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Abstract The primary aim of the present article is to provide a general
framework for investigating the joint distribution of run length accumulat-
ing/enumerating variables by the aid of a Markov chain embedding technique.
To achieve that we introduce first a class of bivariate discrete random variables
whose joint distribution can be described by the aid of a Markov chain and
develop formulae for their joint probability mass function, generating func-
tions and moments. The results are then exploited for the derivation of the
distribution of a bivariate run-related statistic. Finally, some interesting uses of
our results in reliability theory and educational psychology are highlighted.

Keywords Success runs · Run lengths · Markov chains ·
Consecutive-r-out-of-n: F system

1 Introduction

In the past years, special research interest has been drawn on problems associ-
ated with the frequency of occurrences of runs of like symbols in a sequence of
binary or multistate trials. The more general problem of studying the number
of occurrences of arbitrary patterns has also attracted considerable research
interest. For the evaluation of the stochastic behaviour of run (or pattern)
enumerating random variables, several approaches have been suggested based
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on direct combinatorial considerations, on renewal theory and recurrent events,
on martingale techniques, on generating function theory etc (see e.g., Feller,
1968, Gani, 2003, Guibas and Odlyzko, 1981, Leslie, 1967, Mood, 1940, Rajarshi,
1974).

Due to the wide variety of run (pattern) related statistics, it would be helpful
if one could fall back on some unifying principle in their study. The use of Mar-
kov chain techniques has highly facilitated this task. Recent work in this area is
outlined in the monographs by Balakrishnan and Koutras (2002), Fu and Lou
(2003), and Glaz et al. (2001).

While a lot of publications have dealt with statistics related to the number
of runs, only a few of them take into account the exact run length. Agin and
Godbole (1992) suggested using run lengths of variable size for establishing non
parametric randomness tests. An approach of similar flavour was considered
earlier by O’Brien and Dyck (1985). Motivated by those works, Antzoulakos
et al. (2003) studied the distribution of a statistic accumulating the run lengths of
“reasonably long” strands of like elements (successes) in a sequence of binary
trials. To achieve that, they exploited a proper Markov chain embedding tech-
nique, thereby creating a powerful working environment for investigating a
much wider range of run/pattern related statistics. See also Lou (2003) who
also used a Markov chain embedding technique to investigate the same statistic
motivated by a molecular biology application.

An interesting extension of the aforementioned models would arise by look-
ing at multivariate models related to variables accumulating several types of
run lengths (e.g. lengths of failure runs and lengths of success runs). Such
generalizations besides their theoretical appeal, will also provide appropriate
probability models for tackling a variety of attractive applications. In order
to have a wide framework that could accommodate several accumulating/enu-
merating schemes of run lengths, we shall first build an appropriate Markov
chain approach and subsequently exploit it to study a specific multivariate run
accumulating statistic.

In Sect. 2 we introduce the concept of a bivariate Markov chain embeddable
variable of polynomial type (BMVP). In the same section, several compact and
computationally tractable formulae are deduced for the evaluation of the joint
probability mass function, generating functions and moments of a BMVP. A
brief discussion is also included, detailing the possible extension of the bivari-
ate model to s ≥ 2 dimensions. In Sect. 3, we illustrate how the general results
obtained in Sect. 2 can be applied in the study of the joint distributions of
run-accumulating variables. Finally, in Sect. 4, we highlight the use of these
distributions in two applied research areas: reliability theory and educational
psychology.

2 General results

Fu and Koutras (1994) developed a unified method for capturing the exact dis-
tribution of the number of runs of specified length by employing a Markov chain
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embedding technique. Koutras and Alexandrou (1995) refined the method and
expressed these distributions in terms of multidimensional binomial type prob-
ability vectors by introducing the concept of Markov chain embeddable vari-
ables of binomial type. Fu (1996) extended the original method to cover the
case of arbitrary patterns (instead of runs) whereas Koutras (1997) treated sev-
eral waiting time problems within this framework. Finally Doi and Yamamoto
(1998) and Han and Aki (1999) considered the case of multivariate run related
distributions and offered simple solutions by exploiting proper extensions of
the Markov chain embedding technique (for an illustrative presentation of this
method see Koutras, 2003).

Recently, Antzoulakos et al. (2003) generalized the method of Koutras and
Alexandrou (1995) by introducing the concept of Markov chain embeddable
variables of polynomial type (MVP). In the sequel, we extend this method in
two dimensions, thereby obtaining multivariate analogues of the MVP’s.

Definition 1 A bivariate discrete random variable (X(1)
n , X(2)

n ) will be called a
BMVP if

(a) there exists a Markov chain {Yt, t ≥ 0} defined on a state space � which
can be partitioned as

� =
⋃

x1,x2≥0

Cx1,x2 , Cx1,x2 = {cx1,x2;0, cx1,x2;1, . . . , cx1,x2;s−1}

(b) there exist two positive integers m1 and m2 such that

Pr
(
Yt ∈ Cy1,y2 | Yt−1 ∈ Cx1,x2

) = 0, t ≥ 1,

for all (y1, y2) /∈ {(x1 + u, x2) : 0 ≤ u ≤ m1} ∪ {(x1, x2 + v) : 0 ≤ v ≤ m2}
(c) the joint probability mass function of (X(1)

n , X(2)
n ) can be captured by

considering the projection of the probability space of Yn onto Cx1,x2 i.e.

