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Abstract

In this paper we present an R package called bivpois for maximum likelihood estimation
of the parameters of bivariate and diagonal inflated bivariate Poisson regression models.
An Expectation-Maximization (EM) algorithm is implemented. Inflated models allow
for modelling both over-dispersion (or under-dispersion) and negative correlation and
thus they are appropriate for a wide range of applications. Extensions of the algorithms
for several other models are also discussed. Detailed guidance and implementation on
simulated and real data sets using bivpois package is provided.
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R functions, multivariate count data.

1. Introduction

Bivariate Poisson models are appropriate for modeling paired count data exhibiting correla-
tion. Paired count data arise in a wide context including marketing (number of purchases of
different products), epidemiology (incidents of different diseases in a series of districts), acci-
dent analysis (number of accidents in a site before and after infrastructure changes), medical
research (the number of seizures before and after treatment), sports (the number of goals
scored by each one of the two opponent teams in soccer), econometrics (number of voluntary
and involuntary job changes), just to name a few. Unfortunately the literature on such models
is sparse due to computational problems involved in their implementation.
Bivariate Poisson models can be expanded to allow for covariates, extending naturally the
univariate Poisson regression setting. Due to the complicated nature of the probability func-
tion of the bivariate Poisson distribution, applications are limited. The aim of this paper is to
introduce and construct efficient Expectation-Maximization (EM) algorithms for such models
including easy-to-use R functions for their implementation. We further extend our method-
ology to construct inflated versions of the bivariate Poisson model. We propose a model that
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2 Bivariate Poisson Regression Models

allows inflation in the diagonal elements of the probability table. Such models are quite useful
when, for some reasons, we expect diagonal combinations with higher probabilities than the
ones fitted under a bivariate Poisson model. For example, in pre and post treatment studies,
the treatment may not have an effect on some specific patients for unknown reasons. Another
example arises in sports where, for specific cases, it has been found that the number of draws
in a game is larger than those predicted by a simple bivariate Poisson model (Karlis and
Ntzoufras 2003).
In addition, an interesting property of inflated models is their ability to allow for modeling
both correlation between two variables and over-dispersion (or alternatively under-dispersion)
of the corresponding marginal distributions. Given their simplicity, such models are quite
interesting for practical purposes.
The remaining of the paper proceeds as follows: in Section 2 we introduce briefly the bivariate
Poisson and the diagonal inflated bivariate Poisson regression models. In Section 3 we provide
a detailed description of the R functions. Several illustrative examples (simulated and real)
including guidance concerning the fitting of the models can be found in Section 4. Finally,
we end up with some concluding remarks in Section 5. Detailed description and presentation
of the EM algorithms for maximum likelihood (ML) estimation is provided at the appendix.

2. Models for bivariate Poisson data

2.1. Bivariate Poisson regression models

Consider random variables Xκ, κ = 1, 2, 3 which follow independent Poisson distributions
with parameters λκ, respectively. Then the random variables X = X1 +X3 and Y = X2 +X3

follow jointly a bivariate Poisson distribution, BP(λ1, λ2, λ3), with joint probability function

fBP (x, y | λ1, λ2, λ3) = e−(λ1+λ2+λ3) λx
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The above bivariate distribution allows for positive dependence between the two random
variables. Marginally each random variable follows a Poisson distribution with E(X) = λ1+λ3

and E(Y ) = λ2 + λ3. Moreover, COV(X, Y ) = λ3, and hence λ3 is a measure of dependence
between the two random variables. If λ3 = 0 then the two variables are independent and the
bivariate Poisson distribution reduces to the product of two independent Poisson distributions
(referred as double Poisson distribution). For a comprehensive treatment of the bivariate
Poisson distribution and its multivariate extensions the reader can refer to Kocherlakota and
Kocherlakota (1992) and Johnson, Kotz, and Balakrishnan (1997).
More realistic models can be considered if we model λ1, λ2 and λ3 using covariates as regres-
sors. In such case, the Bivariate Poisson regression model takes the form

(Xi, Yi) ∼ BP(λ1i, λ2i, λ3i),
log(λ1i) = w>

1iβ1,
log(λ2i) = w>

2iβ2,
log(λ3i) = w>

3iβ3,

(2)

where i = 1, . . . , n, denotes the observation number, wκi denotes a vector of explanatory
variables for the i-th observation used to model λκi and βκ denotes the corresponding vector
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of regression coefficients, κ = 1, 2, 3. The explanatory variables used to model each parameter
λκi may not be the same. Usually, we consider models with constant λ3 (no covariates on
λ3) because such models are easier to interpret. Although assuming a constant covariance
term results to models that are easy to interpret, using covariates on λ3 helps us to have
more insight regarding the type of influence that a covariate has on each pair of variables.
To make this understood recall that the marginal mean for Xi is equal (from (2)) to E(Xi) =
exp(w>

1iβ1) + exp(w>
3iβ3). If a covariate is present in both w1 and w3, then a considerable

part of the influence of this covariate is through the covariance parameter that is common for
both X and Y variables. Moreover, such an effect is no longer multiplicative on the marginal
mean (additive on the logarithm) but much more complicated (multiplicative on λ1 and λ3

and additive on the marginal mean).

Jung and Winkelmann (1993) introduced and implemented bivariate Poisson regression model
using a Newton-Raphson procedure. Ho and Singer (2001) and Kocherlakota and Kocher-
lakota (2001) proposed a generalized least squares and Newton Raphson algorithm for max-
imizing the log-likelihood respectively. Here we construct an EM algorithm to remedy con-
vergence problems encountered with the Newton Raphson procedure. The algorithm is easily
coded to any statistical package offering algorithms fitting generalized linear models (GLM).
Here, we provide R functions for implementing the algorithm. Standard errors for the pa-
rameters can be calculated using the information matrix provided in Jung and Winkelmann
(1993) or using standard bootstrap methods. The latter is quite easy since good initial values
are available and the algorithm converges fairly quickly. Finally, Bayesian inference has been
implemented by Tsionas (2001) and Karlis and Meligkotsidou (2005).

2.2. Diagonal inflated bivariate Poisson regression models

A major drawback of the bivariate Poisson model is its property to model data with positive
correlation only. Moreover, since its marginal distributions are Poisson they cannot model
over-dispersion/under-dispersion. As a remedy to the above problems, we may consider mix-
tures of bivariate Poisson models like those of Munkin and Trivedi (1999) and Chib and
Winkelmann (2001). However, such models involve difficult computations regarding estima-
tion and can not handle under-dispersion. In this section, we propose diagonal inflated models
that are computationally tractable and allow for over-dispersion, (under-dispersion) and neg-
ative correlation. The results reported are new apart from a quick comment in Karlis and
Ntzoufras (2003) and some special cases treated in Li, Lu, Park, Kim, and Peterson (1999),
Dixon and Coles (1997) and Wang, Lee, Yau, and Carrivick (2003).

In the univariate setting, inflated models can be constructed by inflating the probabilities
of certain values of variable under consideration, X. Among them, zero-inflated models are
very popular; see, for example, Lambert (1992), Bohning, Dietz, Schlattmann, Mendonca,
and Kirchner (1999). Moreover, package zicounts is available via CRAN which can be used to
fit zero inflated models. In the multivariate setting, there are few papers discussing inflated
model in bivariate discrete distributions. Such models have been proposed by Dixon and Coles
(1997) for modeling soccer games, Li et al. (1999) and Wang et al. (2003) who considered
inflation only for the (0,0) cell, Wahlin (2001) who discussed zero-inflated bivariate Poisson
models and Gan (2000).

We propose a more general model formulation which inflates the probabilities in the diagonal
of the probability table. This model is an extension of the simple zero-inflated model which
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allows only for an excess in (0, 0) cell. We consider, for generality, that the starting model is
the bivariate Poisson model. Under this approach a diagonal inflated model is specified by

fIBP (x, y) =

{
(1− p)fBP (x, y | λ1, λ2, λ3), x 6= y
(1− p)fBP (x, y | λ1, λ2, λ3) + p fD(x | θ), x = y,

(3)

where fD(x | θ) is the probability function of a discrete distribution D(x;θ) defined on the
set {0, 1, 2, . . .} with parameter vector θ. Note that for p = 0 we have the simple bivariate
Poisson model defined in the previous section. Diagonal inflated models (3) can be fitted
using the EM algorithm provided at the appendix.

Useful choices for D(x;θ) can be the Poisson, the geometric or simple discrete distributions
denoted by Discrete(J). The geometric distribution might be of great interest since it has
mode at zero and decays quickly as one moves away from zero. As Discrete(J) we consider
the distribution with probability function

f(x|θ, J) =

{
θx for x = 0, 1, . . . , J
0 for x 6= 0, 1, . . . , J

(4)

where
∑J

x=0 θx = 1. If J = 0 then we end up with the zero-inflated model.

Two are the most important and distinctive properties of such models. Firstly, the marginal
distributions of a diagonal inflated model are not Poisson distributions, but mixtures of dis-
tributions with one Poisson component. Namely the marginal for X is given by

fIBP (x) = (1− p) fPo(x | λ1 + λ3) + p fD(x | θ), (5)

where fPo(x | λ) is the probability function of the Poisson distribution with parameter λ.
This can be easily recognized as a 2-finite mixture distribution with two components, the one
having a Poisson distribution and the other a fD distribution. For example, if we consider a
geometric inflation then the resulting marginal distribution is a 2-finite mixture distribution
with one Poisson and one geometric component. Thus the marginal mean is given by

E(X) = (1− p) (λ1 + λ3) + p ED(X)

where ED(X) denotes the expectation of the distribution D(x;θ). The variance is much more
complicated and is given by

VAR(X) = (1− p)
{
(λ1 + λ3)2 + (λ1 + λ3)

}
+ p ED(X2)− {(1− p) (λ1 + λ3) + p ED(X)}2 .

