
BitTorrent Traffic Obfuscation:

A Chase towards Semantic Traffic Identification

Thomas Zink Marcel Waldvogel

Distributed Systems Group

University of Konstanz

first.last@uni-konstanz.de

Abstract—With the beginning of the 21st century emerging
peer-to-peer networks ushered in a new era of large scale media
exchange. Faced with ever increasing volumes of traffic, legal
threats by copyright holders, and QoS demands of customers,
network service providers are urged to apply traffic classifica-
tion and shaping techniques. These systems usually are highly
integrated to satisfy the harsh restrictions present in network
infrastructure. They require constant maintenance and updates.
Additionally, they have legal issues and violate both the net
neutrality and end-to-end principles.

On the other hand, clients see their freedom and privacy
attacked. As a result, users, application programmers, and even
commercial service providers laboriously strive to hide their
interests and circumvent classification techniques. In this user
vs. ISP war, the user side has a clear edge. While changing the
network infrastructure is by nature very complex, and only slowly
reacts to new conditions, updating and distributing software
between users is easy and practically instantaneous.

In this paper we discuss how state-of-the-art traffic classifica-
tion systems can be circumvented with little effort. We present a
new obfuscation extension to the BitTorrent protocol that allows
signature free handshaking. The extension requires no changes
to the infrastructure and is fully backwards compatible. With
only little change to client software, contemporary classification
techniques are rendered ineffective. We argue, that future traffic
classification must not rely on restricted local syntax information
but instead must exploit global communication patterns and
protocol semantics in order to be able to keep pace with rapid
application and protocol changes.

I. INTRODUCTION

The appearance of peer-to-peer networks started the age

of large scale multimedia and binary distribution over the

networks. BitTorrent has become one of the most prominent

application protocols in use and is responsible for large

volumes of traffic. Copyright holders, however, try to impose

responsibility about transmitted content to network providers.

Large traffic volume, especially when crossing network bound-

aries, means higher cost. Since P2P applications demand vast

amount of resources and threaten the quality of other services

(QoS) Network providers feel urged to see their use as a form

of denial of service (DoS). To satisfy demands for availability,

security and QoS, and to ease the displeasure of copyright

holders, the network providers apply traffic classification and

traffic shaping techniques. Users on the other hand have

legitimate interest in hiding their intentions. As a result, users

and application programmers go to great lengths to obfuscate

their traffic and data. Randomizing ports and data encryption

are common methods. In addition, multiple services – both

free as well as commercial – have surfaced that aim to improve

privacy and anonymity. In this paper we show how only a few

changes to the client’s source code allows effective hiding of

BitTorrent traffic.

Contemporary traffic classification systems usually consist

of a combination of Deep Packet Inspection (DPI) and some

sort of statistical or behavior analysis. DPI is a very expensive

task both in space and time that only works on well-known

signatures. It is prone to obfuscation and encryption but works

reliably on plain text packets. Statistical/behavior analysis uses

statistical information to evaluate the behavior of interesting

flows or hosts and give estimates about possible application

layer protocols. Methods range from simple port matching

to bayesian analysis and other machine learning techniques.

Though accurate results cannot be guaranteed, it is possible

to identify obfuscated and encrypted protocols. The more

accurate the results have to be, the more expensive and

sophisticated behavior analysis gets.

Updating signatures and fingerprints for identification is

retroactive and requires continuous monitoring and analysis

of communication protocols. While this poses no significant

problem for low-speed software-based classification systems,

it is extremely difficult and resource intensive for high-speed

classification hardware. Since traffic identification has to be

done on wire-speed these systems are highly integrated into

the network infrastructure and cannot be changed easily. A

change of rules usually results in a change of hardware that

needs to be verified and distributed. While changing network

infrastructure hardware is difficult the distribution of updated

P2P client software is trivial.

We propose a new obfuscation extension that aims to

hide the infamous BitTorrent handshake. Our approach makes

use of a globally shared secret to encrypt the payload and

applies flow obfuscation techniques to obfuscate flow features.

Thus it targets both signature-based DPI as well as statistical

classification systems. It is easy to implement, backwards

compatible and does not require any changes to the BitTor-

rent infrastructure. It circumvents contemporary identification

mechanisms, both signature-based as well as statistics-based,

while still maintaining compatibility to unmodified clients.

The goal is not to provide a high degree of privacy, rather

to demonstrate that minimal effort in protocol design requires

significant changes in traffic classification systems.

Ersch. in: 12th IEEE International Conference on Peer-to-Peer Computing, P2P'12, 2012, Tarragona, Spain, September 3 - September 5

Konstanzer Online-Publikations-System (KOPS)

URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-202625

http://www.p2p12.org/accepted-papers
http://nbn-resolving.de/urn:nbn:de:bsz:352-202625

II. RELATED WORK

Traffic classification is a vast and heterogenous field with

many different methodologies, applications and granularities.

A study by Caida [31] reviews numerous papers that span over

a decade of research. In general, the goal is to either specifi-

cally identify the layer 7 protocol, or to perform a coarse-grain

classification according to some pre-defined categories, e.g.

peer-to-peer, VoIP, streaming or standard. Methods are packet-

based and flow-based, and concentrate on port matching, DPI,

and analysis of flow characteristics (see Figure 1). Many of the

proposed methods target specific applications or application

domains and are neither designed to nor capable of identifying

all protocols. As a result, contemporary classification systems

utilize multiple stages and a combination of available methods.

Extensive overviews of state-of-the-art traffic classification can

also be found in [19], [27], [16], [23].

