
the current edition of BitterDB, in comparison to the 2012
version.
Since the data on natural and synthetic compounds have

grown signi�cantly, it is interesting to assess the distri-
bution of physicochemical properties in these two groups
(see Figure 1). The histograms indicate similar distribution
of molecular weights and hydrophobicity values, as repre-
sented by AlogP. It should be noted that while most of the
bitter compounds are hydrophobic, some polar bitter com-
pounds (AlogP lower than −3) exist as well.
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Figure 1. Distribution of AlogP and molecular weight values for different subgroups in the current BitterDB dataset.

Table 1. Comparison of data in original (2012) and new (2019) BitterDB

versions

BitterDB 2012 2019

# of bitter molecules 551 1041
# of molecules associated with at least
one T2R

∼100 ∼260

# of scienti�c publication used ∼30 ∼140
# of species 1 4
# of receptors 25 75
# of ligand–receptor associations 250 >800
# of 3D models 0 43
# of SNPs 0 47
# of receptors with data about
mutagenesis

6 11

# of cross-linked databases for
compounds

1 4

# of cross-linked databases for
receptors

2 5

# of natural/synthetic/unassigned 63/39/448 306/58/677
# peptides 0 51

In Figure 2, we show a step-by-step example of a us-
age scenario. Speci�cally, in the main window we se-
lected the speci�c organism (mouse) mode and chose
search→compounds (panel 1). On the compound search
form, we selected advanced search (panel 2). In the ad-
vanced search page, the options ‘data on Rat acute oral
LD50 is available’ and ‘data on bitter receptors is available’
were chosen (panel 3). This search returned 14 molecules
that �t the criteria. SDF �le of these 14 molecules can be
downloaded. From the results, caffeine was selected (panel
4). On caffeine entry page (panel 5), bitterness description,
quantitative in vitro, sensory and toxicity data are shown in
A till D, respectively.

MATERIALS AND METHODS

Compound data acquisition

The new compounds added to BitterDB, the bitter inten-
sity sensory values and the ligand bitter receptors interac-
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Figure 2. BitterDB possible usage: Panel 1+2: Compounds advanced search was chosen from menu, in mouse mode. Panel 3: In advanced search page, the
options for compounds with speci�c data on rat acute oral LD50 and data on associated receptors were chosen. Panel 4: Search result panel, 14 compounds
that �t the criteria were found, caffeine was selected for detailed view. Panel 5: Caffeine page in BitterDB: (A) Detailed description of the resources about
caffeine bitterness and description of speci�c bitter taste when available. (B) Detailed data, including receptor activation measures from in vitro studies of
associated receptor in mice (when moving to ‘All species’ mode, more targets will be shown). (C) Quantitative sensory data: detailed information about
the sensory bitter recognition thresholds from three different publications is represented. (D) The toxicity measure (rat acute LD50) can be found in the
compound properties.

tion details were extracted manually from dozens of publi-
cations.
When the exact molecule structure was available in a

publication (including stereochemistry speciation), it was
searched in PubChem (31), and SMILES representation
of the molecule was extracted. When only the name of
the compound appeared in a publication, the structural
data SMILES representation was extracted from the Pub-
Chem entry with the same name. Molecules that were not
found in PubChem were drawn manually using ChemS-
ketch (ACD/Structure Elucidator, 2016.1.1, Advanced
Chemistry Development, Inc., Toronto, ON, Canada,
www.acdlabs.com, 2015) or using https://chemicalize.com

ChemAxon (https:/www.chemaxon.com), and SMILES
representation was generated using these tools. The
SMILES representation of the bitter peptides was generated
using the CycloPs server (41).
The new bitter compound data was collected from: (4,42–

46). The data about ligand–bitter receptor interactions
was collected for human bitter receptors activation from
(4,42,44), for mouse bitter receptors activation from (4), for
chicken bitter receptors activation from (3,22), and for cat
bitter receptors activation from (47). The sensory bitter in-
tensity data was collected from (43,45,46,48,49).
Compound identi�ers, CAS number, Canonical

SMILES, Isomeric SMILES, IUPAC name and InChIKey,
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were extracted from PubChem. For compounds that
are not present in PubChem, the identi�ers were com-
puted using RDKit (Open-source cheminformatics;
http://www.rdkit.org). Physicochemical properties (MW,
AlogP, H-bond donor, H-bond acceptor, number of rings
and number of aromatic rings) were calculated using RD-
Kit. SDF �les available for download were also generated
using RDKit.
The Acute Oral Toxicity (rat acute oral LD50) values,

where extracted using the OECD QSAR Toolbox v3.4.0.17
(50), and Acute Oral Toxicity Database (28) as described in
(16). The toxicity LD50 value is represented as ‘mg/kg bw’,
meaning amount of compound in milligrams for each kilo-
gram body weight of exposed subject.
Conversion between database IDs was done using the

Fiehnlab conversion tool (http://cts.�ehnlab.ucdavis.edu/
batch).