Since the marginals are not Poisson distributions, they can be either under-dispersed or over-
dispersed depending on the choices of D(x;θ). For example, if D(x;θ) is a degenerate at
one (that is, Discrete(1) with θ> = (0, 1)) implying inflation only on the (1, 1) cell, then, for
λ1 + λ3 = 1 and p = 0.5, the resulting distribution is under-dispersed (variance equal to 0.5
and mean equal to 1). On the other hand, if the inflation distribution has positive probability
on more points, for example a geometric or a Poisson distribution, the resulting marginal
distribution will be over-dispersed. In the simplest case of zero-inflated models, the marginal
distributions are also over-dispersed relative to the simple Poisson distribution.

Another important characteristic is that, even if λ3 = 0 (double Poisson distribution), the
resulting inflated distribution introduces a degree of dependence between the two variables
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under consideration. In general, the simple bivariate Poisson models has EBP (XY ) = λ3 +
(λ1 + λ3)(λ2 + λ3). Thus for an inflated model we obtain

COVIBP (X, Y ) = (1− p) {λ3 + (λ1 + λ3)(λ2 + λ3)}+ p ED(X2)
−(1− p)2(λ1 + λ3)(λ2 + λ3)
−(1− p) p ED(X)(λ1 + λ2 + 2λ3)− p2{ED(X)}2.

The above formulas are a generalization of simpler case where inflation is imposed only on the
(0, 0) cell given by Wang et al. (2003). If the data before introducing inflation are independent,
that is if λ3 = 0, the covariance is given by

COVIBP (X, Y ) = p (1− p) λ1λ2 + p ED(X2)− p (1− p) ED(X)(λ1 + λ2)− p2{ED(X)}2

which implies non-zero correlation between X and Y . Note that for certain combinations
of D(x;θ), the covariance can be negative as well. For example, if p = 0.5, λ1 = 0.5,
λ2 = 2 and the inflation is a degenerate at one distribution then the covariance equals −0.125.
When inflation is added only on the cell (0, 0), we obtain that ED(X) = ED(X2) = 0 and
COVIBP (X, Y ) = p(1−p)λ1λ2 which is always positive. For this reason, diagonal inflation can
possibly correct both over/under-dispersion and correlation problems encountered in modeling
count data.

3. R functions for bivariate Poisson models

3.1. Short description of functions and installation

In order to run in R the EM algorithm for the bivariate Poisson models presented in the previ-
ous sections, you have to install the bivpois package which is available from Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/ or from the authors’ web page
at http://www.stat-athens.aueb.gr/~jbn/papers/paper14.htm.
The following functions are available for direct use in R:

bivpois.table Bivariate Poisson probability function (in tabular form) using recursive re-
lationships.

pbivpois Probability function (and its logarithm) of bivariate Poisson.

simple.bp EM for fitting a simple bivariate Poisson model with constant λ1, λ2 and λ3 (no
covariates are used).

lm.bp EM for fitting a general linear bivariate Poisson model with covariates on λ1, λ2 and
λ3.

lm.dibp EM for fitting a diagonal inflated bivariate Poisson model with covariates on λ1, λ2

and λ3.

Two additional functions (newnamesbeta and splitbeta) are used internally in lm.bp and
lm.dibp in order to identify which parameters are associated to λ1 and λ2.
Finally the following four datasets (used for illustration in Section 4) are also included in
bivpois package:

http://CRAN.R-project.org/
http://www.stat-athens.aueb.gr/~jbn/papers/paper14.htm
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ex1.sim Simulated data of example one.

ex2.sim Simulated data of example two.

ex3.health Health care data from the book of Cameron and Trivedi (1998) used as example
three.

ex4.ita91 Football (soccer) data of the Italian League for season 1991-92. Data were origi-
nally analysed in Karlis and Ntzoufras (2003) and used in this paper as example 4.

All the above datasets can be loaded (after attaching the bivpois package) using the command
data; for example data("ex1.sim") loads the first dataset included in the package.

Finally demos are available for all examples. All demos illustrate and recall the commands
used in the examples of this paper. It can help the user to reproduce exactly the same results
as in section 4. Five demos are available: main, ex1, ex2, ex3 and ex4. The first one just
produces a menu which prompts you to select the example you wish to use while the rest
reproduce directly the results of each example. Each demo can be called using the command
demo(avdemo, package="bivpois"); where avdemo is one of the available demos described
above. For example demo("ex1", package="bivpois") will provide the demo of the first
example.

3.2. The function pbivpois

Function pbivpois evaluates the probability function (or its logarithm) of BP(λ1, λ2, λ3) for
x and y values. The function can be called using the following syntax:

pbivpois(x, y = NULL, lambda = c(1, 1, 1), log = FALSE)

Required Arguments

x Matrix or vector containing the data. If this argument is a matrix then pbivpois evaluates
the distribution function of the bivariate Poisson for all the pairs provided by the first
two columns of x. Additional columns of x and y are ignored.

Optional Arguments

y Vector containing the data for the second value of each pair (xi, yi) for which we calculate
the distribution function of Bivariate Poisson. It is used only if x is also a vector.
Vectors x and y should be of equal length.

lambda Vector of length three containing values of the parameters λ1, λ2 and λ3 of the
bivariate Poisson distribution.

log Logical argument controlling the calculation of the logarithm of the probability or the
probability function itself. If the argument is not used, the function returns the proba-
bility value of (xi, yi) since the default value is FALSE.
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3.3. The function simple.bp

Function simple.bp implements the EM algorithm for fitting the simple bivariate Poisson
model of the form (xi, yi) ∼ BP(λ1, λ2, λ3) for i = 1, . . . , n. It produces a ‘list’ object which
gives various details regarding the fit of such a model. The function can be called using the
following syntax:

simple.bp(x, y, ini3 = 1.0, maxit = 300, pres = 1e-8)

Required Arguments

x Matrix or vector containing the data. If this argument is a matrix then
simple.bp uses as input data the first two columns of x. Additional columns of x
and y are ignored.

Optional Arguments

y Vector containing the data for the second variable in a bivariate Poisson model. It is used
only if x is also a vector. Vectors x and y should be of equal length.

ini3 Initial value for λ3.

maxit Maximum number of EM steps. EM algorithm stops when the number of iterations
exceeds maxit and returns as result the values obtained by the last iteration.

pres Precision used in log-likelihood improvement. If the relative log-likelihood difference
between two subsequent EM steps is lower than pres then the algorithm stops. Note
that the algorithm stops if one of the arguments maxit or pres is satisfied.

Output Components

A list object is returned with the following output components:

lambda Parameters λ1, λ2, λ3 of the model.

loglikelihood Log-likelihood of the fitted model. This argument is given in a vector form
of length equal to iterations with one value per iteration. This vector can be used to
monitor the log-likelihood improvement and the convergence of the algorithm.

parameters Number of estimated parameters of the fitted model.

AIC, BIC AIC and BIC values of the fitted model. Values of AIC and BIC are also given for
the double Poisson model and the saturated model.

iterations Number of iterations of the EM algorithm.

During the execution of the algorithm the following details are printed: the iteration number,
λ1, λ2, λ3, the log-likelihood and the relative difference of the log-likelihood. For an illustration
of using this function see example 1 in Section 4.1.
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3.4. The function lm.bp

Function lm.bp implements the EM algorithm for fitting the bivariate Poisson regression
model (2) with

(xi, yi) ∼ BP(λ1i, λ2i, λ3i) for i = 1, . . . , n,

lκ = wκβκ = βκ,0 + βκ,1wκ,1 + · · ·+ βκ,pκwκ,pκ , (6)

for κ = 1, 2, 3; where lκ is a n × 1 vector containing the log λκ for each observation, that is
lκ = (log λκ1, . . . , log λκn)>; n is the sample size; p1, p2 and p3 are the number of explanatory
variables used for each parameter λκ; w1, w2 and w3 are the design/data matrices used for
each parameter λκ; wκ,j are n × 1 vectors corresponding to j column of wκ matrix; βκ is
the vector of length pκ + 1 with the model coefficients for λκ and βκ,j is the coefficient which
corresponds to j explanatory variable used in the linear predictor of λκ (or j column of wκ

design matrix).

This function produces a ‘list’ object which gives various details regarding the fit of the
estimated model. The function can be called using the following syntax:

lm.bp(l1, l2, l1l2 = NULL, l3 = ~1, data, common.intercept = FALSE,
zeroL3 = FALSE, maxit = 300, pres = 1e-8, verbose = getOption("verbose"))

Required Arguments

l1 Formula of the form “x ~ X1 +...+ Xp” for parameters of log λ1.

l2 Formula of the form “y ~ X1 +...+ Xp” for parameters of log λ2.

data data frame containing the variables in the model.

Optional Arguments

l1l2=NULL Formula of the form “~ X1 +...+ Xp” for the common parameters of log λ1 and
log λ2. If the explanatory variable is also found on l1 and/or l2 then a model using
interaction type parameters is fitted (one parameter common for both predictors [main
effect] and differences from this for the other predictor [interaction type effect] ). Special
terms of the form “c(X1,X2)” can be also used here. These terms imply common
parameters on λ1 and λ2 for different variables. For example if c(x1,x2) is used then
use the same beta for the effect of x1 on log λ1 and the effect of x2 on log λ2. For details
see example 4.

l3 = ~ 1 Formula of the form “~ X1 +...+ Xp” for the parameters of log λ3.

common.intercept=FALSE Logical function specifying whether a common intercept on log λ1

and log λ2 should be used.

zeroL3=FALSE Logical argument controlling whether λ3 should be set equal to zero (therefore
whether a double Poisson model is fitted).
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maxit=300 Maximum number of EM steps.

pres=1e-8 Precision used to terminate the EM algorithm. The algorithm stops if the relative
log-likelihood difference is lower than the value of pres.

verbose=getOption("verbose") Logical argument for controlling the printing details during
the iterations of the EM algorithm. Default value is taken equal to the value of op-
tions()$verbose. If verbose=FALSE then only the iteration number, the log-likelihood
and its relative difference from the previous iteration are printed. If print.details=TRUE
then the model parameters for λ1, λ2 and λ3 are additionally printed.

