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Abstract
Virtual machine monitors (VMMs), including hypervisors, are a
popular platform for implementing various security functionalities.
However, traditional VMMs require numerous components for pro-
viding virtual hardware devices and for sharing and protecting sys-
tem resources among virtual machines (VMs), enlarging the code
size of and reducing the reliability of the VMMs.

This paper introduces a hypervisor architecture, called parapass-
through, designed to minimize the code size of hypervisors by al-
lowing most of the I/O access from the guest operating system (OS)
to pass-through the hypervisor, while the minimum access neces-
sary to implement security functionalities is completely mediated
by the hypervisor. This architecture uses device drivers of the guest
OS to handle devices, thereby reducing the size of components in
the hypervisor to provide virtual devices. This architecture also al-
lows to run only single VM on it, eliminating the components for
sharing and protecting system resources among VMs.

We implemented a hypervisor called BitVisor and a parapass-
through driver for enforcing storage encryption of ATA devices
based on the parapass-through architecture. The experimental re-
sult reveals that the hypervisor and ATA driver require approxi-
mately 20 kilo lines of code (KLOC) and 1.4 KLOC respectively.
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1. Introduction
Security of desktop computers is becoming a serious problem.
Compared to server computers, desktop computers are less man-
aged and often vulnerable to various security attacks, while they
tend to contain increasingly valuable information for personal and
corporate users. Moreover, operating systems (OSs) for desktop
computers, such as Windows and Linux, are becoming larger and
more complex, resulting in inevitable security flaws in OS soft-
ware. To address this problem, many researchers have proposed us-
ing virtual machine monitors (VMMs) for implementing security
functionalities [4, 14, 2, 30, 13]. Since the execution environments
of VMMs are isolated from guest OSs, VMMs can safely enforce
security functionalities without depending on the untrusted OSs.

Using VMMs for enforcing security functionalities poses an-
other problem: the security of VMMs themselves. If VMMs have
a vulnerability, security functionalities in the VMMs might be
disabled by attacks from the guest OSs. Reducing the code size
of VMMs is an effective approach to improving reliability of
VMMs [20]. Unfortunately, traditional VMMs including hyper-
visors are not necessarily small enough because they are designed
for general purpose use and contain numerous components, such
as device drivers and device models to provide virtual devices and
resource managers to share and protect system resources among
virtual machines (VMs). For example, the hypervisor of VMWare
ESX Server has 200 KLOC (including device drivers) [28] and the
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Xen hypervisor has 100 KLOC (excluding Domain 0) [20]. Espe-
cially, device drivers are less reliable than other components [6],
degrading the reliability of VMMs.

Several recent researches have proposed small hypervisors for
enforcing security [25, 5]. However, few of them address the secu-
rity of I/O devices such as storage devices and network interfaces.
Enforcing I/O device security in hypervisors is useful for prevent-
ing various security problems in desktop environments: enforcing
encryption can prevent information leakage from the I/O devices
regardless of the configuration of the guest OSs and hardware, and
inspecting the contents of I/O devices can detect viruses and abnor-
mal behavior even if the guest OSs are compromised. The purpose
of our research is to design a hypervisor architecture dedicated to
enforce I/O device security of desktop computers, thereby signif-
icantly reducing the code size of the hypervisors while they are
practical enough to run commodity desktop OSs such as Windows.

In this paper, we introduce a hypervisor architecture, called
parapass-through, designed to allow most of the I/O access from
the guest OS to pass-through the hypervisor, while the minimum
access necessary to implement security functionalities is com-
pletely mediated by the hypervisor. This architecture can eliminate
most of the device drivers and device models from hypervisors by
utilizing device drivers of the guest OS to handle real devices. Hy-
pervisors only need a set of small drivers, called parapass-through
drivers, to mediate access to I/O devices for enforcing security.
The code size of parapass-through drivers is expected to be much
smaller than that of traditional device drivers: they only need to
monitor control I/Os to keep track of states of the devices, and
intercept data I/Os to inspect or manipulate contents of I/O data.
They do not need miscellaneous housekeeping functions such as
initialization and error handling, which dominate most of the driver
code [8]. Note that hypervisors does not trust guest device drivers:
parapass-through drivers strictly enforce complete mediation of I/O
devices and prevent the guest OS from bypassing them.

The parapass-through architecture also limits the number of
VMs to one to allow direct access from the guest device drivers.
We believe that running only a single VM, like other secure hy-
pervisors [25], is a reasonable trade-off because the purpose of our
hypervisor is to improve the security of desktop computers which
usually need to run only a single OS in order to use office and Inter-
net applications. Running a single VM also contributes to reducing
the size of hypervisors because numerous components for sharing
and protecting resources among VMs can be eliminated.

One of the most difficult issues with parapass-through drivers is
the handling of Direct Memory Access (DMA). Since I/O data is
directly transferred by DMA hardware, it is difficult for the hyper-
visor to intercept the I/O data without virtualizing the DMA hard-
ware. To address this issue, this paper introduces a novel scheme
using shadow DMA descriptors, allowing the hypervisor to inter-
cept and manipulate data transferred via DMA, while most of the
DMA access is still handled by the guest device drivers.

We have implemented a hypervisor, called BitVisor, based on
the parapass-through architecture. BitVisor can run unmodified
commodity OSs including WindowsXP/Vista and Linux, both in
32bit and 64bit mode, and runs on processors with Intel Virtualiza-
tion Technology (Intel VT) [21] including multi-core processors.
The experimental results reveals that the code sizes of the hypervi-
sor and a parapass-through driver for encrypting ATA devices were
approximately 20 KLOC and 1.4 KLOC respectively.

