
Bivalent-Like Chromatin Markers Are Predictive for
Transcription Start Site Distribution in Human
Zhihua Zhang1,2,3, Xiaotu Ma1, Michael Q. Zhang1,4*

1 Department of Molecular Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, United States of America, 2 Center for Computational

Biology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China, 3 Laboratory of Disease Genomics and Personalized Medicine,

Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China, 4 Bioinformatics Division, Center for Synthetic and Systems Biology,

TNLIST, Tsinghua University, Beijing, China

Abstract

Deep sequencing of 59 capped transcripts has revealed a variety of transcription initiation patterns, from narrow, focused
promoters to wide, broad promoters. Attempts have already been made to model empirically classified patterns, but
virtually no quantitative models for transcription initiation have been reported. Even though both genetic and epigenetic
elements have been associated with such patterns, the organization of regulatory elements is largely unknown. Here, linear
regression models were derived from a pool of regulatory elements, including genomic DNA features, nucleosome
organization, and histone modifications, to predict the distribution of transcription start sites (TSS). Importantly, models
including both active and repressive histone modification markers, e.g. H3K4me3 and H4K20me1, were consistently found
to be much more predictive than models with only single-type histone modification markers, indicating the possibility of
‘‘bivalent-like’’ epigenetic control of transcription initiation. The nucleosome positions are proposed to be coded in the
active component of such bivalent-like histone modification markers. Finally, we demonstrated that models trained on one
cell type could successfully predict TSS distribution in other cell types, suggesting that these models may have a broader
application range.
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Introduction

In eukaryotic organisms, gene transcription starts with the

formation of a pre-initiation complex, followed by RNA polymer-

ase II (Pol II) recruitment, initiation, promoter clearance,

elongation and termination. Pol II often pauses after elongating

a short distance (,25–50 nt) until additional signals dictate that it

escapes the pausing status and transfers to productive elongation

(see [1] for a review). Transcription is initiated at most mammalian

genes irrespective of their activity status, and transcriptional

initiation is not just limited to active promoters [2,3]. Transcrip-

tional initiation is not a static process, as indicated by high-

throughput Cap Analysis Gene Expression (CAGE) experiments

which revealed that transcription does not always initiate from a

single, fixed transcription start site (TSS). Instead, it could be

started from a number of putative sites in the core promoter region

of a gene. The probability of a site being chosen as an actual

initiation location does not necessarily evenly distribute among all

possible TSSs. Moreover, the distribution of TSSs in a core

promoter is remarkably varied among genes [4–6], and this

variation has been associated with the tissue-specificity of a gene’s

expression in mammals [6]. Thus, the distribution of TSSs is

tightly regulated. Indeed, accumulating evidence has indicated

that the regulators of TSS distribution lie at both genetic and

epigenetic levels [4–9], forming a multilevel regulatory network.

The internal structure of this multilevel regulation network, i.e.

the relationship between histone modifications, nucleosome

structure, Pol II status, and the TSS distribution, remains to be

elucidated. Some Drosophila studies have suggested that static

elements such as local DNA sequences, are major players in

regulation of TSS distribution [8]; while other studies in human

and fly have shown a strong association between TSS distributions

and nucleosome organization in the proximal promoter regions

[9], and even for the nucleosome organization per se, the causality

of genetic and epigenetic cues is under debate. On the one hand, it

has been clearly shown in yeast that nucleosome organization can

be determined by static DNA sequences ([10,11]. On the other

hand, in fly and human nucleosome organization cannot be fully

explained by DNA sequence alone, and increasing data have

suggested that histone modifications, nucleosome remodelers, and

Pol II status may also be important [12,13]. Histone modification

levels have been associated with and accordingly modeled to

predict gene expression levels [14,15]. For example, the tri-

methylated form of histone H3 at lysine 4 (H3K4me3) is believed

to be a marker of the active core promoters [16], while the tri-

methylated form of histone H3 at lysine 36 (H3K36me3) is a

marker of actively transcribed regions [16]. Thus, similar to gene

expression level prediction, finding a model that quantitatively

associates histone modifications, nucleosome organization and

TSS distribution is of much interest. However, to accurately
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estimate the effect of histone modification on TSS distribution is

not trivial, given the strong association between histone modifi-

cations and nucleosome positions [12].