Output Components

A list object is returned with the following output components:

coefficients Vector β containing the estimates of the model parameters. When a factor is
used then its default set of contrasts is used.

fitted.values Data frame of size n × 2 containing the fitted values for the two responses
x and y. For the bivariate Poisson model are simply given as λ1 + λ3 and λ2 + λ3

respectively.

residuals Data frame of size n × 2 containing the residual values for the two responses x
and y. The residuals of x and y are given by x − x̂ and y − ŷ; where x̂ and ŷ are
the fitted values for x and y respectively given by the two columns of the component
fitted.values.

beta1, beta2, beta3 Vectors β1, β2 and β3 containing the coefficients involved in the linear
predictor of λ1, λ2 and λ3 respectively. When zeroL3=TRUE then beta3 is not calculated.

lambda1, lambda2, lambda3 Vectors of length n containing the estimated λ1, λ2 and λ3,
respectively.

loglikelihood Log-likelihood of the fitted model given in a vector form of length equal to
iterations (one value per iteration).

parameters Number of estimated parameters of the fitted model.

AIC, BIC AIC and BIC values of the model. Values are also given for the saturated model.

iterations Number of iterations of the EM algorithm.

call Argument providing the exact calling details of the lm.bp function.

The resulted object of the lm.bp function is a list of class lm.bp, lm for which for which coef,
residuals and fitted methods are provided.

3.5. The function lm.dibp

Function lm.dibp implements the EM algorithm for fitting the simple diagonal inflated bi-
variate Poisson model of the form

(xi, yi) ∼ DIBP( xi, yi | λ1i, λ2i, λ3i, p,D(θ) ) for i = 1, . . . , n,
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where λκi are specified as in (6), DIBP( x, y | λ1, λ2, λ3, p,D(θ) ) is the density of the diagonal
inflated bivariate Poisson distribution with λ1, λ2, λ3 parameters of the bivariate Poisson
component, inflated distribution D with parameter vector θ and mixing (inflation) proportion
p evaluated at (x, y); see also equation (3).

This function produces a ‘list’ object which gives various details regarding the fit of such a
model. The function can be called using the following syntax:

lm.dibp(l1, l2, l1l2 = NULL, l3 = ~1, data, common.intercept = FALSE,
zeroL3 = FALSE, distribution = "discrete", jmax = 2, maxit = 300,
pres = 1e-08, verbose = getOption("verbose"))

Required Arguments

Arguments l1, l2 and data are exactly the same as in lm.bp function.

Optional Arguments

Arguments l1l2, l3, common.intercept, zeroL3, maxit, pres and verbose are the same
as in lm.bp function.

distribution="discrete" Specifies the type of inflated distribution; "discrete" = Discrete(J =
jmax), "poisson" = Poisson(θ), "geometric"= Geometric(θ).

jmax=2 Number of parameters used in Discrete distribution. This argument is not used
when the diagonal is inflated with the geometric or the Poisson distribution.

Output Components

A list object is returned with the following output components:

coefficients Vector containing the estimates of the model parameters (β1, β2, β3, p and θ).

fitted.values Data frame with n rows and 2 columns containing the fitted values for x
and y. For the diagonal inflated bivariate Poisson model are given by

x̂ = (1− p)(λ1 + λ3) ŷ = (1− p)(λ2 + λ3) if x 6= y and
x̂ = (1− p)(λ1 + λ3) + p ED(X) ŷ = (1− p)(λ2 + λ3) + p ED(X) if x = y

where ED(X) is the mean of the distribution used to inflate the diagonal.

Variables beta1, beta2, beta3, lambda1, lambda2, lambda3, residuals, loglikelihood,
AIC, BIC, parameters, iterations
are similar as in lm.bp function. The residual components is given by x − x̂ and
y− ŷ; where x̂ and ŷ are given by the component fitted.values and are calculated as
described above.

diagonal.distribution Label stating which distribution was used for the inflation of the
diagonal.
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p mixing proportion.

theta Estimated parameters of the diagonal distribution. If distribution="discrete"
then the variable is a vector of length jmax with θj=theta[j] for j = 1, . . . , jmax

and θ0 = 1 −
∑jmax

j=1 θj ; if distribution="poisson" then θ is the mean of the Pois-
son; if distribution="geometric" then θ is the success probability of the geometric
distribution.

call Argument providing the exact calling details of the lm.dibp function (same as in lm.bp).

The resulted object of the lm.dibp function is a list of class lm.dibp, lm for which for which
coef, residuals and fitted methods are provided. For an illustration of using this function
see examples in Sections 4.2, 4.3.2 and 4.4.

3.6. More details on formula arguments

In this subsection we provide details regarding the formula arguments used in functions lm.bp
and lm.dibp. The formulas l1 and l2 are required in both functions. They are of the form
“x ~ X1 + X2 +...+ Xp” and“y ~ X1 + X2 + ...+ Xp” respectively; where x and y are the
two response variables. Variables used as explanatory variables in l1 and l2 specify unique
and not equal terms on the linear predictors of λ1 and λ2 parameters respectively. Therefore,
if X1 is used as independent variable in l1 but not in l2 then X1 will be used in the linear
predictor of λ1 but not on the linear predictor of λ2.

Formula arguments ll12 and l3 are not required. The first is used to specify variables
that have common effect on the linear predictors of both λ1 and λ2. The second argument,
l3, is used to model the linear predictor of λ3 which controls the covariance between the two
response variables. Both of these formulas have the form“~ X1 +...+ Xp”, hence no response
variable should be provided. Note that if a term is present as an explanatory variable in l1
and/or l2 and l1l2 then non-common effect will be fitted. In more detail, the following
combinations can be used as terms:

1. Effect only on λ1: lm.bp(x ~ z1, y ~ 1 , l1l2 = NULL, ...).

2. Effect only on λ2: lm.bp(x ~ 1 , y ~ z1, l1l2 = NULL, ...).

3. Common effect on both λ1 and λ2: lm.bp(x ~ 1, y ~ 1 , l1l2 = ~ z1, ...).

4. Different effects on λ1 and λ2: lm.bp(x ~ z1, y ~ z1, l1l2 = NULL, ...). Ex-
actly the same result will be provided if we use the combination
lm.bp(x ~ z1, y ~ z1, l1l2 = ~ z1, ...).

5. Different effect on λ1 and λ2 will be also fitted using the combination
lm.bp(x ~ z1, y ~ 1, l1l2 = ~ z1, ...) with the difference that two parameters
will be provided for effect of z1 on λ1. The first one will be equal to the effect of z1 on
λ2 (common effect) and the second will be the difference effect of z1 on λ1. Similarly
the combination lm.bp(x ~ 1, y ~ z1, l1l2 = ~ z1, ...) will provide a common
effect for both λ1 and λ2 and an additional difference effect of z1 for λ2.

A special term can be also used in both lm.bp and lm.dibp when we wish to specify a common
effect on λ1 and λ2 for different variables. This can be achieved using terms of type c(z1,z2)



12 Bivariate Poisson Regression Models

in the l1l2 formula. Such as a term results to a common parameter for both λ1 and λ2 for
the variable z1 and z2 respectively. For example, the combination of the following formulas

l1 = x ~ z4, l2 = y ~ z4, l1l2 = ~ c(z1,z2) + z5 will result to the following model

log λ1 = β1,0 + β12z1 + β1,4z4 + β5z5

log λ2 = β2,0 + β12z2 + β2,4z4 + β5z5.

The parameters βκ,j denote the effect of variable zj on the linear predictor of λκ. Parameters
denoting the common effect of a variable zj on both λ1 and λ2 can be denoted by βj (omitting
the comma separator and the indicator of λ). Finally, if a parameter denotes the common
effect of zj1 and zj2 on λ1 and λ2 respectively then it can be denoted by βj1j2 .

Term c(z1,z2) will be denoted with the label z1..z2. Such kind of terms are useful for
fitting the models of Karlis and Ntzoufras (2003) for sports outcomes; see for an illustration
in Section 4.4.1. Note that β12 is common to both regressions, this is why we did not use the
comma separator to show that this is a common coefficients for regressors z1 and z2 in the
two lines.

Some commonly used models can be specified by the following syntax:

• lm.bp(x ~ 1, y ~ 1, common.intercept=TRUE, ...) : Common constant for λ1 and
λ2 that is log λ1i = β0 and log λ2i = β0.

• lm.bp(x ~ 1, y ~ 1, common.intercept=FALSE, ...) : Constant but not equal λ1

and λ2 that is log λ1i = β1,0 and log λ2i = β2,0 with β1,0 6= β2,0. This syntax of lm.bp
fits the same model as simple.bp function.

• lm.bp(x ~ . , y ~ . , common.intercept=FALSE, ... ) : Full model with differ-
ent parameters for each λ1 and λ2.

Operators +, -, :, * can be used as in normal formula objects to define additional main effects,
interaction terms, or both.

4. Examples

4.1. Example 1: Simulated data

In order to illustrate our algorithm, we have simulated 100 data points (xi, yi) from a bivariate
Poisson regression model of type (2) with λ1i, λ2i, λ3i given by

λ1i = exp(1.8 + 2Z1i − 3Z3i)
λ2i = exp(0.7− Z1i − 3Z3i + 3Z5i)
λ3i = exp(1.7 + Z1i − Z2i + 2Z3i − 2Z4i)

for i = 1, . . . , 100; where Zki (k = 1, . . . , 5 and i = 1, . . . , 100) have been generated from
a normal distribution with mean zero and standard deviation equal to 0.1 . The sample
means were found equal to 11.8 and 7.9 for X and Y respectively. The correlation and the
covariance were found equal to 0.623 and 6.75 respectively indicating that a bivariate Poisson
model should be fitted.
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We have fitted various models presented in Table 1 with their BIC and AIC values. Estimated
parameters are presented in Table 2.
Both AIC and BIC indicate that the best fitted model (among the ones we have tried) is
model 11 which is the actual model we have used to generate our data. Using asymptotic χ2

statistics based on the log-likelihood, we may also test the significance of specific parameters
and identify which model should be selected.
All commands used in the illustration of example one (which follows) can be called using the
command demo("ex1", package="bivpois").