Granularity Fine-grained

Coarse-grained

Characteristics Application Payload

Header / Port

Number

Flow Features

Method Exact Match

Machine learning Supervised

UnsupervisedHeuristics

Fig. 1. Taxonomy of internet traffic classification as analyzed and proposed
by Zhang et al. [31]

Encryption is an effective way of protecting the traffic

from unauthorized observation. It usually requires the par-

ties to exchange some key information and negotiate an

encrypted connection. In case of BitTorrent, Message Stream

Encryption/Protocol Encryption (MSE/PE), provides a means

to encrypt traffic between supporting peers. MSE utilizes a

Diffie-Hellman-Merkle (D-H) key exchange [29] to negotiate

and establish an encrypted connection. Supporting peers first

try to establish an encrypted connection by initiating the key

exchange. If it fails, they revert back to unencrypted handshake

and send plain data. Otherwise the peers negotiate encryption

and afterwards perform the (encrypted) BitTorrent handshake

to identify the protocol. This is required since the D-H key

exchange is generally independent of the application protocol.

Both peers can append random padding to the initial key

exchange messages, which provides more variance in packet

sizes.

MSE/PE has been subject to heated debate [28], cannot be

considered standard and is fairly complex to implement. As

a result, not all clients support encrypted connections. To the

best of our knowledge there are no clients in the wild that

actually implement MSE correctly as defined by the proposed

standard.

A D-H key exchange is also used for eDonkey protocol

encryption [3], [4]. Skype uses RC4 to encrypt signaling traffic

while the actual VoIP packets between peers is encrypted using

AES [14], [18]. Furthermore, Skype can use both TCP and

UDP as well as a range of different codecs to transport and

encode the VoIP messages and dynamically adjust to different

network environments [15]. The authors of [30] give an

overview of VoIP identification and possible countermeasures.

Protocol encryption/obfuscation only provide privacy for the

specific protocol or application. Anonymity networks like TOR

[13] or I2P [5] offer anonymity and privacy on the network

layer. Practically any application can be routed through the

anonymity network. The data is usually routed through multi-

ple proxies and encrypted multiple times on its way through

the network. The demand for anonymity and privacy is high

enough to justify commercial services like ItsHidden [6] and

BTGuard [2] that offer anonymous network infrastructures

for paying customers. However, the downside of anonymity

networks is decreased network performance due to extensive

rerouting and encrypting. In addition, anonymity networks

might target or exclude specific applications like peer-to-peer

or prevent connections with peers that are not part of the

anonymity network.

With the exception of Skype, protocol obfuscation is usually

limited to packet content. Flow features are rarely or not

sufficiently disguised. In [11], [23] the authors show that

sophisticated statistical methods can identify obfuscated and

encrypted protocols with over 90% accuracy. Their SPID

algorithm (Statistical Protocol IDentification) computes ses-

sion fingerprints based on “meters” and compares them to

pre-learned protocol models. SPID provides a multitude of

different “meters” which can be trained, configured and in-

cluded independently. Some meters are designed for, and only

effective on specific protocols. This adds a lot of complexity

but also flexibility to the identification process. The authors

conclude that contemporary protocol obfuscation is not suf-

ficient to hide traffic from statistical classification due to

relatively strong flow characteristics. Based on their evaluation

the authors suggest three protocol design improvements to

bypass traffic classification and shaping (see Figure 2). In

addition to payload obfuscation they suggest concealing flow

features using 1) randomized flushing of data streams 2)

random padding and 3) random changes of flow directions. We

take this as a starting point to improve BitTorrent obfuscation.

III. OBFUSCATING BITTORRENT

Following [23], we discuss how their proposed design

suggestions can be applied to BitTorrent, and show how small

changes allow effective payload and flow obfuscation. We

propose an obfuscation extension, which consists of multiple,

Payload

Obfuscation

Flow Obfuscation Random Flushing

Random Padding

Random Packet

Directions

Hiding Tunneling

Encapsulation

Onion Routing

Key Exchange

Shared Secret

SSH, HTTP, ...

IPsec, ...

Fig. 2. Effective Traffic obfuscation as suggested by John et al.[23]

independent techniques that address both the payload as well

as flow features. It is easy to implement and introduces very

little overhead to cpu and bandwidth usage. First, we use a

Shared Random Secret (section III-A) and the target peer’s

Peer ID to obfuscate the handshake message payload. Thus,

the packet contents appear random to an observer, defeating

DPI systems. Second, we introduce a new message type, called

Padding Message (section III-C), which allows injection of a

random number of random bytes into BitTorrent flows. This

raises variance in packet lengths and payload values and thus

increases the difficulty of statistical fingerprinting. Third, we

introduce Random Flushes (section III-D) to further randomize

packet sizes and also packet frequency. We also discuss the

applicability of Random Packet Directions (section III-E) and

how it could be implemented in BitTorrent clients. To maintain

compatibility with other BitTorrent clients and reduce pressure

on the network we introduce a Magic Peer ID (section III-B)

that can signal obfuscation support prior to the exchange

of messages between peers. Finally, we address and discuss

limitations of our proposal (section III-F).

Notice that the proposed techniques do only address peer-

to-peer communication. The scheme does not obfuscate peer-

to-tracker traffic and thus does not prevent an observer from

extracting information using tracker traffic. As a result it

cannot protect against the so called Sandvine attack. Tracker-

to-peer traffic obfuscation that addresses the Sandvine attack

problem has been proposed in [22]. We also expect that a

generalization of our approach could be applied to tracker

traffic.

A. Obfuscated Handshaking

The BitTorrent protocol specification [17] defines the Peer

Wire Protocol, the actual protocol used to establish connec-

tions and to exchange messages. It requires the peers to do

an initial BitTorrent handshake directly following the TCP

handshake. This BitTorrent handshake uses a fixed string sig-

nature at a fixed position that is easily detectable using simple

exact string matching. It is depicted in Figure 3. Contemporary

DPI systems like openDPI [7] or l7-filter [1] simply compare

the first 20 bytes to the pattern “0x13BitTorrent protocol”. A

match clearly indicates a BitTorrent handshake and leads to

immediate service identification, which in turn allows guilt-

by-association attacks.