The contributions made by this paper include:

• Our proposal of a thin hypervisor architecture designed for
enforcing I/O device security of desktop computers

• Our proposal of a novel scheme for intercepting DMA data by
hypervisors without fully virtualizing devices, and

• Our implementation of a practical hypervisor based on the
parapass-through architecture, which proved that the code size
was much smaller than that in general-purpose hypervisors

This paper is organized as follows. Section 2 describes the
threat model and assumptions underlying our hypervisor. Section
3 presents the architectures of traditional and parapass-through hy-
pervisors. Section 4 describes the implementation of the parapass-
through hypervisors and drivers in detail. Section 5 presents a case
study of implementing a parapass-through driver for ATA devices.
Section 6 presents the experimental results obtained by measuring
the code size and performance of the hypervisors. Section 7 dis-
cusses related work and Section 8 summarizes our conclusions.

2. Threat Model and Assumptions
This section describes the threat model and assumptions we made
in designing and implementing parapass-through hypervisors.

2.1 Threat Model

Potential threats for hypervisors implementing security function-
alities include attempts to bypass the security functionalities by at-
tacking the vulnerabilities of hypervisors. These attacks are divided
into two types: software-based and hardware-based attacks.

We assumed that malicious attackers in software-based attacks
could subvert and take over complete control of the guest OS. In
this case, attackers could execute any kind of processor instruc-
tions in user and kernel mode. For example, an attacker could is-
sue privileged instructions to access processor registers, memory
access instructions to modify page tables, and various I/O instruc-
tions to control I/O devices. Examples of these attacks include is-
suing specially crafted I/Os to avoid security functionalities in the
hypervisor, and accessing the memory regions or disk regions of
the hypervisor by manipulating page tables or DMA controllers.

We assumed that malicious attackers in hardware-based attacks
could only obtain physical access to computers when the computers
were turned off. In other words, physical access to running hard-
ware, such as probing buses and connecting malicious devices, was
not assumed. In this case, we also assumed that computers that
might have been physically accessed could be detected and users
would not use compromised computers. For example, we did not
assume attacks such as those modifying the disk image of the hy-
pervisor by directly accessing the hard drives. This assumption cor-
responds to the situation where computers are lost or stolen.

We assumed that hardware and basic software such as firmware
and BIOS could be trusted. Covert channels and other indirect
communication channels that can be used to steal information from
computers are beyond the scope of this paper.

2.2 Assumption

We assumed that the processors would have hardware support for
virtualization such as Intel VT and AMD Virtualization (AMD-
V) [7]. Old IA-32 processors without virtualization support were
excluded since they are known to be inappropriate for running se-
cure virtual machines [23]. Although we describe our implemen-
tation on Intel VT processors, most of the descriptions can be ap-
plied to other architecture processors. We also assumed that the
platforms would have an input/output memory management unit
(IOMMU) hardware. IOMMUs are used to prevent attacks by us-
ing DMA of I/O devices that are not monitored by the hypervisor,
allowing secure (full) pass-through access to unmonitored devices,
such as graphics and sound cards.

The hypervisors and the guest OS could run on multi-core pro-
cessors. This means that a malicious guest OS might simultane-
ously access a device, although it will not occur in normal (not
malicious) operating systems to avoid inconsistency.
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Figure 1. Traditional VMM architectures. Type II VMMs run on
a host OS, while Type I VMMs run directly on the hardware.
Both types of VMMs require device drivers and device models.
Xen relocates device drivers and device models into a dedicated
VM called domain0, which is still included in TCB. All of the
VMMs require resource manager for sharing and protecting system
resources among VMs.

3. Design
This section describes the design of the parapass-through architec-
ture. First, we explain traditional VMM architectures and analyze
the code size of the VMMs and Trusted Computing Base (TCB).
We then present the parapass-through architecture that is designed
to minimize the code size of hypervisors.

3.1 Traditional VMM Architectures

The reliability of VMMs implementing security functionalities is
an important issue. Since VMMs enforce security, they must be
trusted and reliable, or there is no guarantee that the security func-
tionalities will be effectively enforced. Reducing the code size
of VMMs and the TCB it depends on is one of the most effec-
tive approaches to improving the reliability of VMMs. Although
code size may not be the best metric to measure the reliability
of software [20], it is widely used as one of the important met-
rics [9, 27, 8].

There are two types of VMM architectures: Types I and II [11].
Type II VMMs run on host OSs (see Figure 1). Since they depend
on various functionalities of host OSs including file I/Os and net-
work I/Os, the host OSs must be trusted and reliable. Therefore,
the TCB of a Type II VMM includes both the VMM and (a part
of) the host OS. For example, QEMU and Linux, a popular com-
bination of a VMM and a host OS, respectively have 310 KLOC
and 4,200 KLOC [29]. The code size of Type II VMMs and TCB
tends to be much larger than that of other architectures because it
includes various abstraction layers implemented in the OS kernel
such as processes, files, sockets, and so on.

Type I VMMs, or hypervisors, run directly on the hardware and
do not require host OSs, as shown in Figure 1. Instead of using
host OSs, VMMs have device drivers and handle hardware devices
by their own. This means that Type I VMMs must include numer-
ous device drivers to support various devices such as hard drives,
network interface cards, graphics, sounds, timers, and interrupts.
They also require device models to provide virtualized devices to
the guest OSs, and resource manager for sharing and protecting
system resources among multiple VMs, as with Type II VMMs. As
a result, Type I VMMs have become quite large; VMWare ESX
Server’s hypervisor called the VMkernel has 200 KLOC [28].

Hardware

Hypervisor

Guest OS
VM

device driver

parapass-through
driver

Control I/O
monitoring /
verification

Data I/O
enforcing
security

Intercepted I/O
Pass-through I/O

Figure 2. The parapass-through architecture. Most of the access
to hardware from the guest device driver is pass-through. A part of
I/Os is intercepted by the parapass-through driver in the hypervisor.
The parapass-through driver intercepts control I/Os for monitoring
and verification, and data I/Os for enforcing security such as en-
cryption.

