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Abstract

The class of beta-generated distributions (Commun. Stat. Theory Methods 31:497–512,

2002; TEST 13:1–43, 2004) has received a lot of attention in the last years. In this paper,

three new classes of bivariate beta-generated distributions are proposed. These classes

are constructed using three different definitions of bivariate distributions with classical

beta marginals and different covariance structures. We work with the bivariate beta

distributions proposed in (J. Educ. Stat. 7:271–294, 1982; Metrika 54:215–231, 2001;

Stat. Probability Lett. 62:407–412, 2003) for the first proposal, in (Stat. Methods Appl. 18:

465–481, 2009) for the second proposal and (J. Multivariate Anal. 102:1194–1202, 2011)

for the third one. In each of these three classes, the main properties are studied. Some

specific bivariate beta-generated distributions are studied. Finally, some empirical

applications with well-being data are presented.
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1 Introduction

In the recent statistical literature several methodologies of constructing bivariate and

multivariate distributions based on marginal and conditional distributions have been

proposed; see the works by Arnold et al. (1999; 2001), Kotz et al. (2000), Sarabia and

Gómez-Déniz (2008) and Balakrishnan and Lai (2009) among others.

An important field of research focuses on the study of new classes of univariate distri-

butions which contain the classical proposals, also allowing for more flexibility in fitting

data. In this sense, the class of beta-generated (BG) distributions (Eugene et al. 2002;

Jones 2004) has received an increasing amount of attention in recent years.

There are several reasons for studying classes of multivariate beta generated dis-

tributions. The two existing proposals of multivariate BG distributions present some

drawbacks. The first proposal (Jones and Larsen 2004) is only valid for modeling data

above the diagonal. The second proposal (Arnold et al. 2006) is defined in terms of the

conditional distributions, and the corresponding marginal distributions do not follow, in

general, beta generated distributions.

The three bivariate and multivariate models proposed in this paper present BG

marginals, with high flexibility in the marginals and in the dependence structure. The
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marginal distributions of the first model share one of the shape parameters, and the struc-

ture of dependence satisfies TP2 condition (see Section 3). The marginals of the second

model are free, and the different pairwise of marginals are associated (see Section 3).

The third model is the more flexible, in the sense than all the marginals are free (they do

not share any shape parameter) and the covariance structure admits correlations of any

sign.

On the other hand, these classes of distributions present several fields of applicability.

For example, bivariate beta generated distributions with classical beta marginals are nat-

ural choices to be used as prior distributions for the parameters of correlated binomial

random variables (with any sign for the correlation) in Bayesian analysis (see Apostolakis

and Moieni 1987; Arnold and Ng 2011).

In this work, three new classes of bivariate BG distributions are proposed. These classes

are constructed using three alternative definitions of bivariate distributions with classical

beta marginals and different covariance structures. We work with the bivariate beta dis-

tributions proposed by Libby and Novick (1982), Jones (2001) and Olkin and Liu (2003)

for the first proposal, El-Bassiouny and Jones (2009) for the second proposal and Arnold

and Ng (2011) for the third one. For each of these three classes, the main properties are

obtained. Some specific bivariate BG distributions are studied. Finally, some empirical

applications with well-being data are presented.

The contents of this paper are as follows. In Section 2 we present some basic properties

of the class of the BG distributions and a brief review about two multivariate extensions

of the BG distribution. Section 3 considers and studies the three classes of bivariate BG

distributions and their main properties as well as to introduce three specific bivariate

distributions. A number of applications of these distributions to fit well-being data are

presented in Section 4. Finally, some conclusions and future research directions are given

in Section 5.

2 Some univariate andmultivariate beta-generated distributions

2.1 The univariate class of beta-generated distributions

In this section we present basic properties of the class of BG distributions. We begin

with an initial baseline probability density function (PDF) f (x), where the correspond-

ing cumulative distribution function (CDF) is represented by F(x). The class of BG

distributions is defined in terms of the PDF by (a, b > 0),

gF(x; a, b) = [B(a, b)]−1 f (x)F(x)a−1 [1 − F(x)]b−1 , (1)

where B(a, b) = Ŵ(a)Ŵ(b)/Ŵ(a + b) denotes the classical beta function. A random

variable X with PDF (1) will be denoted by X ∼ BG(a, b; F).

The CDF associated to (1) is,

GF(x; a, b) = IF(x)(a, b),

where IF(x)(·, ·) denotes the incomplete beta ratio.

If B ∼ Be(a, b) represents the classical beta distribution, a simple stochastic represen-

tation of (1) is,

X = F−1(B). (2)
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This representation permits a direct simulation of the values of a random variable

with PDF (1), which can be also used for generating multivariate versions of the BG

distribution. The raw moments of a BG distribution can be obtained by,

E
[

Xr
]

= E
[

{

F−1(B)
}r

]

, r > 0.

An important number of new classes of distributions have been proposed using this

methodology. Some representatives examples of BG distributions include the generalized

beta of the first kind (GB1) proposed by McDonald (1984), the generalized beta of the

second kind (GB2) proposed and studied by Venter (1983) and McDonald (1984), the

log F distribution (Barndorff-Nielsen et al. 1982), the beta-normal distribution (Eugene

et al. 2002), the beta-exponential distribution (Nadarajah and Kotz 2006) and the Skew-t

distribution (Jones 2004).

Some extensions of this family have been proposed by Alexander and Sarabia (2010),

Alexander et al. (2012), Cordeiro and de Castro (2011) and Zografos (2011). Other alter-

native flexible families of distributions can be found in Alzaatreh et al. (2013, 2014) and

Lee et al. (2013).

If a = i and b = n − i + 1 in (1), we obtain the PDF of the i-th order statistic from F

(Jones 2004). Below, we highlight some representative values of a and b,

• If a = b = 1, gF = f .

• If a = n and b = 1, we obtain the distribution of the maximum.

• If a = 1 and b = n, we obtain the distribution of the minimum.

• If a �= b, we obtain a family of skew distributions.

Parameters a and b control the tailweight of the distribution. Specifically, the a parameter

controls left-hand tailweight and the b parameter controls the right-hand tailweight of the

distribution. On the other hand, a = b yields a symmetric sub-family, with a controlling

tailweight. If a = b = 1 the BG family is always symmetric if the baseline function F(x)

is symmetric. In this sense, the BG distribution accommodates several kind of tails. For

example (see Jones 2004),

• Potential tails: If f ∼ x−(α+1) and α > 0, when x → ∞ gF ∼ x−bα−1,

• Exponential tails: If f ∼ e−αx and β > 0, then gF ∼ e−bβx if x → ∞.

2.2 Two previous classes of multivariate extensions of beta-generated distributions

There are two proposals for multivariate extensions of BG distributions. The first pro-

posal used the joint PDF of a subset of order statistics, and has been proposed by Jones

and Larsen (2004). The second proposal used the so called Rosenblatt construction

(Rosenblatt 1952), and has been proposed by Arnold et al. (2006). These two alternatives

are not related with the multivariate BG distributions studied in this paper.

3 Three classes of bivariate beta-generated distributions

In this section we introduce three new classes of bivariate BG distributions. These

three classes are constructed combining the basic stochastic representation (2) with

three recent definitions of bivariate beta distributions proposed in the literature. The

three definitions differ from each other in the marginal distributions and in the flex-

ibility of the covariance structure. First, we need some previous notation. Let X be a
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random variable distributed as the classical gamma denoted by X ∼ Ga, with PDF

f (x) = [Ŵ(a)]−1 xa−1e−x, with x ≥ 0 and a > 0. Then, if X1 ∼ Ga and X2 ∼ Gb are inde-

pendent gamma random variables, the transformed random variable X = X1/(X1 + X2)

is distributed as the classical beta distribution with parameters (a, b).

3.1 The first class of bivariate beta-generated distributions

The first class of bivariate beta-generated distribution is based on the following class of

bivariate beta distribution.