Name
Length

Protocol Name

0 1 20

Reserved

28

Info Hash Peer ID

48 68

Fig. 3. BitTorrent handshake message. Name Length is set to “0x13”,
Protocol Name equals “BitTorrent protocol”. The Reserved field is used to
transmit extension support. Info Hash is the globally known hash of the torrent
files info hash value. Peer ID is the clients random peer ID

Standard BitTorrent does not specify nor condone any

obfuscation methods. After much debate MSE is now the de-

facto standard for encrypted BitTorrent connections. However,

[23] has shown, that even MSE can be detected due to

characteristics of the key exchange and too little variance in

padding implementations. While the lack of padding can easily

be fixed, MSE suffers from high complexity and impact on cpu

usage as well as bandwidth.

0 48 68

salt
remote

Peer ID

||

E

sha1_hash

Obfuscated

Signature

Obfuscated

Info Hash
Obfuscated

Peer ID

28

Reserved Info Hash Peer ID

E

12 20

Obfuscated

Reserved
Salt

E

/ 0 ... 12

/ 12 ... 20

Fig. 4. Obfuscation of the handshake message. A random salt is concatenated
with the remote peer ID and hashed. The hash is used to obfuscate the hand-
shake by applying simple bit extraction and XOR operations. Concatenation
is denoted by (‖), (E) is a symmetric cryptographic function, in our case XOR

Since the BitTorrent handshake is the most discriminating

feature of the BitTorrent protocol, concealing the handshake

message itself will nullify the effect of most DPI systems. In

the obfuscated handshake message all fields are obfuscated

by using the sha1 hash value of the target peer’s “peer ID”

concatenated with a randomly generated “salt”. Figure 4 and

Listing 1 show the procedure and the resulting handshake

message.

The 8 byte salt is generated randomly for each distinct

handshake and written to the message. It is only used once

together with the target peer ID as key for the cryptographic

function. It can thus be also thought of as a publicly shared

nonce.The target peer ID is used to prevent an observer from

extracting all decoding information from the actual message.

Listing 1. Obfuscating the handshake

o b f u s c a t e (handshake hs , p e e r i d remote)

{
b y t e s a l t [8] = randombytes (8) ;

b y t e key [2 8] = c o n c a t (remote ,

s a l t) ;

sha1 hash d i g e s t = hash (key) ;

b y t e r s v d [8] = E (hs . r svd , d i g e s t

(1 2 , 2 0)) ;

b y t e i h [2 0] = E (hs . ih , d i g e s t) ;

b y t e p i d [2 0] = E (hs . pid , d i g e s t) ;

hs = c o n c a t (d i g e s t , s a l t , r svd , ih ,

p i d) ;

}

An observer would need to extract IPs, ports, and associated

peer IDs from tracker responses to lookup the input for the

hash function. The sha1 hash value of {remote peer ID, salt}
is then used as key to disguise all message fields. We use sha1

since it is already a standard hash function in BitTorrent. The

first 12 bytes of the hash value are written to the beginning

of the handshake followed by the one-time salt itself. Next,

a symmetric encryption algorithm is used to obfuscate the

fields Reserved, Info Hash, and Peer ID. In all cases

hash(remote peer ID, salt) serves as the input key

to encrypt the fields’ contents. In our scheme we use XOR for

encryption. It is cheap, fast, and provides enough scrambling

to effectively hide the information from an observer. However,

XOR does not exhibit strong encryption and an attacker could

use sequences of handshake messages to extract information

through correlation. If a stronger encryption is required XOR

can be replaced by any symmetric encryption algorithm, e.g.

AES.

Though the handshake itself appears to be random, it

still shows unique flow features that can be exploited for

identification. Handshake messages are always 68 bytes long

and are the first packets that are sent in alternating directions.

If an outgoing packet with 68 bytes and random content is

followed by an incoming packet with equal features one can

assume to observe an obfuscated BitTorrent handshake.

To maintain compatibility with other clients, peers support-

ing the obfuscated handshake extension first try to connect

using an obfuscated handshake and fall back to standard hand-

shake if it fails. The proposed order of peer wire connection

is thus encrypt followed by obfuscate followed by plaintext.

B. Magic Peer ID

One downside of the obfuscated handshake extension is,

that it will fail if one side does not support obfuscation.

In that case the target peer will sever the connection and

reestablishment is required. The probability of that happening

can be vastly reduced by encoding obfuscation support in

the chosen peer ID. Since the peer IDs are announced by

the tracker, peers in the swarm can easily determine, which

peers support obfuscation. The peer ID is chosen such that its

sha1 hash value shows a specific 2-byte value at a predefined

position. This 2-byte value indicates support for the proposed

extension. Following we will refer to a peer ID with the said

characteristic as “magic” and to a peer that has a magic peer ID

as “magic peer”. Listing 2 shows the magic peer ID generation.

Listing 2. Magic peer ID generation

p e e r i d g e n e r a t e m a g i c p e e r i d () {
p e e r i d p i d ;

whi le (! i s m a g i c (p i d)) {
r andom pee r id (p i d) ;

}
re turn p i d ;

}

boo l i s m a g i c (p e e r i d p i d) {
sha1 hash d i g e s t = hash (p i d) ;

re turn ! (d i g e s t & 0xFFFF) ;

}

Thus, a peer ID is considered magic, iff the last 2 bytes of

its sha1 hash value are zero. Of course, any other predefined

value at predefined positions would do. However, value and

position do neither influence performance nor applicability, so

we use the last two bytes for the sake of simplicity.

Finding a suitable magic peer ID requires continuous ran-

dom generating and testing during startup and reduces the

possible ID address space. However, computation is cheap and

should on average not take more than 216 tries. Reduction in

address space is also negligible and will not effectively limit

the number of unique peers in a swarm. In fact, it provides

more randomness than the currently used peer ID conventions

which use much higher numbers of fixed bytes to encode client

software and version [20].