Xen [3] is a hypervisor that minimizes its size by moving device
drivers and device models into a specific privileged VM, called
Domain0 (see Figure 1). Xen also simplifies the device models
through paravirtualization which defines simple interfaces between
guest OSs and virtualized devices. Although the Xen hypervisor
itself is relatively small (approximately 100 KLOC), it depends on
various components including device drivers and device models
running in Domain0 which should be included in TCB [20]. The
software running in Domain 0 is a modified versions of Linux,
significantly enlarging the size of the TCB of Xen as a whole.

In any of the traditional VMMs described above, the primary
factors of increasing the size of VMMs are the existence of two ma-
jor components: device managers (device drivers and device mod-
els) and resource managers. Our architecture is designed to shrink
the size of device managers, which is after all included in TCB, and
eliminate resource managers by giving up running multiple VMs,
thereby significantly reducing the size of hypervisors.

3.2 Parapass-through Architecture

Let us introduce the parapass-through architecture. As shown in
both sides of Figure 2, access from the guest OS to hardware de-
vices basically passes-through the hypervisor. The guest OS han-
dles the actual hardware devices of the computer as if it were
directly running on the hardware. To allow direct access to the
hardware, only a single VM can simultaneously run on parapass-
through hypervisors. By abandoning support for running multiple
VMs, parapass-through hypervisors eliminate numerous compo-
nents needed for sharing and protecting resources among VMs.
Moreover, this architecture allows the device drivers of the guest
OS to handle real devices, allowing most of the device drivers and
device models in the hypervisor to be eliminated.

If all the access is pass-through, the hypervisor is almost use-
less. Different from fully pass-through access, para pass-through
hypervisors intercept a part of access to (1) protect hypervisors
from the guest OS, and (2) enforce security functionalities. The ac-
cess to be intercepted includes memory access and I/O access. In-
tercepting memory access is necessary to protect memory regions
of the hypervisor and handle memory-mapped I/Os (MMIOs). In-
tercepting I/O access is necessary to protect the hypervisor and en-
force security functionalities upon the I/Os for specific devices.
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Intercepted I/O access is divided into two types: control I/Os
and data I/Os (see Figure 2). Control I/Os are used to control data
transfer between the guest OS and devices. They determine the lo-
cation and size of data transferred to/from devices, the direction
of transfers, and the start/stop of transfers. By intercepting control
I/Os, the hypervisor can know the timing and details of data trans-
fers. Some sensitive control I/Os are verified by the hypervisor to
protect itself and blocked if they are unauthorized. For example, ac-
cess to disk regions and memory regions used by the hypervisor is
prevented. After verification, control I/Os are usually just recorded
and passed to the device without modifications.

Data I/Os are used to transfer the data content. The hypervisor
mediates data transferred between the guest OS and devices by in-
tercepting data I/Os. By buffering data I/Os in the hypervisor, it can
inspect and manipulate the content of data necessary to implement
security functionalities, such as encryption or intrusion detection.
Combined with the records of control I/Os, the hypervisor can ac-
curately identify data to be intercepted.

3.3 Parapass-through Driver

Hypervisors in the parapass-through architecture need small drivers
to handle intercepted I/Os. We have called these drivers parapass-
through drivers. Parapass-through drivers know the specifications
of target devices and correctly handle control I/Os and data I/Os.
The drivers pass I/O data to the security functionalities after ex-
tracting and formatting the data in appropriate form, such as sectors
in hard drives, and packets in network interface cards.

Parapass-through drivers correspond to device drivers and de-
vice models in traditional VMMs. It is important to keep device
drivers and device models small because they are included in TCB.
Unfortunately, conventional device drivers contains a great deal
of code to handle miscellaneous housekeeping functions such as
initialization, cleanup, management, and error handling. For ex-
ample, 90% of the device driver of Intel’s e1000 NIC is for such
housekeeping functions and only 10% is essential for transferring
data [8]. Parapass-through drivers, on the other hand, need to han-
dle a small part of I/Os, which is essential for transferring data.
We can expect that parapass-through drivers will usually become
much smaller than conventional device drivers. In fact, our imple-
mentation of ATA parapass-through drivers was only 1.2 KLOC,
while the libata driver of Linux 2.6 contains at least 9.0 KLOC. We
can also expect that most of the functions of device models can be
eliminated because they are handled by real devices.

Parapass-through drivers must be carefully designed to satisfy
the principle of complete mediation [24]. This is a similar situation
with reference monitors in sandbox systems that intercept system
calls to protect against malicious software [10]. Detailed knowl-
edge and thorough inspections of the specifications of the target
devices are required to prevent omission. Fortunately, it is not so
difficult because we only need to understand a part of the specifica-
tions, which is essential to transfer data. However, defining generic
strategies to determine which I/O access should be monitored or
intercepted is still our future work. This paper only shows a case
study of ATA devices.

Parapass-through drivers are only required for I/O devices that
need to be monitored. Therefore, the hypervisors usually require
only a small set of parapass-through drivers. For example, if graph-
ics and sound cards do not need to be monitored, parapass-through
hypervisors can exclude drivers for those devices. I/O access to
these devices from the guest OS completely passes through the hy-
pervisor. This reduces the number of parapass-through drivers in
the hypervisor and contribute to reduce the size and overhead of
the hypervisor. We should note that DMA access by these devices
are restricted by IOMMU hardware to prevent attacks that try to
access the memory region of the hypervisor.

3.4 Limitations

Parapass-through hypervisors are basically passive: I/Os are only
issued by the guest OS and hypervisors will not actively issue I/Os.
This architecture limits the hypervisor functionalities that can be
used to implement security functionalities. For example, hypervi-
sors cannot use files or networks because they are under the control
of the guest OS. However, the hypervisor can provide functionali-
ties for allocating memory regions, intercepting I/Os, creating non-
preemptive threads, and software-based timers [1]. These function-
alities will be enough for implementing some classes of security
functionalities: encryption is the best example and IDSs on stor-
ages or networks are also easy to implement. We plan to extend the
architecture so that the security functionalities can actively access
some I/O devices, thereby a broader class of security functionalities
can be implemented in parapass-through hypervisors.