Definition 1. LetGa1 ,Ga2 andGb be three independent gamma random variables with

a1, a2, b > 0. The first class of bivariate beta distribution is defined by the stochastic

representation,

(Z1,Z2)
⊤ =

(

Ga1

Ga1 + Gb
,

Ga2

Ga2 + Gb

)⊤
. (3)

This class was initially proposed by Libby and Novick (1982) and then studied by Jones

(2001) and Olkin and Liu (2003).

Now, using (3) we define the following class of bivariate BG distributions.

Definition 2. LetGa1 ,Ga2 andGb be three independent gamma random variables with

a1, a2, b > 0. The first class of bivariate BG distribution is defined by the stochastic

representation,

(X1,X2)
⊤ =

(

F−1
1

{

Ga1

Ga1 + Gb

}

, F−1
2

{

Ga2

Ga2 + Gb

})⊤
, (4)

where F1(·), F2(·) are genuine CDF.

3.1.1 Basic properties

In this section we study some basic properties of the bivariate BG distribution defined in

(4). The marginal distributions of (4) are BG distributions,

X1 ∼ BG (a1, b; F1) ,

X2 ∼ BG (a2, b; F2) .

Note that both marginals share the second shape parameter b. However, this fact does not

make the model less flexible, since both baseline distributions F1 and F2 are different.

Using the joint PDF of the bivariate beta distribution (3) (See Appendix), we obtain the

joint PDF of the first class of bivariate BG distribution given by,

f (x1, x2) = F1 (x1)
a1−1 F2 (x2)

a2−1 [1 − F1(x1)]
a2+b−1 [1 − F2(x2)]

a1+b−1 f1 (x1) f2 (x2)

B (a1, a2, b) [1 − F1 (x1) F2 (x2)]
a1+a2+b

,

(5)

where a1, a2, b > 0 and B(a1, a2, b) = Ŵ(a1)Ŵ(a2)Ŵ(b)/Ŵ(a1 + a2 + b). An alternative

expression of (5) in terms of the PDF of the BG distribution is,

f (x1, x2) = Ŵ (a1 + b) Ŵ (a2 + b)

Ŵ(b)Ŵ (a1 + a2 + b)

gF1 (x1; a1, a2 + b) gF2 (x2; a2, a1 + b)

[1 − F1 (x1) F2 (x2)]
a1+a2+b

,
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where gF(x; a, b) represents the PDF defined in (1). The joint PDF can be also written as

an infinite mixture,

f (x1, x2) =
∞
∑

j=0

dA(j)gF1
(

x1; a1 + j, a2 + b
)

· gF2
(

x2; a2 + j, a1 + b
)

, (6)

where d = Ŵ(a1+b)Ŵ(a2+b)
Ŵ(b)Ŵ(a1+a2+b)

and

A(j) =
Ŵ

(

a1 + j
)

Ŵ (a1)
·
Ŵ

(

a2 + j
)

Ŵ (a2)
· Ŵ (a1 + a2 + b)

Ŵ
(

a1 + a2 + b + j
) · 1

j!
.

The conditional distribution of X1 given X2 is,

f (x1|x2) = Ŵ (a1 + a2 + b)

Ŵ (a1) Ŵ (a2) Ŵ(b)

F1 (x1)
a1−1 [1 − F1 (x1)]

a2+b−1 [1 − F2 (x2)]
a1 f1 (x1)

[1 − F1 (x1) F2 (x2)]
a1+a2+b

,

and the regression function of X1 given X2 is,

E (X1|X2 = x2) = Ŵ (a1 + a2 + b)

Ŵ (a1) Ŵ (a2) Ŵ(b)
(1 − F2 (x2))

a2

∫ 1

0

F−1
1 (t)ta1−1(1 − t)a2+b−1

[1 − tF2 (x2)]
a1+a2+b

dt.

In order to study the dependence between X1 and X2, we consider the local dependence

function defined by (Holland and Wang 1987),

γ (x1, x2) = ∂2

∂x1∂x2
log f (x1, x2) .

We use the definitions of total positivity of order 2 (TP2) functions and reverse rule of

order 2 (RR2) functions, which are the following.

Definition 3. A joint PDF f (x, y) is said to be TP2 (RR2) if

f (x, y)f (u, v) − f (x, v)f (u, y) ≥ 0 (≤ 0)

for all x ≤ u and y ≤ v.

The following result relates the local dependence function γ (x1, x2) with the TP2 and

RR2 (see Theorem 7.1 in Holland and Wang 1987).

Theorem 1. Let f (x1, x2) be the joint PDF of (X1,X2) with support on a set S where the

set S = S1 × S2. Then, f (x1, x2) is TP2 (RR2) if and only if γ (x1, x2) ≥ 0 (≤ 0).

For the first class of BG distribution, it can be verified that

γ (x1, x2) = (a1 + a2 + b) f1 (x1) f2 (x2)

[1 − F1 (x1) F1 (x1)]
2

> 0,

and then X1 and X2 are TP2. As a consequence, the linear correlation coefficient between

X1 and X2 is always positive.

It can be proved (see Shaked 1977) that if the joint PDF f (x1, x2) is TP2 (RR2), then the

conditional hazard rate of X1|X2 = x2 is decreasing (increasing) in x2. A similar property

holds for the other conditional distribution X2|X1 = x1. As the PDF in (5) is TP2, this

property shows the monotonicity properties of the hazard rate functions of the condi-

tional distributions of X1|X2 = x2 as a function of x2 and the X2|X1 = x1 as a function

of X1.
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On the other hand, because X1 and X2 are increasing functions of independent random

variables, X1 and X2 are associated random variables (Esary et al. 1967).

Expressions for the cross moments E
[

X
r1
1 X

r2
2

]

can be obtained from (5) or in terms of

an infinite mixture from (6). On the other hand, if b > r, it can be shown that,

E

{

F1 (X1)
r F2 (X2)

r

[1 − F1 (X1) F2 (X2)]
r

}

= Ŵ (a1 + r) Ŵ (a2 + r) Ŵ(b − r)Ŵ (a1 + a2 + b)

Ŵ (a1) Ŵ (a2) Ŵ(b)Ŵ (a1 + a2 + b + r)
.

3.1.2 Extension to higher dimensions

The extension to higher dimensions is direct. The m-dimensional random vector is

defined as,

(X1, . . . ,Xm)⊤ =
(

F−1
i

{

Gai

Gai + Gb

}

, i = 1, 2, . . . ,m

)⊤
. (7)

The marginal distributions are Xi ∼ BG(ai, b; Fi), i = 1, 2, . . . ,m. The joint PDF of (7) is

given by,

f (x1, . . . , xm) = c

m
∏

i=1

Fi (xi)
ai−1 fi (xi)

[1 − Fi (xi)]
ai+1

[

1 +
m

∑

i=1

Fi (xi)

1 − Fi (xi)

]−b

,

where c−1 = B(a1, . . . , am, b) = Ŵ(a1) · · ·Ŵ(am)Ŵ(b)/Ŵ(a1 + . . . + am + b).

3.2 The second type of bivariate beta-generated distributions

The second type of bivariate BG distribution is motivated by the fact of having a bivariate

distribution with arbitrary BGmarginals. This second class is based on the following class

of bivariate beta distribution, which was proposed by El-Bassiouny and Jones (2009).

Definition 4. Let Gai , i = 1, 2, 3, 4 be independent gamma random variables, where

ai > 0, i = 1, 2, 3, 4. The second class of bivariate beta distribution is defined by the

stochastic representation,

(Z1,Z2)
⊤ =

(

Ga1

Ga1 + Ga3

,
Ga2

Ga2 + Ga3 + Ga4

)⊤
. (8)

Now, we define the second class of BG distributions.

Definition 5. Let Gai , i = 1, 2, 3, 4 be independent gamma random variables, where

ai > 0, i = 1, 2, 3, 4. The second class of bivariate BG distribution is defined by the

stochastic representation,

(X1,X2)
⊤ =

(

F−1
1

{

Ga1

Ga1 + Ga3

}

, F−1
2

{

Ga2

Ga2 + Ga3 + Ga4

})⊤
, (9)

where F1(·), F2(·) are genuine CDF.

