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Abstract

A diagnostic test identifies patients according to their disease status. Different meta-

analytic models for diagnostic test accuracy studies have been developed to synthesize

the sensitivity and specificity of the test. Because of the likely correlation between the

sensitivity and specificity of a test, modeling the two parameters using a bivariate

model is desirable. Historically, the logit transformation has been used to model

sensitivity and specificity pairs from multiple studies as a bivariate normal.

In this thesis, we propose two transformations, the arcsine square root and the

Freeman-Tukey double arcsine transformation, in the context of a bivariate random-

effects model to meta-analyze diagnostic test accuracy studies. We evaluated the

performance of the three transformations (the commonly used logit and the proposed

transformations) using an extensive simulation study in terms of bias, root mean

square error and coverage probability. We illustrate the methods using three real

data sets.

The simulation study results showed that, for smaller sample size and higher val-

ues of sensitivity and specificity, the proposed transformations are less biased, have

smaller root mean square error and better coverage probability than the standard
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logit transformation regardless of the number of studies. On the other hand, for large

sample sizes, the usual logit transformation is less biased and has better coverage

probability regardless of the true values of sensitivity, specificity and number of stud-

ies. However, when the sample size is large, the logit transformation has better root

mean square error for moderate and large number of studies. The point estimates of

the two parameters, sensitivity & specificity, from the methods using the three real

data sets follow patterns similar to those reported by our simulation.
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Chapter 1

Introduction

1.1 Background

In this section we present a brief and general framework for the thesis.

1.1.1 Meta-Analysis and Diagnostic Test Accuracy

Meta-Analysis

Meta-analysis (MA) can be defined as the statistical aggregation of harmonious effect

sizes assigning large weight to studies having small variability and larger precision

(Kovalchik, 2013). MA has roots in the mid 1980s, and evolved alongside systematic

reviews (Borenstein et al., 2009). In the past two decades, MA has been applied in a

wide array of fields including medicine, pharmacy, education, psychology, criminol-

ogy, business, and ecology.

Once a research question has been identified, MA should begin with a ‘systematic

1
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review’. A systematic review deals with the comprehensive procedure of assessing

the literature about the topic of interest, choosing the literature satisfying a preset

selection criteria, extracting relevant data from the chosen literature and appraising

the quality of the systematic review.

Diagnostic Test Accuracy

A diagnostic test refers to a procedure identifying or categorizing patients in accor-

dance to their disease status (with or without disease). The test is classified accurate

if it has achieved its fundamental objective of classifying the patients according to

their real health status, which in practice can only be achieved by comparing with

either the gold or reference standard test. A test that has the ability to correctly

classify patients is called the gold standard test. However, because this test can be

expensive or does not even exist, a reference test is used instead.

In medicine, the accuracy of a diagnostic test is crucial as inaccuracies result in

wrong treatment for the patient. A diagnostic test is inaccurate when the test has a

positive result for a patient without the disease, or when the test has a negative result

for a patient with the disease. Although neither scenario is preferred by a clinician,

the consequences of the latter is usually more severe than the former as it can delay

or completely preclude necessary treatment and this could harm the patient more

than being given treatment unnecessarily. Therefore, there is greater emphasis in

preventing a mis-diagnosis when the patient truly has the disease. Because of the

potential for mis-diagnosis, it is important to quantify the accuracy of a diagnostic

test usually in comparison to the reference or gold standard test.

2
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1.1.2 Review of Meta-Analytic Models for Diagnostic Test

Studies and Their Assumptions

Several models for MA of diagnostic test accuracy (DTA) have been proposed in the

past two decades, all methods having their own limitations and strengths. Here, we

will be focusing on a brief discussion of those past and current attempts made to

synthesize and model diagnostic test studies. We put more theoretical and math-

ematical details for the models in the ‘Methods’ section of the thesis in Chapter

2.

Meta-Analytic Models

The model proposed by Moses et al. (1993) is the oldest and it fits a fixed-effects (FE)

linear model aggregating the sensitivities and specificities of a diagnostic test. They

also proposed a method of constructing a summary receiver operating characteristic

(SROC) curve, a great tool that aids in assessing the performance of a diagnostic

test.

On the other hand, a growing number of random-effects (RE) bivariate normal

models (Rutter and Gatsonis, 2001; Reitsma et al., 2005; Arends et al., 2008) have

emerged in the past 15 years. Their basic assumption of the bivariate normal model

to synthesize the logit transformed sensitivity and specificity of a diagnostic test

is due to the possible (negative) correlation between the two parameters mainly

because of threshold variability. The model by Reitsma et al. (2005) is relatively

straightforward to apply than the other two models. In fact the two models (Rutter

and Gatsonis, 2001; Reitsma et al., 2005) are re-parameterizations of each other and

3
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produced the same results when applied to the same data (Reitsma et al., 2005;

Arends et al., 2008). They differ only in the way they constructed their model and

parameter estimation techniques. The models by Reitsma et al. (2005) and Arends

et al. (2008) use the classical approach and that of Rutter and Gatsonis uses a

Bayesian parameter estimation approach.