In the parapass-through architecture, security functionalities
will run in hypervisors. Therefore, a vulnerability in the security
functionalities becomes a vulnerability of the hypervisors. Unfor-
tunately, moving the security functionalities into another protection
domain will not necessarily solve the problem because they are still
a part of TCB. Although improving the reliabilities of the security
functionalities is still unsolved problem, we plan to implement
lightweight protection domains inside hypervisors that may help
mitigating the problem by isolating multiple security functionali-
ties and hypervisors from each other.

4. Implementation
This section describes the implementation of parapass-through hy-
pervisors, called BitVisor. We explain the handling of CPU, mem-
ory and I/O devices in turn.

4.1 CPU

We assumed that the processors would have hardware support for
virtualization; the BitVisor hypervisor uses Intel VT processors.
Hardware support is important for simplifying the implementation
of hypervisors. We expected that processors would have two virtu-
alization support functionalities:

• Saving/loading all necessary contexts of the processors and

• Transferring control to the hypervisor on sensitive events

Parapass-through hypervisors need two contexts: that of the
guest OS and that of the hypervisor. Since only a single guest OS
is supported, scheduling and context switches among guest OSs
are unnecessary: context switches only occur between the guest
OS and the hypervisor. On Intel VT processors, contexts are saved
to and loaded from memory regions called VMCSs (VM control
structures). These structures contain all processor states including
registers that can not be accessed by processor instructions. Note
that on multi-core processor systems, each processor needs its own
contexts for the guest OS and hypervisor.

When a sensitive event occurs, such as execution of privileged
instructions, the processor automatically switches the contexts
from the guest OS to the hypervisor. The details on the events that
cause control to be transferred to the hypervisor may depend on
the processor architecture. BitVisor running on Intel VT processors
currently captures the four types of events:

• the executions of some privileged instructions,

• exceptions and hardware interrupts,

• the executions of I/O instructions, and

• inter-processor interrupts (IPIs)
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The privileged instructions to be captured include instructions
to read and write control registers or model specific registers that
may change the processor’s sensitive states. Also, paging-related
instructions such as invalidating a TLB entry must be captured
because Intel VT processors do not yet have hardware support for
virtualizing page tables like Nested Paging of AMD-V. How paging
is handled is described in the next subsection.

Exceptions including page faults are also captured to handle
paging. Hardware interrupts are used to implement timers that will
be used in the future. BitVisor currently can not identity the devices
that cause hardware interrupts due to the implementation prob-
lem in handling the Advanced Programmable Interrupt Controller
(APIC), explained in the last subsection. Note that software inter-
rupts do not need to be captured because they are handled by the
processor and the guest OS.

I/O instructions need to be captured to enforce security on I/O
devices. Intel VT processors support bitmaps that determine which
I/O access is captured or not on a per port-address basis. BitVisor
uses this bitmap to intercept I/O access to specific port addresses.

IPIs are used to start processors at boot time and signal events to
other processors. The hypervisor needs to intercept start-up signals
to initialize the virtualization functions of the processor before the
guest OS starts, or the guest OS will start running directly on the
processor without a hypervisor.

BitVisor emulates real mode by using virtual 8086 mode since
Intel VT does not support virtualization of real mode. BitVisor also
implements an instruction emulator to handle mode transitions be-
tween real mode and protect mode, and handle some I/O instruc-
tions and MMIOs to obtain details on the trapped instruction which
the processor does not supply.

4.2 Memory

The guest OS of parapass-through hypervisors use the physical ad-
dress space that is identical to the machine (real) physical address
space. The hypervisor does not need to carry out address transla-
tions. This contributes to reducing the size of the hypervisor.

Translations from virtual addresses to physical addresses are
carried out based on the page table of the guest OS. Unfortunately,
the hypervisor cannot directly use the guest page table because
the guest OS can access the memory regions of the hypervisor by
setting a physical address of the memory regions to the page table.
To prevent such attacks, the hypervisor must verify each page table
entry before the entry is used by the processor.

BitVisor uses shadow paging similar to that is used in other
VMMs [3] to verify page table entries. When a page fault occurs,
the hypervisor sets the same entry to the shadow page table after
the entry has been validated. The implementation of shadow paging
is complicated and incurs significant overhead. Hardware support
like nested paging of AMD-V [7] should significantly improve this
situation; since physical to machine address translation is fixed in
the parapass-through architecture, the hypervisor does not need to
be involved in paging after initialization.

Hypervisors must hide their own memory regions from the
guest OS so that the guest OS do not use them. BitVisor hooks
the BIOS functions for obtaining the memory usage map (function
e820h) to fake that the memory regions are reserved. BitVisor is
currently located at a physical address under 4GB so that 32bit PCI
devices can access the memory buffers in the hypervisor.

4.3 I/O devices

Parapass-through hypervisors need to intercept I/O accesses to
enforce security on I/O devices. There are three types of I/Os:
programmed I/Os (PIOs), memory mapped I/Os (MMIOs), and
DMA. We will now explain methods of intercepting I/Os for these
three types.

4.3.1 PIO

PIOs are carried out by dedicated I/O instructions, i.e., “IN” and
“OUT” instructions on Intel processors. The I/O instructions spec-
ify an I/O port address to be accessed in a register. The hypervisors
running on Intel VT processors can specify I/O port addresses to
be intercepted using a bitmap, as previously described. Since each
I/O device is allocated a range of I/O port addresses that will not
overlap with other devices, hypervisors can intercept all the PIOs
of the target device by specifying the addresses. I/O addresses may
be changed by the PCI configuration mechanism. To capture the
changes, hypervisors also intercept the PIOs of the PCI configura-
tion mechanism and update the bitmap.