Receptors data acquisition

The receptors’ numbering in the receptor pages titles ap-
pears as in the reference publication about bitter receptors
activation in that species, namely, human (29), mouse (4),
cat (47) and chicken (3). Receptors sequences and proper-
ties were extracted from UniProt (36) and UCSC (38). For
cat (Felis catus), due to the lack of data or inconsistency
in the different protein databases, sequences were extracted
from (47) and searched using NCBI protein BLAST (51) to
be linked with protein entries in UniProt and NCBI RefSeq
(52). Gene names and genome locations were taken from
NCBI’s Genome Data Viewer (version 4.4).
Homology Modeling: hT2R14 receptor model generated

by (53) was used as a template for modeling all human and
mouse bitter taste receptors loaded in the database, whereas
the chicken bitter taste receptors were prepared using the
ggT2R1structure modeled and validated in (6,22) as tem-
plate.
SNPs: The SNP data for the bitter receptors were ex-

tracted from dbSNP (35). Only SNPs with Minor Allele
Frequency values >0.05, considered commonly occurring,
were added to BitterDB.

Tools

The Alignment page was updated (http://bitterdb.agri.huji.
ac.il/dbbitter.php#ReceptorAlignment) to contain a Mul-
tiple Sequence Alignment (MSA) of the 25 human bitter
taste receptors. This MSA was generated using structural
information from 11 sequence distinct Class A GPCRs, for
which a crystal structure has been solved. The 25 human bit-
ter taste receptors and the 11 Class A GPCRs were aligned
using the PROMALS3D webserver (54), which allows con-
struction of MSAs for distantly related proteins using 3D
structural information.
The BitterPredict page shares data and results of our re-

cent studies performed using BitterDB. The code for Bit-
terPredict, an machine learning classi�er, which predicts
whether a compound is bitter or not based on its chemi-
cal structure, can be download. BitterPredict prediction re-
sults on different datasets (ZINC, drugBank, ChEBI and
FooDB) as well as the external validation sets used in (12)
can be explored or downloaded.

The BitterToxic page shares links and data related to our
recent study that explored the connection between bitter-
ness and toxicity (16).

Visual improvements and updates

2D images for BitterDB 2.0 were generated using: http:
//hulab.rxn�nder.org/smi2img/.Homologymodel visualiza-
tion is provided with NGLViewer (55) and the alignment is
presented using BioJS (56).

SUMMARY AND OUTLOOK

The number of bitter molecules can now be estimated as
tens of thousands (16), harboring dramatic structural di-
versity. All thesemolecules are recognized by a limited num-
ber of bitter taste receptors. The primary goal in established
BitterDB was to create a platform that provides a realistic
overview of the nature of the numerous bitter molecules, as
well as molecular features of speci�c bitter taste receptors.
The extended literature search that was performed for the

updated edition of BitterDB is a signi�cant step toward il-
luminating the sensory chemical space. The current knowl-
edge may help design rational experiments, in which com-
pounds in under-studied regions of the chemical space may
be tested.
To facilitate this goal, future development of BitterDB

will involve organization within BitterDB by connecting
between similar molecules, investigating speci�c chemical
families and gathering deeper knowledge on bitter com-
pounds stereochemistry.
We encourage the scienti�c community to contribute to

BitterDB the structures of the compounds found to activate
T2Rs, which can be done via the ‘upload’ link or by direct
correspondence with the BitterDB team.
Over 19 000 of users, with ∼300 new users added per

month are routinely using BitterDB (see Google Ana-
lytics Report http://bitterdb.agri.huji.ac.il/additionalFiles/
BitterDB Report 7 years.pdf). The current edition will
help these and new users, from academia and from in-
dustry, to carry out cross-species comparative studies and
structure-based studies, as well as develop tools for bitter-
ness prediction and modi�cation. Due to expression of bit-
ter receptors in extra-oral tissues and increasing interest in
these receptors as novel drug targets, a wealth of informa-
tion is likely to be obtained by groups working in both food-
related and drug discovery related �elds.
Fundamental questions as well as potential therapeu-

tic applications of the modulation of bitter taste receptors
continue to motivate further development of the BitterDB
database. Future extensionswill include data fromnewpub-
lications (such as more 3D receptor structure models and
more mutagenesis data), inclusion of additional species, in-
formation on bitter taste maskers and inhibitors, classi�-
cations of compounds based on chemotypes, spectroscopic
data on compounds and more.
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