Kuss et al. (2013) proposed a bivariate copulas model incorporating the corre-

lation between sensitivity and specificity, assuming the beta-binomial instead of the

binomial distribution for the number of true positives and negatives for each study

arm. They proposed three copula models: Clayton, Gauss and Plackett. They as-

sessed the performance of the copula models with respect to the standard bivariate

normal model. Their simulation study pointed out that when data were simulated

from one of the copula models, the Plackett copula model performed better than

others and all of the copula models tend to be more robust to the high correlation

case than the standard model (Kuss et al., 2013).

A more recent model to meta-analyze the sensitivity and specificity of a diagnostic

test was that of Eusebi et al. (2014) ‘latent class bivariate model’ (LCBM) which is

an extension of the bivariate model of Chu and Cole (2006), that assumes a binomial

distribution instead of normal for the within study variability. According to their

simulation results, the latent class bivariate model tends to have better performance

in terms of bias and coverage of confidence intervals than the standard bivariate RE

model (Eusebi et al., 2014).

4
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Meta-Analytic Model Assumptions

The above discussed models (Moses et al., 1993; Rutter and Gatsonis, 2001; Reitsma

et al., 2005, Arends et al., 2008) have assumed the bivariate normal model for the

logit transformed sensitivities and false positive rates rather than for the original

values. In this subsection, we will discuss the standard and new transformation-

based assumptions made by different researchers in MA of DTA.

A common transformation of a single proportion like sensitivity or specificity is

the logit transformation. It has been adopted for the bivariate normal modeling of

diagnostic test studies. Therefore, the procedure of logit transforming sensitivity and

specificity and fitting a bivariate model is a common practice in the literature (Moses

et al., 1993; Rutter and Gatsonis, 2001; Reitsma et al., 2005; Arends et al., 2008) and

accepted as a standard method of transformation due to its ease for interpretation.

Recently, other transformations such as the probit and complementary log-log

(clog-log) have been proposed and compared to the logit with respect to misspecifi-

cation based on transformations on the estimation of median sensitivity and speci-

ficity (Chu et al., 2010). Chu et al. (2010) analyzed the three link functions, and

concluded that misspecification of the three link functions does not alter the esti-

mation of the median sensitivity and specificity, but it does alter standard error of

the estimates and the coverage probability of the 95% confidence interval. Moreover,

they have reported from their simulation studies that the clog-log is tractable due

to its asymmetric property, has the highest median area under the curve (AUC) of

the SROC & coverage probability and unaltered by the misspecification of the link

functions (Chu et al., 2010).

5
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More recently, the parametric transformation by the name ‘tα family of transfor-

mations’ has been shown to be a better alternative to the usual logit transformation

(Doebler et al., 2012). They proposed the new transformation to overcome some of

the shortcomings of the standard method. They argued that the ‘tα family of trans-

formation’ overcomes the ‘subjectivity’ in the choice of the logit transformation, the

‘implicit’ assumption of linearity and failure to meet the distributional assumption

for large values of sensitivities (Doebler et al., 2012). They have compared the perfor-

mance of the transformations using both a simulation study and real data by fitting

a bivariate normal distribution to the transformed data. They concluded that the

normality assumption is well satisfied when using their transformation even when the

assumption fails in the case of logit transformation. They have indicated that for

data sets with fewer zero cell counts and moderate sensitivities, their transformation

appeared to have lower AIC but favorable for other data sets with large sensitivity

and small false positive rate (Doebler et al., 2012).

1.2 Significance of the Study

Another popular transformation for proportions to approximate normality is the arc-

sine square root, and its variant, the Freeman–Tukey double arcsine transformation

(Freeman and Tukey, 1950). The arcsine square root transformation has widely been

used in the analysis of single proportion.

In the context of meta-analyses of interventions, only a single report by Trikalinos

6
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et al. (2013) recently compared the performance of the arcsine square root transfor-

mation to the standard logit transformation and untransformed proportions using a

simulation study. According to the results of their study, they have recommended

to use the variance stabilizing arcsine square root transformation over the standard

logit transformation and untransformed data for meta-analysis of interventions.

In the context of DTA, Fokom-Domgue et al. (2015) employed arcsine square

root transformation for pooling sensitivity and specificity to appraise the prevalence

of cervical intraepithelial neoplasia grade 2 or worse (CIN2+) and positivity test of

these screening methods, and fitted a bivariate RE model of Reitsma et al. (2005)

with the aim of comparing the performance of three tests for primary cervical cancer

screening in sub-Saharan Africa.

Kocken et al. (2012) employed the double arcsine transformation of Freeman–Tukey

using the univariate methods to meta-analysis of diagnostic studies. The aim of their

study was to evaluate the performance of ‘high-risk human papillomavirus testing’,

‘Cytology test’ and ‘Co-testing’ for high-grade cervical disease.

Although efforts have been made to use the variance stabilizing transformations

in univariate MA of DTA and interventions, to our best knowledge, the variance sta-

bilizing transformations have not been used in the context of diagnostic test studies

using the recommended bivariate random-effects model. Hence, the purpose of this

thesis is to fill the gap in the literature by proposing two different variations of arc-

sine transformation –the arcsine square root and the Freeman-Tukey double arcsine

transformation in the context of bivariate RE model for DTA studies.