3.2.1 Basic properties

The marginal distributions are BG distributions with arbitrary parameters,

X1 ∼ BG (a1, a3; F1) ,

X2 ∼ BG (a2, a3 + a4; F2) .
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Using the joint PDF (8) (see Appendix), the joint PDF of this second class of bivariate BG

distributions is given by,

f (x1, x2) = k
gF1 (x1; a1,A − a1) gF2 (x2; a2,A − a2)

[1 − F1 (x1) F2 (x2)]
A

a12 (x1, x2) ,

where k−1 = B (a1, a3)B (a2, a1 + a3 + a4),A =
∑4

i=1 ai, a12 (x1, x2) = H[F1(x1), F2(x2)]

and

H (z1, z2) = 2F1

[

A, a4;A − a2;
z1 (1 − z2)

1 − z1z2

]

,

being 2F1 [..; .; ] the Gauss confluent hypergeometric function.

The conditional density function of X1|X2 = x2 is,

f (x1|x2) = k′ f1 (x1) F1 (x1)
a1−1 [1 − F1 (x1)]

A−a1−1 [1 − F2 (x2)]
a1

[1 − F1 (x1) F2 (x2)]
A

a12 (x1, x2) ,

where k′ = k B(a2,a3+a4)
B(a1,A−a1)B(a2,A−a2)

and the conditional density function of X2|X1 = x1 is,

f (x2|x1) = k′′ f2 (x2) F2 (x2)
a2−1 [1 − F2 (x2)]

A−a2−1 [1 − F1 (x1)]
A−a1−a3

[1 − F1 (x1) F2 (x2)]
A

a12 (x1, x2) ,

where k′′ = k B(a1,a3)
B(a1,A−a1)B(a2,A−a2)

.

The regression function of X1 given X2 is,

E (X1|X2 = x2) = a1 (x2)

∫ ∞

−∞

x1f1 (x1) F1 (x1)
a1−1 [1 − F1 (x1)]

A−a1−1

[1 − F1 (x1) F2 (x2)]
A

a12 (x1, x2) dx1,

where a1(x2) = k′ [1 − F2(x2)]
a1 and the regression function of X2 given X1 is,

E (X2|X1 = x1) = a2 (x1)

∫ ∞

−∞

f2 (x2) F2 (x2)
a2−1 [1 − F2 (x2)]

A−a2−1

[1 − F1 (x1) F2 (x2)]
A

a12 (x1, x2) dx2,

being a2(x1) = k′′ [1 − F1(x1)]
A−a1−a3 .

The cross-product moments can be obtained as,

E
(

X
r1
1 X

r2
2

)

= E(Z1,Z2)

{[

F−1
1 (Z1)

]r1
[

F−1
2 (Z2)

]r2
}

, (10)

where (Z1,Z2) is the bivariate random variable with joint PDF given by equation (23).

Note that (10) can be computed easily by simulation from samples of the random variable

(Z1,Z2). The local dependence function is given by,

γ (x1, x2) = Af1 (x1) f2 (x2)

[1 − F1 (x1) F2 (x2)]
2

+ ∂2a12 (x1, x2)

∂x1∂x2
. (11)

The second term in (11) is long and will not be included here.

The random variables X1 and X2 are associated and then the linear correlation coef-

ficient is always non-negative (see Definition I.11 and Proposition I.13 in Marshall and

Olkin (2007)).

3.2.2 Multivariate extensions

A multivariate extension of (9) is also possible. We define,

(X1, . . . ,Xm)⊤ =
(

F−1
i

{

Gai

Gai +
∑i

j=1Gbj

}

, i = 1, 2, . . . ,m

)⊤

,
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where the marginal distributions are BG distributions with parameters,

Xi ∼ BG (ai, b1 + . . . + bi; Fi) , i = 1, 2, . . . ,m.

3.3 The third type of bivariate beta-generated distributions

The next class of bivariate beta distribution is the more general class in the sense that

the marginal distributions have arbitrary parameters and admits any sign for the linear

correlation coefficient. The following definition was proposed by Arnold and Ng (2011).

Definition 6. The third class of bivariate beta distribution is defined by the stochastic

representation,

(Z1,Z2)
⊤ =

(

Ga1 + Ga3

Ga1 + Ga3 + Ga4 + Ga5

,
Ga2 + Ga4

Ga2 + Ga3 + Ga4 + Ga5

)⊤
,

where Gai , i = 1, 2, 3, 4, 5 are independent gamma random variables, where ai > 0, i =
1, 2, 3, 4, 5.

Now, we define the third class of BG distributions.

Definition 7. Let Gai , i = 1, 2, 3, 4, 5 be independent gamma random variables with

ai > 0, i = 1, 2, 3, 4, 5. The third class of bivariate BG distribution is defined by the

stochastic representation,

(X1,X2)
⊤ =

(

F−1
1

{

Ga1 + Ga3

Ga1 + Ga3 + Ga4 + Ga5

}

, F−1
2

{

Ga2 + Ga4

Ga2 + Ga3 + Ga4 + Ga5

})⊤
,

(12)

where F1(·), F2(·) are genuine CDF.

3.3.1 Basic properties

The marginal distributions of (12) are X1 ∼ BG(a1 + a3, a4 + a5; F1) and X2 ∼ BG(a2 +
a4, a3 + a5; F2).

The joint PDF of (12) is given by,

fX1,X2 (x1, x2) = f1 (x1) f2 (x2)

(1 − F1 (x1))
2 (1 − F2 (x2))

2
fV ,W

(

F1 (x1)

1 − F1 (x1)
,

F2 (x2)

1 − F2 (x2)

)

,

where fV ,W (·, ·) is defined in equation (24) in the Appendix.

The conditional density function of X1|X2 = x2 is,

f (x1|x2) =
k′f1 (x1) fV ,W

(

F1(x1)
1−F1(x1)

, F2(x2)
1−F2(x2)

)

[1 − F1 (x1)]
2 [1 − F2 (x2)]

a3+a5+1 F2 (x2)
a2+a4−1

,

where k′ = B(a2 + a4, a3 + a5) and the conditional density function of X2|X1 = x1 is,

f (x2|x1) =
k′′f2 (x2) fV ,W

(

F1(x1)
1−F1(x1)

, F2(x2)
1−F2(x2)

)

[1 − F1 (x1)]
a4+a5+1 [1 − F2 (x2)]

2 F1 (x1)
a1+a3−1

,

where k′′ = B(a1 + a3, a4 + a5).
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The regression function of X1 given X2 is,

E (X1|X2 = x2) = b1 (x2)

∫ ∞

−∞

x1f1 (x1) fV ,W

(

F1(x1)
1−F1(x1)

, F2(x2)
1−F2(x2)

)

[1 − F1 (x1)]
2

dx1,

where b1(x2) = k′

[1−F2(x2)]
a3+a5+1F2(x2)

a2+a4−1 and the regression function of X2 given X1 is,

E (X2|X1 = x1) = b2 (x1)

∫ ∞

−∞

x2f2 (x2) fV ,W

(

F1(x1)
1−F1(x1)

, F2(x2)
1−F2(x2)

)

[1 − F2 (x2)]
2

dx2,

with b2(x1) = k′′

[1−F1(x1)]
a4+a5+1F1(x1)

a1+a3−1 .

The local dependence function can be written as,

γ (x1, x2) = h (x1, x2) ·
∂2fV ,W (u1,u2)

∂v∂w fV ,W (u1,u2) − ∂ fV ,W (u1,u2)
∂v

∂ fV ,W (u1,u2)
∂w

f 2V ,W (u1,u2)
,

where h(x1, x2) = f1(x1)f2(x2)
[1−F1(x1)][1−F2(x2)]

and ui = Fi(xi)
1−Fi(xi)

, i = 1, 2.

In a similar way, the cross-product moments can be obtained using formula (10), where

now (Z1,Z2) is the bivariate random variable with joint PDF given by (24).