Traditionally, promoter prediction has focused on the location

of TSSs. As the TSS for a given promoter is not unique, the

location must be described by a probability distribution function.

An advanced promoter prediction model should not only predict

the mode but also the shape of the distribution. As a first step

towards this goal, this paper addresses whether the ‘‘width’’ of the

distribution, i.e., the variability of the TSS, can be predicted

reliably. We utilize the Shannon entropy of the TSS distribution as

a measure of the distribution ‘‘width’’. We have derived several

linear models for entropy prediction from different combinations

of regulatory features, including histone modifications, transcrip-

tion factor binding site scores and nucleosome accessibility levels.

The analysis of our models reveal a clear pattern which suggests

that those models which combine both active and repressive

chromatin markers are much more predictive for the entropy of

the TSS distribution than models with only single-type markers.

This result suggests a new type of bivalent-like chromatin code

associated with TSS distribution. Furthermore, histone modifica-

tions not only complement the information on nucleosome

positions, but also encode additional information about the TSS

distribution. Finally, we show that our model can successfully be

used to predict the variability of initiation sites in other cell types,

suggesting that we have extracted a general relationship between

the regulatory elements and the TSS distribution.

Results

The TSS distribution in mammals was empirically classified

into four categories (single peak, broad, multi-modal, and broad

with dominant peak [4]). This classification system was obtained

from high-quality CAGE experimental data. Like all other next-

generation sequencing technologies, CAGE data are subjected to

sequencing noise [17]. Thus, instead of the standard deviation, we

preferred use the Shannon entropy of the TSS distribution as the

measure of the variability of TSS (‘‘width’’). Accordingly, we

performed in silico simulations to show that entropy as measure of

variability is a more robust measure against sampling noise than

the standard deviation (See Text S1, Figure S1 and S2). By

assuming that the TSSs in a core promoter region follow a

Gaussian distribution, we treated the CAGE experiments as a

sampling process in which reads are sampled from an unknown

Gaussian population. An algorithm was developed to estimate the

entropy of the Gaussian distribution from the sampled reads (see

the Methods for the detailed algorithm). We limited our study to

promoters with more than 10 reads because the theoretical

universal convergence rates of entropy, O (1=
ffiffiffi
n
p

) [18], will no

longer substantially decrease when n is larger than 10.

Nucleosome Position, Histone Modification Levels, and
DNA Sequence Features are all Predictive of the TSS
Distribution