Simple (no regressors) bivariate Poisson model

In order to fit the simple bivariate Poisson model and store the results in an object called
ex1.simple we firstly load the bivpois package and the data of the first example using the
following commands:

library("bivpois")

data("ex1.sim")

and then fit the model by:

ex1.simple <- simple.bp(ex1.sim$x, ex1.sim$y)

where x, y are vectors of length 100 containing our data included in ex1.sim data frame. If
we wish to monitor the calculated arguments then we type names(ex1.simple) resulting to:

[1] "lambda" "loglikelihood" "parameters" "AIC" "BIC"
[6] "iterations"

We may further monitor any of the above values by typing the name of the stored object
(here ex1.simple followed by the dollar character ($) and the name of the output component
we wish to monitor. For example ex1.simple$lambda will print the values of λ1, λ2 and λ3:

> ex1.simple$lambda

[1] 6.574695 2.894695 5.125305

Similarly the command ex1.simple$BIC returns:

> ex1.simple$BIC

Saturated DblPois BivPois
1869.759 1091.842 1049.359

From the above output, the BIC of our fitted model is equal to 1049.36 . For comparison, the
values of the simple double Poisson model and the saturated model are also given (1091.84 ad
1869.76 respectively). As saturated model we consider the double Poisson model with perfect
fit, that is the expected values are equal to the data. Here BIC indicates that the bivariate
Poisson model is better than both the simple double Poisson model and the saturated one.
Finally, all variables of ex1.simple can be printed by simple typing its name:
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> ex1.simple

$lambda [1] 6.574695 2.894695 5.125305

$loglikelihood
[1] -532.8476 -532.4675 -532.0811 -531.6893 -531.2928 -530.8926 -530.4895
... ....... ........ ....... ....... ....... ....... .......
[162] -516.7321 -516.7321 -516.7321

$parameters
[1] 3

$AIC Saturated DblPois BivPois
1210.095 1085.246 1039.464

$BIC Saturated DblPois BivPois
1869.759 1091.842 1049.359

$iterations
[1] 164

We may monitor the evolution of the log-likelihood by producing Figure 1 by typing

plot(1:ex1.simple$iterations, ex1.simple$loglikelihood, xlab="Iterations",

ylab="Log-likelihood", type="l")
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Figure 1: Log-likelihood evolution for the simple bivariate Poisson model fitted on data of
the simulated example 1.
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Bivariate Poisson regression models

In this section, we illustrate how we can fit models 2 – 11 of Table 1 for the data of the
simulated example 1. All data were stored in a data frame called ex1.sim. Response variables
were stored in vectors x and y while the explanatory variables in vector z1, z2, z3, z4 and
z5 within the above data frame.

Firstly, the simple model fitted in the previous section using the simple.bp function can be
also fitted using the lm.bp function (see model ex1.m3 in the code given below). The major
difference is that the second function provides a wider variety of output components. The
code for fitting models 2 – 11 presented in Table 1 is given below:

ex1.m2 <- lm.bp(x~1, y~1, data=ex1.sim, zeroL3=TRUE)

ex1.m3 <- lm.bp(x~1, y~1, data=ex1.sim)

ex1.m4 <- lm.bp(x~., y~.,data=ex1.sim, zeroL3=TRUE)

ex1.m5 <- lm.bp(x~., y~., data=ex1.sim)

ex1.m6 <- lm.bp(x~z1, y~z1+z5, l1l2=~z3, data=ex1.sim, zeroL3=TRUE)

ex1.m7 <- lm.bp(x~z1, y~z1+z5, l1l2=~z3, data=ex1.sim)

ex1.m8 <- lm.bp(x~., y~., l3=~., data=ex1.sim)

ex1.m9 <- lm.bp(x~.,y~., l3=~.-z5, data=ex1.sim)

ex1.m10 <- lm.bp(x~z1, y~z1+z5, l1l2=~z3, l3=~., data=ex1.sim)

ex1.m11 <- lm.bp(x~z1, y~z1+z5,l1l2=~z3, l3=~.-z5, data=ex1.sim)

The estimates for model 11 are given by

> ex1.m11$coef # monitor all beta parameters of model 11

(l1):(Intercept) (l1):z1 (l1):z3 (l2):(Intercept)
1.7469235 2.6168303 -2.4265136 0.6145637
(l2):z1 (l2):z3 (l2):z5 (l3):(Intercept)

0.4946940 -2.4265136 3.7776722 1.7163345
(l3):z1 (l3):z2 (l3):z3 (l3):z4

0.1471195 -1.2234633 1.9514209 -2.5064762

In the above results, within parentheses the parameter λi is indicated for which each parameter
is referred. Separate estimates for the effects on λ1, λ2 and λ3 can be obtained using the
commands ex1.m11$beta1, ex1.m11$beta2 and ex1.m11$beta3, respectively.

From the above results, the model can be summarized by the following equation

log(λ1i) = 1.75 + 2.62Z1i − 2.43Z3i

log(λ2i) = 0.61 + 0.50Z1i − 2.43Z3i + 3.78Z5i

log(λ3i) = 1.72 + 0.15Z1i − 1.22Z2i + 1.95Z3i − 2.51Z4i

4.2. Example 2: Simulated data

In this second example we have considered the data of example 1 contaminated in the diag-
onal (for values of x = y) with values generated from a Poisson(2) distribution and mixing
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Model Details
λ1 λ2 λ3 Par. Log-lik. AIC BIC

1 DP Saturated 200 -405.05 1210.10 1869.76
2 DP Constant Constant − 2 -540.62 1085.25 1091.84
3 BP Constant Constant Constant 3 -516.73 1039.46 1049.36
4 DP Full Full − 12 -494.98 1013.96 1053.54
5 BP Full Full Constant 13 -478.25 982.50 1025.38
6 DP∗ Z1 + Z3 Z1 + Z3 + Z5 − 6 -527.05 1066.10 1085.89
7 BP∗ Z1 + Z3 Z1 + Z3 + Z5 Constant 7 -500.41 1014.82 1037.90
8 BP Full Full Full 18 -471.51 979.03 1038.40
9 BP Full Full Z1 + Z2 + Z3 + Z4 17 -472.51 979.02 1035.09
10 BP∗ Z1 + Z3 Z1 + Z3 + Z5 Full 12 -476.50 976.99 1016.57
11 BP∗ Z1 + Z3 Z1 + Z3 + Z5 Z1 + Z2 + Z3 + Z4 11 -476.81 975.61 1011.89

Table 1: Details for fitted models of the simulated example 1 (constant terms are included
in all models; Par.: number of parameters; Log-Lik.: log-likelihood; Constant: no covariates
were used; Full: all covariates Zk, k = 1, . . . , 5 were used; (∗): parameter of Z3 is common for
both λ1 and λ2); (−): the parameter is set equal to zero.

Actual 3 4 5 6 7 8 9 10 11
λ1 6.55
Constant 1.80 1.88 2.46 1.87 2.46 1.71 1.75 1.73 1.75 1.75
Z1 2.00 1.42 2.65 1.23 3.10 2.64 2.73 2.65 2.62
Z2 0.00 -0.57 -0.83 -0.56 -0.59
Z3 -3.00 -0.25 -0.83 0.18 -1.40 -2.33 -2.45 -2.43 -2.43
Z4 0.00 -1.15 -1.70 -0.46 -0.81
Z5 0.00 0.02 0.15 1.14 0.52
λ2 2.89
Constant 0.70 1.06 2.04 0.82 2.07 0.45 0.49 0.45 0.59 0.61
Z1 -1.00 0.20 0.70 0.46 2.47 0.36 0.33 0.57 0.49
Z2 0.00 -1.11 -2.82 -2.83 -2.99
Z3 -3.00 0.90 1.68 0.18 -1.40 -1.77 -1.98 -2.43 -2.43
Z4 0.00 -2.03 -5.27 -2.62 -3.91
Z5 3.00 0.65 2.11 1.03 5.10 6.25 4.58 4.41 3.78
λ3 5.10 0.00 5.10 0.00 6.17
Constant 1.70 1.63 −∞∗ 1.63 −∞∗ 1.82 1.72 1.75 1.72 1.72
Z1 1.00 0.19 0.10 0.17 0.15
Z2 -1.00 -0.56 -0.58 -1.19 -1.22
Z3 2.00 1.83 1.85 1.94 1.95
Z4 -2.00 -1.87 -1.37 -2.58 -2.51
Z5 0.00 -0.96 -0.45

Table 2: Estimated parameters for fitted models of the simulated example 1 (models
6, 7, 10, 11: parameter of Z3 is common for both λ1 and λ2; blank cells correspond to
zero coefficients (the corresponding covariate was not used); (∗): corresponds to λ3 = 0).
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Model Details Sim.Example 2 Mix.Prop.
Diagonal distribution Par. Log-Like AIC BIC (p)

1 BP No Diagonal Inflation 11 -555.47 1132.94 1169.22 0.000
2 DIBP Discrete(0) 12 -551.26 1126.53 1166.11 0.019
3 DIBP Discrete(1) 13 -513.50 1053.01 1095.89 0.100
4 DIBP Discrete(2) 14 -495.93 1019.86 1066.03 0.139
5 DIBP Discrete(3) 15 -472.23 974.46 1023.93 0.198
6 DIBP Discrete(4) 16 -462.48 956.96 1009.74 0.237
7 DIBP Discrete(5) 17 -458.06 950.11 1006.19 0.265
8 DIBP Discrete(6) 18 -458.06 952.11 1011.48 0.265
9 DIBP Poisson 13 -460.00 945.99 988.87 0.268
10 DIBP Geometric 13 -465.69 957.39 1000.27 0.274

Table 3: Details for fitted models of the simulated example 2 (Par.: number of parameters;
Log-like: log-likelihood; Mix.Prop.: mixing proportion).

proportion equal to 0.30. The contamination was completed by generating a binary vector
γ (of length 100) with success probability 0.30 and a Poisson vector d (of length 100) with
mean equal to 2. The new data (x′i, y

′
i) were constructed by setting x′i = xi(1− γi) + γidi and

y′i = yi(1−γi)+γidi for i = 1, . . . , n. Finally, 27 observations were contaminated with sample
mean equal to 2.4. This means that 27 observations of the data generated in example 1 were
randomly substituted by equal X and Y values generated from a Poisson distribution with
mean equal to 2. Data are available using the command data("ex2.sim") after loading the
bivpois package.