Pr(X(1)
n = x1, X(2)

n = x2) = Pr(Yn ∈ Cx1,x2), n ≥ 0, x1, x2 ≥ 0.

For m1 = m2 = 1, Definition 1 reduces to the bivariate version of the
Markov chain embeddable vector of multinomial type introduced by Han and
Aki (1999).

Roughly speaking, a BMVP is characterized by the following property: once
the chain enters Cx1,x2 , the feasible one step transitions lead either to the same
subclass Cx1,x2 , or to one of the subclasses Cx1+1,x2 , Cx1+2,x2 , . . . , Cx1+m1,x2 , or to
one of the subclasses Cx1,x2+1, Cx1,x2+2, . . . , Cx1,x2+m2 .

The distribution of a BMVP can be easily captured if we have at hand the
following quantities

• the initial probabilities

πx1,x2 = (
Pr(Y0 = cx1,x2;0), Pr(Y0 = cx1,x2;1), . . . , Pr(Y0 = cx1,x2;s−1)

)
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• the within states one step transition probability matrix

At,0(x1, x2) = (
Pr
(
Yt = cx1,x2;j,j′ | Yt−1 = cx1,x2;j

))
s×s

• the between states one step transition probability matrices

A(1)
t,u (x1, x2) = (

Pr
(
Yt = cx1+u,x2;j,j′ | Yt−1 = cx1,x2;j,j′

))
s×s , 1 ≤ u ≤ m1

A(2)
t,v (x1, x2) = (

Pr
(
Yt = cx1,x2+v;j,j′ | Yt−1 = cx1,x2;j,j′

))
s×s , 1 ≤ v ≤ m2

(t ≥ 1, x1, x2 ≥ 0, 0 ≤ j, j′ ≤ s − 1 ).
It is clear that, for all t ≥ 1, the matrix

At,0(x1, x2) +
m1∑

u=1

A(1)
t,u (x1, x2) +

m2∑

v=1

A(2)
t,v (x1, x2)

is stochastic.
On introducing the probability (row) vectors

ft(x1, x2) = (
Pr(Yt = cx1,x2;0), Pr(Yt = cx1,x2;1), . . . , Pr(Yt = cx1,x2;s−1)

)
,

for t ≥ 0 and x1, x2 ≥ 0, it follows directly from condition (c) of Definition 1
that the joint probability mass function of (X(1)

n , X(2)
n ) is given by

Pr(X(1)
n = x1, X(2)

n = x2) = fn(x1, x2)1′, n ≥ 0, x1, x2 ≥ 0,

where 1 = (1, 1, . . . , 1) denotes the row vector of R
s with all its entries being 1.

Finally, the convention Pr(X(1)
0 = 0, X(2)

0 = 0) = 1 implies that

π0,01′ = f0(0, 0)1′ = (
Pr(Y0 = c0,0;0), Pr(Y0 = c0,0;1), . . . , Pr(Y0 = c0,0;s−1)

)
1′ = 1

and
πx1,x2 1′ = f0(x1, x2)1′ = 0, if x1 ≥ 1 or x2 ≥ 1.

In the theorems that follow, we provide several results that facilitate the
evaluation of the joint distribution of a BMVP. The first one offers an efficient
recursive scheme for the computation of the vector ft(x1, x2). The next two the-
orems present formulae for the joint probability generating function while the
last one deals with the moments of a BMVP.

Theorem 1 The sequence of vectors ft(x1, x2) satisfies the recurrence relation
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ft(x1, x2) = ft−1(x1, x2)At,0(x1, x2) +
min(x1, m1)∑

u=1

ft−1(x1 − u, x2)A
(1)
t,u (x1 − u, x2)

+
min(x2, m2)∑

v=1

ft−1(x1, x2 − v)A(2)
t,v (x1, x2 − v), t ≥ 1, x1, x2 ≥ 0.

Proof Let t ≥ 1, x1, x2 ≥ 0 and 0 ≤ j ≤ s − 1. In view of the total probability
theorem we may write

Pr(Yt = cx1,x2;j)

=
s−1∑

r=0

Pr
(
Yt = cx1,x2;j | Yt−1 = cx1,x2;r

)
Pr
(
Yt−1 = cx1,x2;r

)

+
min(x1, m1)∑

u=1

s−1∑

r=0

Pr
(
Yt = cx1,x2;j | Yt−1 = cx1−u,x2;r

)
Pr
(
Yt−1 = cx1−u,x2;r

)

+
min(x2, m2)∑

v=1

s−1∑

r=0

Pr
(
Yt = cx1,x2;j | Yt−1 = cx1,x2−v;r

)
Pr
(
Yt−1 = cx1,x2−v;r

)
.