The units of PIO access are small, i.e., one, two, or four bytes.
However, the hypervisor might need to handle I/O data in larger
units. For example, storage encryption might need data for the
entire sector (usually 512 bytes) as a unit of encryption, depending
on the algorithm. In this case, the hypervisor temporarily buffers
the PIO data until the unit data is read, then emulates I/Os so that
the data is accessed in small units.

A guest OS running on a single processor is blocked on issu-
ing I/O instructions. Therefore, a device is serially accessed from
a guest OS. However, a guest OS running on multicore processors
might try to simultaneously access a single device from multiple
processors. This might cause time-of-check-to-time-of-use (TOCT-
TOU) problems: a guest OS running on a processor might change
the status of a device that has just been verified by the hypervisor
running on another processor. A normal guest OS will not attempt
such access because it might cause unexpected behavior. However,
a malicious OS may intentionally attempt. To avoid this problem,
the hypervisor must hold a lock on the devices.

4.3.2 MMIO

MMIOs represent a method of accessing I/O devices with memory-
access instructions. The registers of devices are mapped into a
memory region in the physical address space and the registers can
be read or written through it. OSs map the region into the kernel
address spaces by using page tables.

MMIOs can be intercepted by using shadow paging. By setting
shadow page tables so that the MMIO memory regions are inac-
cessible, control is transferred to the hypervisor when the guest OS
tries to access the MMIO region. The difference from PIOs is that
the unit of interception is a page: it is not possible to intercept only
a part of a page. Although all necessary I/Os can be intercepted,
this might cause performance problems by intercepting numerous
unnecessary I/Os. Unfortunately, this is an unavoidable nature of
intercepting MMIOs by hypervisors.

There is a timing problem with flushing TLB on multiprocessor
systems. When the guest OS changes the physical address of an
MMIO region, the hypervisor must update the shadow page table
so that the new MMIO region can be intercepted. After the shadow
page table has been updated, TLBs must be flushed so that old
entries are no longer used. Unfortunately, it is not easy for parapass-
through hypervisors to flush TLBs on all processors. If a guest OS
running on a processor does not transfer control to the hypervisor,
the hypervisor cannot flush TLBs on that processor. The hypervisor
cannot use IPIs since IPIs are defined and controlled by the guest
OS.

BitVisor handles this problem by scanning the shadow page
table to ensure that the new MMIO region is not on the TLBs on
any processor. Usually, a new region will not be on TLBs because
this means the guest OS has accessed unused regions. If the region
is not on the TLBs, the hypervisor does not need to flush them. If
the region is on the TLBs, the hypervisor waits to obtain control of
all processors.
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Figure 3. The scheme using shadow DMA descriptors. When data are read from the device, the data are first copied to the shadow buffer
via DMA. The hypervisor then copies the data to the guest buffers based on the guest DMA descriptor. When data are written to the device,
the data are first copied from the guest buffers to the shadow buffer by the hypervisor. The data are then written to the device via DMA. The
hypervisor can manipulate data on the shadow buffer. The host controller is mostly handled by the device driver of the guest OS.

4.3.3 DMA

DMA is a mechanism to transfer data between devices and mem-
ory without processor intervention. A DMA host controller is con-
nected to the device and the memory bus, and automatically trans-
fers data between them. Modern DMA host controllers use DMA
descriptors, a memory region that describes transfer information,
such as the buffer address and the size of the data. A DMA descrip-
tor contains a series of entries and the host controller carries out
data transfers one by one based on the entries.

Hypervisors can access data transferred via DMA by directly
reading or writing the guest memory regions. However, it is not a
good scheme for enforcing security. Since DMA transfers are car-
ried out in parallel with the execution of guest OSs, they can access
a part of data before the transfer has been completed. Moreover,
guest OSs can modify the entries of DMA descriptors while DMA
transfers are carried out. Therefore, the guest OS might be able to
bypass verifications or manipulations of DMA data by hypervisors.

This paper introduces a novel scheme using shadow DMA de-
scriptors (see Figure 3) for safely intercepting the content of data
transferred by DMA. A shadow DMA descriptor is a shadow of the
DMA descriptor of the guest OS (guest DMA descriptor). Similar
to shadow page tables, the hypervisor sets the shadow DMA de-
scriptors to the host controller instead of the guest DMA descrip-
tor. The shadow DMA descriptor specify a memory region in the
hypervisor as a buffer, called the shadow buffer. The DMA host
controller transfers data between the shadow buffer and the device,
based on the shadow DMA descriptors. The hypervisor emulates
the host controller by copying data between the shadow buffer and
the guest buffer that is specified in the guest DMA descriptor.

The hypervisor can inspect and modify the data transferred
by DMA because the data is buffered in the shadow buffer. For
example, the hypervisor can encrypt or decrypt the data, or perform
intrusion detection on the data. Since the shadow buffer and the
shadow DMA descriptor is located in the hypervisor’s memory
region, the guest OS cannot access them. By shadowing DMA
descriptors and buffers, the hypervisor can prevent the guest OS
from reading data before or writing data after the inspection by the
hypervisor.

There is a difference between the handling of DMA read and
write operations. When data are read from the device, they are
first transferred from the device to the shadow buffer by DMA;
then, the data are copied to the guest buffer by the hypervisor. The
hypervisor needs to capture the events to start DMA transfer. When
data are written to the device, on the other hand, the data are first
copied from the guest buffer to the shadow buffer by the hypervisor,

and then the data are transferred to the device. The hypervisor needs
to capture the events of notifying the end of DMA transfer.