7
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1.3 Motivating Examples

In this section we introduce three data sets that will be further analyzed in Chapter 4

to demonstrate how the transformations introduced perform in real world situations.

For now, a forest plot for each of the data is presented. A forest plot is a graphical tool

which displays the studies under investigation including each studies average effect

measure (sensitivity or specificity) with their corresponding confidence intervals. One

of the major uses of the forest plot is that, one can visually inspect for the presence

or absence of heterogeneity between the studies so that the appropriate model, fixed

- or random-effects, could be fitted to the data. We will discuss in detail about the

fixed vs random effects model in Chapter 2. We have chosen the data sets so that

they represent the scope of MA in terms of sample size, degree of heterogeneity and

number of studies.

1.3.1 The ‘Children US’ Data

This is a data on ultrasonography (US) test for diagnosis of appendicitis in children

and was used in the study of Doria et al. (2006). A forest plot for this data is shown

in Figure 1.1 below.

The data consists of 23 studies and the average number of children with and

without disease are 77 and 254, respectively. Doria et al. (2006) analyzed the

sensitivity and specificity separately by fitting a FE model. As can be observed in

Figure 1.1, although there is no substantial heterogeneity between studies, the FE

8
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Forest plot for Sensitivity
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0.74 [0.57, 0.85]
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Forest plot for Specificity
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0.98 [0.92, 1.00]

0.94 [0.91, 0.96]

0.94 [0.88, 0.97]

0.95 [0.87, 0.98]

0.87 [0.76, 0.94]

0.93 [0.86, 0.97]

0.91 [0.81, 0.96]

0.97 [0.94, 0.99]
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0.51 0.75 1.00

Figure 1.1: Forest plot for sensitivity and specificity of ‘Children US’ data.

model that Doria et al. (2006) fitted ignores the possible correlation that exists

between sensitivity and specificity.

1.3.2 The ‘VIA’ Data

The ‘visual inspection with acetic acid’ (‘VIA’) data is a published data obtained

from the study by Fokom-Domgue et al. (2015). There are 10 studies and an average

sample size of 145 and 4,778 in each study arm, with & without disease, respectively.

A forest plot for this data is shown in Figure 1.2.
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Forest plot for Sensitivity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10
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0.76 [0.58, 0.88]

0.80 [0.72, 0.86]

0.94 [0.91, 0.97]

0.43 0.70 0.97

Forest plot for Specificity

Study 1
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Study 3
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Study 5

Study 6

Study 7

Study 8

Study 9

Study 10
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0.91 [0.90, 0.92]

0.95 [0.94, 0.95]

0.78 [0.74, 0.81]

0.64 [0.62, 0.67]

0.95 [0.94, 0.95]

0.98 [0.98, 0.98]

0.62 0.80 0.98

Figure 1.2: Forest plot for sensitivity and specificity of ‘VIA’ data.

Figure 1.2 clearly shows that there is heterogeneity between studies, particularly

for specificity. Fokom-Domgue et al. (2015) recognized this and fitted a bivariate RE

model of Reitsma et al. (2005) to compare the accuracy of the ‘VIA’ testing with

‘visual inspection with Lugols iodine’ (VILI), and ‘human papillomavirus’ (HPV)

testing for primary cervical cancer screening in sub-Saharan Africa.

1.3.3 The ‘Cytology’ Data

The third data that we use as a motivating example is the ‘Cytology’ data of Kocken

et al. (2012). It includes eight studies and the average sample size in the diseased
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(with disease) and non-diseased (without disease) group is 19 and 170 respectively.

A forest plot for this data is displayed in Figure 1.3.

Forest plot for Sensitivity

Study 1
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Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

0.77 [0.48, 0.93]

0.94 [0.60, 0.99]

0.78 [0.59, 0.90]

0.77 [0.61, 0.88]

0.64 [0.30, 0.88]

0.90 [0.46, 0.99]

0.75 [0.54, 0.88]

0.77 [0.63, 0.87]

0.30 0.65 0.99

Forest plot for Specificity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

0.83 [0.73, 0.90]

0.81 [0.71, 0.88]

0.86 [0.81, 0.91]

0.69 [0.65, 0.73]

0.90 [0.81, 0.95]

0.84 [0.75, 0.90]

0.64 [0.49, 0.77]

0.83 [0.79, 0.86]

0.49 0.72 0.95

Figure 1.3: Forest plot for sensitivity and specificity of ‘VIA’ data.

Since the extent of heterogeneity varies for sensitivity and specificity as can be

seen from Figure 1.3, Kocken et al. (2012) took that into account by fitting a RE

model for specificity and a FE model for sensitivity.

We will investigate the impact of fitting the recommended bivariate RE model

on the estimates of the ‘Children US’ and ‘Cytology’ data sets, and the effect of the

proposed transformations on that of the ‘VIA’ data later in Chapter 4.
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1.4 Scope of the Study

In this thesis, we compare the performances of the proposed transformations with the

standard logit transformation while fitting the bivariate RE model for DTA studies.

We have carried out an extensive simulation study and used several evaluation criteria

including bias, root mean square error (RMSE) and coverage probability. Finally,

we have applied the methods to the three real motivating data sets.