Since the peer ID is transmitted with the metainfo file

by the tracker, each peer can easily determine which one

supports handshake obfuscation w.h.p.. A peer receiving the

peer list from the tracker will then test each peer ID of target

peers for being magic. If the peer ID is magic, the according

peer supports the extension w.h.p.. For any peer that does

not support the extension the ordinary BitTorrent handshake

is used to establish a connection. Peers that do support the

extension will be connected using an obfuscated handshake. If

this fails, the client falls back to ordinary handshake. Naturally

there is a margin of error if a peer chooses a magic peer

ID by accident without supporting the obfuscation extension.

However, in that case obfuscation will fail and the connecting

peer will reconnect using the ordinary handshake.

Using the peer ID to transport information allows to reduce

connection establishment overhead significantly. In case of

MSE/PE a peer always tries encryption first and falls back

to ordinary handshaking. Thus, if the target peer does not

support encryption the connection will be ceased and a new

connection is necessary. When propagating support of our

obfuscation extension with the magic peer ID reestablishment

is only required with a very low probability in case the peer ID

appears magic by accident. However, usage of the magic peer

ID is not a requirement for obfuscation to work. It is simply a

means to announce obfuscation support prior to the exchange

of actual peer messages and thus reducing the probability of

unwanted reconnects.

The BitTorrent specification [17] suggests that peers should

not make any assumption using the peer ID since it is supposed

to be completely random. However, in practice, clients use the

peer ID to transmit information about the client implementa-

tion and version. [20] describes a number of peer ID styles,

the most prominent being “Azureus” and “Shad0w” style.

These styles also use the peer ID to transmit information and

reduce the randomness even more than the suggested magic

peer ID scheme. It is worth mentioning that some clients –

like Transmission – dedicate quite some computational effort

to identify the peer’s client software. This is because some

clients implement their own, incompatible extension protocols.

In order to always support the correct extension protocol

version, client software and version information is needed.

The magic peer ID style proposed here does not transport

this information. If really needed, it is possible to generate

magic peer IDs based on “Azureus” and “Shad0w” styles.

This, however, limits the randomness and reintroduces patterns

that can be exploited by DPI systems, which is not advised.

C. Random Padding

Random padding can be used to effectively conceal flow

features. In case of MSE padding is also used during key

exchange, although the implemented padding length is insuf-

ficient to provide enough variance [23], and as a result can be

detected.

BitTorrent’s specification [17] also specifies messages

according to the type-length-value (TLV) standard.

More specifically, BitTorrent messages are encoded as

<length><type><payload>. The first integer denotes

the length of the message (counting the type field) followed

by one byte which denotes the type of the message followed

by the message payload itself. Nine messages are specified,

some clients also implement a tenth message. Keep-alive

messages are the sole exception to this encoding standard,

since they can be empty.

Length = 1 + X Type = 0xa Value = X random bytes

0 4 5 X+5

Fig. 5. Padding message. A random number of random bytes. Introduces
randomness in both packet length as well as content value which makes
statistical fingerprinting difficult

We suggest a new message type, called “padding” with a

randomly chosen length and random payload, which can be

appended to conversations at all time. However, since data

transfer usually appears already pretty random and consumes

much bandwidth, it is better suited for small messages. Its

main purpose is to add variance and randomness to handshake

and signaling messages, which makes an early identification

using statistical fingerprinting extremely difficult. The message

is depicted in Figure 5. Listing 3 shows an example implemen-

tation.

Listing 3. Padding message

b y t e [] padd ing () {
i n t l e n = r and (1 , 1 4 0 0) ;

b y t e t y p e = 0 xa ;

b y t e v a l u e [l e n] = randombytes (l e n

) ;

b y t e msg [l e n +4] = c o n c a t (l en , type

, v a l u e)

re turn msg ;

}

Whenever the peer decides to use padding, the message

is randomly generated and can be appended to any data due

to be sent. We suggest using up to 1,400 bytes to provide

randomness close to the MTU. One downside of the message

scheme is that the first two bytes in the “length” field will

always be zero, while type will always equal 0xa. This

will lead to recognizable patterns in handshake messages

whenever padding is appended. To counter this effect we

suggest scrambling the padding message header fields during

the handshake. For this we use a similar approach as with the

Reserved field. We extract 5 bytes from the random hash

and XOR them with the padding message header. Again, any

other symmetric cryptographic function can be used instead.

Naturally, the cost of adding random garbage is bandwidth.

So it is best suited for small-sized messages including the

handshakes and any signal traffic.

D. Random Flush

While random flushing of TCP streams is generally possible,

it requires disabling Nagle’s algorithm [25] and probably

changing socket buffer sizes, which impacts overall TCP

performance and usually is not advised. Since the operating

system is in control of transport layer services, random flushes

might not be an option on all systems, although, all major

operating systems provide functions to change TCP related

parameters.

In case of P2P networks, the majority of packets are used for

file exchange. A strong flow feature of P2P flows is therefore

high rates of large packets in short intervals over a long

period of time. This is, however, true for any file exchange

protocol, including FTP, HTTP or even SSH in case of file

transfers. Nevertheless, packet sizes and frequency can be

a strong indicator for file sharing. Random flushes provide

more variance in packet sizes, but they neglect transmission

frequency. Since packets are flushed prematurely, the overall

number of packets, number of bytes – due to header overhead

– and conversation time will increase. The overall cost in terms

of bandwidth over time will rise significantly.

This additional cost is neither in the interest of the consumer

nor the provider. All parties have to pay the price for ignoring

net neutrality. It would be best to refrain from using packet

sizes and rates for identification and abstain from random

flushes whenever possible. However, if needed, we suggest to

also apply randomized transmission frequency to further add

variance to packet rates.

E. Random Packet Directions

The BitTorrent specification states that “peer connections

are symmetrical [...] and data can flow in either direction.”