The covariance structure of (12) is flexible and the sign of the linear correlation

coefficient can be positive or negative.

3.3.2 Multivariate extensions

The general multivariate version of the third class of BG distribution is based on the mul-

tivariate beta distribution proposed by Arnold and Ng (2011). Using this definition, the

extension of (12) to dimensions higher than two is,

(X1, . . . ,Xm)⊤ =
(

F−1
i

{

Gai + Gbi

Gai +
∑m

l=1Gbl + Gc

}

, i = 1, 2, . . . ,m

)⊤
,

where Gai , Gbi , i = 1, 2, . . . ,m and Gc are independent gamma random variables.

3.4 Estimation

Here we derive the maximum likelihood (ML) estimator of the parameters of the BG fam-

ily of the first type defined in (4). Let (x1i, x2i), i = 1, 2, . . . , n be a random sample of size

n from (5), where we assume that both baseline functions are F1(x1; τ 1) and F2(x2; τ 2),

where τ i, i = 1, 2 is a pi × 1, i = 1, 2 vector of unknown parameters of the parent

distributions. The log-likelihood function for θ = (τ 1, τ 2, a1, a2, b) may be written,

ℓ(θ) = −n logB (a1, a2, b) + a1

n
∑

i=1

log

[

F1 (x1i; τ 1) F̄2 (x2i; τ 2)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)

]

+a2

n
∑

i=1

log

[

F2 (x2i; τ 2) F̄1 (x1i; τ 1)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)

]

+b

n
∑

i=1

log

[

F̄1 (x1i; τ 1) F̄2 (x2i; τ 2)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)

]

+
n

∑

i=1

log

[

f1 (x1i; τ 1) f2 (x2i; τ 2)

F1 (x1i; τ 1) F1 (x1i; τ 1) F̄1 (x1i; τ 1) F̄2 (x2i; τ 2)

]

, (13)

where we have used the notation F̄i (·; τ i) = 1 − Fi (·; τ i), i = 1, 2.



Sarabia et al. Journal of Statistical Distributions and Applications 2014, 1:15 Page 10 of 26

http://www.jsdajournal.com/content/1/1/15

This expression may be maximized either directly, e.g. using the Mathematica soft-

ware function FindMaximum (see Wolfram Research, Inc. 2010), the SAS proce-

dure NLMIXED (SAS Institute, Inc. 2010), the R software functions nlm or optim

(R Development Core Team 2011), or the MATLAB function fmincon (The

Mathworks, Inc. 2011), among others, which provides numerical algorithms for non-

linear optimization), or by solving the nonlinear equations obtained by differentiating

expression (13).

Initial estimates of the parameters a1, a2 and b can be inferred from estimates of τ 1 and

τ 2, since if (X1,X2)
⊤ is distributed as (4), then (F1(X1), F2(X2))

⊤ is distributed as (3). If

we define the random variables Y1 = F1(X1) and Y2 = F2(X2), we obtain the following

expressions,

E [Y1] = a1

a1 + b
, (14)

E [Y2] = a2

a2 + b
, (15)

E

[

1 − Y1Y2

(1 − Y1) (1 − Y2)

]

= a1 + a2 + b − 1

b − 1
, b > 1 (16)

If m1, m2 and m12 are the sample versions of previous moments, solving Equations (14)

to (16) for a1, a2 and b we have:

â1 = m1 (1 − m2) (1 − m12)

1 − m1m2 + m12 (m1 + m2 − m1m2 − 1)
, (17)

â2 = m2 (1 − m1) (1 − m12)

1 − m1m2 + m12 (m1 + m2 − m1m2 − 1)
, (18)

b̂ = (1 − m1) (1 − m2) (1 − m12)

1 − m1m2 + m12 (m1 + m2 − m1m2 − 1)
. (19)

The components of the score vector U(θ) are given by,

Ua1(θ) = n [ψ (a1 + a2 + b) − ψ (a1)] +
n

∑

i=1

log

[

F1 (x1i; τ 1) F̄2 (x2i; τ 2)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)

]

,

Ua2(θ) = n [ψ (a1 + a2 + b) − ψ (a2)] +
n

∑

i=1

log

[

F2 (x2i; τ 2) F̄1 (x1i; τ 1)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)

]

,

Ub(θ) = n [ψ (a1 + a2 + b) − ψ(b)] +
n

∑

i=1

log

[

F̄1 (x1i; τ 1) F̄2 (x2i; τ 2)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)

]

,

Uτ 1(θ) = (a1 − 1)

n
∑

i=1

Ḟ1 (x1i)τ 1

F1 (x1i; τ 1)
− (a2 + b − 1)

n
∑

i=1

Ḟ1 (x1i)τ 1

F̄1 (x1i; τ 1)

+ (a1 + a2 + b)

n
∑

i=1

Ḟ1 (x1i)τ 1
F2 (x2i; τ 2)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)
+

n
∑

i=1

ḟ1 (x1i)τ 1

f1 (x1i; τ 1)
,

Uτ 2(θ) = (a2 − 1)

n
∑

i=1

Ḟ2 (x2i)τ 2

F2 (x2i; τ 2)
− (a1 + b − 1)

n
∑

i=1

Ḟ2 (x2i)τ 2

F̄2 (x2i; τ 2)

+ (a1 + a2 + b)

n
∑

i=1

Ḟ2 (x2i)τ 2
F1 (x1i; τ 1)

1 − F1 (x1i; τ 1) F2 (x2i; τ 2)
+

n
∑

i=1

ḟ2 (x2i)τ 2

f2 (x2i; τ 2)
,
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where ḟj(xji)τ j = ∂fj(xji; τ j)/∂τ j and Ḟj(xji)τ j = ∂Fj(xji; τ j)/∂τ j are pj × 1 vectors, with

j = 1, 2 and ψ(s) = d logŴ(s)/ds is the digamma function.

For obtaining interval estimation and hypothesis testing on the model parameters, we

need the observed information matrix. The (p1 + p2 + 3, p1 + p2 + 3) observed matrix

J = J(θ) can be obtained by taking partial second derivatives in the score vector U(θ).

Assuming conditions that are fulfilled for parameters in the interior of the parameter

space (but not in the boundary), the distribution of
√
n

(

θ̂ − θ

)

is asymptotically nor-

malNp1+p2+3

(

0, I(θ)−1
)

, where I(θ) denotes the expected information matrix. As usual,

we can substitute I(θ) by J
(

θ̂

)

, that is, the observed information matrix evaluated at θ̂

and then, the distribution Np1+p2+3

(

0, J(θ̂)−1
)

can be used to construct approximate

confidence intervals for the parameters.

The estimation of the other two models (9) and (12) requires a detailed study, which is

beyond the scope of this paper and will be object of future research.

To finish this section, it should be mentioned that all the models proposed in this paper

(4, 9 and 12) and their multivariate extensions can be enriched including location and

scale parameters.

3.5 Some specific bivariate distributions

In this section we propose three specific bivariate BG models.

3.5.1 Bivariate Beta-Normal distributions

This model is a direct bivariate extension of the beta-normal distribution considered by

Eugene et al. (2002). If Fi(xi) = 	(zi), where zi = (xi − μi)/σi, where μi ∈ R and σi > 0,

i = 1, 2 and 	(z) is the CDF of a standard normal distribution, we obtain the bivariate

joint PDF,

f (x1, x2) = 	(z1)
a1−1 	(z2)

a2−1 [1 − 	 (z1)]
a2+b−1 [1 − 	 (z2)]

a1+b−1 φ (z1) φ (z2)

σ1σ2B (a1, a2, b) [1 − 	 (z1) 	 (z2)]
a1+a2+b

,

where a1, a2, b > 0.