The remaining of this thesis is organized as follows: Chapter 2 presents the tech-

nical and statistical aspects of meta-analyses of diagnostic test studies. In Chapter

3 we present the core of the thesis —simulation design and results. In Chapter 4,

we present results of the proposed methods and the standard approach on real data

sets, and we close the thesis with a summary and discussion in Chapter 5.

12



Chapter 2

Methods

2.1 Diagnostic Test Accuracy Data Structure and

Parameters

In this section we present the data structure for the MA of DTA studies and then

discuss briefly the parameters often used in measuring the accuracy of a diagnostic

test.

2.1.1 Diagnostic Test Accuracy Data Structure

The data structure for a diagnostic test outcome could be presented in a 2 × 2

table similar to that of the intervention/treatment outcome. However, there are

two parameters of interest (sensitivity and specificity) that are commonly used to

measure the accuracy of a diagnostic test, unlike the single effect-size employed in

MA of interventions. Table 2.1 summarizes the typical data structure for a DTA
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studies.

Table 2.1: Data Structure of a Diagnostic Test Study

Disease Status
With disease Without disease

Test
Result

Positive
True Positive

(TP)
False Positive

(FP)

Negative
False Negative

(FN )
True Negative

(TN )
Total n1 = TP + FN n2 = FP + TN

2.1.2 Diagnostic Test Accuracy Parameters

The two most commonly used measures of diagnostic test accuracy (DTA) are test

sensitivity (true positive rate (TPR)) and test specificity (true negative rate (TNR)).

The conditional probability of obtaining true positive test result given the test is

performed on an individual in the diseased group is known as TPR, whereas, TNR

refers to the probability of getting true negative test result conditional on the test

being performed on a person in the non-diseased group. Another important quantity

related to these two measures of test accuracy is the false positive rate (FPR), which

is defined as the conditional probability of obtaining false positive test result given

that the test is applied on an individual in the non-diseased subject. FPR is usually

used in place of TNR in several meta-analytic modeling of DTA literatures and of

course the two are related as FPR = 1− TNR.
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Mathematically, these two parameters are defined as follows:

1. Sensitivity of a diagnostic test:

Sensitivity = Pr(Test Result is Positive|Diseased) = TPR. (2.1)

2. Specificity of a diagnostic test:

Specificity = Pr(Test Result is Negative|Non-Diseased) = TNR. (2.2)

Given the observed data for a DTA study of Table 2.1, we can estimate those pa-

rameters easily in the following manner;

T̂PR =
TP

n1

, T̂NR =
TN

n2

. (2.3)

2.2 Univariate Fixed- and Random-Effects Mod-

els for Diagnostic Test Accuracy Studies

Any quantitative research, at least presents a descriptive summary and/or employs a

statistical model to make meaningful inference. Similarly, there are different methods

proposed for meta-analyzing the two parameters of interest in diagnostic test studies.

This section discusses some of these methods for MA of DTA. Even though several

models have been proposed in order to meta-analyze sensitivity and specificity of a

diagnostic test, we will only review some of the standard methods that have been

widely used in the literature.
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Before we start the mathematical description of the models, we will make note of

the following notations. Let the observed number of true positives (TP), and total

count for the diseased group for study i be denoted by ui and n1i, respectively. Let

for the ith study, vi and n2i denote the observed number of false positives (FP) and

total count for non-diseased group, respectively. Then, a 2 × 2 table similar to the

one we have seen earlier could be obtained for study i as follows:

Table 2.2: Data Structure of Diagnostic Test Results for study i

Disease Status
With disease Without disease

Test
Result

Positive ui vi
Negative n1i − ui n2i − vi

Total n1i n2i

If we denote the true sensitivity (TPR) and 1-specificity (FPR) for the ith study

by pi and qi respectively, then their estimates are:

p̂i =
ui
n1i

, and q̂i =
vi
n2i

. (2.4)

Now, if θ1i and θ2i, i = 1, 2, ..., k, represent the true logit transformed sensitivities

and false positive rates (θ1i = logit(pi) = log( pi
1−pi ) and θ2i = logit(qi) = log( qi

1−qi ))

for each study, then the within-study variances of the logit transformed estimated

sensitivities (θ̂1i) and false positive rates (θ̂2i), respectively, are modeled by the fact

that (θ̂1i) and (θ̂2i) are independent and approximately normally distributed at study
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level. That is:

θ̂1i|θ1i u N(θ1i, s
2
1i), and θ̂2i|θ2i u N(θ2i, s

2
2i) (2.5)

where for large sample sizes (n1i and n2i), the within-study variances are estimated

as:

s2
1i =

1

ui
+

1

n1i − ui
, and s2

2i =
1

vi
+

1

n2i − vi
. (2.6)

2.2.1 Univariate Fixed-Effect Model for Diagnostic Test

Studies

Hedges and Vevea (1998) described the FE model approach as a ‘conditional analysis’

in a sense that the research outcome from this type of model will only be inferred

subject to a constraint —the number of studies included in the model. This is

different from the definitions surrounding the model for several years—which were

assuming that the model is good only under homogeneity assumption. However,

Hedges and Vevea (1998) argued that the model would still be applicable under the

assumption of heterogeneity as long as the inference is made constraint to the number

of studies included in the meta-analysis.