Expressing the conditional probabilities in terms of within and between states
transition probability matrices we deduce

Pr(Yt = cx1,x2;j,j′)

=
s−1∑

r=0

er+1At,0(x1, x2)e′
j+1 Pr

(
Yt−1 = cx1,x2;r

)

+
min(x1, m1)∑

u=1

s−1∑

r=0

er+1A(1)
t,u (x1 − u, x2)e′

j+1 Pr
(
Yt−1 = cx1−u,x2;r

)

+
min(x2, m2)∑

v=1

s−1∑

r=0

er+1A(2)
t,v (x1, x2 − v)e′

j+1 Pr
(
Yt−1 = cx1,x2−v;r

)

= ft−1(x1, x2)At,0(x1, x2)e′
j+1

+
min(x1, m1)∑

u=1

ft−1(x1 − u, x2)A
(1)
t,u (x1 − u, x2)e′

j+1

+
min(x2, m2)∑

v=1

ft−1(x1, x2 − v)A(2)
t,v (x1, x2 − v)e′

j+1

(ei denote the unit row vectors of R
s ), and the proof is complete. ��
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Let us now denote by ϕt(z1, z2) and �(z1, z2; w) the single and double gener-
ating functions of the bivariate random variable (X(1)

n , X(2)
n ) respectively, that

is

ϕt(z1, z2) =
∞∑

x1=0

∞∑

x2=0

Pr(X(1)
t = x1, X(2)

t = x2)z
x1
1 zx2

2 ,

�(z1, z2; w) =
∞∑

t=0

ϕt(z1, z2)wt.

In addition, let ϕt(z1, z2) and �(z1, z2; w) stand for the single (row) and double
(row) vector generating functions of ft(x1, x2), respectively, that is

ϕt(z1, z2) =
∞∑

x1=0

∞∑

x2=0

ft(x1, x2)z
x1
1 zx2

2 , �(z1, z2; w) =
∞∑

t=0

ϕt(z1, z2)wt.

It is then clear that

ϕt(z1, z2) = ϕt(z1, z2)1′, �(z1, z2; w) = �(z1, z2; w)1′

for all t ≥ 0. Moreover, the obvious identity ϕ0(z1, z2) = π0,0 implies that
ϕ0(z1, z2) = ϕ0(z1, z2)1′ = 1, a result that is in compliance with the convention
Pr(X(1)

0 = 0, X(2)
0 = 0) = 1.

We mention that, it is the rule rather than the exception that the transition
probability matrices associated to a BMVP do not depend on (x1, x2), that is
At,0(x1, x2) = At,0, A(1)

t,u (x1, x2) = A(1)
t,u (1 ≤ u ≤ m1), A(2)

t,v (x1, x2) = A(2)
t,v

(1 ≤ v ≤ m2) for all t ≥ 1 and x1, x2 ≥ 0. In this case, the vector generating
function ϕt(z1, z2) can be expressed in the form of a matrix product as the
following theorem indicates.

Theorem 2 If At,0(x1, x2) = At,0, A(1)
t,u (x1, x2) = A(1)

t,u , 1 ≤ u ≤ m1, and

A(2)
t,v (x1, x2) = A(2)

t,v , 1 ≤ v ≤ m2, for all t ≥ 1 and x1, x2 ≥ 0, then the (sin-
gle) vector generating function of ft(x1, x2) can be expressed in the form

ϕt(z1, z2) = π0,0

t∏

r=1

(
Ar,0 +

m1∑

u=1

A(1)
r,uzu

1 +
m2∑

v=1

A(2)
r,v zv

2

)
, t ≥ 1.

Proof Let us first decompose the (single) vector generating function of ft(x1, x2)

as follows

ϕt(z1, z2) = ft(0, 0) +
6∑

i=1

∑

Si

ft(x1, x2)z
x1
1 zx2

2
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where

S1 = {(x1, x2) : x1 = 0, x2 ≥ 1},
S2 = {(x1, x2) : x1 ≥ 1, x2 = 0},
S3 = {(x1, x2) : 1 ≤ x1 ≤ m1, 1 ≤ x2 ≤ m2},
S4 = {(x1, x2) : 1 ≤ x1 ≤ m1, x2 ≥ m2 + 1},
S5 = {(x1, x2) : x1 ≥ m1 + 1, 1 ≤ x2 ≤ m2},
S6 = {(x1, x2) : x1 ≥ m1 + 1, x2 ≥ m2 + 1}.