[17]. Both the seeders and leechers can and do initiate com-

munication. In practice, however, peers that open a connection

always initiate the key exchange and handshake. This obser-

vation can be exploited to infer BitTorrent key exchanges and

handshakes by just looking at the directions of the first few

packets.

There is a simple reason for this behavior. The connecting

peer wants to share a specific file identified by the info hash.

Since peers can share many files and be part in many swarms,

the target peer has no possibility to know for sure, for which

info hash the connection has been established. It has to wait

for the info hash, provided by the handshake to identify the

shared file. The only exception is, if the listening as well as

connecting peer only share one common file with the same

info hash, in which case the listening host could look up the

needed information in the tracker response dictionary and craft

the handshake himself.

Theoretically, either peer could initiate the handshake and

key exchange. This would, however, require a change in Bit-

Torrent’s file sharing incentive. Usually, connecting peers an-

nounce the info hash of the shared file during handshaking and

than actively request file chunks using interested mes-

sages. When the direction of handshakes randomly changes,

the peer that establishes the connection would wait a random

amount of time and listen for incoming handshakes. In this

case the interested peer might initiate the handshake after a

timeout or receive a handshake request before the timeout.

Since the shared file is announced in the handshake the

interested peer looses control about which files are downloaded

over the connection.

Although random changes of packet directions is possible it

requires significant changes in sharing behavior and a means

of globally guaranteeing that all files are equally well shared,

which is out of scope of this paper.

F. Limitations

The proposed payload obfuscation scheme requires the

knowledge of the target peer’s peer ID prior to initiate the

handshake. This prevents a client from supporting the compact

peer list extension [21], which allows trackers to return a more

compact peer list that excludes the peer ID and only sends

binary encoded {IP, Port} pairs. As a result pressure on the

trackers rises. Although most trackers do support the compact

peer list extension it is generally not a requirement and trackers

do return the full peer list if requested. Still, it poses additional

costs for obfuscation.

Since peer-to-tracker traffic is usually not obfuscated, an

observer could capture this traffic and use the information

to decode and identify obfuscated handshakes. However, this

would require the observer to keep vast amounts of state

including IPs, Ports and associated peer IDs. In addition

he needs to observe all connections between collected hosts

and actively try to decode the whole messages. While this

is theoretically possible it is practically not applicable. The

amount of space and time needed to perform this kind of

attack is not available for many years to come on high-

speed network infrastructure. Even if the exchange channel

is insecure the obfuscation is practically still robust against

exploitation. Furthermore, if an attacker can intercept tracker

traffic he could simply disrupt all BitTorrent traffic using

the Sandvine attack. There would actually be no point in

trying to break obfuscation. As stated in section I the goal of

our obfuscation extension is not to provide cryptographically

secure privacy, but to prevent early identification as simple as

possible.

Another limitation of using the target peer ID for obfusca-

tion is the usage of PEX and DHT to exchange peers without

a tracker. Both extensions allow peers to directly exchange

compact peer lists. Since these lists do not include the peer

IDs communication with exchanged peers cannot be directly

obfuscated. Peers still announce to the trackers so it would

be possible to learn the peer IDs over the tracker channel.

Another possible solution is to take a globally known value

as substitute in cases where the target peer ID is unknown.

We are also evaluating ways to use other sources like torrent

file content and magnet links for sources of a globally known

shared value.

A potential risk of being exposed as a BitTorrent peer is

the fallback to plaintext handshaking. This is done to maintain

compatibility with older clients and standard even with MSE/

PE. However, if really required the client could be configured

to only allow connections using MSE/PE and obfuscation as

fallback. However, this does not prevent other peers to try to

connect using plaintext handshakes which can then be easily

detected.

IV. EVALUATION

We implemented the proposed method in ttorrent 1.0.4 [26],

a java BitTorrent library which is very lightweight and easily

extensible. Ttorrent is an all-in-one solution, providing an API

for clients, trackers and torrent files alike. This allowed us to

use one library to rebuild the whole BitTorrent infrastructure in

a controllable and, more importantly, easily evaluable fashion.

We also implemented a reference application in c as baseline

and for testing purposes. It only provides the absolutely

necessary functions and has about 100 lines of code. The basic

implementation into ttorrent required changes to less than 200

lines of code.

We used Planet-Lab [9] as a testbed and deployed our

modified ttorrent client on 70 nodes which all initially acted

as leechers. The tracker and initial seeder ran on dedicated

virtualized servers and tracked/seeded slitaz [10], an open

source Linux distribution. We captured all traffic on the initial

seeder’s interface using tcpdump [12], which mimics the

capability and view of the network access provider. In addition,

we also tested interaction with a variety of popular BitTorrent

client software and opentracker [8], which is the mostly used

tracker software world wide.

We then analyzed the captured traffic using OpenDPI [7],

[24], SPID [11], [23], and picDFI [32]. OpenDPI is Ipoque’s

open source version of its commercial PACE engine and a

state-of-the-art DPI representative, while SPID is a statistical

protocol identification algorithm that uses trainable protocol

models which can dynamically be applied to identify l7 proto-

cols. In both cases we did not apply any optimizations but used

the provided demo applications with default settings. Only in

case of OpenDPI did we implement per flow output, to verify

and compare the results with SPID’s, which outputs per flow

results by default. PicDFI is an experimental identification

algorithm targeted at resource restricted environments that uses

very basic behavior analysis heuristics.

A. Client Compatibility

To test communication of magic peers with ordinary peers,

we introduced popular clients to the swarm. We tested the

following client software.

• Vuze 4.7.0.0

• uTorrent 1.0.3 and 1.5.11

• Transmission 2.41 and 2.42

• rtorrent 0.7.9 and 0.8.9 (libtorrent-rakshasa)

• libtorrent-rasterbar 0.15.7

This client set covers the vast majority of BitTorrent clients

in the wild today and is a decent representation of actual

swarms. All clients could successfully participate in the obfus-

cated swarm. We also forced some magic clients to initiate an

obfuscated conversation regardless of the target peer’s peer ID

to test the effect of fast reconnects. As expected, the obfuscated

handshake was rejected but the subsequent plain handshake

was accepted at all times. We did observe random attempts to

perform an obfuscated handshake with Transmission clients.