3.5.2 Bivariate GB1 income distributions

If we take F(x) = xa in (1), we obtain the generalized beta distribution of the first kind

(GB1) (see McDonald 1984), which will be denoted by X ∼ GB1(p, q, a). Then, if Fi(xi) =
x
ai
i , with i = 1, 2 and using Equation (5) we obtain,

f (x1, x2) =
a1a2x

a1p1−1
1

(

1 − x
a1
1

)p2+q−1
x
a2p2−1
2

(

1 − x
a2
2

)p1+q−1

B (p1, p2, q)
(

1 − x
a1
1 x

a2
2

)p1+p2+q , (20)

with 0 ≤ x1, x2 ≤ 1. The marginal distributions are X1 ∼ GB1(p1, q, a1) and X2 ∼
GB1(p2, q, a2). If we set a1 = a2 = 1 in (20), we obtain the bivariate beta proposed by

Olkin and Liu (2003).
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3.5.3 Bivariate GB2 income distributions

Now if we take F(x) = 1−1/(1+xa) in (1), we obtain the generalized beta distribution of

the second kind (GB2) (see McDonald 1984), which will be denoted by X ∼ GB2(p, q, a).

Then, if Fi(xi) = 1 − 1/(1 + x
ai
i ), with i = 1, 2 and using formula (5) we have,

f (x1, x2) = a1a2

B (p1, p2, q)
· x

a1p1−1
1 x

a2p2−1
2

(

1 + x
a1
1 + x

a2
2

)p1+p2+q , x1, x2 ≥ 0,

where the marginal distributions are X1 ∼ GB2(p1, q, a1) and X2 ∼ GB2(p2, q, a2).

4 Applications

To illustrate the methodology developed in this paper, we have fitted the bivariate BG

model of the fist type defined in (4) to estimate the international distribution of well-being

for the period 1980-2010. The estimation method is based on the formulation developed

in Section 3.4. It should be worth noting that we have focused on three dimensions of

well-being, namely income, health and education. Since these components present a pos-

itive correlation, the first type of BG distributions given by (4) is specially suitable in

this case.

4.1 The data

We have used the most recent available data from International Human Development

Indicators (UNDP 2012) on the HDI and its three components for the period 1980-2010

with five years intervals.

Note that we consider well-being as a multidimensional process which, in addition to

economic variables, also involves social aspects such as health and education. In this con-

text, the HumanDevelopment Index provides an excellent theoretical benchmark tomake

multidimensional assessments of well-being. Then, we have focused on three dimensions

of quality of life: income, educational standards and health. In particular, we focus on

Table 1 Parameter estimates for the BGmodels (with beta and GB1marginals) fitted to the

variables education & health bymaximum likelihood (standard errors in parenthesis)

Variables: education & health

Year
BGmodel with beta marginals BGmodel with GB1marginals

p̂1 p̂2 q̂ p̂1 p̂2 q̂ â1 â2

1980 2.6512 7.0544 3.4327 22.5595 10.5446 2.6651 0.1177 0.5381

(0.2358) (0.6334) (0.3063) (9.1385) (2.4534) (0.2890) (0.0481) (0.1299)

1985 2.9384 7.5581 3.2621 11.1697 14.2985 2.6168 0.2527 0.4416

(0.2614) (0.6780) (0.2906) (3.6937) (6.2408) (0.2810) (0.0818) (0.1918)

1990 2.9333 7.1301 2.8442 26.6132 6.6869 2.3141 0.1070 0.8566

(0.2615) (0.6410) (0.2534) (20.0869) (1.7468) (0.2473) (0.0800) (0.2243)

1995 2.8508 6.1734 2.3377 17.3255 4.4878 2.0254 0.1606 1.1454

(0.2551) (0.5572) (0.2085) (7.0388) (0.9738) (0.2125) (0.0649) (0.2588)

2000 2.7879 5.5716 1.9464 4.6151 5.7575 1.7644 0.5647 0.8677

(0.2505) (0.5051) (0.1736) (1.7265) (2.8469) (0.1811) (0.2029) (0.4191)

2005 2.6539 5.0138 1.5705 13.1632 2.3387 1.5422 0.2096 1.9972

(0.2398) (0.4577) (0.1401) (7.3975) (0.5126) (0.1578) (0.1173) (0.4455)

2010 2.6591 5.2296 1.4064 3.4113 3.7361 1.4084 0.7889 1.3821

(0.2411) (0.4794) (0.1254) (1.1784) (1.4461) (0.1418) (0.2710) (0.5291)
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Table 2 Parameter estimates for the BGmodels (with beta and GB1marginals) fitted to the

variables education & income bymaximum likelihood (standard errors in parenthesis)

Variables: education & income

Year
BGmodel with beta marginals BGmodel with GB1marginals

p̂1 p̂2 q̂ p̂1 p̂2 q̂ â1 â2

1980 2.2431 3.3973 2.8809 2.1813 16.6110 2.6533 0.9603 0.2195

(0.2008) (0.3063) (0.2591) (0.5790) (13.5230) (0.2743) (0.2243) (0.1715)

1985 2.8775 3.7222 3.1934 4.3394 10.2173 2.7715 0.6321 0.3586

(0.2572) (0.3338) (0.2858) (1.4677) (5.6252) (0.2881) (0.1955) (0.1857)

1990 3.1691 3.6855 3.0715 6.4501 7.6217 2.6157 0.4702 0.4541

(0.2834) (0.3302) (0.2746) (2.7530) (3.5058) (0.2725) (0.1880) (0.1960)

1995 3.3196 3.3074 2.7070 6.3618 6.2069 2.3322 0.4907 0.4965

(0.2978) (0.2967) (0.2421) (2.4599) (2.2291) (0.2418) (0.1818) (0.1698)

2000 3.4652 3.0623 2.3826 5.8748 5.8042 2.0680 0.5420 0.4885

(0.3119) (0.2751) (0.2131) (2.2960) (2.0882) (0.2139) (0.2052) (0.1691)

2005 3.6366 2.8670 2.0777 7.2438 3.4311 1.8787 0.4773 0.7694

(0.3285) (0.2580) (0.1858) (3.2031) (0.8872) (0.1918) (0.2070) (0.1937)

2010 3.7596 2.7789 1.8944 3.4581 4.0863 1.8134 1.0309 0.6702

(0.3406) (0.2505) (0.1693) (1.0479) (1.1725) (0.1835) (0.3034) (0.1870)

the single-dimensional indices of the HDI, which are three normalized variables placed

on scale 1-0. This structure of the data is specially representative in this case since we

consider Beta and GB1 marginals for the BG models.

Income is represented by Gross National Income per capita measured in PPP 2005 US

dollars, to make incomes comparable across countries and over time. The health com-

ponent is represented by life expectancy at birth, which is considered an indicator of the

health level.The education index is made up of two indicators, expected years of schooling

and mean years of schooling, which are aggregated using the geometric mean. The first

educational variable informs about the number of years that a child of school entrance

Table 3 Parameter estimates for the BGmodels (with beta and GB1marginals) fitted to the

variables income & health bymaximum likelihood (standard errors in parenthesis)

Variables: income & health

Year
BGmodel with beta marginals BGmodel with GB1marginals

p̂1 p̂2 q̂ p̂1 p̂2 q̂ â1 â2

1980 3.4799 5.9823 2.9491 7.2415 4.5699 2.7798 0.4964 1.1929

(0.3103) (0.5360) (0.2624) (2.1497) (1.0817) (0.2855) (0.1417) (0.2674)

1985 3.8895 7.7393 3.3336 19.9607 7.1397 2.7940 0.1918 0.9025

(0.3458) (0.6913) (0.2959) (11.3280) (1.8739) (0.2993) (0.1072) (0.2316)

1990 3.7983 8.0223 3.1630 19.2882 10.1747 2.5143 0.18067 0.63504

(0.3379) (0.7173) (0.2808) (10.8390) (3.4854) (0.2721) (0.1003) (0.2148)

1995 3.4082 7.5345 2.7867 12.4184 11.5787 2.2338 0.2457 0.5300

(0.3039) (0.6760) (0.2478) (4.6027) (4.5656) (0.2401) (0.0901) (0.2104)

2000 3.0781 7.0973 2.3944 11.9092 7.5709 1.9876 0.2346 0.7667

(0.2752) (0.6396) (0.2132) (4.7419) (2.2840) (0.2109) (0.0935) (0.2342)