Exploiting the recurrences stated in Theorem 1 we may rewrite the sum∑
S4

ft(x1, x2)z
x1
1 zx2

2 in the form

m1∑

x1=1

∞∑

x2=m2+1

ft(x1, x2)z
x1
1 zx2

2

=
m1∑

x1=1

∞∑

x2=m2+1

ft−1(x1, x2)At,0zx1
1 zx2

2

+
m1∑

x1=1

∞∑

x2=m2+1

x1∑

u=1

ft−1(x1 − u, x2)A
(1)
t,u zx1

1 zx2
2

+
m1∑

x1=1

∞∑

x2=m2+1

m2∑

v=1

ft−1(x1, x2 − v)A(2)
t,v zx1

1 zx2
2

=
m1∑

x1=1

∞∑

x2=m2+1

ft−1(x1, x2)At,0zx1
1 zx2

2

+
m1∑

u=1

zu
1

⎛

⎝
m1−u∑

x1=0

∞∑

x2=m2+1

ft−1(x1, x2)A
(1)
t,u zx1

1 zx2
2

⎞

⎠

+
m2∑

v=1

zv
2

⎛

⎝
m1∑

x1=1

∞∑

x2=m2−v+1

ft−1(x1, x2)A
(2)
t,v zx1

1 zx2
2

⎞

⎠ .

Applying a similar technique for the remaining summands (replace also ft(0, 0)

by ft−1(0, 0)At,0 when necessary), we may easily deduce the expression

ϕt(z1, z2) =
∞∑

x1=0

∞∑

x2=0

ft−1(x1, x2)At,0zx1
1 zx2

2

+
m1∑

u=1

zu
1

⎛

⎝
∞∑

x1=0

∞∑

x2=0

ft−1(x1, x2)A
(1)
t,u zx1

1 zx2
2

⎞

⎠
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+
m2∑

v=1

zv
2

⎛

⎝
∞∑

x1=0

∞∑

x2=0

ft−1(x1, x2)A
(2)
t,v zx1

1 zx2
2

⎞

⎠

which leads to the recursive formula

ϕt(z1, z2) = ϕt−1(z1, z2)

(
At,0 +

m1∑

u=1

A(1)
t,u zu

1 +
m2∑

v=1

A(2)
t,v zv

2

)
, t ≥ 1.

A repeated application of the last formula, yields the desired result. ��

In the case of a homogeneous BMVP, i.e. when A(1)
t,u (x1, x2), A(2)

t,v (x1, x2) do
not depend on t, x1, x2 we have the next theorem.

Theorem 3 If At,0(x1, x2)= A0, A(1)
t,u (x1, x2)= A(1)

u , 1 ≤ u ≤ m1, and A(2)
t,v (x1, x2)

= A(2)
v , 1 ≤ v ≤ m2, for all t ≥ 1 and x1, x2 ≥ 0, then the double vector generating

function of ft(x1, x2) can be expressed as

�(z1, z2; w) = π0,0

[
I − w

(
A0 +

m1∑

u=1

A(1)
u zu

1 +
m2∑

v=1

A(2)
v zv

2

)]−1

where I is the identity s × s matrix.

Proof Follows readily from Theorem 2 on observing that

�(z1, z2; w) =
∞∑

t=0

ϕt(z1, z2)wt

= π0,0

∞∑

t=0

(
w

(
A0 +

m1∑

u=1

A(1)
u zu

1 +
m2∑

v=1

A(2)
v zv

2

))t

= π0,0

[
I − w

(
A0 +

m1∑

u=1

A(1)
u zu

1 +
m2∑

v=1

A(2)
v zv

2

)]−1

the last equality being valid in an appropriate neighbourhood of zero for w. ��

For a homogeneous BMVP, the next theorem provides compact formulae
for the evaluation of the means E[X(1)

t ], E[X(2)
t ], E[X(1)

t X(2)
t ] and their corre-

sponding generating functions.
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Theorem 4 If At,0(x1, x2)= A0, A(1)
t,u (x1, x2)= A(1)

u , 1 ≤ u ≤ m1, and A(2)
t,v (x1, x2)

= A(2)
v , 1 ≤ v ≤ m2, for all t ≥ 1 and x1, x2 ≥ 0, then

E[X(j)
t ] = π0,0

t∑

r=1

Br−1Dj1′, j = 1, 2

E[X(1)
t X(2)

t ] = π0,0

t∑

r=1

⎛

⎝
r−1∑

i=1

Bi−1D2Br−1−iD1 + Br−1D1

t−r∑

i=1

Bi−1D2

⎞

⎠ 1′

Mj(w) =
∞∑

t=1

E[X(j)
t ]wt = w

1 − w
π0,0(I − wB)−1Dj1′, j = 1, 2

M1,2(w) =
∞∑

t=1

E[X(1)
t X(2)

t ]wt

= w2

1 − w
π0,0(I − wB)−1[D1(I − wB)−1D2 + D2(I − wB)−1D1]1′

where

B = A0 +
m1∑

u=1

A(1)
u +

m2∑

v=1

A(2)
v , D1 =

m1∑

u=1

uA(1)
u , D2 =

m2∑

v=1

vA(2)
v .

Proof Observe first that, for arbitrary square matrices Qi, 0 ≤ i ≤ k, the
following identity holds true

d
dz

⎛

⎝
k∑

i=0

ziQi

⎞

⎠
t

=
t∑

r=1

⎡

⎢⎣

⎛

⎝
k∑

i=0

ziQi

⎞

⎠
r−1 ⎛

⎝
k∑

i=1

iQizi−1

⎞

⎠

⎛

⎝
k∑

i=0

ziQi

⎞

⎠
t−r

⎤

⎥⎦ .