To illustrate our method we have implemented diagonal inflated models on both data of
simulated example 1 and 2. For the data of the previous section no improvement was evident
(estimated mixing proportion for all models was found equal to zero). For the data of example
2, both BIC and AIC values indicate the Poisson distribution is the most suitable for the
diagonal inflation. Moreover, for the discrete distribution, we need to set at least J = 4 in
order to get values of BIC lower than the corresponding values of the bivariate Poisson model
with no inflation (see Table 3). Estimated parameters for the diagonal inflated model with
the best discrete distribution, Poisson and geometric distributions are provided in Table 4.
In all models we have used the actual underlying covariate set-up as given for model 11 in
Section 4.1.

The code of example two which follows can be called using the command
demo("ex2", package="bivpois").

Diagonal inflated bivariate Poisson regression models

Here we illustrate how we can fit diagonal inflated models presented in Table 3 using lm.dibp
function. The following commands have been used to fit each model

ex2.m1 <- lm.bp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim)

ex2.m2 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=0)

ex2.m3 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=1)

ex2.m4 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=2)
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λ1 λ2 λ3

Model Const. Z1 Z3 Const. Z1 Z3 Z5 Const. Z1 Z2 Z3 Z4

1 1.34 3.25 −2.92 −0.09 1.41 −2.92 5.87 1.63 −0.24 −0.92 0.86 −2.27
7 1.78 2.43 −2.06 0.67 −0.39 −2.06 3.03 1.67 0.17 −0.92 1.92 −3.18
9 1.78 2.42 −2.02 0.68 −0.35 −2.02 2.97 1.67 0.13 −0.96 1.91 −3.25

10 1.78 2.38 −1.96 0.67 −0.33 −1.96 3.15 1.67 0.15 −1.01 1.82 −3.35

Model p θ

7 0.265 θ̂ = (0.08, 0.30, 0.15, 0.22, 0.15, 0.10)

9 0.268 θ̂ = 2.43 (Poisson parameter)

10 0.274 θ̂ = 0.27 (geometric parameter)

Table 4: Estimated parameters for fitted models of the simulated example 2 (Parameter vector
for model 7 is given by θ = (θ0, θ1, θ2, θ3, θ4, θ5)>).

ex2.m5 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=3)

ex2.m6 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=4)

ex2.m7 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=5)

ex2.m8 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim, jmax=6)

ex2.m9 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim,

distribution="poisson")

ex2.m10 <- lm.dibp(x~z1, y~z1+z5, l1l2=~z3, l3=~.-z5, data=ex2.sim,

distribution="geometric")

For model 7 we have the following estimates

# # printing parameters of model 7

> ex2.m7$beta1

(Intercept) z1 z3
1.779195 2.432678 -2.055471

> ex2.m7$beta2

(Intercept) z1 z3 z5
0.6694631 -0.3865983 -2.0554712 3.0293632

> ex2.m7$beta3

(Intercept) z1 z2 z3 z4
1.6685754 0.1668765 -0.9175397 1.9242793 -3.1779283

> ex2.m7$p

[1] 0.2648003

> ex2.m7$theta
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[1] 0.3018780 0.1494183 0.2237955 0.1469629 0.1026404

The above results can be summarized by the following model

fIBP (xi, yi) =

{
0.735fBP (xi, yi | λ1i, λ2i, λ3i), xi 6= yi

0.735fBP (xi, yi | λ1i, λ2i, λ3i) + 0.265θxi , xi = yi,

(θ1, θ2, θ3, θ4, θ5) = (0.302, 0.149, 0.224, 0.147, 0.103)
θj = 0 for j > 5

θ0 = 1−
∞∑

j=1

θj = 0.075

log(λ1i) = 1.78 + 2.43Z1i − 2.06Z3i

log(λ2i) = 0.67− 0.39Z1i − 2.06Z3i + 3.03Z5i

log(λ3i) = 1.67 + 0.17Z1i − 0.92Z2i + 1.92Z3i − 3.18Z4i.

Similarly model 9 produces the following results

> ex2.m9$beta1

(Intercept) z1 z3
1.783636 2.421730 -2.019664

> ex2.m9$beta2

(Intercept) z1 z3 z5
0.6796153 -0.3503677 -2.0196635 2.9746267

> ex2.m9$beta3

(Intercept) z1 z2 z3 z4
1.6674937 0.1250575 -0.9612863 1.9131331 -3.2475727

> ex2.m9$p

[1] 0.2677972

> ex2.m9$theta

[1] 2.433654

which can be summarized by the following model

fIBP (xi, yi) =

{
0.732fBP (xi, yi | λ1i, λ2i, λ3i), xi 6= yi

0.732fBP (xi, yi | λ1i, λ2i, λ3i) + 0.268e−2.434 (2.434)xi

xi!
, xi = yi,

log(λ1i) = 1.78 + 2.42Z1i − 2.02Z3i

log(λ2i) = 0.68− 0.35Z1i − 2.02Z3i + 2.97Z5i

log(λ3i) = 1.67 + 0.12Z1i − 0.96Z2i + 1.91Z3i − 3.25Z4i.
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4.3. Example 3: Health care data

In this example, we have fitted bivariate Poisson models on data concerning the demand for
Health Care in Australia, reported by Cameron and Trivedi (1998). The data refer to the
Australian Health survey for 1977-1978. The sample size is quite large (n = 5190) although
they are only a subsample of the collected data. We will use two variables, namely the
number of consultations with a doctor or a specialist (X) and the total number of prescribed
medications used in past 2 days (Y ) as the responses; see Table 5 for a cross-tabulation of the
data. The data are correlated (Pearson correlation equal to 0.308) indicating that a bivariate
Poisson model should be used. It is also interesting to examine the effect of the correlation
in the estimates.

Three variables have been used as covariates: namely the gender (1 female, 0 male), the age
in years divided by 100 (measured as midpoints of age groups) and the annual income in
Australian dollars divided by 1000 (measured as midpoint of coded ranges). More details on
the data and the study can be found in Cameron and Trivedi (1998).

Three competing models were fitted to the data: a) a model with constant covariance term
(no covariates on λ3), b) a model with covariates on the covariance term λ3 (only gender
was used which induces different covariance for each gender) and c) a model without any
covariance (double Poisson model); detailed results are given at Table 6.

Standard errors for the bivariate regression models have been calculated using 200 bootstrap
replications. This is easily implemented since, in this case, the convergence of the algorithm
is fast due to the use of good initial values.

Comparing models (a) and (c) we can conclude that the covariance term is significant (p-
value< 0.01). The effects of all covariates are statistically significant using asymptotic t-tests.
Furthermore, the effect of gender on the covariance term is significant. Similar results can be
obtained using AIC and BIC values.

Let us now examine the estimated parameters. Concerning models (a) and (c), we observe that
covariate effects for the two models are quite different. This can be attributed to the covariance
λ3 which is present. Using a bivariate Poisson model we take into account the covariance

Number of Doctor Number of Prescribed medications (Y )
Consultations (X) 0 1 2 3 4 5 6 7 8

0 2789 726 307 171 76 32 16 15 9
1 224 212 149 85 50 35 13 5 9
2 49 34 38 11 23 7 5 3 4
3 8 10 6 2 1 1 2 0 0
4 8 8 2 2 3 1 0 0 0
5 3 3 2 0 1 0 0 0 0
6 2 0 1 3 1 2 2 0 1
7 1 0 3 2 1 2 1 0 2
8 1 1 1 0 1 0 1 0 0
9 0 0 0 0 0 0 0 0 1

Table 5: Cross-tabulation of data from the Australian health survey (Cameron and Trivedi
1998).
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Model (a) Model (b) Model (c)
constant λ3 covariates on λ3 λ3 = 0

Covariate Coef. St.Er. Coef. St.Er. Coef. St.Er.
λ1 Constant -2.11 0.13 -2.08 0.13 -1.71 0.09

Gender (female) 0.22 0.08 0.05 0.08 0.22 0.06
Age 1.37 0.18 1.44 0.19 1.24 0.13
Income -0.34 0.11 -0.33 0.10 -0.28 0.08

λ2 Constant -2.19 0.08 -2.19 0.08 -1.87 0.07
Gender (female) 0.63 0.04 0.58 0.04 0.58 0.04
Age 3.25 0.10 3.29 0.10 2.96 0.09
Income -0.12 0.06 -0.11 0.06 -0.13 0.05

λ3 0.0922 0.0064 0.00
constant -2.38 0.12 -2.72 0.11
Gender (female) 0.69 0.14
Parameters 9 10 8
Log-likelihood -10030.26 -10015.48 -10233.21
AIC 20078.51 20050.96 20482.41
BIC 20143.74 20123.44 20540.39

Table 6: Results from the fitted bivariate Poisson models for the data of example 3.

between the two variables and hence the effect of each variable on the other including the
effect of the covariates. This may indicates that a Double Poisson would estimate incorrectly
the true effect of each covariate on the marginal mean.

When comparing models (a) and (b), the covariate ‘gender’ in the covariance parameter
is significant indicating that males and females have different covariance term. Note that,
the gender effect on λ1 (mean of variable X: number of doctor consultations) has changed
dramatically, while this is not true for the rest parameters. This is due to the fact that the
marginal mean for X is now λ1 + λ3 (instead of λ1) and, since they share the same variate
(gender), we observe different estimates concerning the gender effect on the number of doctor
consultations. A plausible explanation might be that gender influences the number of doctor
consultations mainly through the covariance term. A final important comment is that the
gender effect in the bivariate Poisson model is no longer multiplicative on the mean (additive
on the logarithm) since the marginal mean is equal to λ1 + λ3.