2005 2.7891 6.8378 2.0250 19.9351 4.0164 1.7675 0.1323 1.4058

(0.2501) (0.6197) (0.1805) (19.3729) (1.2603) (0.1863) (0.1265) (0.4381)

2010 2.4296 6.5389 1.6754 4.4081 4.2348 1.5941 0.5388 1.4186

(0.2188) (0.5974) (0.1496) (1.2981) (1.4324) (0.1627) (0.1582) (0.4772)
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Table 4 Parameter estimates for the BGmodel (BG truncated exponential marginals) fitted

to the variables education & health bymaximum likelihood (standard errors in

parenthesis)

Variables: education & health

Year
Truncated exponential model

p̂1 p̂2 q̂ â1 â2

1980 3.4104 19.2541 1.3217 3.1388 4.1114

(0.3671) (4.0935) (0.2372) (0.4543) (0.6456)

1985 3.9159 17.3862 1.4386 2.7821 3.4638

(0.4287) (3.7250) (0.2519) (0.4325) (0.6248)

1990 4.1159 10.5428 1.6196 2.2094 2.1086

(0.4795) (2.0906) (0.2652) (0.4185) (0.5804)

1995 4.0476 6.7782 1.6363 1.7177 1.0854

(0.5304) (1.3450) (0.2499) (0.4271) (0.5825)

2000 3.8541 5.3537 1.5412 1.3568 0.5281

(0.5772) (1.1472) (0.2193) (0.4437) (0.6087)

2005 4.3824 3.8719 1.2821 1.6870 0.0000

(0.7229) (0.4862) (0.1420) (0.4704) (0.0427)

2010 3.9681 4.1826 1.1884 1.3861 0.0001

(0.7878) (1.0311) (0.1607) (0.5223) (0.6912)

age can expect to receive if prevailing patterns of age-specific enrollment rates persist

throughout the child’s life (UNDP 2012). The second indicator reports the average num-

ber of years of education received by people aged 25 and older, converted from education

attainment levels using official durations of each level (Barro and Lee, 2013).

Originally, our sample comprised only 105 countries, covering less than the 75 percent

of global population. We had non-available data for 26 countries for one or more years

before 1995. In order to offer comparable results across periods and to not restricting the

sample considerably, missing values have been estimated. The estimation of these missing

Table 5 Parameter estimates for the BGmodel (BG truncated exponential marginals) fitted

to the variables education & income bymaximum likelihood (standard errors in

parenthesis)

Variables: education & income

Year
Truncated exponential model

p̂1 p̂2 q̂ â1 â2

1980 2.3477 6.0323 1.5187 1.7859 2.8785

(0.2801) (0.9499) (0.2891) (0.5446) (0.6098)

1985 3.1220 6.4260 1.6681 1.8322 2.7940

(0.3847) (0.9671) (0.3094) (0.5189) (0.5639)

1990 3.5887 6.2829 1.5834 1.9604 2.8090

(0.4533) (0.9215) (0.2838) (0.5057) (0.5350)

1995 3.6986 5.9955 1.3892 1.9633 3.0090

(0.4814) (0.8708) (0.2429) (0.5081) (0.5264)

2000 3.7836 5.7931 1.2656 1.8579 3.0539

(0.5115) (0.8442) (0.2131) (0.5086) (0.5110)

2005 3.9060 5.3306 1.1572 1.7335 2.9354

(0.5793) (0.8152) (0.1925) (0.5332) (0.5233)

2010 3.3507 5.8944 1.1977 0.9970 2.8693

(0.5127) (0.9557) (0.1937) (0.5579) (0.5168)
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Table 6 Parameter estimates for the BGmodel (BG truncated exponential marginals) fitted

to the variables income & health bymaximum likelihood (standard errors in parenthesis)

Variables: income & health

Year
Truncated exponential model

p̂1 p̂2 q̂ â1 â2

1980 5.2910 5.6187 2.1441 1.7075 0.6332

(0.7765) (1.0281) (0.3450) (0.4689) (0.5700)

1985 6.0810 8.9083 2.0766 2.1172 1.3880

(0.7943) (1.6258) (0.3272) (0.4063) (0.5318)

1990 6.6056 9.9881 1.7975 2.5828 1.7600

(0.8013) (1.7123) (0.2787) (0.3801) (0.5043)

1995 6.6121 8.9254 1.5662 2.8884 1.7273

(0.8033) (1.4908) (0.2377) (0.3774) (0.4970)

2000 6.2010 7.4495 1.4527 2.8150 1.3495

(0.7880) (1.2753) (0.2108) (0.3768) (0.4997)

2005 6.5460 5.5399 1.3561 2.9102 0.6186

(0.9084) (0.9529) (0.1881) (0.3852) (0.5150)

2010 6.6966 4.1236 1.1760 3.1741 0.0000

(1.0480) (0.7957) (0.1720) (0.4275) (0.6583)

values has been based on two complementary methodologies which jointly offered feasi-

ble and consistent results according to the sample: piecewise cubic Hermite interpolating

polynomial (PCHI) and the average rate of change, which was used when PCHI offered

unfeasible estimations or out of range results. The interpolated values have been obtained

using the command pchip of the R package Signal, which uses the methodology

described by Fritsch and Carlson (1980). After this procedure, our data set includes 132

countries whose indicators of income, health and education are available for eight points

of time (see Appendix for details). Consequently, the sample covers over 90 percent of the

world population during the whole period.

Table 7 Confidence intervals (95%) for the BGmodels (with beta and GB1marginals) fitted

to the variables education & health bymaximum likelihood

Variables: education & health

Year Limit
BGmodel with beta marginals BGmodel with GB1marginals

p̂1 p̂2 q̂ p̂1 p̂2 q̂ â1 â2

1980 Lower 2.1890 5.8129 2.8324 4.6480 5.7359 2.0987 0.0234 0.2835

Upper 3.1134 8.2959 4.0330 40.4710 15.3533 3.2315 0.2120 0.7927

1985 Lower 2.4261 6.2292 2.6925 3.9300 2.0665 2.0660 0.0924 0.0657

Upper 3.4507 8.8870 3.8317 18.4094 26.5305 3.1676 0.4130 0.8175

1990 Lower 2.4208 5.8737 2.3475 -12.7571 3.2632 1.8294 -0.0498 0.4170

Upper 3.4458 8.3865 3.3409 65.9835 10.1106 2.7988 0.2638 1.2962

1995 Lower 2.3508 5.0813 1.9290 3.5295 2.5792 1.6089 0.0334 0.6382

Upper 3.3508 7.2655 2.7464 31.1215 6.3964 2.4419 0.2878 1.6526

2000 Lower 0.6984 2.8142 0.3379 7.9680 16.3910 0.3195 0.1146 0.3637

Upper 3.2789 6.5616 2.2867 7.9990 11.3374 2.1194 0.9624 1.6891

2005 Lower 2.1839 4.1167 1.2959 -1.3359 1.3340 1.2329 -0.0203 1.1240

Upper 3.1239 5.9109 1.8451 27.6623 3.3434 1.8515 0.4395 2.8704

2010 Lower 2.1865 4.2900 1.1606 1.1016 0.9017 1.1305 0.2577 0.3451

Upper 3.1317 6.1692 1.6522 5.7210 6.5705 1.6863 1.3201 2.4191
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Table 8 Confidence Intervals (95%) for the BGmodels (with beta and GB1marginals) fitted