Since we are dealing with a homogeneous BMVP, ϕt(z1, z2) takes on the form

ϕt(z1, z2) = π0,0

(
A0 +

m1∑

u=1

A(1)
u zu

1 +
m2∑

v=1

A(2)
v zv

2

)t

, t ≥ 1 (1)

and making use of the last identity we obtain

E[X(1)
t ] = ∂

∂z1

[
ϕt(z1, z2)1′]

∣∣∣∣
z1=z2=1

= π0,0

t∑

r=1

Br−1D1Bt−r1′

where

B = A0 +
m1∑

u=1

A(1)
u +

m2∑

v=1

A(2)
v , D1 =

m1∑

u=1

uA(1)
u .
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The desired expression for E[X(1)
t ] is readily ascertained by recalling that matrix

B is stochastic and therefore Bi1′ = 1′, for i = 0, 1, 2, . . . , t − 1.
The generating function M1(w) of the means E[X(1)

t ], t ≥ 1, may be written
as

M1(w) = π0,0

∞∑

t=1

t∑

r=1

Br−1D1wt1′ = π0,0

∞∑

r=1

(wB)r−1
∞∑

t=r

wt−r+1D11′

and the final formula is effortlessly established by virtue of

∞∑

r=1

(wB)r−1 = (I − wB)−1 .

Proceeding in a similar way we may readily obtain analogous expressions for
E[X(2)

t ] and M2(w).
The evaluation of the mean E[X(1)

t X(2)
t ] may be accomplished by the aid of

the formula

E[X(1)
t X(2)

t ] = ∂2

∂z1∂z2

[
ϕt(z1, z2)1′]

∣∣∣∣
z1=z2=1

.

Differentiating (1) with respect to z1, z2 we obtain

E[X(1)
t X(2)

t ]=π0,0

t∑

r=1

⎛

⎝
r−1∑

i=1

Bi−1D2Br−1−iD1Bt−r+Br−1D1

t−r∑

i=1

Bi−1D2Bt−r−i

⎞

⎠ 1′

and the desired formula for E[X(1)
t X(2)

t ] follows immediately by taking into
account that matrix B is stochastic.

Finally, the generating function M1,2(w) of the means E[X(1)
t X(2)

t ], t ≥ 1, can
be easily deduced by exploiting the next two identities

∞∑

t=1

t∑

r=1

r−1∑

i=1

Bi−1D2Br−1−iwt = w2

1 − w
(I − wB)−1D2(I − wB)−1,

∞∑

t=1

t∑

r=1

t−r∑

i=1

Br−1D1Bi−1wt = w2

1 − w
(I − wB)−1D1(I − wB)−1

which are readily ascertainable after some elementary algebra. ��

In closing we mention that all the abovementioned definitions and results
can be effortlessly generalized to the multivariate case. The details are left to
the interested reader.
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3 A special case

Consider a sequence of Bernoulli trials Z1, Z2, . . . with success probabilities
pt = P (Zt = 1), and failure probabilities qt = P (Zt = 0) = 1−pt, t ≥ 1, and let
n, k and r be any positive integers with n ≥ max(k, r). Denote by X(1)

n,k the sum
of run lengths of the success runs of length at least k observed in the sequence
Z1, Z2, . . . , Zn and by X(2)

n,r the number of non-overlapping failure runs of length
r in the same sequence.

The random variable X(2)
n,r is a Markov chain embeddable variable of bino-

mial type and has been thoroughly studied within this framework by Koutras
and Alexandrou (1995) while X(1)

n,r is a (univariate) MVP (see, Antzoulakos
et al., 2003). However, the joint distribution of (X(1)

n,k, X(2)
n,r ) has not, to the best

of our knowledge, been discussed hitherto in the literature. The general results
derived in the previous section, offer a quite effective framework to evaluate
the joint probability mass function of (X(1)

n,k, X(2)
n,r ) and the respective generating

functions.
In order to view the bivariate random variable (X(1)

n,k, X(2)
n,r ) as a BMVP, we

use the state space � = ⋃
x1,x2≥0 Cx1,x2 where

Cx1,x2 = {(x1, x2; i, 1) : 1 ≤ i ≤ k} ∪ {(x1, x2; j, 0) : 0 ≤ j ≤ r − 1}

for all x1, x2 ≥ 0. A state of the form (x1, x2; ·, ·) indicates that, in the first out-
comes of the sequence under investigation (a) the observed sum of the exact
lengths of runs of k or more consecutive successes is x1, and (b) the number of
non-overlapping failure runs of length r is x2.

The states of the form (x1, x2; i, 1) are used for keeping track of success runs
while the states (x1, x2; j, 0) for keeping track of failure runs. More specifically,
we define the Markov chain {Yt, t ≥ 0} as follows:

• If the first t outcomes of the binary sequence under investigation are of the
form 1001 · · · 011 · · · 1︸ ︷︷ ︸

c≥1

, we set Yt = (x1, x2; i, 1), 1 ≤ i ≤ k, where

i =
{

c, if c = 1, . . . , k − 1
k, if c ≥ k.