In addition to CpG density [4–7,19], nucleosome positions have

been shown to be predictive of TSS distribution [9]. However, it is

still unclear whether this is also true for histone modifications or

transcription factors. To address this question, we collected

publicly available data for transcript factor binding sites,

nucleosome positions, and histone modifications in six human cell

types (see Methods). In total, 180 features were pooled and

examined in our analysis. We analysed CpG and non-CpG

promoters separately, similar to previously applied approaches

[15,20]. This is because 1) we were interested in features other

than CpG density, 2) previous studies have shown that CpG and

non-CpG related promoters have distinctly different sequence

features [21], and 3) distinguished histone modification profiles

were found around the two types of promoters in human and

mouse [22]. Similar to Karlic et al’s work which modeled gene

expression from histone modification levels by linear regression

models [14], we predicted the entropies of the TSS distributions by

linear regression models and assessed the predictive power of the

models by cross validation. Briefly, for a given set of features, these

models take linear combinations of features as input and predict

the TSS distribution entropy as the output. We performed the

following steps to achieve a 5-fold cross validation. First,

the dataset was separated into 5 partitions, taking four of the five

partitions as the training set to learn parameters. Second, the

obtained models were applied to the remaining data partition to

predict TSS distribution entropy. This process was repeated 5

times for different combinations of 5 data partitions. Again, like

Karlic et al. [14], we evaluated the performance of the model using

Pearson’s Correlation Coefficient (PCC) between predicted and

measured entropy. Finally, the average of the five PCCs was taken

as the predictive power of a given combination of features. A high

PCC indicates that the corresponding features have good

predictive power and the five-fold cross-validation ascertains that

the possible quantitative relationship revealed by the model is not

limited to a subset of genes. The model derived with all the

features (we refer to it as ‘‘full-model’’) was significantly correlated

to the TSS entropy (rfull = 0.41, p-value of t-test ,1.6e-22; Figure 1

and Figure S5), demonstrating that the features in the pool are

correlated with TSS entropies. The p-values of correlations in the

rest of this paper are all ,1.6e-22 (see Table S1), and have

therefore been omitted from the text. The statistical significance of

the best models was evaluated by comparing to two negative

controls (Text S1and Figure S3).

We determined how many features were sufficient to predict

entropies. Two lines of evidence showed that no more than 3

features appeared to be sufficient to build a linear regression model

approaching the upper boundary of performance. First, the

average performance of the best models (those with PCC .0.1)

increased as the number of inputs increased, this performance

increases between 1-models and 2-models is statistically significant

(student’s test, P = 2.3e-8 and P = 0.025 for the models trained in

CpG- and nonCpG-related promoters in HepG2 cells, respective-

ly). However, when the number of inputs increased beyond 3, the

PCC did not demonstrate any further increase, since models with

3 inputs had already reached about 95% of the performance level

of the full-model in all cell types that we examined (Figure 1).

Second, we used the Bayesian information criterion (BIC) to test if

increasing the model complexity (the number of inputs in the

linear regression model) would be beneficial [23]. The BIC is a

criterion for model selection among a finite set of models by

introducing a penalty for the number of parameters in the model.

If increasing complexity benefits modeling, BIC will decrease.

However, with the exception of the full-model in human stem

cells, we observed no significant reduction in BIC with increasing

number of features (Figure 1). Thus, as few as three inputs features

at the promoter were enough to faithfully model TSS entropies,

and in the remaining part of the paper we will focus on models

involving 1, 2 and 3 input features (referred to as 1-, 2-, and 3-

models in this paper, respectively; Table S1).

For the best 1-models, the selected features are expected to be

the most predictive. In all six cell types, these selected features

were mostly comprised of nucleosome positions or a few histone

modification levels as the best predictors (Figure 1). The histone

modification types selected by our best 1-models were those

Bivalent-Like Code for Transcription Initiation
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features that were highly correlated with the nucleosome position.

As a comparison, our best 1-models performed similarly to the l1-

logistic model developed by Rach and colleagues [9] in classifying

the TSS distribution of promoters as ‘‘narrow peak’’ and ‘‘broad

peak’’ (Figure 2 and Methods). Their l1-logistic model suggested

the importance of nucleosome positions for the TSS distribution

[9], and an analysis of our best 1-models further supported this

suggestion.

Notably, the best 2-models had significantly higher PCCs than

the best 1-models (except for cell line GM12878), and the PCCs of

our best 2-models could reach up to 80% of the upper boundary of

performance level given by the full-model (Figure 1). The ROC

curves were also better in the best 2-models as compared to our

best 1-models and the l1-logistic model [9] (Figure 2). In the best

2-models, more than 90% of all the features selected were histone

modification levels for all six cell types we examined (Figure 1).

Remarkably, nearly half of the histone modification types selected

by the best 2-models are highly correlated with nucleosome

positions. Therefore, the information that is encoded in nucleo-

some structure for TSS distribution may be reflected by those

histone modifications, as analyzed below. Moreover, additional

predictive information may also be encoded in histone modifica-

tions for TSS distribution as the remaining histone modification

types are poorly correlated with nucleosome positions.