We assume, that Transmission’s peer ID generation algorithm

exhibits a higher probability of producing peer IDs that appear

magic, we did not verify that assumption, though.

We also tested the behavior of a magic peer participating in

an ordinary swarm. Again, the magic peer behaved as expected

and could communicate, download and seed in the ordinary

swarm. We encountered no connection problems or noticeable

delays.

B. Magic Peer ID generation

We generated 100k magic peer IDs to analyze the number

of random tries and time needed to find a magic peer ID. The

generated peer IDs are also analyzed regarding their byte value

distribution.

Fig. 6. Byte values of 50 random magic peer IDs. Each row represents a
peer ID, the columns encode the byte value, darker means lower

Figure 6 shows the byte values of a selection of 50 of the

100k randomly generated magic peer IDs. As can be seen they

appear completely random and look like noise. This is true for

the whole set of magic peer IDs. Figure 7 shows the standard

deviation and mean of the ids’ byte values. Both are pretty

linear with only small fluctuation in value. In addition, the

standard deviation is also pretty high and the measured means

are close to the theoretical means.

5 10 15 20

7
3
.6

7
3
.8

7
4
.0

7
4
.2

byte values

byte offset

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

5 10 15 20

1
2
7
.0

1
2
7
.6

1
2
8
.2

m
e
a
n

sd
mean

Fig. 7. Standard deviation and mean of magic Peer ID bytes

Figure 8 shows the number of tries needed to generate

the magic Peer IDs. Although, the number of tries increased

notably with the maximum value encountered being 766, 152,

it still took only roughly one second to find. In the worst

case, the startup delay introduced by searching for a magic

peer ID might be enough to be recognizable by and annoying

to the user. However, the Peer ID is generated only during

startup and then remains constant for the remainder of the

session. In extreme cases, searching a magic peer ID could

be canceled in favor of decreasing startup time, sacrificing

the ability for obfuscation. In addition, the client could cache

previously found magic peer IDs, or search for them during

idle times and save /reuse them for subsequent sessions.

As expected, on average the client needed roughly 216 tries

and about 100 ms to find a suitable magic peer ID.

C. Handshake message

We extracted all handshake messages from the recorded

traffic to analyze them for randomness and traits that could be

exploited for identification. Since the BitTorrent handshake has

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
e
+
0
0

2
e
+
0
5

4
e
+
0
5

6
e
+
0
5

Magic Peer ID generation tries

number of generation

n
u

m
b

e
r

o
f
tr

ie
s

tries
max

mean

median
min

Fig. 8. Byte values of 100k magic peer IDs

to be sent immediately after the TCP handshake it can easily

be observed by looking for packets with a relative sequence

number of 1 in any tcp stream (assuming all packets have been

captured).

Figure 9 shows the first 300 bytes of 300 of the recorded

handshake messages. These packets have been recorded early

at the start of the simulation. Each row denotes a handshake

message with earlier messages appearing higher. The columns

represent the byte offset. Byte values are encoded in color,

black represents 0 while white equals 255. Since nearly all

messages have individual lengths, missing byte values have

been replaced with zero. Note, that handshake requests and

responses are not required to appear adjacent to each other. In

fact, most of the request/response pairs are delayed.

The image appears mostly random. The only recognizable

pattern is the random length of the message, which is a

result of adding random padding. Handshake messages are

thus always between 68 and 1500 bytes long. Although, not

a strong feature in itself, it might still be exploitable when

combined with other flow features.

Figure 10 shows the standard deviation and mean of the

handshake messages’ byte values up to offset 100. It can

clearly be seen that the standard deviation is high and stable

throughout the whole message.

D. Random Flush

To evaluate the effect of random flushes, we deployed one

peer seeding an image of Ubuntu 11.10 and one leeching peer.

For comparison, the file is exchanged twice. First, the seeder

does not use random flushing. For the second exchange, the

seeder sets the TcpNoDelay property and continually retrieves

x bytes from the message queue, where x is random and 1 ≤
x ≤ 1401, and writes them to the socket’s output stream. The

traffic is captured on the leeching peer’s interface. We then

analyze the traffic regarding number of packets and bytes sent

during the conversations. The results are shown in table I.

Fig. 9. 300 recorded Handshake messages. Each row corresponds to a
message, the columns represent byte values. For each message 300 bytes are
shown. A recognizable pattern is the variable length of the padding messages
(horizontal black bars)

0 20 40 60 80 100

7
0

7
2

7
4

7
6

7
8

8
0

byte values

byte offset

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

0 20 40 60 80 100

1
1
8

1
2
4

1
3
0

m
e
a
n

sd
mean

Fig. 10. Standard deviation and mean of handshake message bytes

bytes
Flush #pkts #secs sum min max avg stdev

no 821k 139 785.3m 66 1,434 956.35 650.14

yes 2,8m 893.6 917.5m 66 1,434 326.76 411.16

TABLE I
PACKET SIZE COMPARISON IN THE PRESENCE AND ABSENCE OF RANDOM

FLUSHING

When using flushing the number of packets sent is 3.41

times higher than using standard transmission policy. The

overhead in terms of total number of bytes is about 16%.

Regarding conversation time, random flushing needed nearly

6.5 times longer to exchange the file. Interestingly, although

the average packet size is much smaller in presence of flushing,

variance and standard deviation do not increase but instead

actually decrease compared to no flushing. The reason can be

seen by examining the actual frequencies shown in fig. 11.