• If the first t outcomes of the binary sequence under investigation are of the
form 1001 · · · 100 · · · 0︸ ︷︷ ︸

c≥1

, we set Yt =(x1, x2; j, 0), 0≤ j≤r−1, where j=c(mod r).

It is apparent that, once the chain enters Cx1,x2 , the one step transitions
may lead only to the subclasses Cx1,x2 , Cx1+1,x2 , Cx1+k,x2 or Cx1,x2+1. Hence the

random variable (X(1)

n,k, X(2)
n,r ) belongs to the class of BMVP (m1 = k, m2 = 1).

The transition probability matrices At,0, A(1)
t,i (i = 1, 2, . . . , k) and A(2)

t,1 can be
easily identified by observing that
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(a) if Yt = (x1, x2; k, 1) the feasible one step transitions of the chain lead
either to substate (x1 + 1, x2; k, 1) (if Zt+1 = 1) or to substate (x1, x2; 1, 0)

(if Zt+1 = 0), and
(b) if Yt = (x1, x2; r − 1, 0) the feasible one step transitions of the chain lead

either to substate (x1, x2 + 1; 0, 0) (if Zt+1 = 0) or to substate (x1, x2; 1, 0)

(if Zt+1 = 1).

Therefore, At,0 will be given by

At,0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 pt 0 · · · 0 0 0 qt 0 0 · · · 0 0
0 0 pt · · · 0 0 0 qt 0 0 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · pt 0 0 qt 0 0 · · · 0 0
0 0 0 · · · 0 0 0 qt 0 0 · · · 0 0
0 0 0 · · · 0 0 0 qt 0 0 · · · 0 0
0 pt 0 · · · 0 0 0 0 qt 0 · · · 0 0
0 pt 0 · · · 0 0 0 0 0 qt 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 pt 0 · · · 0 0 0 0 0 0 · · · 0 qt
0 pt 0 · · · 0 0 0 0 0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k+r)×(k+r)

with the left upper submatrix being a (k+1)× (k+1) matrix (the order of states
in At,0 is (x1, x2; 0, 0), (x1, x2; 1, 0), . . . , (x1, x2; k−1, 0), (x1, x2; 0, 1), . . . , (x1, x2; 0,
r − 1)). Moreover, matrices A(1)

t,2 , . . . , A(1)

t,k−1 will be (k + r) × (k + r) matrices

with all their entries 0. Matrix A(1)

t,1 will have all its entries 0 except for the entry

(k + 1, k + 1) which equals pt. Matrix A(1)

t,k will have all its entries 0 except for

the entry (k, k + 1) which equals pt. Finally, matrix A(2)

t,1 will have all its entries 0
except for the entry (k+r, 1) which equals qt. The appropriate initial probability
vector of the Markov chain introduced here is given by π0,0 = (1, 0, 0, . . . , 0).

Using Theorem 1 we may readily evaluate the probability mass function of
(X(1)

n,k, X(2)
n,r ), and exploiting Theorem 2 the associated joint probability generat-

ing function will read as follows

ϕn(z1, z2) = π0,0

n∏

r=1

(
Ar,0 + z1A(1)

r,1 + zk
1A(1)

r,k + z2A(2)

r,1

)
1′.

In the case of iid trials with success probabilities p (pt = p, qt = q, for all
t = 1, 2, . . .), Theorem 3 yields, after some lengthy but straightforward calcula-
tions, that

�(z1, z2; w) =
∞∑

n=0

ϕn(z1, z2)wn = P(z1, z2; w)

Q(z1, z2; w)



Bivariate Markov chain embeddable variables of polynomial type 185

where

P(z1, z2; w) = 1 − (pw)z1 − (pw)k(1 − zk
1) − (pw)k+1(zk

1 − z1)

−(qw)r + (qw)r(pw)z1

+(pw)k(qw)r(1 − zk
1) + (pw)k+1(qw)r(zk

1 − z1)

Q(z1, z2; w) = 1 − w(1 + pz1) + w2pz1 − (qw)rz2 + (qw)rw(p(1 + z1z2) + qz2)

−(qw)r(pw)wz1(p + qz2) + (pw)k(qw)(1 − zk
1)

+(pw)k+1(qw)(zk
1 − z1)

−(pw)k(qw)r(1 − z2)(1 − zk
1) − (pw)k(qw)rw[(qz2(1 − zk

1)

+p(zk
1 − z1)(1 − z2)] − (pw)k+1(qw)r+1z2(zk

1 − z1).