For the best 3-models, less than 10% of improvement on the

model performance levels was achieved compared to the best 2-

Figure 1. Features selected for the best models in HepG2. Stacked bars represent the distributions of selected feature types between
nucleosome position (NU), histone modification levels (HM), and DNA sequence information (SEQ). The bar length represents the selected fraction of
each type of features (with the range from 0 to 1). Squares and diamonds represent the mean PCC and the mean BIC of the best models in the
corresponding model categories, respectively, A) for CpG-related promoters, and B) for nonCpG-related promoters.
doi:10.1371/journal.pone.0038112.g001

Figure 2. The receiver operating characteristic (ROC) curve for the performance of models trained in NHEK cell, and the
performance of Rach et al’s logistic regression model. A) for CpG-related promoters, and B) for nonCpG-related promoters.
doi:10.1371/journal.pone.0038112.g002
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models (Figure 2 and 1). Surprisingly, in all the six cell types

examined, less than 30% of the selected features were DNA

sequence motifs (Figure 1). In yeast, nucleosomes are intrinsically

organized by static DNA sequences [10,24]; however, in human it is

less clear whether DNA sequence or epigenetic elements exert the

stronger influence on nucleosome positioning [7,25,26]. Given the

tight link between nucleosome position and TSS distribution shown

above and by others [9], this result suggest that the transcription

factor binding motifs included in the present models may not be

direct regulators of TSS distribution in human.

A Bivalent-like Chromatin Code at the Core Promoter
Predicts TSS Distribution

We next asked what underlying information for TSS distribu-

tion prediction is encoded by histone modifications in the core

promoter regions. One type of such information may be associated

with nucleosome position (Figure 1). It has been shown that the

nucleosome positions can be inferred from histone modification

data [12]. To further study the link between the predictive histone

modifications selected by our best models and nucleosome

positions, we analyzed their relationship in the core promoter

regions.

In CD4+ T cells, we found that histone modifications could be

classified into two categories according to their correlation with

nucleosome positions in core promoter regions. We calculated the

PCCs between histone modifications and nucleosome positions for

the 41 histone modification types that have been mapped genome-

wide in human CD4+ T cells [16,27]. Promoter nucleosome

positions for the same cell type were inferred from data on

polymerase II (Pol II) binding or H2A.Z association levels. Both

datasets were generated from Dr. Zhao’s lab [16,28]. Pol II and

H2A.Z were chosen as the reference markers for nucleosome

positions because a strong correlation between these two markers

and the bulk nucleosomes in the core promoter regions has been

shown [28,29]. The PCCs showed a clearly bimodal distribution

(Figure 3), suggesting that the histone modifications could be

classified into two categories. These two categories were then

revealed by k-means clustering, and are subsequently referred to as

Class I and II (Table S2).

We next assessed what possible underlying information for the

TSS distribution prediction could be retrieved from such

classification. The Class I histone modifications are enriched with

‘‘active’’ transcriptional markers frequently found in promoter

regions (i.e, H2BK120ac, H3K27ac and H3K4me3), which are

relatively correlated to nucleosome positions in the promoter

region. On the other hand, Class II histone modifications are

enriched with transcriptionally repressive markers (e.g.

H3K27me3, H3K4me1, H3K79me3 and H4K20me1) [30],

which are far less well correlated to nuclesome positions in the

promoter region (Table S2). If nucleosome position is a major

information associated with TSS distribution, we would expect

that most of the histone modification types selected by the best 1-

models to be from Class I. Indeed, 38 of 39 (97.4%) histone

modifications selected by best 1-models belongs to Class I.