If we have k studies to synthesize, then the fixed-effects model assumes that

θ̂1i = θ1 + ε1i, or θ̂2i = θ2 + ε2i, i = 1, 2, ..., k , (2.7)

where θ̂1i and θ̂2i are the observed values of the logit transformed sensitivity and

1-specificity, respectively, each assumed to be normally distributed with true but

unknown common means θ1 & θ2 and known within-study variances s2
1i and s2

2i,
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respectively. ε1i and ε2i are independent random variables for sampling error both

assumed to be normal with mean 0 and variances ν1i and ν2i, respectively.

The unknown parameters, θ1 and θ2 , of this model could be estimated using

either the weighted least squares method —using the reciprocal of the within study

variability as a weight or the unweighted average method. The former finds the

estimator that minimizes the variance and is equivalent to the maximum likelihood

(ML) estimator (Hedges and Vevea, 1998). Accordingly, the weighted least squares

estimator of θj, j = 1, 2 is given by;

θ̂1w =

∑k
i=1w1iθ̂1i∑k
i=1w1i

and θ̂2w =

∑k
i=1w2iθ̂2i∑k
i=1w2i

, respectively (2.8)

where w1i = 1
s21i

and w2i = 1
s22i

as described above.

The weighting scheme thus assigns higher weight to the effect measures having

smaller variance (or higher precision), and vice versa.

In order to make statistical inference, obtaining the point estimates alone is not

sufficient unless we associate a measure of variability to the estimator. Since the k

studies are assumed to be independent and the weights, wji, j = 1, 2, are constants,

it is straightforward to show that the variance of the fixed-effects estimators θ̂jw is

var(θ̂jw) = 1∑k
i=1 wji

. That is:

var(θ̂jw) = var

(∑k
i=1wjiθ̂ji∑k
i=1wji

)
=

∑k
i=1 var(wjiθ̂ji)

(
∑k

i=1 wji)
2

=

∑k
i=1 w

2
jivar(θ̂ji)

(
∑k

i=1 wji)
2

=

∑k
i=1w

2
jis

2
ji

(
∑k

i=1wji)
2

=

∑k
i=1w

2
ji.

1
wji

(
∑k

i=1wji)
2

=

∑k
i=1wji

(
∑k

i=1wji)
2

=
1∑k

i=1wji
.
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Hence the nominal 95% Wald-type confidence interval for θj is given by: θ̂jw∓1.96×

se(θ̂jw); where se(θ̂jw) is the standard error of θ̂jw, obtained by taking the square

root of var(θ̂jw).

2.2.2 Univariate Random-Effects Model for Diagnostic Test

Studies

Unlike the FE model, the random-effects model makes an unconditional inference

using the effect size of interest (Hedges and Vevea, 1998). The basic assumption

about the RE model is that the k independent studies might differ in their methods

or behavior of the selected samples (Viechtbauer, 2010). This heterogeneity among

the studies thus leads to the assumption of randomness about the unknown true

effect θj and hence the name RE model. That is to say, the true effect size θj, by

itself is a random sample from a larger population and has its own distribution —the

assumption that leads to an unconditional inference about the whole population.

The RE model is mathematically defined as;

θ̂1i = θ1i + ε1i = µ1 + δ1i + ε1i, i = 1, 2, ..., k for sensitivity, (2.9)

and

θ̂2i = θ2i + ε2i = µ2 + δ2i + ε2i, i = 1, 2, ..., k for 1-specificity (2.10)

where θ̂1i, θ̂2i and εji are as defined before; θ1i and θ2i are the unknown true logit

transformed sensitivity and 1-specificity for each study both assumed to be nor-

mally distributed with means µ1 & µ2, and the between study variances τ 2
1 & τ 2

2 ,
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respectively. µ1 & µ2 are the mean true logit transformed sensitivity & 1-specificity

respectively, and δji is an error of θji as an estimate of µj for j = 1, 2.

Unlike the FE model which estimates only one parameter (θj), the RE models

estimate two parameters, the mean true effect (µj) and the between study hetero-

geneity (τ 2
j ). Once the heterogeneity component τ 2

j is estimated using the method of

moments, MLE or restricted maximum likelihood (REML) estimation method, then

the mean true effect (µj) could be estimated by a weighted least squares method using

the reciprocal of the sum of the within- and between-study variances as weights:

µ̄1 =

∑k
i=1 w

∗
1iθ̂1i∑k

i=1w
∗
1i

and µ̄2 =

∑k
i=1w

∗
2iθ̂2i∑k

i=1w
∗
2i

, (2.11)

where w∗1i = 1
s21i+τ̂

2
1

and w∗2i = 1
s22i+τ̂

2
2

are the RE weights to be computed for each

study.

Again the variance of the mean true effect estimator µ̄j, j = 1, 2, could easily be

shown to be the reciprocal of the sum of the RE weights (w∗ji). That is, var(µ̄j) =

1∑k
i=1 w

∗
ji

, and, the 95% confidence interval for the mean true effect is given by: µ̄j ∓

1.96× se(µ̄j), where se(µ̄j) is the standard error of µ̄j.