Needless to say �(z1, 1; w) reduces to the double pgf of X(1)

n,k (see,
Antzoulakos et al., 2003) while �(1, z2; w) coincides with the double pgf of
X(2)

n,r (see e.g. Koutras and Alexandrou, 1995).
For the benefit of the practical minded reader we mention that the last

expression for �(z1, z2; w) may be used to establish a recursive scheme for the
joint probability mass function of (X(1)

n,k, X(2)
n,r ). More specifically, if we make

use of the identity P(z1, z2; w) = (
∑∞

n=0 ϕn(z1, z2)wn)Q(z1, z2; w) and pick up
the coefficients of wn (n = 0, 1, . . .) in both sides, a set of recurrence relations
for ϕn(z1, z2) will arise. A further manipulation on these, results in a recursive
scheme for the joint probability mass function of (X(1)

n,k, X(2)
n,r ). This can be used

for establishing an effective calculation scheme for the numerical evaluation
of the probabilities P(X(1)

n,k = x1, X(2)
n,r = x2). The details are left to the inter-

ested reader who may also compare this approach to the alternative calculation
option offered by Theorem’s 1 outcome. In Fig. 1 the joint probability mass
function of (X(1)

n,k, X(2)
n,r ) has been pictured for several values of n, k, r and p.

In Table 1 we give values of the correlation coefficient of X(1)

n,k, X(2)
n,r for several

values of n, k, r and p.
The evaluation of the correlation coefficient has been performed using The-

orem 4 and results regarding the calculation of second order moments of X(1)

n,k

and X(2)
n,r appeared in Antzoulakos et al. (2003) and Antzoulakos and Chadji-

costantinides (2001).

4 Applications

In this section we highlight two potential uses of the distribution described in
Sect. 3 in applied research.

The first application comes from the area of reliability theory. A consecu-
tive-r-out-of-n: F reliability system consists of n components placed in a line
and fails whenever at least r consecutive components fail. In the iid case, the
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Fig. 1 Distribution of (X(1)
n,k, X(2)

n,r )

n components are assumed to work independently of each other and share a
common survival probability p = 1 − q. The following simple and practical
example has been given in the related literature to justify the usefulness of the
consecutive-r-out-of-n: F system (see e.g. Chao et al., 1995).

A system of n radar stations is used for transmitting signals from site A to
site B. Assume that the n stations are equally spaced between A and B and that
each station is able to transmit signals up to a distance of r stations. Apparently,
the system becomes non-functional if and only if at least r consecutive radar
stations are out of order.
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Table 1 Correlation coefficient of X(1)
n,k, X(2)

n,r

n k r p ρ(X(1)
n,k, X(2)

n,r )

30 2 2 0.25 −0.575472
30 2 2 0.50 −0.645813
30 2 3 0.25 −0.486567
30 2 3 0.50 −0.510352
30 2 3 0.75 −0.394063
30 2 3 0.95 −0.119666
30 4 3 0.25 −0.176318
30 4 3 0.50 −0.292866
30 4 3 0.75 −0.260741
30 4 3 0.95 −0.083848
50 4 3 0.50 −0.297753

100 4 3 0.50 −0.305279
100 2 2 0.50 −0.653370
100 2 2 0.95 −0.384958

Let us now assume that, during system’s operational periods, the equip-
ment located at big clusters of consecutive working stations is used to produce
some additional work. Suppose that this function is carried out only by stations
belonging to working clusters of length at least k and that the additional work
produced by each cluster is proportional to the cluster length (assume, for exam-
ple, that each participating radar station produces work of volume 1). Adhering
to the notations introduced in the previous section (Zi = 1 if component i is
functional and Zi = 0 otherwise), we may easily conclude that the volume of
the additional work produced is closely related to the conditional distribution
of the random variable X(1)

n,k given that X(2)
n,r = 0. Thus, the probability that the

additional work produced is x equals

P(X(1)

n,k = x | X(2)
n,r = 0) = P(X(1)

n,k = x, X(2)
n,r = 0)

P(X(2)
n,r = 0)

= gn(x)

P(X(2)
n,r = 0)

(2)

while the mean additional work produced is given by

E(X(1)

n,k | X(2)
n,r = 0) = 1

P(X(2)
n,r = 0)

∞∑

x=0

xgn(x). (3)

The evaluation of the denominator in (2) and (3), which is actually the reli-
ability of a consecutive-r-out-of-n: F system can be easily accomplished by the
aid of the recursive scheme (see e.g. Aki and Hirano, 1988)

P(X(2)
n,r = 0) = P(X(2)

n−1,r = 0) − pqrP(X(2)

n−r−1,r = 0), n ≥ r + 1
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and the initial conditions

P(X(2)
n,r = 0) =

{
1, 0 ≤ n < r
1 − qr, n = r.