Meanwhile, if nucleosome position is the only predictive informa-

tion for TSS distribution, we would expect that most of the histone

modification types selected by the best 2-models also to be from

Class I. However, given that histone modifications are evenly

distributed between class I and class II, it was surprising that only

76% (575 out of 757) of the histone modifications selected by the

best 2-models were from Class I. This results would suggest most

of the best models utilize the information content of both active

and repressive histone markers. This trend was even clearer when

we raised the threshold for the definition of best 2-models. Indeed,

the predictive power of best 2-models that include both active and

repressive histone markers was much higher than the best 2-

models include only single-type histone markers (Figure 4). This

result suggested that there is a bivalent-like chromatin code is

associated with TSS distribution prediction in core promoter

region. In the bivalent-like chromatin code, the active histone

markers may be associated with the positions of nucleosomes in

core promoter regions. We noticed that H3K36me3 and

H4K20me1 in Class II signify transcriptional activity when

present in the gene body regions [27]. To investigate if this could

bias our analysis, we compared two group of models, the first

group containing models that include both active and repressive

histone markers from Class I and Class II, respectively, and the

second group containing models that include Class I active histone

markers and the Class II H3K36me3 or H4K20me1. We found

that the performance of models in the first group is better than the

performance of models in the second group (Figure S6). This result

suggests that H3K36me3 or H4K20me1 did not introduce bias

into the analysis we present above.

The Associations between the Histone Modification
Levels and TSS Distribution are General

We have shown that for a given cell type, models involving as

few as 3 different types of histone modifications can approximate

the predictive power of the full-model. Therefore, it was

interesting to ask whether models trained on the data of one cell

type could be used to predict the TSS distribution in another cell

type. To assess this possibility, we applied the best 1-, 2- and 3-

models trained in one cell type to all the other cell types in our

dataset. As shown in Figure S4, the average predictive power of a

given model across the cell types was similar to that of the cell type

in which the model was trained. This result strongly suggested a

general relationship between histone modifications and TSS

distribution that is largely independent of the cell context.

Figure 3. The distribution of PCCs among the 41 histone
modifications, Pol II and H2A.Z levels in the promoter regions
of CD4+ T cells.
doi:10.1371/journal.pone.0038112.g003
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In summary, we have found that histone modifications are

associated with TSS entropy, which is a novel measure for TSS

distribution. Our analysis revealed that only 3 features are

sufficient to achieve reliable TSS entropy prediction. Our data

suggested the existence of a bivalent-like chromatin structure for

TSS distribution prediction in the promoter region, in which the

information for nucleosome positions may be encoded. Moreover,

the relationship could be generalized across different cell types

indicating that the model is largely independent of the cellular

context.

Discussion

Associations between TSS distribution and DNA sequence

elements [4–8,19], and between these and nucleosome structure

have previously been reported [9]. In this work, we aimed to

quantitatively model TSS distribution using transcription factor

binding sites, nucleosome organization and histone modification

levels as inputs. We found that a very small number of features

were responsible for most of the predictive power attainable by the

models. A special subset of 2-models, that is, models including

both active and repressive histone modification markers had

considerably better predictive power than other models(Figure 4,

S6), leading us to propose that there exists a bivalent-like

chromatin control with substantial predictive power for TSS

distribution.

Bivalent histone markers were first observed as the occurrence

of high levels of both active H3K4me3 and repressive H3K27me3

in developmental genes in embryonic stem cells [31]. More

recently, they have been found in hypermethylated genes in cancer

[32], as well as in aging-associated DNA hypermethylated

promoters in somatic cells [33]. In mice, it was reported that a

bivalent chromatin pattern, in combination with neuronal factors,

controlled the expression of a brain-specific gene Grb10 [34].

Although the two histone markers H3K4me3 and H3K27me3

have, indeed, been identified as one pair of the best predictors in

our models, the term bivalent-like we borrowed here does not

specifically refer to this particular histone marker pair. Rather, we

have emphasized, in a general sense, that the combinatorial

pattern of both active and repressive histone markers is associated

with TSS distribution prediction. Based on the limited amounts of

data on histone modification types in the cell types studied, we

cannot eliminate the possibility that other histone markers may

also be predictive of TSS distribution, and the observed bivalent-

like pattern need therefore to be corroborated by further data.

Interestingly, the finding of bivalent-like pattern presented here is

consistent with the recent finding that most cis-regulatory modules

include both acting and repressive regulators [35].