In case of no flushing packet sizes show frequency peaks

at both the small and big extremes. Most packets are bigger

200 400 600 800 1000 1200 1400

1
1
0
0

1
0
0
0
0

packet size frequency

size[B]

fr
e

q
u

e
n

c
y
 (

lo
g

)

flush
noflush

Fig. 11. Frequency of packet sizes in presence and absence of random
flushing. Note that the figure only shows flushing, padding of small packets
is not applied and discussed independently in section IV-C. That explains why
the curve is not flat

than 1,200 bytes. There are no packets with sizes between 300

and 800 bytes. This is because the messages sent are either

file transfers, resulting in big packets, or signaling, like keep-

alives, and file chunk requests. Signaling packets are small and

they appear quite often. For the same reason, frequency also

peaks for small packets in case of flushing. However, instead

of clusters of big packets, the sizes are equally distributed

between 200 and 1,400. Naturally, this leads to lower variance.

To also eliminate the peak of small packets, random padding

can be applied to signaling messages, increasing their size,

and, thus, flattening the frequency distribution.

As shown, random flushing proves to be quite expensive in

consumed bandwidth over time. This adds significant pressure

on the network, which should be avoided whenever possible.

When random flushing is applied, smaller packets should

be expanded with random padding to produce a more equal

distribution.

However, it is questionable if the additional costs are

justified. Short term, statistical identification tools that use

packet sizes and rates can be fooled. But on the long term,

high frequencies of random sized packets is a strong flow

feature in itself. Therefore, when disguising flow features

through random padding and flushing, these techniques should

be rarely applied and probably limited to handshake and signal

messages, and not actual file transfer.

E. Identification

To test the effect of handshake obfuscation and random

padding on contemporary identification mechanisms, we an-

alyzed the recorded traffic using state-of-the-art DPI and

statistical traffic identification systems. Note, that for iden-

tification analysis we only applied payload obfuscation and

random padding since we concentrate on handshake obfusca-

tion. Flushing is only required and useful for large packets

that are exchanged later in the flow.

As DPI system we used Ipoque’s OpenDPI [24]. For sta-

tistical analysis we used SPID [23] a system that computes

fingerprints and compares these to pre-learned protocol models

to perform identification. A multitude of different meters can

Algorithm total flows Identified
protocol number flows

OpenDPI 403
unknown 374
BitTorrent 29

SPID 389
unknown 360

HTTP 29

picDFI 793
unknown 431

P2P 361

TABLE II
IDENTIFICATION RESULTS

be used to describe a known protocol which allows different

levels of detail but also introduces a high complexity. In

addition, we used picDFI [32], an efficient flow inspection

and classification algorithm, which specifically targets P2P

applications is based on the assumption, that P2P uses both

TCP and UDP on the same port within a short period of time. It

is targeted for resource restrictive environments with the intent

not to give highly accurate results but to provide preliminary

analysis and hints about interesting flows.

The results are shown in table II. As can be seen, both,

DPI as well as SPID, were not able to detect and identify the

obfuscated BitTorrent traffic. OpenDPI only identifies 29 flows

as BitTorrent. These are all seeder to tracker announces that

OpenDPI recognizes by searching for the string “GET ” and

then parsing the whole tracker get request looking for the client

software and info hash values. These flows are equivalent to

the 29 HTTP flows detected by SPID. Tracker requests look

pretty much like HTTP requests and SPID was not able to

distinguish between those two. Since OpenDPI aims at early

detection by looking for the string “0x13BitTorrent protocol”

it was unable to recognize the obfuscated handshakes and

thus failed to identify the BitTorrent flows. One reason why

SPID fails to detect BitTorrent correctly, is probably the use

of payload based fingerprints to describe flow features. Since

our obfuscation scheme scrambles the bytes and the length of

the handshake, variance in byte values and packet length is

high and will match to protocol models with similar behavior.

In fact, in most cases SPID reported higher similarities of

the flows to eDonkey and ISAKMP than to BitTorrent. Inter-

estingly, picDFI manages to classify about 45% of the flows

correctly as P2P. However, picDFI is only able to distinguish

between P2P and non-P2P traffic and is not a substitute for

full-fledged classification systems. The reason why picDFI

could identify those flows is because it was able to correlate

UDP signal traffic and TCP file exchange traffic on some time

frames. The difference in number of total flows is a result of

different flow descriptors and flow timeouts.

This shows, that techniques using payload information and

even flow features can easily be fooled by disguising the

traffic with properties similar to other well-known protocols

like HTTP or ISAKMP. It is worth mentioning that in our

simulations a very simple behavior based algorithm performs

much better than sophisticated DPI and SPI systems.

V. CONCLUSION AND FUTURE WORK

The intention of this paper is not to present an optimal

privacy solution for BitTorrent networks, rather to show

that contemporary traffic identification systems can easily be

fooled.

We presented a novel BitTorrent obfuscation scheme that is

easy to implement, backwards compatible and fairly efficient.

It circumvents all contemporary identification tools and thus

effectively hides BitTorrent traffic. Only small changes in

applications require significant effort to update the network

infrastructure in order to maintain identification, including

keeping large amounts of state data. Even state-of-the-art

statistical identification tools can easily be fooled and circum-

vented by applying basic payload and flow feature obfuscation.

Established identification paradigms seem to come to the

end of applicability. With an increasing effort of programmers,

users, and even commercial service providers, packet and

traffic features become more and more disguised.

We argue that future traffic identification must not rely

on payload and flow based data but instead concentrate on

global application domain specific features which are unlikely

to change. The old meme of the need to identify the exact

application layer protocol is outdated and violates network

neutrality and the end-to-end principle. Knowledge about the

usage of layer 7 protocols does not generally allow statements

about the actual application domain. In the end, the most

important information for the network provider should be how

his resources are used and how usage can be optimized. Not

what his customers are talking about. The ongoing ISP-vs-

Customer war achieves very little at the expense of much

resources.