Starting DMA usually requires PIO or MMIO access to a device
register. Therefore, the hypervisor can easily capture the event. The
end of DMA transfer is usually notified by a hardware interrupt.
Unfortunately, the current BitVisor cannot identity the device that
issues hardware interrupts. Instead, BitVisor captures I/O access to
status registers, because device drivers usually read status registers
to check whether DMA transfer has finished successfully or not,
and write registers to acknowledge interrupts.

The hypervisor must prevent attacks that try to modify its mem-
ory regions by using DMA. The hypervisor verifies the address of
guest buffers specified in the guest DMA descriptors so that the
address does not point to the hypervisor regions. This technique is
similar to that used in a software-based IOMMU [26]. To prevent
attacks using DMA that do not need to be intercepted, we can use
IOMMU hardware.

4.4 Miscellaneous Issues

Identifying devices that cause hardware interrupts is difficult for
parapass-through hypervisors. Although the hypervisor can cap-
ture hardware interrupt events, it must know the mapping from the
vector number of the interrupt to the device that issues the inter-
rupt. This requires the APIC to be monitored. Unfortunately, since
APIC is very frequently accessed via MMIO, monitoring APIC in-
curs a significant overhead. BitVisor ceases identifying hardware
interrupts and captures access to status registers instead.

Modern OSs use an Advanced Configuration and Power Inter-
face (ACPI) to manage power. Guest OSs running on parapass-
through hypervisors handle ACPI to suspend and resume comput-
ers. Therefore, the entry point where control is transferred when the
computer resumes is set by guest OSs. Unfortunately, hardware-
virtualization functions are turned off when processors are sus-
pended. As a result, the guest OS obtains control bypassing the
hypervisor when the computer resumes. To support suspend and
resume functions, the hypervisor needs to handle ACPI. BitVisor
does not implemented this yet.

5. Case Study: ATA Host Controller
This section presents a case study where storage encryption was
enforced in BitVisor. We implemented a parapass-through driver
for standard ATA host controllers. We explain the handling of ATA
host controllers and DMA descriptors in the following.
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Figure 4. The registers in ATA host controllers

5.1 Host Controller

ATA host controllers use eight command-block registers and one
control-block register. Command-block registers include registers
that specify logical block addresses (LBAs), sector counts, and
commands such as READ and WRITE. When PIO transfer is used,
a 16 bit data register is utilized. Figure 4 shows the layout of the
registers in the I/O address space.

As previously described, the hypervisor can intercept I/O access
to these registers. Therefore, it is easy to obtain the information
necessary to enforce encryption. For example, the hypervisor can
obtain the LBA and sector count by intercepting writes to these
registers. The hypervisor can also obtain the direction of transfer
by intercepting values written to the command register (e.g., 0x20
is ”READ SECTOR” and 0x30 is ”WRITE SECTOR”).

However, intercepting I/O access to ATA registers may cause
a TOCTTOU problem. To prevent unauthorized access to sectors
from the guest OS, the hypervisor must check the LBA value the
guest OS requests. Unfortunately, ATA registers are not necessarily
always writable. For example, the ATA specification states that
LBA registers are not writable when the device is busy or in sleep
mode. If the hypervisor does not know what state the device is in,
the value written by the guest OS may not be actually written to the
registers and the old value may be retained, while the hypervisor
believes that a new value has been written to the device. To avoid
this problem, BitVisor simply reads the register value just before
the guest issues a ATA command, such as “WRITE SECTOR”,
which lets the device hardware to initiate data transfer using the
register value. Reading the registers instead of intercepting writes
to the registers allows keeping consistency between the register
values the hypervisor knows and that of the real hardware.

This strategy works fine if the registers are readable. Unfortu-
nately, some registers are write-only. For example, the command
register and the status register are assigned to the same I/O address
and the command register is write-only (see Figure 4). In some
commands, the features register, a write-only register, is used to
specify part of the LBA. In this case, BitVisor rewrites the value
that is saved in the hypervisor by intercepting writes to the register
just before the command is written.

DMA Descriptor
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bit0
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08h
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......
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(Reserved)
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Figure 5. The structure of the DMA descriptor in ATA devices

5.2 DMA descriptor

The structure of the DMA descriptor in ATA devices is simple, as
seen in Figure 5. It is an array of structures, each of which contains
a physical address of the buffer, the transfer size, and the end of
the table bit. The address of the DMA descriptor is set to a host
controller register. When the start bit in the DMA command register
is set, the controller starts transfers by reading each entry of the
DMA descriptor until it encounters the end bit set. Data can be
scattered to or gathered from buffers in physical memory.

In the parapass-through architecture, the hypervisor creates a
shadow DMA descriptor and set to the descriptor pointer register
of the host controller. The hypervisor also remember the address
of guest DMA descriptor by intercepting access to the descriptor
pointer register. The shadow DMA descriptor points to a single
pre-allocated shadow buffer in the hypervisor. Before transfers,
the hypervisor obtains the total size of data transfers by scanning
the guest DMA descriptor and set the size to the first entry of the
shadow DMA descriptor. After transfers, the hypervisor emulates
the host controller by copying data between the shadow buffer and
guest buffers. The size of the shadow buffer is currently 512 KB. If
a single transfer exceeds that size, the transfer must be splitted into
multiple transfers, which is not implemented yet. Fortunately, 512
KB is sufficient for the normal workloads of Windows and Linux.

6. Experiments
This section presents the experimental results obtained by mea-
suring the code size and performance of BitVisor. BitVisor is a
practical implementation of the papapass-through architecture: it
supports Intel VT processors including multi-core processors run-
ning in 32 bit mode or 64 bit mode. BitVisor includes a parapass-
through driver for ATA devices that has a function to encrypt data
with XTS-AES [12]. BitVisor can run WindowsXP/Vista, Linux,
and FreeBSD as a guest OS. However, the implementation for us-
ing IOMMU is not stable yet and the IOMMU hardware is not used
in the following experiments.