Both the fixed- and random-effects models discussed here are now discouraged in

applications since they ignore the possible correlation that exists between sensitivity

and specificity due to threshold variability. Instead, new methods either fixed- or

random-effects, that combine both effect measures or parameters of DTA have been

encouraged to use in practice. In the following section, we will review two of the

most widely used methods of this kind and finally discuss our method in the context

of the second method.
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2.3 Bivariate Fixed- and Random-Effects Models

for Diagnostic Test Accuracy Studies

So far we have seen the concepts and methods for univariate MA of DTA studies.

In this section we review two bivariate models, the Moses et al. (1993) summary

receiver operating characteristic (SROC) curve and Reitsma et al. (2005) bivariate

random-effects model.

2.3.1 The Summary Receiver Operating Characteristic (SROC)

Curve

The Moses et al. (1993) SROC curve is one of the oldest and standard methods to

analyze sensitivity and specificity of a diagnostic test study. The general idea behind

the SROC curve is to first plot the difference between logit transformed TPR and

FPR against the sum of logit transformed TPR and FPR estimates obtained from

the k independent studies on the ROC curve. Then a regression line is fitted to the

points using the difference between logit transformed TPR and FPR as a dependent

variable. The fitted points from the regression line are then back transformed to the

ROC curve for each given value of FPR to complete the SROC curve (Moses et al.,

1993).

Mathematically, the regression equation of the SROC curve is given by:

D = a+ bS, (2.12)
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where D = logit(TPR) - logit(FPR) = log( TPR
1−TPR) - log( FPR

1−FPR) denotes the di-

agnostic log-odds ratio which identifies the diseased from the non-diseased; and,

the measure of diagnostic threshold, S = logit(TPR) + logit(FPR)=log( TPR
1−TPR) +

log( FPR
1−FPR); a & b are the intercept and slope of the regression line, respectively.

Once a robust or weighted least square regression of D on S is fitted, then the

back transformed values of TPR for each values of the FPR, which completes the

SROC curve is given by (Walter, 2002):

TPR =
exp( a

1−b)(
FPR

1−FPR)(1+b)/(1−b)

1 + exp( a
1−b)(

FPR
1−FPR)(1+b)/(1−b) . (2.13)

Moses et al. (1993) proposed the Q∗ statistic, the point at which sensitivity of

a test equals its specificity, as a global measure of the SROC curve. This point is

represented by a straight line from the top right corner to bottom left corner on the

ROC curve and interpreted as the constant diagnostic threshold of all the studies

such that the test definitely discriminates the diseased from the non-diseased. On

the other hand, Walter (2002) discussed in detail the importance of another global

measure of SROC curves known as the area under the curve (AUC). It has been

discussed by Walter that a test that differentiates between the diseased and non-

diseased cases randomly, has an AUC = 0.5, an ideal test has AUC of 1 and an

imperfect test has AUC of 0.

Though the SROC method was widely used and straightforward to apply, it has

been criticized (Rutter and Gatsonis 2001; Reitsma et al., 2005; Arends et al., 2008)

and alternative methods have been proposed. One of the criticism is, it ignores the

possible heterogeneity among studies, assuming the threshold values and sampling
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variability to be the only sources of variation and hence fits the FE model. However,

as it has been indicated in different literatures (Rutter and Gatsonis 2001; Reitsma

et al., 2005; Arends et al., 2008), there should be some kind of heterogeneity to be

considered between studies that might result from the possible negative correlation

between TPR and TNR, disease prevalence, laboratory errors, study design, and

patient selection, to mention few.

Another criticism is that (Arends et al., 2008), the SROC curve does not take into

consideration the ‘measurement error’ for the variable S in the regression equation of

(2.12) which leads to bias in both the intercept (a) and slope (b), ignores the possible

within-study correlation between the two regression variables D and S , does not use

the ideal weighting scheme while fitting the weighted least squares regression as it

takes the inverse of the variance of diagnostic odds ratio (D) as a weight, and suffers

from the unnecessarily adding of 0.5 to all cells of the 2 × 2 table for continuity

correction.

Below, we will discuss the bivariate RE model that overcomes almost all of the

shortcomings of the Moses et al. (1993) method.

2.3.2 The Bivariate Random-Eeffects Models for Diagnostic

Test Accuracy Studies

The bivariate RE models have the advantage over the standard SROC curve method

of Moses et al. (1993) of taking into consideration the possible heterogeneity between

studies and thus fit the RE model. Since they assume a distribution for both the

TPR and TNR, they will not suffer the problem of measurement error (Arends et al.,
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2008). Moreover, the possible negative correlation of TPR and TNR is incorporated

by fitting the RE model in the bivariate models. The weighting problem of the

SROC curve could also be solved in the bivariate models by using both the within-

and between-study variance-covariance matrices as a weight.