to the variables education & income bymaximum likelihood

Variables: education & health

Year Limit
BGmodel with beta marginals BGmodel with GB1marginals

p̂1 p̂2 q̂ p̂1 p̂2 q̂ â1 â2

1980 Lower 1.8495 2.7970 2.3731 1.0465 -9.8941 2.1157 0.5207 -0.1166

Upper 2.6367 3.9976 3.3887 3.3161 43.1161 3.1909 1.3999 0.5556

1985 Lower 2.3734 3.0680 2.6332 1.4627 -0.8081 2.2068 0.2489 -0.0054

Upper 3.3816 4.3764 3.7536 7.2161 21.2427 3.3362 1.0153 0.7226

1990 Lower 2.6136 3.0383 2.5333 1.0542 0.7503 2.0816 0.1017 0.0699

Upper 3.7246 4.3327 3.6097 11.8460 14.4931 3.1498 0.8387 0.8383

1995 Lower 2.7359 2.7259 2.2325 1.5404 1.8379 1.8583 0.1344 0.1637

Upper 3.9033 3.8889 3.1815 11.1832 10.5759 2.8061 0.8470 0.8293

2000 Lower 1.0808 0.8424 0.5077 13.4885 12.1203 0.4423 0.1112 0.0826

Upper 4.0765 3.6015 2.8003 10.3750 9.8971 2.4872 0.9442 0.8199

2005 Lower 2.9927 2.3613 1.7135 0.9657 1.6922 1.5028 0.0716 0.3897

Upper 4.2805 3.3727 2.4419 13.5219 5.1700 2.2546 0.8830 1.1491

2010 Lower 3.0920 2.2879 1.5626 1.4042 2.5649 1.4537 0.4362 0.3037

Upper 4.4272 3.2699 2.2262 5.5120 7.1611 2.1731 1.6256 1.0367

4.2 Fitted models and results

The bivariate data consist of three pairs of variables (income,education), (income,health)

and (education, health).

We have fitted the class of models given by Equation (4) with three specifications for

the baseline CDFs:

• Fi (xi) = xi, with 0 ≤ xi ≤ 1, i = 1, 2 (classical beta marginals),

• Fi (xi) = x
ai
i , with 0 ≤ xi ≤ 1, ai > 0, i = 1, 2 (GB1 marginals) and

• Fi (xi) = 1−exp(−aixi)
1−exp(−ai)

, with 0 ≤ xi ≤ 1, ai > 0, i = 1, 2 (BG truncated exponential

marginals).

Table 9 Confidence intervals (95%) for the BGmodels (with beta and GB1marginals) fitted

to the variables income & health bymaximum likelihood

Variables: education & health

Year Limit
BGmodel with beta marginals BGmodel with GB1marginals

p̂1 p̂2 q̂ p̂1 p̂2 q̂ â1 â2

1980 Lower 2.8717 4.9317 2.4348 3.0281 2.4498 2.2202 0.2187 0.6688

Upper 4.0881 7.0329 3.4634 11.4549 6.6900 3.3394 0.7741 1.7170

1985 Lower 3.2117 6.3844 2.7536 -2.2422 3.4669 2.2074 -0.0183 0.4486

Upper 4.5673 9.0942 3.9136 42.1636 10.8125 3.3806 0.4019 1.3564

1990 Lower 3.1360 6.6164 2.6126 -1.9562 3.3433 1.9810 -0.0159 0.2140

Upper 4.4606 9.4282 3.7134 40.5326 17.0061 3.0476 0.3773 1.0560

1995 Lower 2.8126 6.2095 2.3010 3.3971 2.6301 1.7632 0.0691 0.1176

Upper 4.0038 8.8595 3.2724 21.4397 20.5273 2.7044 0.4223 0.9424

2000 Lower 0.8471 4.5394 0.5105 56.4722 17.2919 0.4192 0.0219 0.1796

Upper 3.6175 8.3509 2.8123 21.2033 12.0475 2.4010 0.4179 1.2257

2005 Lower 2.2989 5.6232 1.6712 -18.0358 1.5462 1.4024 -0.1156 0.5471

Upper 3.2793 8.0524 2.3788 57.9060 6.4866 2.1326 0.3802 2.2645

2010 Lower 2.0008 5.3680 1.3822 1.8638 1.4273 1.2752 0.2287 0.4833

Upper 2.8584 7.7098 1.9686 6.9524 7.0423 1.9130 0.8489 2.3539
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Table 10 AIC statistics obtained bymaximum likelihood for the BGmodels with beta

(3 parameters) and GB1marginals (5 parameters) fitted to pairs of the variables:

Education, Health and Income

Education & health Education & income Income & health

Year Model (3 par) Model (5 par) Model (3 par) Model (5 par) Model (3 par) Model (5 par)

1980 -292.88 -352.59 -174.12 -180.00 -279.48 -288.67

1985 -309.52 -354.03 -206.89 -217.35 -332.58 -354.54

1990 -304.40 -340.63 -213.99 -228.01 -344.03 -380.03

1995 -291.33 -313.41 -206.65 -217.94 -332.39 -370.94

2000 -291.77 -296.28 -207.64 -217.52 -325.00 -354.22

2005 -296.81 -306.00 -210.98 -213.52 -323.60 -340.72

2010 -330.82 -327.52 -215.63 -213.91 -317.16 -318.24

Smaller values indicate better fitted models.

The first model (with classical betamarginals) depends on 3 parameters, and the second

and third models (with GB1 and BG truncated exponential marginals) are characterized

by 5 parameters. The three models have been estimated by maximum likelihood using the

equations given in Section 3.4. In total, we have fitted 7 × 3 × 3 = 63 different models.

The initial estimates of the parameters have been obtained using Equations (17) to (19).

In the case of the model with classical beta marginals, initial estimates are quite close to

the ML estimators because they are based on sufficient statistics.

For the three pairs of variables, we have compared both models using the Akaike

information criterion (AIC), defined by (Akaike 1974)

AIC = −2 log L + 2d; (21)

where log L = ℓ
(

θ̂

)

is the log-likelihood of the model evaluated at the maximum likeli-

hood estimates and d is the number of parameters. We chose the model with the smallest

value of AIC statistic.

Tables 1, 2, 3, 4, 5 and 6 show the parameter estimates and their standard errors for

the three alternative models considered: BG distribution with classical beta marginals

(3 parameter model p1, p2, q) and with GB1 and BG truncated exponential marginals

(5 parameter model p1, p2, q, a1, a2), which have been fitted to pairs of the variables:

Table 11 AIC statistics obtained bymaximum likelihood for the BGmodel (BG truncated

exponential maginals) with 5 parameters fitted to pairs of the variables: education, health

and income

Education & health Education & income Income & health

Year Model (5 par) Model (5 par) Model (5 par)

1980 -333.49 -188.88 -286.86

1985 -342.58 -223.42 -350.60

1990 -323.42 -233.30 -375.72

1995 -300.82 -230.08 -373.12

2000 -295.86 -233.28 -363.92

2005 -303.35 -233.61 -364.73

2010 -332.99 -237.16 -359.70

Smaller values indicate better fitted models.
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Education, Health and Income. In particular, Tables 1 and 4 show the results obtained

for Education & Health, Tables 2 and 5 show the corresponding results for Educa-

tion & Income, and Tables 3 and 6 for Income & Health. The estimations have been

performed by maximum likelihood, focusing on quinquennial periods from 1980 to

2010. It can be seen that, assuming the asymptotic normality of the maximum like-

lihood estimates, most of the estimates are statistically significant at a 0.05 level of

significance.

In order to illustrate the interval estimation of the parameters in Section 3.4, we have

included the asymptotic confidence intervals at 95 percent for the models with beta and

GB1 marginals (Tables 7, 8 and 9).
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Figure 1 Contour plots for the BGmodel with beta marginals fitted to the variables Education &

Health.
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Tables 10 and 11 show the values of the AIC statistic (Equation (21)) obtained for both

candidate models fitted to three pairs of variables: Education & Health, Education &

Income and Income & Health. Our estimates point out that the values of AIC statistic for

the BG model with GB1 marginals are lower than those observed for the BG distribution

with classical beta marginals, except in the case of Education & Health and Education &

Income for the year 2010. For the Education & Health data the best model is the model

with GB1 marginals (except in 2000). In the case of Education & Income data the model

with BG truncated exponential marginals outperforms the other two models. Finally, for

Income & Health data, the model with GB1 marginals outperforms the BG truncated
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Figure 2 Contour plots for the BGmodel with GB1marginals fitted to the variables Education &

Health.
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exponential marginals model in 1980, 1985 and 1995 while in the other four years the

BG truncated exponential marginals is the model that provides the best fit. These results

imply that, in general terms, the accuracy of the estimates is higher for the models with 5

parameters.