There are other possible information types which might be also

encoded in the bivalent-like histone modification patterns for TSS

distribution. One such type information might be linked to stalled

Pol II. Several lines of evidence support the linkage between the

stalled Pol II and TSS distribution. For example, GAGA and the

Figure 4. Predictive power of 2-models. The dots represent the predictive power of the models, blue and red indicating models were trained
and tested in CpG-related and nonCpG-related promoters, respectively. The x-axis is the PCC generated by the 2-models involved in two histone
modifications, one is from Class I, and the other is from Class II. The y-axis is the PCC generated by the 2-models involving two histone modifications
from the same class, either Class I or Class II. Error bars give the standard derivations within the two cases.
doi:10.1371/journal.pone.0038112.g004
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pause button motifs were found to be enriched in peaked

promoters [8]. In Drosophila, stalled Pol II has been observed with

well-positioned TSSs [36]. Pausing Pol II could maintain

accessibility to the promoter region [37], or it could prevent the

formation of repressive chromatin [38]. It has also been proposed

that the pausing Pol II could serve as a checkpoint for coupling

transcription and mRNA processing, the pre-mRNA thus waiting

for the desired modification patterns to be formed in the

downstream exonic regions [39]. In addition to pausing Pol IIs,

we also noticed that one modification, H4K20me1, was selected in

most of the best 2-models. H4K20me1 can act as repressive

modification [40,41], however, it has also been observed in the

promoter and gene body region of actively transcribed genes

[16,27]. Moreover, it is one of the most predictive histone

modification types for gene expression level [14]. Given the

complex role of H4K20me1 with regard to transcription, we may

hypothesize the existence of multiple code readers for this same

histone modification type under different situations. For example,

H4K20me1 interacts with Lethal 3 malignant brain tumor 1

(L3MBTL1) [42] and JMJD2A [43]. Because of the potential

variation in binding of factors under different conditions or cell

types, it is reasonable to speculate that H4k20me1 could affect

transcription by affecting the structure and properties of nucleo-

somes, or, alternatively, by influencing the properties of protein

binding on the nucleosomes which, in turn, would affect

transcription. The two possibilities are not necessarily mutually

exclusive, i.e. the exposure of a cryptic binding site may be a

consequence of a change of nucleosome conformation. Therefore,

it is easy to imagine that this may results in the activation of

transcription in one case and the repression of transcription in

another [44]. Given 1) the complicated network of interactions

among transcription factors, transcription initiation, nucleosome

positions, and DNA replication [45], and 2) the fact that even the

best full-model only capture less than 50% of the variation of TSS

entropy, it is clear that more sophisticated data and modeling is

needed to improve our understanding of TSS distribution and the

regulation of transcription initiation.

Materials and Methods

Data
Histone modification data for CD4+ T cells were retrieved from

the published mapping [16,27], and the nucleosome position data

of the cell types were retrieved from Dr.Zhao’s lab [28]. Data for

the GM12878, K562, hESC, HUVEC, HepG2, and NHEK cell

lines were retrieved from the ENCODE Project [46], in which

histone modifications were mapped by the Broad Institute [31],

DNase I hypersensitivity data were produced by the University of

Washington [47], and CAGE data were generated by the RIKEN

institute [48].

We downloaded the human reference genome (Hg18) and

retrieved RefSeq gene annotations from the UCSC Genome

Browser (http://genome.ucsc.edu). Transcription factor binding

sites (TFBSs) were scanned in all analyzed core promoter regions

by the STORM software [49], using the known position weight

matrices annotated by TRANSFAC [50]. The threshold for TFBS

identification by STORM was a P-value ,1e-5. The core

promoter regions were defined as 1000 base pairs (bp) upstream

to 1000 bp downstream of the annotated TSS in the RefSeq

genes. The transcription factor binding motifs were further

clustered into 165 clusters by a Bayesian motif clustering algorithm

to reduce the motif redundancy [51], and the TF binding affinities

for the motifs in a single cluster were combined in the subsequence

analysis. The clusters of transcription factor binding motifs can be

found in Table S3.

Estimation of the Entropy of the TSS Distribution
By assuming that the TSSs in a promoter follow a Gaussian

distribution with an unknown standard deviation, we defined the

entropy of the TSS distribution of this promoter as the entropy of

this Gaussian distribution:

ln (2pes2)

2
, ð1Þ

where s is the unknown standard deviation of this Gaussian

distribution. We estimate tag entropies from the CAGE data.