6.1 Code Size

We used SLOCCount [29] to count the effective code size of the
hypervisor. Figure 6 shows the results. Although the core of the
BitVisor has 21,582 lines of code in total, the runtime code exclud-
ing debug and initialization code has only 13,789 lines of code.
The runtime includes 1,130 lines of code for memory manage-
ment based on shadow paging, and 2,239 lines of code for the in-
struction emulator. The experimental results revealed that the code
size of parapass-through hypervisors is significantly smaller than
that of other hypervisors, such as the Xen hypervisor having 100
KLOC [20]. The small code size contributes to the reliability of the
hypervisor. Note that the code for memory management is expected
to be much smaller by using hardware assisted paging instead of
shadow paging.

127



BitVisor Core ATA Driver

debug 2062 108

initialize 5781 334

runtime 13789 1006

0

5,000

10,000

15,000

20,000

25,000
L

in
es

 o
f 

C
od

e

Figure 6. Source Lines of Code of BitVisor

Host null fork exec prot page ctx
Linux 0.21 93.4 96.6 0.36 0.98 1.10
BitVisor 0.21 2859 3049 2.73 34.6 42.2

Table 1. Execution times of lmbench proc. & mem. (µs)

The ATA parapass-through driver is implemented by using
1,448 lines of code (not including XTS-AES code). The runtime
only has 1,006 lines of code. For comparison, we measured the
code size of the libata, an ATA driver included in Linux 2.6.26,
and found that it has 9.9 KLOC for files ”libata*”. Surprisingly,
this result coincides with the study of the Intel’s Ethernet driver:
only 10% of the code directly relates to transfering data [8]. In
addition, conventional VMMs need an implementation of the de-
vice model for ATA devices. The result proved that the size of
parapass-through drivers becomes significantly smaller than that of
conventional device drivers and device models.

6.2 Performance

We will next discuss the overhead of the parapass-through hypervi-
sor. We carried out experiments on a machine with an Intel Core 2
Duo E6850 (3.0 GHz), having 2 GB memory, and a 74 GB 10,000
rpm hard disk drive (Western Digital Raptor WD740GD). We used
the 32 bit version of Fedora 8 (the kernel was Linux 2.6.25.9-
40.fc8) and the 32 bit version of Windows XP as guest OSs. BitVi-
sor was compiled with the 64 bit mode.

lmbench overhead We used lmbench benchmark suite [17] in
the first experiment to measure the overhead of the operations in
the guest OS. BitVisor is expected to incur overheads on memory
management operations because it uses shadow paging, causing
control transfer to the hypervisor on every page fault.

Table 1 lists the results obtained from the lmbench experiments.
The null indicates the overhead of a null system call. The hyper-
visor does not need to intercept events for entering and leaving the
kernel because this is automatically handled by the processor hard-
ware. Therefore, there is no overhead for null. The fork and exec
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Figure 7. Storage Overhead

indicate the overhead for each system call. Creating processes and
executing a program require operations on page tables, which incur
an overhead. The prot indicates the overhead of a protection fault.
A protection fault incurs a single round trip to the hypervisor to ver-
ify that it is a protection fault. Then, the hypervisor returns control
to the kernel and the handling of the protection fault is continued.
The page indicates the overhead of a page fault. A page fault, in
contrast to a protection fault, incurs two round trips to the hyper-
visor to first verify that it is a page fault and then the shadow page
table is updated after the guest kernel has inserted the entry into the
guest page table. Therefore, the overhead of page is higher than
that of prot. The ctx indicates the overhead of a context switch
between processes. In the case of context switches, the hypervisor
needs to intercept the context switches, switch shadow page tables,
and handle the following page faults that follow. As a result, the
overhead of a context switch becomes close to that of a page fault.

Storage overhead We measured the overhead for intercepting and
encrypting storage data. We used lmdd in the lmbench suite to
measure the throughput for reading data from the hard disk drive.
We used a device file of Linux that was opened by lmdd with the
flag O DIRECT, meaning that buffer cache of the operating system
kernel was bypassed. The read data was just discarded.

Figure 7 shows the results. The left-most bar indicates the
throughput for native Linux. The BitVisor Core means that only
the hypervisor core is running and all I/O access to ATA devices
is fully pass-through. The +ATA driver means that the hyper-
visor core and the ATA parapass-through driver are enabled but
the driver does not execute encryption or decryption, i.e., data
is intercepted but just passed through. The +Encryption means
that the hypervisor core, the ATA parapass-through driver, and en-
cryption/decryption by AES-XTS are enabled. We used Dr. Brian
Gladman’s AES engine written in 64 bit assembler.

Each of BitVisor Core, +ATA Driver, and +Encryption,
up to 512KB, incurs overhead. Although the buffer cache of the
kernel is bypassed, the hard disk drive itself has a cache on the con-
troller. Therefore, actual media access is not carried out up to 512
KB. On the other hand, a 10 MB read does not demonstrate an over-
head for the BitVisor core or +ATA Driver because the over-
head is hidden by slow media access. Nevertheless, +Encryption
still incurs an overhead because the software execute encryption,
which requires a great deal of computation: encrypting one sector
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Figure 8. Windows XP Boot Time

(512 bytes) required 6995 cycles and decrypting required 7038 cy-
cles (about 2.3 µs on our machine). When throughput is 80 MB/s,
512 bytes can be transferred in 6.4µs. Therefore, 2.3µs represents
a 36% overhead, which corresponds to the result.

Windows Boot Time We measured the time to boot Windows XP
to which only standard hardware drivers are installed.

Figure 8 shows the results. The hypervisor does not significantly
affect the Windows XP boot time: the difference is less than 1 sec-
ond even if storage encryption is enabled. This is because Win-
dows XP will wait for the initialization of I/O devices at boot time,
and the overhead for memory management and storage I/Os is hid-
den behind the wait time. The results show that although the BitVi-
sor hypervisor incurs overhead on memory management operations
and storage access, the impact on users of desktop computers is not
expected to be so high and the hypervisor is practical enough to be
used in normal desktop environments.