As an illustration, Figures 1, 2, 3, 4, 5 and 6 present the contour plots for the BG distri-

butions with classical beta marginals and GB1 marginals fitted to the pairs of variables:

Education & Health, Education & Income and Income & Health for every five years dur-

ing the period 1980-2010. The shape of this graphics supports the existence of a positive

correlation among the variables considered, thus pointing out the suitability of the first

type of BG model. The contour plots also reveal that the proposed models represent the
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Figure 3 Contour plots for the BGmodel with beta marginals fitted to the variables Education &

Income.
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Figure 4 Contour plots for the BGmodel with GB1marginals fitted to the variables Education &

Income.

geography of the bivariate data adequately, being more accurate in the case of the BG dis-

tribution with GB1 marginals, as concluded from the results of the Akaike information

criteria.

5 Conclusions

The main conclusions of this paper are the following. Three different classes of bivari-

ate BG distributions have been presented. These classes have been constructed using

three different definitions of bivariate beta distributions, proposed by Libby and Novick

(1982), Jones (2001) and Olkin and Liu (2003) for the first proposal, El-Bassiouny and

Jones (2009) for the second proposal and Arnold and Ng (2011) for the third proposal.
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Figure 5 Contour plots for the BGmodel with beta marginals fitted to the variables Income & Health.

The main properties of these three classes have been studied. Three specific bivariate BG

distributions have been obtained. Finally, an empirical application with well-being data

has been presented.

The future research about bivariate BG distributions moves in three directions. The

first line research is to propose specific models for their practical use in statistical model-

ing. The study of these possible models in any dimension could be an interesting field of

research. Secondly, we propose to study statistical inference methodologies for bivariate

(and, more generally, multivariate) BG distributions in (9) and (12). Finally, we propose to

establish a model competition between BG distributions in (4), (9) and (12) for different

choices of F1 and F2.
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Figure 6 Contour plots for the BGmodel with GB1marginals fitted to the variables Income & Health.

Appendix

The joint PDF of the different classes of bivariate beta distribution

The joint PDF of the bivariate random variable in (3) is (see Libby and Novick (1982),

Jones (2001) and Olkin and Liu (2003)),

f (z1, z2) = z
a1−1
1 z

a2−1
2 (1 − z1)

a2+b−1 (1 − z2)
a1+b−1

B (a1, a2, b) (1 − z1z2)
a1+a2+b

, 0 < z1, z2 < 1 (22)

where B(a1, a2, b) = Ŵ(a1)Ŵ(a2)Ŵ(b)/Ŵ(a1 + a2 + b) and the marginal distribu-

tions are Z1 ∼ Be(a1, b) and Z2 ∼ Be(a2, b). Note that (22) belongs to the
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three-parametric exponential family, where sufficient statistics for (a1, a2, b) are given

by,
(

n
∏

i=1

y1i (1 − y2i)

1 − y1iy2i
,

n
∏

i=1

y2i (1 − y1i)

1 − y1iy2i
,

n
∏

i=1

(1 − y1i) (1 − y2i)

1 − y1iy2i

)

.

For n = 1, the distributions of the sufficient statistics are:

1 − Z1Z2

Z1 (1 − Z2)
∼ B2 (a2 + b, a1) + 1,

1 − Z1Z2

Z2 (1 − Z1)
∼ B2 (a1 + b, a2) + 1,

and

1 − Z1Z2

(1 − Z1) (1 − Z2)
∼ B2 (a1 + a2, b) + 1,

where B2(a, b) denotes beta distribution of the second kind.

The log-moments of (22) are:

E

{

log
Z1 (1 − Z2)

1 − Z1Z2

}

= ψ (a1) − ψ (a1 + a2 + b) ,

E

{

log
Z2 (1 − Z1)

1 − Z1Z2

}

= ψ (a2) − ψ (a1 + a2 + b) ,

E

{

log
(1 − Z1) (1 − Z2)

1 − Z1Z2

}

= ψ(b) − ψ (a1 + a2 + b) .

The joint PDF of the bivariate beta density (8) is givenby (see El-Bassiouny and Jones

(2009)),

f (z1, z2) = k
z
a1−1
1 (1−z1)

A−a1−1 z
a2−1
2 (1−z2)

A−a2−1

(1−z1z2)
A

× 2F1

[

A, a4;A−a2;
z1 (1 − z2)

1−z1z2

]

,

(23)

where A = a1 + a2 + a3 + a4, k
−1 = B (a1, a3)B (a2, a1 + a3 + a4) and 2F1 [..; .; ] denote

the Gauss hypergeometric function.

The expression for the fV ,W (v,w) function is given by (see Arnold and Ng 2011),

fV ,W (v,w) =
∫ ∞

0

∫ ∞

0

∫ (u4+u5)v

u4/(w−u5)

f (v,w,u3,u4,u5) du3du4du5, u,w > 0, (24)

where

f (v,w,u3,u4,u5) = (u3 + u5) (u4 + u5)
∏5

i=1 Ŵ (ai)
[(v (u4 + u5) − u3)]

a1−1

× [w (u3+u5)−u4]
a2−1

5
∏

i=3

u
ai−1
i exp{−[u3w+u4v+u5 (v+w+1)]},

where u4/w − u5 < u3 < (u4 + u5) v, u4,u5, v,w > 0.

Description of the data set

The list of countries used in the analysis are the following:

Afghanistan, Guatemala, Pakistan, Albania, Guyana, Panama, Algeria, Haiti, Papua

New Guinea, Argentina, Honduras, Paraguay, Armenia, Hong Kong, China (SAR),

Peru, Australia, Hungary, Philippines, Austria, Iceland, Poland, Bahrain, India, Portugal,

Bangladesh, Indonesia, Qatar, Belgium, Iran (Islamic Republic of ), Romania, Belize,

Ireland, Russian Federation, Benin, Israel, Rwanda, Bolivia (Plurinational State of ),
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Italy, Saudi Arabia, Botswana, Jamaica, Senegal, Brazil, Japan, Sierra Leone, Brunei

Darussalam, Jordan, Slovakia, Bulgaria, Kenya, Slovenia, Burundi, Korea (Republic

of ), South Africa, Cameroon, Kuwait, Spain, Canada, Lao PDR, Sri Lanka, Central

African Republic, Latvia, Sudan, Chile, Lesotho, Swaziland, China, Liberia, Sweden,

Colombia, Lithuania, Switzerland, Congo, Luxembourg, Syrian Arab Republic, Congo

(Democratic Republic of ), Malawi, Tajikistan, Costa Rica, Malaysia, Tanzania (United

Republic of ), Cote D’ivoire, Mali, Thailand, Cuba, Malta, Togo, Cyprus, Mauritania,

Tonga, Denmark, Mauritius, Trinidad and Tobago, Dominican Republic, Mexico, Tunisia,

Ecuador, Moldova (Republic of ), Turkey, Egypt, Mongolia, Uganda, El Salvador, Morocco,

Ukraine, Estonia, Mozambique, United Arab Emirates, Fiji, Myanmar, United Kingdom,

Finland, Namibia, United States, France, Nepal, Uruguay, Gabon, Netherlands, Venezuela

(Bolivarian R.), Gambia, New Zealand, VietNam, Germany, Nicaragua, Yemen, Ghana,

Niger, Zambia, Greece, Norway, Zimbabwe.

Data on the health index can be retrieved from https://data.undp.org/dataset/

Health-index/9v27-i7ic, data on the education index can be drawn from https://data.

undp.org/dataset/Expected-Years-of-Schooling-of-children-years-/qnam-f624 for the

variable expected years of schooling and https://data.undp.org/dataset/Mean-years-of-

schooling-of-adults-years-/m67k-vi5c for the mean years of schooling. Finally, income

data come from https://data.undp.org/dataset/Income-index/qt4g-yea9.
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