One way to estimate the entropy is to estimate the standard

deviation of this Gaussian distribution by taking the standard

deviation of observed CAGE tags. However, as we show in the

Text S1, the standard deviation estimation is not a robust against

sequencing noise or depth. Therefore, an alternative is to directly

take the observed CAGE tag distribution curve as an approx-

imation of the probability density function curve, known as a

histogram estimator:

{
X

p(i)log2p(i)½ �, ð2Þ

where p(i) denotes that the frequency of tags has been observed

in bin i. A similar estimation was recently used in a study on

Drosophila [8]. However, it is well known that this histogram

estimator is biased [52], and although attempts to correct such

bias have been made, they may not always be satisfactory for

general use [52]. To overcome this systematic bias [52], an

algorithm has been developed to adjust this estimated tag

entropy as follows:

Step one, we built a reference matrix, termed the SDEM. In the

SDEM, each entry represents a particular Gaussian and sampling

scenario. For example, row i and column j corresponded to the

scenario in which i tags have been sampled from a Gaussian

distribution with s = j. The content in the entry is the mean and

standard deviation of the estimated entropies by formula (2), for a

scenario in which the calculation is based on resampling 50 times.

The CAGE experiments were simulated as draw samples from a

given Gaussian population. The sequencing depths were simulated

as the number of samples drawn from the population. Because we

were not interested in promoters with a flat TSS distribution, we

only simulated Gaussian populations with s in the range [0,100].

When the sample size is larger than 50, the estimation has been

found to be sufficient. In our simulations, the number of samples

ranged from 1 to 200. Therefore, the SDEM is a 2006100 matrix.

Step two, for any given promoter with k real CAGE tags

sequenced, we first calculated an unadjusted entropy U by formula

(2). Then, U was used to calculate the likelihoods of entropy

distributions for all the entries in the k-th row of the SDEM. We

chose the scenario which has the maximal likelihood for U as our

predicted Gaussian distribution of TSSs in this promoter. For any

given SDEM scenario, the likelihood of an entropy distribution is

the integral of the probability distribution function in the

neighborhood of U, [U 2 a, U + a], where a = 0.1. We tested

other values of alpha without significant changes to our results.

The adjusted entropy was then calculated by formula (1) using the

predicted Gaussian distribution. We denoted this adjusted entropy

as the TSS entropy for this promoter. The matrix SDEM of mean

and standard deviation can be found online as the Text S2 and S3,

respectively.
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Linear Regression and l1-logistic Classification
We used the lm() function in the R package (www.r-project.org)

to perform linear regression. The sum of ChIP-seq reads in the

promoter region were used as features representing the level of

histone modifications and DNase hypersensitivity, and the sum of

STORM scores for each cluster were used to represent the TFBS

cluster feature. The P-values, BIC, intercepts, and coefficients for

the best 1-, 2- and 3-models can be found in Table S1. The l1-

logistic classification was performed by the l1_logreg package [53].

Supporting Information

Figure S1 Comparison between TSS entropy’s and
STD’s ability to distinguish two Gaussian populations
with a uniform noise background.
(TIF)

Figure S2 Comparison between TSS entropy’s and
STD’s ability to distinguish two Gaussian populations
with a Gaussian noise background.
(TIF)

Figure S3 Performance distribution of best 2-models
for K562 cells.
(TIF)

Figure S4 The receiver operating characteristic (ROC)
curve for the performance of models trained in
GM12878 and applied in NHEK cells.
(TIF)

Figure S5 Features selected for the best models.
(TIF)

Figure S6 Predictive power of 2-models.
(TIF)

Table S1 The models of 1-, 2-, 3- and full-models.

(XLSX)

Table S2 Two classes of histone modifications.

(DOCX)

Table S3 Clusters of Transcription factors.

(XLSX)

Text S1 Supporting discussions on sequencing noise
and negative control.
(DOCX)

Text S2 The reference matrix SDEM of means.

(TXT)

Text S3 The reference matrix SDEM of standard
deviations.

(TXT)
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