As far as the numerator in the RHS of (2) is concerned, it is not difficult to
check that its double generating function is given by

∞∑

n=0

∞∑

x=0

gn(x)zxwn = �(z, 0; w) = P(z, 0; w)

Q(z, 0; w)

where �(z, 0; w), P(z, 0; w), Q(z, 0; w) are the quantities introduced in the pre-
vious section. Restating the last equality in the form

P(z, 0; w) = Q(z, 0; w)

∞∑

n=0

∞∑

x=0

gn(x)zxwn (4)

and taking into account that

P(z, 0; w) = 1 − (pw)z − (pw)k(1 − zk) − (pw)k+1(zk − z) − (qw)r

+(qw)r(pw)z + (pw)k(qw)r(1 − zk) + (pw)k+1(qw)r(zk − z)

Q(z, 0; w) = 1 − w(1 + pz) + w2pz + (qw)r(pw)

−(qw)r(pw)2z + (pw)k(qw)(1 − zk) + (pw)k+1(qw)(zk − z)

−(pw)k(qw)r(1 − zk) − (pw)k+1(qw)r(zk − z)

we may easily derive the following efficient recursive scheme for gn(x)

gn(x) = gn−1(x) + p(gn−1(x − 1) − gn−2(x − 1))

−pqr(gn−r−1(x) − pgn−r−2(x − 1))

−pkq(gn−k−1(x) − gn−k−1(x − k))

−pk+1q(gn−k−2(x − k) − gn−k−2(x − 1))

+pkqr(gn−k−r(x) − gn−k−r(x − k)

+p(gn−k−r−1(x − k) − gn−k−r−1(x − 1))),

n > k + r + 1.

Identity (4) can also be exploited to deduce the initial conditions needed in
order to launch the last recursive scheme (the details are left to the reader).

It is worth mentioning that the generating function of the quantity µn =∑∞
x=0 xgn(x), n ≥ 0, appearing in formula (3) is given by

∞∑

n=0

µnwn =
[
∂�(z, 0; w)

∂z

]

z=1
= (pw)k(1 − (qw)r)2(pw + k(1 − pw))

(1 − w(1 − p(qw)r))2 .
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Fig. 2 Conditional distribution of X(1)
15,k | X(2)

15,r = 0

This last expression can be exploited to derive the following recurrence relation

µn = 2µn−1 −µn−2 − 2pqr(µn−r−1 −µn−r−2)− (pqr)2µn−2r−2, n ≥ k + 2r + 2

which offers an efficient scheme for the numerical evaluation of the conditional
mean E(X(1)

n,k | X(2)
n,r = 0). In the special case k = 2 and r ≥ 4 the next set of

initial conditions should be used before launching the recursive scheme

µ0 = µ1 = 0, µ2 = 2p2, µ3 = p2(3 + q),

µn = 2µn−1 − µn−2 − δr+2(n)4p2qr

+δr+3(n)2p3qr − γr+4(n)2pqr(µn−r−1 − µn−r−2)

+δ2r+2(n)2(pqr)2 − δ2r+3(n)p3q2r, 4 ≤ n ≤ 2r + 3

(δi(j) is the Kronecker’s delta function, and γi(j) = 1 if j ≥ i and γi(j) = 0 if
j < i).

In Fig. 2 the probability mass function of the conditional distribution of
X(1)

n,k given that X(2)
n,r = 0 is given for n = 15, and a variety of choices for k, r,

and p.
In Table 2 we provide numerical values of E(X(1)

n,k | X(2)
n,r = 0) for several

values of n, k, r and p.
Let us next describe an additional example related to educational psychology

where the aforementioned probability model can be applied as well. In exper-
imental studies of learning and memory, psychologists usually seek reasonable
achievement testing criteria useful for determining the termination of a treat-
ment. One of the older and most familiar criteria in the psychological society is
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Table 2 Values of E(X(1)
n,k | X(2)

n,r = 0)

n k r p = 0.25 p = 0.50 p = 0.75

15 2 2 6.021598 8.798372 11.539015
15 2 3 3.759799 6.904704 10.635607
15 3 2 3.304513 7.010023 10.312177
15 3 3 1.636391 4.648883 9.253016
15 3 4 1.542217 3.970514 8.969265
15 4 3 0.647951 2.910225 7.756206
15 4 4 0.393088 2.391705 7.464409
30 2 2 12.53640 18.06890 23.40830
30 2 3 7.925930 14.24950 21.59460
30 3 2 7.187790 13.88980 21.32600
30 3 3 3.580250 9.893390 19.18790
30 3 4 2.460000 8.455980 18.59460
30 4 3 1.481480 6.455030 16.52490
30 4 4 0.908257 5.290260 15.90450

Grant’s (1946) run criterion which rejects the null hypothesis of no learning if the
subject under study provides correct responses in each of a specified number of
successive trials. Assume that the probability of correct response in a trial equals
q and denote by r the number of consecutive correct responses evidencing the
subject’s learning achievement. Then the conditional distribution of X(1)

n,1 given

that X(2)
n,r = 0, provides information on the total number of incorrect responses

in n trials given that, up to that trial, the subject has not met Grant’s (1946) run
criterion requirement. Should we wish to ignore isolated incorrect responses,
the mean number of unsuccessful responses in n trials given that the subject has
not yet qualified for learning achievement, equals E(X(1)

n,2 | X(2)
n,r = 0). Finally,

E(X(1)

n,k = x | X(2)
n,r = 0) offers the mean number of unsuccessful responses when

blocks of wrong responses of length 1, 2, . . . , k − 1 are ignored.
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