Bivariate Poisson regression models

The data were downloaded from the web page of the book of Cameron and Trivedi (1998,
http://www.econ.ucdavis.edu/faculty/cameron/racd/racddata.html). The dataset is
provided with the bivpois package and can be restored using the command
data("ex3.health"). The available variables are the following:

> names(ex3.health)

[1] "sex" "age" "agesq" "income" "levyplus" "freepoor"
[7] "freepera" "illness" "actdays" "hscore" "chcond1" "chcond2"

http://www.econ.ucdavis.edu/faculty/cameron/racd/racddata.html
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[13] "doctorco" "nondocco" "hospadmi" "hospdays" "medicine""prescrib"
[19] "nonpresc" "constant"

Variables doctorco and prescrib represent the two response vectors (number of doctor
consultations and the total number of prescribed medications used in past 2 days) while the
variables sex, age and income are the regressors used. Variable sex here is used as a 0-1
dummy variable. We fit model (a), (b) and (c) using the following commands:

library("bivpois")

data("ex3.health")

# Bivariate Poisson models

ex3.model.a <- lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

data=ex3.health)

ex3.model.b <- lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

l3=~sex,data=ex3.health)

# Double Poisson model

ex3.model.c <- lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

data=ex3.health,zeroL3=TRUE)

The objects ex3.model.a, ex3.model.b, ex3.model.c contain all the results for models
(a), (b) and (c), respectively. For the best fitted model (b) we can monitor the estimated
parameters using the command ex3.model.b$beta resulting to

> ex3.model.b$coef

(l1):(Intercept) (l1):age (l1):income (l1):sex (l2):(Intercept)
-2.08426577 1.44174252 -0.33472529 0.05461013 -2.18707854

(l2):age (l2):income (l2):sex (l3):(Intercept) (l3):sex
3.29130692 -0.11112314 0.57959417 -2.72484380 0.68927119

Bootstrap standard errors can be obtained easily using the following script for model (b) and
similarly for the rest models.

n <- length(ex3.health$doctorco)

bootrep <- 200

results <- matrix(NA,bootrep,10) for (i in 1:bootrep) {

bootx1 <- rpois(n,ex3.model.b$lambda1)

bootx2 <- rpois(n,ex3.model.b$lambda2)

bootx3 <- rpois(n,ex3.model.b$lambda3)

bootx <- bootx1+bootx3

booty <- bootx2+bootx3

# Model (a)

testtemp <- lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

data=ex3.health)

# Model (b)

# testtemp <- lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,
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# l3=~sex,data=ex3.health)

# Double Poisson model

# testtemp <- lm.bp(doctorco~sex+age+income, prescrib~sex+age+income,

# data=ex3.health, zeroL3=TRUE)

betafound <- c(testtemp$beta,testtemp$beta3)

results[i,] <- betafound

}

The commented part of the code reflects the appropriate changes in order to obtain bootstrap
standard errors for the cases of models (b) and (c). At the end matrix results contains
the bootstrap values of the parameters and thus bootstrap standard errors can be obtained
merely by calculating the standard errors of the columns. Note that objects bootx1, bootx2,
bootx3 are used to simulate from the bivariate Poisson model using the trivariate reduction
scheme.

Diagonal inflated models

Looking at the entries of Table 5 we can clearly see that the proportion of (0, 0) is quite
larger than the other frequencies. Hence it is reasonable to fit a model with diagonal inflation
described in Section 2.2. Three diagonal inflated models have been fitted to our data using
the same covariates for comparison purposes. As inflation distributions we have used the
Discrete(2), the Poisson and the geometric distribution. All fitted models led to zero-inflated
model since we obtained: θ̂1 and θ̂2 < 10−6 for the Discrete(2) distribution, θ̂ < 10−6 for the
Poisson and θ̂ = 0.9999 for the geometric model. Therefore, only the estimated parameters
of the zero-inflated model are presented as model (a) in Table 7.
Following the above analysis, two additional models have been fitted (models (b) and (c) of
Table 7). In model (b) we facilitate gender as a covariate of the covariance term (λ3) while in
model (c) we additionally introduce covariates at the mixing proportion p. The latter can be
achieved by using a logit link function for p, namely logit(pi) = w4iβ4; where w4i is a vector
the values of covariates corresponding to i observation and β4 denotes the corresponding
vector of coefficients. In order to fit such a model, at the M-step described in the appendix
(Section A.3) we replace the estimation of p by fitting a logistic regression model assuming
the Bernoulli distribution with vi’s as response variable. Here, as a covariate on the modeling
of p, we have used only ‘gender’ for illustration.
From the results in Table 7, it is obvious that the inflation proportion is quite high (p > 0.30)
which has large effect on most of the estimated parameters. The model with different mixing
proportion for each gender [model (c)] exhibits much better values of the log-likelihood, AIC
and BIC. Moreover, females appear to have significantly lower number of (0, 0) cells than
males which indicates that the men either avoid to visit their doctor and take any kind of
medication or simply do not have the physical need to take such actions. The rest of the
parameters are also influenced by introducing gender as a covariate on the mixing proportion,
with most evident, the large change on the effect of gender on λ1.
Assuming a diagonal inflated model, we account for over-dispersion of both variables (visits
to a doctor and number of medications) since, according to our selected model, the marginal
distributions are zero-inflated Poisson distributions. Hence, we have that the expectation is
given by E(Xi) = (1− pi)(λ1i + λ2i). The reduced effect of gender on λ1 is compensated with
the increase in the term (1 − pi). Concluding, the model helps us to clarify the type of the
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Model (a) Model (b) Model (c)
constant λ3 covariates on λ3 covariates on p

Covariate Coef. St.Er. Coef. St.Er. Coef. St.Er.
λ1 Constant -1.47 0.13 -1.48 0.13 -0.92 0.10

Gender (female) 0.11 0.07 0.02 0.08 -0.32 0.08
Age 1.18 0.19 1.26 0.17 0.86 0.15
Income -0.29 0.10 -0.29 0.10 -0.29 0.09

λ2 Constant -1.60 0.08 -1.61 0.09 -1.16 0.10
Gender (female) 0.52 0.04 0.49 0.04 0.20 0.05
Age 2.96 0.10 3.01 0.13 2.72 0.11
Income -0.08 0.06 -0.07 0.06 -0.08 0.06

λ3 0.09 0.01 0.09 0.01
constant -2.46 0.11 -2.71 0.19 -2.45 0.15
Gender (female) 0.52 0.22

p 0.32 0.01 0.31 0.01
constant -1.15 0.03 -1.16 0.03 0.27 0.07
Gender (female) -1.43 0.10
Parameters 10 11 11
Log-likelihood -9623.08 -9619.88 -9508.72
AIC 19266.15 19261.77 19039.44
BIC 19338.63 19341.49 19119.16

Table 7: Results from the fitted diagonal inflated bivariate Poisson models for the data of
example 3; the number of parameters, AIC and BIC refer to the zero-inflated version of models
(a), (b) and (c).

effect of each variable in the assumed model. Hence the increase in the marginal mean for Xi

for the females is due to the decreased frequency of (0, 0) cell which corresponds to lower rate
of visits to the doctor and medication taken.

Diagonal inflated bivariate Poisson regression models

Again the diagonal inflated models were fitted using the functions described in Section 3. The
models (a) and (b) were fitted using the following syntax:

ex3.dibp.a <- lm.dibp(doctorco~sex+age+income, prescrib~sex+age+income,

data=ex3.health, jmax=0)

ex3.dibp.b <- lm.dibp(doctorco~sex+age+income, prescrib~sex+age+income, l3=~sex,

data=ex3.health, jmax=0)

The argument form1 is the same as in the previous Section (4.3.1). The above models are
DIBP with diagonal inflation the Discrete(2) distribution. Since θ̂1 = θ̂2 = 0, it is sensible
to fit the reduced zero inflated model using Discrete(0) as inflation distribution. This can
be done if we add the argument jmax=0 in the above commands. For model (c) we must
intervene slightly in the function lm.dibp in order to allow for covariate effects on the mixing
proportion p.
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4.4. Example 4: Sports data

In this section we briefly present applications of bivariate Poisson models on athletic data. We
have used the data of Italian football championship (Serie A) for season 1991-92 presented in
Karlis and Ntzoufras (2003) to illustrate how we can handle such data using our algorithms
and R functions. The data consist of pairs of counts indicating the number of goals scored by
each of the two competing teams. As covariates we have used dummy variables to model the
team strength. In modeling outcomes of football games, it has been observed excess of draws
and small over-dispersion; see for example in Karlis and Ntzoufras (2000, 2003). Introducing
diagonal inflated models we correct for both the over-dispersion and the excess of draws.

We have fitted the same models and reproduced the results presented in Karlis and Ntzoufras
(2003). Note a misprint on the number of parameters concerning models 3, 4 and 5 presented
in Table 1 of the original paper. The actual number of parameters are 54, 54 and 71 instead
of 55, 55 and 72 and hence AIC and BIC measures are slightly different.

model params loglike AIC BIC
3 54 -758.91 1625.83 1864.33
4 54 -755.60 1619.17 1857.67
5 71 -745.85 1633.70 1947.28

The above changes do not affect the selection of the best model which is the diagonal inflated
Poisson model with Discrete(1) distribution as inflation. Note that λ3 was found equal to 0.23
which is relatively low but statistically significant (p-value<0.001) and the mixing proportion
p was found equal to 0.09 (p-value<0.001). The discrete distribution degenerates at one since
θ1 = 1. This indicates an excess of 1−1 score which was very popular score in Italian football
during that period. Detailed results of this dataset can be found in Karlis and Ntzoufras
(2003).