Future work will explore possibilities to introduce more

randomness into the obfuscation process and apply more

sophisticated flow feature obfuscation. A promising approach

seems to disguise traffic to appear to originate from other

applications and protocols. This “Any Signature Protocol”

should be able to transport information using the syntax

of other well-known protocols, like HTTP, SMTP, or DNS

without exposing application specific signatures. Regarding

identification and classification, a thorough examination of

internet application domains is due. The result would be a

taxonomy of internet traffic that would allow classification

of any traffic into application domains based on the actual

semantics and not syntax of conversations.

REFERENCES

[1] “Application layer packet classifier for linux,” online, retrieved
2012.01.12. [Online]. Available: http://l7-filter.sourceforge.net/

[2] “Btguard anonymous bittorrent services,” retrieved 2012.01.12. [Online].
Available: http://btguard.com/

[3] “Edkobfuscation,” online, retrieved 2012.01.12. [Online]. Available:
http://mldonkey.sourceforge.net/EDKObfuscation

[4] “emule protocol obfuscation,” online, retrieved 2012.01.12. [Online].
Available: http://wiki.emule-web.de/index.php/Protocol obfuscation

[5] “I2p anonymous network,” online, retrieved 2012.01.12. [Online].
Available: http://www.i2p2.de/

[6] “It’s hidden,” retrieved 2012.01.12. [Online]. Available: http://itshidden.
com/

[7] “Opendpi,” online, retrieved 2012.01.12. [Online]. Available: http:
//www.opendpi.org/

[8] “opentracker,” online, retrieved 2012.01.12. [Online]. Available:
http://erdgeist.org/arts/software/opentracker/

[9] “Planet-lab,” online, retrieved 2011.11.11. [Online]. Available: http:
//www.planet-lab.org

[10] “Slitaz,” online, retrieved 2012.01.12. [Online]. Available: http:
//www.slitaz.org/

[11] “SPID Statistical Protocol IDentification,” online, retrieved 2012.01.12.
[Online]. Available: http://sourceforge.net/projects/spid/

[12] “tcpdump,” online, retrieved 2012.01.12. [Online]. Available: http:
//www.tcpdump.org/

[13] “The Onion Router,” online, retrieved 2012.01.12. [Online]. Available:
https://www.torproject.org/

[14] T. Berson. (2005) Skype Security Evaluation. online. Anagram
Laboratories. Retrieved 2012.01.12. [Online]. Available: http://www.
anagram.com/berson/abskyeval.html

[15] P. Biondi and F. Desclaux, “Silver Needle in the Skype,” Presentation at
BlackHat Europe, http://www.blackhat.com/presentations/bh-europe-06/
bh-eu-06-biondi/bh-eu-06-biondi-up.pdf, Mar. 2006.

[16] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A Survey on Internet Traffic Identification,”
Communications Surveys & Tutorials, IEEE, vol. 11, no. 3, pp. 37–52,
Aug. 2009. [Online]. Available: http://dx.doi.org/10.1109/SURV.2009.
090304

[17] B. Cohen, “The BitTorrent Protocol Specification,” online, 01 2008,
retrieved 2012.01.12. [Online]. Available: http://bittorrent.org/beps/bep
0003.html

[18] F. Desclaux, “Skype uncovered,” online, 2005, retrieved
2012.01.12. [Online]. Available: http://www.ossir.org/windows/supports/
2005/2005-11-07/EADS-CCR Fabrice Skype.pdf

[19] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE

Network, vol. 15, pp. 24–32, 2001.
[20] D. Harrison, “Peer ID Conventions,” online, 2008, retrieved 2012.01.12.

[Online]. Available: http://www.bittorrent.org/beps/bep 0020.html
[21] ——, “Tracker Returns Compact Peer Lists,” online, 2008, retrieved

2012.01.12. [Online]. Available: http://www.bittorrent.org/beps/bep
0023.html

[22] D. Harrison, A. Ciani, A. Norberg, and G. Hazel, “Tracker Peer
Obfuscation,” online, 01 2008, retrieved 2012.01.12. [Online]. Available:
http://bittorrent.org/beps/bep 0008.html

[23] E. Hjelmvik and W. John, “Breaking and Improving Protocol
Obfuscation,” Chalmers University of Technology, Tech. Rep. 123751,
2010. [Online]. Available: http://publications.lib.chalmers.se/cpl/record/
index.xsql?pubid=123751

[24] Ipoque, OpenDPI Integration Manual, 1st ed., Ipoque, September 2009.
[Online]. Available: http://opendpi.org/

[25] J. Nagle, “RFC 896: Congestion control in IP/TCP internetworks,” Jan.
1984, status: UNKNOWN. [Online]. Available: ftp://ftp.internic.net/rfc/
rfc896.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt

[26] M. Petazzoni, “A bittorrent library; in java, for java,” retrieved
2012.01.12. [Online]. Available: http://turn.github.com/ttorrent/

[27] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[28] various, “Debate over protocol encryption,” online, 2007, retrieved
2012.01.12. [Online]. Available: http://forum.utorrent.com/viewtopic.
php?id=5742

[29] Vuze, “Message stream encryption,” online, retrieved 2012.01.12. [On-
line]. Available: http://wiki.vuze.com/w/Message Stream Encryption

[30] M. Waldvogel, M. Muncan, and M. Patidar, “Stealth dos,” 2006.
[31] M. Zhang, W. John, K. Claffy, and N. Brownlee, “State of the

art in traffic classification: A research review,” in PAM ’09: 10th

International Conference on Passive and Active Measurement, Student

Workshop, 2009. [Online]. Available: http://www.caida.org/research/
traffic-analysis/classification-overview/

[32] T. Zink and M. Waldvogel, “Analysis and efficient classification of
P2P file sharing traffic,” University of Konstanz, Tech. Rep., 2010.
[Online]. Available: http://nbn-resolving.de/urn:nbn:de:bsz:352-188702