7. Related Work
Several recent researches have proposed tiny hypervisors to imple-
ment security functionalities. The design of these hypervisors are
dedicated to security instead of running multiple virtual machines,
reducing the code size of the hypervisors by eliminating function-
alities for sharing and protecting system resources among VMs.
However, most of these researches use memory management for
enforcing security and do not address security in I/O devices.

SecVisor [25] uses a tiny hypervisor to preserve the integrity
of kernel code. To prevent unauthorized code from being executed
in kernel mode, SecVisor ensures that only approved code is exe-
cutable in kernel mode by verifying modifications to the page ta-
bles. SecVisor also uses IOMMU to prevent approved code from
being modified by the DMA write. The concept and techniques
used in SecVisor to implement a tiny hypervisor are similar to those
of BitVisor. However, SecVisor does not intercept the data of de-
vice I/Os and most of these are completely pass-through.

Overshadow [5] uses a hypervisor to prevent information leak-
age from trusted applications to untrusted operating system ker-
nels. Overshadow presents encrypted view of pages to the ker-
nel while presenting unencrypted view of the page to trusted
applications. Overshadow intercepts page access and transpar-
ently encrypts/decrypts the page data. Although Overshadow uses
VMware, the authors say that a simpler hypervisor can be used.

However, Overshadow needs to recognize the semantics of guest
operating systems to handle multiview pages, while BitVisor is
transparent to the guest OS.

Some researches have used small VMMs to improve manage-
ment of machines. LVMM [22] uses a VMM that runs two VMs on
desktop machines: a user partition VM for running a standard desk-
top operating system and a services partition VM for a small man-
agement operating system. LVMM allows the the user partition VM
to directly handle most devices except for an NIC device. The ser-
vices partition VM virtualizes the NIC device to allow concurrent
access to this NIC device from the user and services partition VM.
LVMM uses device drivers and device models for NIC devices in
the services partition VM, while BitVisor uses a parapass-through
driver, which is much smaller than typical device drivers.

Microvisor [16] supports devirtualizable virtual machines. It
runs two operating systems while maintenance to reduce downtime.
When the maintenance has finished, applications running on the old
guest operating system are migrated to the new operating system
and it is devirtualized to run directly on the hardware. Microvisor
splits hardware resources like memory and devices into two and
they are dedicated to each VM. The VMs have completely direct
access to the dedicated device. BitVisor allows the VM direct but
verified access to I/O devices.

Type-II VMMs have been used in several researches and prod-
ucts to implement security functionalities [18]. Using Type-II
VMMs allows security functionalities to be easily developed by
utilizing the rich functionalities of host OSs. However, the code
size of its TCB is much bigger than that of Type-I VMMs.

Several researchers have tried to improve the performance of
device I/Os by allowing direct access to the device from a specific
VM [15]. This approach can eliminate device models and device
drivers for specific devices. However, in this case, the VMMs can
not intercepts I/O accesses to the devices. Therefore, it is difficult
to enforce security on I/O data.

Shafer et al. [26] proposed a software-based IOMMU that in-
tercepts and verifies the DMA descriptor to allow direct access to
the NIC device from a guest OS. This technique is similar to the
shadow DMA descriptor used in BitVisor. However, the software-
based IOMMU only performs access control for protection, while
BitVisor needs shadowing of the DMA descriptor to capture the
content of data transferred by DMA.

Microdrivers [8] split a device driver into two parts: only a
performance critical part runs in kernel mode and the other in-
frequently executed part runs in user mode. In additoin, Micro-
drivers can automatically split existing code of device drivers. Mi-
crodrivers and BitVisor are similar in that they run only a perfor-
mance or security critical part runs in a trusted domain. However,
the functions of parapass-through drivers include not only a part
of device drivers but also a part of device models, and the actual
implementation of the drivers is significantly different from exist-
ing code. Therefore, we can not simply extract code for parapass-
through drivers from existing device drivers or device models.

8. Conclusions
This paper described the design and implementation of a hypervisor
for enforcing security in I/O devices. A VMM architecture called
parapass-through is introduced to improve reliability. Parapass-
through hypervisors intercept only a small set of hardware ac-
cess that is necessary for enforcing security, while other access
is mostly pass-through. This paper also proposed a novel scheme
using shadow DMA descriptors for capturing I/O data transferred
by DMA. The parapass-through architecture, combined with the
shadow DMA descriptor scheme, significantly reduced the code
size of hypervisors. The experimental results revealed that the code
size of a parapass-through hypervisor was approximately 20 KLOC
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and 1.4 KLOC for the ATA parapass-through driver, which are
much smaller than those for traditional VMMs.

In the future, we plan to apply the parapass-through architecture
to other I/O devices like USB devices and Ethernet devices. These
devices have different structures and interfaces of DMA descrip-
tors, complicating the shadowing of the DMA descriptors. How-
ever, we have already implemented prototype parapass-through
drivers for these devices and we believe that the architecture can
be applied to various devices. We also expect that parapass-through
hypervisors can be used as a basis for implementing various secu-
rity functionalities [19]. We plan to extend the architecture so that
richer class of security functionalities can be easily deployed.
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muth. Reducing TCB complexity for security-sensitive applications:
Three case studies. In Proc. of the 1st ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems, pages 161–174, April 2006.

[28] VMWare. Vmware esx server virtual infrastructure node evaluator’s
guide, November 2005. http://www.vmware.com/pdf/esx vin
eval.pdf.

[29] David A. Wheeler. Counting source lines of code (sloc). http:
//www.dwheeler.com/sloc/.

[30] Jisoo Yang and Kang G. Shin. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In Proc. of the
4th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 71–80, March 2008.

130