Bivariate Poisson regression models

Here we illustrate how we can use our R functions to fit models implemented by Karlis and
Ntzoufras (2003). Data concerning the football data of Italian Serie A league for season 1991-
92 are stored in a data frame object called ex4.ita91 and can loaded using the command
data("ex4.ita91"). Four variables are included in the dataset: g1, g2, team1, team2
corresponding to the goals scored by the home and away team and the coded level of the
home and the away team respectively. Sample of the data frame is given below:

> data("ex4.ita91")

> ex4.ita91

g1 g2 team1 team2
2 1 1 Atalanta Ascoli
3 2 1 Bari Ascoli
.........................
322 2 0 Sampdoria Verona
323 0 0 Torino Verona

Note that the team levels are given in the following alphabetical order:
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>levels(ita91[,3])

[1] "Ascoli" "Atalanta" "Bari" "Cagliari" "Cremonese"
[6] "Fiorentina" "Foggia" "Genoa" "Inter" "Juventus"
[11] "Lazio" "Milan" "Napoli" "Parma" "Roma"
[16] "Sampdoria" "Torino" "Verona"

In this example team1 indicates the attacking teams for variable g1 while team2 indicates the
attacking teams for variable g2. Similarly team1 and team2 indicate the defensive teams for
variables g2 and g1 respectively. Since we want to estimate common attacking and defensive
effects we should use a term of type c(team1,team2) for estimating the common attacking
parameters and a term of type c(team2,team1) for estimating the common defensive pa-
rameters. Therefore we fit the models presented in Karlis and Ntzoufras (2003) using the
following code:

#

# formula for modeling of lambda1 and lambda2

form1 <- ~c(team1,team2)+c(team2,team1)

#

# Model 1: Double Poisson

ex4.m1 <- lm.bp(g1~1, g2~1, l1l2=form1, zeroL3=TRUE, data=ex4.ita91)

#

# Models 2-5: bivariate Poisson models

ex4.m2 <- lm.bp(g1~1,g2~1, l1l2=form1, data=ex4.ita91)

ex4.m3 <- lm.bp(g1~1,g2~1, l1l2=form1, l3=~team1, data=ex4.ita91)

ex4.m4 <- lm.bp(g1~1,g2~1, l1l2=form1, l3=~team2, data=ex4.ita91)

ex4.m5 <- lm.bp(g1~1,g2~1, l1l2=form1, l3=~team1+team2, data=ex4.ita91)

#

# Model 6: Zero Inflated Model

ex4.m6 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=0)

#

# Models 7-11: Diagonal Inflated Bivariate Poisson Models

ex4.m7 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, distribution="geometric")

ex4.m8 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=1)

ex4.m9 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=2)

ex4.m10 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, jmax=3)

ex4.m11 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, distribution="poisson")

#

# Models 12: Diagonal Inflated Double Poisson Model

ex4.m12 <- lm.dibp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, distribution="poisson",

zeroL3=TRUE)

Parameters of the best fitted diagonal inflated model (given in Table 3 of Karlis and Ntzoufras
(2003) follow:

> # printing details for the diagonal distribution

> ex4.m8$diagonal.distribution
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[1] "Inflation Distribution: Discrete with J= 1"

> round(ex4.m8$beta1,2) # model parameters for lambda1

(Intercept) team1..team21 team1..team210 team1..team211 team1..team212
-0.07 -0.64 0.22 0.28 0.84

team1..team213 team1..team214 team1..team215 team1..team216 team1..team217
0.51 -0.14 0.02 0.10 0.18

team1..team22 team1..team23 team1..team24 team1..team25 team1..team26
-0.21 -0.50 -0.21 -0.36 0.29

team1..team27 team1..team28 team1..team29 team2..team11 team2..team110
0.57 -0.09 -0.37 0.75 -0.70

team2..team111 team2..team112 team2..team113 team2..team114 team2..team115
0.21 -1.17 0.19 -0.34 -0.17

team2..team116 team2..team117 team2..team12 team2..team13 team2..team14
-0.16 -0.86 -0.11 0.33 -0.01

team2..team15 team2..team16 team2..team17 team2..team18 team2..team19
0.45 0.28 0.63 0.40 -0.29

> round(ex4.m8$beta2[1]-ex4.m8$beta2[2],2)# estimated home effect

(Intercept)
0.07

> # estimating the effect for 18th level of attack (team1..team2) [Verona]

> round(-sum(ex4.m8$coef[ 2:18]),2)

[1] -0.51

> # estimating the effect for 18th level of defence(team2..team1) [Verona]

> round(-sum(ex4.m8$coef[19:35]),2)

[1] 0.57

> ex4.m8$beta3 # parameters for lambda3 (here the intercept)

(Intercept)
-1.466041

> exp(ex4.m8$beta3)# lambda3 (here constant)

(Intercept)
0.2308375

> ex4.m8$p # mixing proportion
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[1] 0.09033468

> ex4.m8$theta # printing theta parameters

[1] 0.9999988

In the above fitted model ex4.m8$beta1 and ex4.m8$beta2 have the same attacking and
defensive parameters. The only difference is in the estimated intercepts. The intercept of λ2

(ex4.m8$beta2[1]) indicates the intercept µ reported by Karlis and Ntzoufras (2003) while
the home effect is given by the difference of the two constant terms, hence ex4.m8$beta1[1]
- ex4.m8$beta2[1]. Moreover, the attacking and defensive parameters are given with the
names team1..team2 and team2..team1, respectively. In both cases, the last one or two
numbers indicate the factor code. Finally, when the discrete distribution is used to inflate the
diagonal (draws) then θi for i = 1, . . . , jmax stands for the probability of P (X = Y = i); the
probability of P (X = Y = 0) =

∑jmax
i=1 P (X = Y = i) =

∑jmax
i=1 θi.

All the above models can be directly fitted using the command demo("ex4",package="bivpois").
The full reproduced results of Table 1 of Karlis and Ntzoufras (2003) using the lm.bp and
lm.dibp functions (with precision 10−8 and maximum number iterations equal to 300) follows:

params loglike AIC BIC
1 36 -771.48 1614.95 1773.95
2 37 -764.95 1603.90 1767.32
3 54 -758.91 1625.83 1864.33
4 54 -755.58 1619.17 1857.67
5 71 -745.85 1633.70 1947.28
6 38 -764.95 1605.90 1773.73
7 39 -764.95 1607.90 1780.15
8 39 -756.57 1591.14 1763.39
9 40 -756.57 1593.14 1769.81
10 41 -756.38 1594.76 1775.85
11 39 -763.56 1605.13 1777.38
12 38 -767.01 1610.02 1777.86

Finally, in Table 8 we present the parameters of models 1, 2 and 8 in connection with the
R output; see also Table 3 of Karlis and Ntzoufras (2003) and Figure 2 for a graphical
representation of defensive versus attacking parameters. In this figure, defensive parameters
have multiplied by minus one. Thus, teams with good offensive and defensive performance
will be concentrated on the upper right area of the plot.

5. Concluding remarks

In this article we have presented R functions implementing maximum likelihood estimation for
bivariate Poisson regression models and their diagonal inflated variations. Diagonal inflated
models, also presented here, are useful in cases where excess of combinations of pairs with
equal x and y values appear (for example in sports data; see Karlis and Ntzoufras (2003). All
functions are based on EM algorithms constructed for such models; see appendix for details.
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m1 m2 m8

R name or syntax Comments DblPois Bivpois DIBP
Attack Parameters team/level

1 team1..team212 Milan 0.68 0.79 0.84
2 team1..team210 Juventus 0.18 0.24 0.22
3 team1..team217 Torino 0.11 0.18 0.18
4 team1..team213 Napoli 0.43 0.53 0.51
5 team1..team215 Roma 0.00 0.00 0.02
6 team1..team216 Sampdoria 0.02 0.08 0.10
7 team1..team214 Parma -0.15 -0.17 -0.14
8 team1..team29 Inter -0.29 -0.35 -0.37
9 team1..team27 Foggia 0.49 0.59 0.57

10 team1..team211 Lazio 0.16 0.22 0.28
11 team1..team22 Atalanta -0.18 -0.22 -0.21
12 team1..team26 Fiorentina 0.18 0.27 0.29
13 team1..team28 Genoa -0.04 -0.07 -0.09
14 team1..team24 Cagliari -0.21 -0.19 -0.21
15 -sum(ex4.m1$beta1[2:18]) Verona -0.40 -0.49 -0.51
16 team1..team23 Bari -0.33 -0.47 -0.50
17 team1..team25 Cremonese -0.29 -0.32 -0.36
18 team1..team21 Ascoli -0.34 -0.61 -0.64

Defense Parameters team/level
1 team2..team112 Milan -0.50 -0.92 -1.18
2 team2..team110 Juventus -0.50 -0.71 -0.70
3 team2..team117 Torino -0.60 -0.80 -0.86
4 team2..team113 Napoli 0.12 0.16 0.19
5 team2..team115 Roma -0.16 -0.20 -0.17
6 team2..team116 Sampdoria -0.16 -0.15 -0.16
7 team2..team114 Parma -0.27 -0.33 -0.34
8 team2..team19 Inter -0.28 -0.32 -0.29
9 team2..team17 Foggia 0.50 0.61 0.63

10 team2..team111 Lazio 0.10 0.17 0.21
11 team2..team12 Atalanta -0.11 -0.11 -0.11
12 team2..team16 Fiorentina 0.13 0.22 0.28
13 team2..team18 Genoa 0.25 0.32 0.40
14 team2..team14 Cagliari -0.08 -0.01 -0.01
15 -sum(ex4.m1$beta1[19:35]) Verona 0.43 0.58 0.57
16 team2..team13 Bari 0.24 0.32 0.33
17 team2..team15 Cremonese 0.28 0.42 0.45
18 team2..team11 Ascoli 0.61 0.73 0.75

Other Parameters
Syntax Parameter
ex4.m8$beta1[1] Intercept for λ1 0.19 -0.10 -0.07
ex4.m8$beta2[1] Intercept for λ2 -0.18 -0.58 -0.57
ex4.m8$beta3[1] Intercept for λ3 −∞ -1.35 -1.47
exp(ex4.m8$beta3[1]) λ3 0.00 0.26 0.23
Difference of two constants Home Effect 0.36 0.47 0.50
ex4.m8$p Mixing Proportion (p) 0.09
ex4.m8$theta θ1 = P (X = Y = 1) 1.00

Table 8: Parameters of models 1, 2 and 8 (see also Table 3 of Karlis and Ntzoufras (2003);
all parameters can be obtained using the commands ex4.m8$beta1 or ex4.m8$beta2).
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(b) Model 2: Bivariate Poisson
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(c) Model 8: Diagonal Inflated Bivariate Poisson
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Figure 2: Graphical representation of defensive versus attacking parameters of models 1, 2
and 8 for example 4; defensive parameters were multiplied by minus one so as greater values
to indicate teams with better defense.
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The software presented in this paper implements methodology which can be easily extended
and implemented in several variations of models discussed in this article. For example, the
extension of the EM algorithm to the multivariate Poisson models is straightforward since
such models are obtained through similar multivariate reduction techniques and the same
data augmentation approach can be easily applied. Similarly, an EM algorithm can be easily
modified to cover the case of finite mixtures of bivariate Poisson regressions. Such a model
is a generalization of the approach presented by Wang, Cockburn, and Puterman (1996).
The inflated models can be seen as a special case of finite mixtures of bivariate Poisson
distributions.

Another generalization of the above algorithm can be constructed by considering a bivariate
inflation distribution. Such a model is given by Dixon and Coles (1997) where the cells (0,0),
(0,1), (1,0) and (1,1) were inflated.

The algorithms can be even extended to cover the case of models with random effects. For
example, assuming gamma random effects, we obtain a bivariate negative binomial regression
model, as in Munkin and Trivedi (1999).

Finally, the trivariate reduction technique (used in the data augmentation approach here)
is useful for constructing multivariate models from simpler ones; see for example the bivari-
ate generalized Poisson model of Vernic (1997). Clearly, EM algorithms, identical to the
ones presented here, can be used to cover several other models arising by similar trivariate
technique.
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A. EM algorithms

A.1. Data augmentation

The EM algorithm (Dempster, Laird, and Rubin 1977) is a powerful algorithm for maximum
likelihood (ML) estimation for data containing missing values or they can be considered as
containing missing values. The EM algorithm is not only a numerical technique but also offers
useful statistical insight (Meng and Van Dyk 1997). The key idea is to augment the observed
data with some unobserved data so as the maximization of the complete likelihood is easier.
More details on the algorithm can be found in McLachlan and Krishnan (1997).

Here we facilitate the trivariate reduction of the bivariate Poisson distribution. Suppose that
for the i-th observation X1i, X2i, X3i represent the non-observable data, while Xi = X1i +X3i

and Yi = X2i+X3i are the observed data. If the unobserved data were available the estimation
would have been straightforward: we just had to fit Poisson regression models on X1, X2

and X3 variables. Hence, in order to construct our EM-algorithm we need to estimate the
unobserved data by their conditional expectations and then fit Poisson regression models to
the pseudovalues obtained by the E-step. Denoting as φ the entire vector of parameters, that
is φ = (β′

1,β
′
2,β

′
3), the complete data log-likelihood is given by

L(φ) = −
n∑

i=1

3∑
κ=1

λκi +
n∑

i=1

3∑
κ=1

xκi log(λκi)−
n∑

i=1

3∑
κ=1

log(xκi!),

where λ’s are given by (2).

In the inflated case we need to introduce additional latent variables. Inflated models are in
fact mixtures of two distributions which in our case are the bivariate Poisson, BP(λ1, λ2, λ3),
and the distribution used to inflate the diagonal. Thus the standard EM approach for finite
mixture applies. We introduce further latent variables Vi, i = 1, . . . , n which take the values 1
or 0 according to whether the observation comes from the inflation or the original component
respectively. Now the complete data log-likelihood takes the form

L(φ, p,θ) =
n∑

i=1

vi {log(p) + log fD(xi;θ)}

+
n∑

i=1

(1− vi)

{
log(1− p)−

n∑
i=1

3∑
κ=1

λκi +
n∑

i=1

3∑
κ=1

xκi log(λκi)−
n∑

i=1

3∑
κ=1

log(xκi!)

}

Thus, at the E-step we also have to estimate Vi for i = 1, . . . , n using their conditional
expectations. Full details concerning the algorithm follow in the next sub-sections.

A.2. The bivariate Poisson model

The EM-algorithm for the bivariate Poisson model (2) is given by:

E-step: Using the current parameter values of k iteration noted by φ(k), λ
(k)
1i , λ

(k)
2i

and λ
(k)
3i , calculate the conditional expected values of X3i, for i = 1, . . . , n,

by

si = E
(
X3i | Xi, Yi,φ

(k)
)
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=


λ

(k)
3i

fBP

(
xi−1,yi−1|λ(k)

1i ,λ
(k)
2i ,λ

(k)
3i

)
fBP

(
xi,yi|λ

(k)
1i ,λ

(k)
2i ,λ

(k)
3i

) if min(xi, yi) > 0

0 if min(xi, yi) = 0

(7)

where fBP (x, y | λ1, λ2, λ3) is given in (1).

M-step: Update the estimates by

β
(k+1)
1 = β̂(x− s,W 1),

β
(k+1)
2 = β̂(y − s,W 2),

β
(k+1)
3 = β̂(s,W 3),

λ
(k+1)
κi = exp

(
W>

κiβ̂
(k+1)

κ

)
for κ = 1, 2, 3;

where s = (s1, . . . , sn)> is the n×1 vector calculated in the E-step, β̂(x,W )
are the maximum likelihood estimates of a Poisson model with response the
vector x and design or data matrix given by W . Each data matrix W κ is
a n × pκ matrix and W>

κi is its corresponding i row (for i = 1, . . . , n). If
we wish to have common (or equal) parameters among different λκ then
we should construct a common design matrix W and the corresponding
parameter vector β will be estimated as β(k+1) = β̂(u,W ), with u> =
(x> − s>,y> − s>, s>). In the functions provided, we have consider the
possibility to have common parameters only between λ1 and λ2. Note also
that standard GLM procedures can be used for the M-step despite the fact
that the responses are not any more integers. The latter does not cause any
numerical problems.

A.3. The inflated bivariate Poisson model

For the EM-algorithm of inflated models, we introduced a binary latent indicator Vi for each
i = 1, . . . , n indicating the inflation when Vi = 1. The EM algorithm for the diagonal inflated
model (3) is now given by

E-step :
(a) Using the current parameter values of k iteration noted by φ(k), λ

(k)
1i ,

λ
(k)
2i , λ

(k)
3i , p(k) and θ(k), for i = 1, . . . , n calculate

vi = E
(
Vi | X = xi, Y = yi,φ

(k), p(k),θ(k)
)

=


p(k)fD

(
xi|θ

(k)
)

p(k)fD

(
xi|θ

(k)
)

+(1−p(k))fBP

(
xi,xi|λ

(k)
1i ,λ

(k)
2i ,λ

(k)
3i

) , if xi = yi

0 if xi 6= yi

(8)

where fD (x | θ) is the probability function of the inflation distribution with
parameter vector θ evaluated at the value of x.
(b) For i = 1, . . . , n, calculate si using (7).
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M-step: Update the parameters by

p(k+1) =
1
n

n∑
i=1

vi

β
(k+1)
1 = β̂ṽ(x− s,W 1),

β
(k+1)
2 = β̂ṽ(y − s,W 2),

β
(k+1)
3 = β̂ṽ(s,W 3),

θ(k+1) = θ̂v,D,

λ
(k+1)
κi = exp

(
W>

κiβ̂
(k+1)

κ

)
for κ = 1, 2, 3;

where x, y, s, v and ṽ are n × 1 vectors with elements xi, yi, si, vi and
ṽi = 1 − vi for i = 1, . . . , n, β̂v(y,W ) is the weighted maximum likelihood
estimates of β of a Poisson regression model with response y, data matrix W
and weight vector v, and θ̂v,D is the weighted maximum likelihood estimates
of θ for the distribution D(x;θ) and weights given by vector v. The design
matrices W κ, κ = 1, 2, 3 are defined as above.

For specific choices of the inflation distribution we obtain the following estimates:

• Geometric distribution: For the geometric distribution, with probability function f(x|θ) =
(1− θ)xθ, 0 ≤ θ ≤ 1, x = 0, 1, . . ., θ is updated by

θ(k+1) =
∑n

i=1 vi∑n
i=1 vixi +

∑n
i=1 vi

.

Note that, if θ = 1 the zero-inflated model is deduced.

• Poisson distribution: For the Poisson distribution with probability function f(x|θ) =
e−θθx/x!, θ ≥ 0, x = 0, 1, . . ., θ is updated by θ(k+1) = (

∑n
i=1 vi)

−1∑n
i=1 vixi. Note

that if θ = 0 the zero-inflated model is deduced.

• Discrete distribution: For any discrete distribution, Discrete(J), with probability func-
tion (4) then the model parameters are given by θj = (

∑n
i=1 vi)

−1∑n
i=1 I(Xi = Yi = j)vi

for j = 1, . . . , J and θ0 = 1−
∑J

j=1 θj ; where I(x) is the indicator function taking value
equal to one if x is true and zero otherwise.

• Zero-inflated model: The zero inflated model is a special case of Discrete(J) with J = 0
and θ0 = 1 which results to the inflation of cell (0, 0). Hence, there is no need to
estimate additional parameters except p which is the mixing proportion of the inflation
component. Further note that the zero-inflated model is a limiting case when either the
Poisson (with θ → 0) or the geometric (with θ → 1) inflation is used.

In fact the M-step consists of several iterations of the iterated reweighted algorithm used for
GLM. Hence the algorithm is an Expectation Conditional Maximization (ECM) algorithm.
Usually the number of iterations needed to fit the GLM within each M-step can be consid-
erably reduced if we use as starting values the values obtained by the previous EM step.
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Alternatively, we may constrain the number of iterations for fitting the GLM to a small num-
ber. This will be still sufficient to improve the log-likelihood, despite the fact that the fitted
model may not be the best within each iteration of the EM algorithm.

Further complexity can be added to the model by imposing a additional covariate structure
on parameters θ or p. EM-algorithms need to be slightly modified in order to incorporate
such extensions. Similarly, the model of Dixon and Coles (1997) can be fitted using an EM
algorithm identical to the one proposed here. The algorithm presented here, can be considered
as a generalization of the algorithm described in Wang et al. (2003). Finally, generalizations
of the models for multivariate versions can easily be derived.
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