However, all the bivariate methods (Rutter and Gatsonis 2001; Reitsma et al.,

2005; Arends et al., 2008) themselves do not escape from the problem of shifting

the SROC curve from its ideal top left corner position because of the addition of

the continuity correction value of 0.5. This will occur as all the methods are based

on the trick of taking the logit transformation of sensitivities and specificities which

leads to undefined values of θ̂1i & θ̂2i and their within study variances for a study

with zero cell count. Arends et al. (2008) have suggested as a solution to use the

exact (Binomial) distribution for the observed number of positives in both with and

without disease cases to overcome this problem.

Reitsma et al. (2005)’s Bivariate RE Model

Among the available bivariate RE models proposed to simultaneously analyze the

sensitivity and specificity of diagnostic studies, the Reitsma et al. (2005) approach is

relatively easy to understand, widely used, and, most recently has been implemented

in a freely available statistical software R (R Core Team, 2015) in a package called

‘mada’ (Doebler, 2012).

The basic assumption of the Reitsma et al. (2005) RE model is that the true

logit transformed sensitivities (θ1i) and false positive rates (θ2i) are distributed as

a bivariate normal with mean vector µµµ = (µ1, µ2)′ and between-study covariance

24



M.Sc. Thesis - Zelalem Firisa Negeri McMaster - Mathematics & Statistics

matrix Σ. Mathematically,

 θ1i

θ2i

 ∼ N2

µµµ =

 µ1

µ2

 ,Σ =

 σ2
1 σ

σ σ2
2


 , (2.14)

where µ1 and µ2 are the true means for the logit transformed sensitivities and false

positive rates, respectively, and, the components of the between-study covariance

matrix Σ; σ2
1, σ2

2, and σ denote, respectively, the true variances of θ1i, θ2i and the

possible (positive) covariance between θ1i and θ2i.

At each study level, one can assume the observed variances of the logit trans-

formed estimated sensitivities (θ̂1i) and false positive rates (θ̂2i) as fixed, and, hence

the usual FE model would be extended to;

 θ̂1i

θ̂2i

 ∼ N2


 θ1i

θ2i

 ,Si =

 s2
1i 0

0 s2
2i


 . (2.15)

Finally, the linear mixed model of Reitsma et al. (2005) is completed by com-

bining the above two models. This defines the bivariate random-effects model given

by:

 θ̂1i

θ̂2i

 ∼ N2

µµµ =

 µ1

µ2

 ,Σ + Si =

 σ2
1 + s2

1i σ

σ σ2
2 + s2

2i


 . (2.16)
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Parameter Estimation

In Reitsma et al. (2005) bivariate RE model, given in (2.16), there are five param-

eters: µ1, µ2, σ2
1, σ2

2, and σ, that need to be estimated in order to make statistical

inference. The two most commonly used methods are likelihood-based—ML and

REML. Basically, the joint probability distribution function (pdf) of θ̂1i and θ̂2i from

Reitsma et al. (2005) model is:

f(θ̂1i, θ̂2i;µµµ,ΣΣΣi) = (2π)−1|ΣΣΣi|−
1
2 exp

(
−1

2
(θ̂θθi − µµµ)′ΣΣΣ−1

i (θ̂θθi − µµµ)

)
, (2.17)

where θ̂θθi=(θ̂1i, θ̂2i)
′ and ΣΣΣi = ΣΣΣ + Si.

From the standard statistical theory of distribution, the joint distribution of the

untransformed (original) sensitivities (pi) and false positive rates (qi) is given by;

f(pi, qi;µµµ,ΣΣΣi) = fθ̂1i,θ̂2i(pi, qi)|J|, (2.18)

where J is the jacobian matrix of the transformation which in our case is given to

be:

J =

∣∣∣∣∣∣∣
dθ1i
dpi

dθ1i
dqi

dθ2i
dpi

dθ2i
dqi

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

pi(1−pi) 0

0 1
qi(1−qi)

∣∣∣∣∣∣∣ =
1

piqi(1− pi)(1− qi)
. (2.19)

Hence, the joint distribution of pi and qi that we need to maximize in order to

find the estimates of the five parameters becomes:

f(pi, qi|µµµ,ΣΣΣi) =
(2π)−1|ΣΣΣi|−

1
2

piqi(1− pi)(1− qi)
exp

(
−1

2
(θ̂θθi − µµµ)′ΣΣΣ−1

i (θ̂θθi − µµµ)

)
. (2.20)
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Then for k independent studies, observed sensitivities (p̂i) and specificities (q̂i),

the likelihood and log-likelihood function are:

L(µµµ,ΣΣΣ) =
k∏
i=1

(2π)−1|ΣΣΣi|−
1
2

p̂iq̂i(1− p̂i)(1− q̂i)
exp

(
−1

2
(θ̂θθi − µµµ)′ΣΣΣ−1

i (θ̂θθi − µµµ)

)
, (2.21)

and

l(µµµ,ΣΣΣ) = const.− 1

2

k∑
i=1

log |ΣΣΣi| −
1

2

k∑
i=1

(θ̂θθi − µµµ)′ΣΣΣ−1
i (θ̂θθi − µµµ). (2.22)

In order to derive the REML estimates of the parameters, we have to derive the

restricted likelihood first. To do so, we can easily derive the ML estimator of µµµ from

(2.22) first:

µ̂µµ =

(
k∑
i=1

ΣΣΣ−1
i

)−1( k∑
i=1

ΣΣΣ−1
i θ̂θθi

)
. (2.23)

Next, the profile log-likelihood used to estimate the covariance matrix is obtained

by substituting the value of µ̂µµ from (2.23) into the full log-likelihood function (2.22):

lprofile(ΣΣΣ) = const.− 1

2

k∑
i=1

log |ΣΣΣi| −
1

2

k∑
i=1

(θ̂θθi − µ̂µµ)′ΣΣΣ−1
i (θ̂θθi − µ̂µµ). (2.24)

Jennrich and Schluchter (1986) derived the restricted log-likelihood function to

be maximized in order to find the REML estimator of ΣΣΣ and µµµ as:

lREML(ΣΣΣ) = const.−1

2

k∑
i=1

log |ΣΣΣi|−
1

2

k∑
i=1

(θ̂θθi−µ̂µµ)′ΣΣΣ−1
i (θ̂θθi−µ̂µµ)−1

2
log |

k∑
i=1

Σ−1
i |. (2.25)

Both the unrestricted and restricted log-likelihoods are clearly defined and suit-

able to be maximized using standard numerical methods such as the Newton-Raphson
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method.

The Newton-Raphson method for finding the ML estimates of µµµ and ΣΣΣ iteratively

is given by:

 µ̂µµl+1
ML

Σ̂ΣΣ
l+1

ML

 =

 µ̂µµl

Σ̂ΣΣ
l

−
 Hµ̂µµlµ̂µµl H

µ̂µµlΣ̂ΣΣ
l

H
Σ̂ΣΣ
l
µ̂µµl

H
Σ̂ΣΣ
l
Σ̂ΣΣ
l


−1  Sµ̂µµl

S
Σ̂ΣΣ
l

 . (2.26)

Where µ̂µµl+1
ML and Σ̂ΣΣ

l+1

ML are the ML method updated values of the 2 × 1 mean vector

and 3×1 variance-covariance vector of the Newton algorithm for, µ̂µµl and Σ̂ΣΣ
l

together

form the lth iteration of the 5 × 1 vector of parameters, Hµ̂µµlµ̂µµl , H
µ̂µµlΣ̂ΣΣ

l , H
Σ̂ΣΣ
l
µ̂µµl

, and

H
Σ̂ΣΣ
l
Σ̂ΣΣ
l respectively are the 2×2, 2×3, 3×2, and 3×3 matrices of second derivatives

with respect to the components of µµµ only, µµµ & ΣΣΣ, ΣΣΣ & µµµ, and ΣΣΣ only —all being

evaluated at their current values of the iteration forming the 5 × 5 hessian matrix,

Sµ̂µµl and S
Σ̂ΣΣ
l are the 2 × 1 and 3 × 1 score vectors evaluated at the current value of

iteration, respectively —together forming the 5× 1 score vector for the algorithm.

On the other hand, the iterative Newton-Raphson algorithm to find the solution

for the covariance matrix using the REML method would be:

[
Σ̂ΣΣ
l+1

REML

]
=
[
Σ̂ΣΣ
l
]
−
[
H

Σ̂ΣΣ
l
Σ̂ΣΣ
l

]−1 [
S

Σ̂ΣΣ
l

]
. (2.27)

Where Σ̂ΣΣ
l+1

REML is the REML method updated value of the 3× 1 variance-covariance

vector, Σ̂ΣΣ
l
,H

Σ̂ΣΣ
l
Σ̂ΣΣ
l and S

Σ̂ΣΣ
l are as defined earlier.

Once the solution for the covariance matrix is obtained, the REML method up-

dates the mean vector using equation (2.28) —this time substituting ΣΣΣl+1
REML in place
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of ΣΣΣ:

µ̂µµREML =

(
k∑
i=1

Σ̂ΣΣ
−1

i∗

)−1( k∑
i=1

Σ̂ΣΣ
−1

i∗ θ̂θθi

)
. (2.28)

Where Σ̂ΣΣi∗ = Σ̂ΣΣ
l+1

REML +SSSi and θ̂θθi is as defined before.

In this thesis, however, we will utilize the quasi-Newton method which has been

implemented in the multi-purpose optimization algorithm ‘optim’ of both the mul-

tivariate meta-analysis,‘mvmeta’ (Gasparrini, 2015) and meta-analysis of diagnostic

accuracy, ‘mada’ (Doebler, 2015) R packages (R Core Team, 2015). The quasi-

Newton method numerically approximates the Hessian matrix of the regular Newton-

Raphson method (Schoenberg, 2001). Both of the R packages mentioned above use

the Broyden-Fletcher-Goldfarb -Shanno (BFGS) method, a method regarded as best

among other alternatives to the secant updates of quasi-Newton method (Schoen-

berg, 2001).

2.3.3 Bivariate RE Model Using Two Newly Proposed Trans-

formations

In this thesis, we adopt the Reitsma et al. (2005) model given in (2.17) and propose

two new transformations —‘arcsine square root’ and ‘Freeman-Tukey double arcsine’

transformation in place of the default ‘logit’ transformation employed in Reitsma

et al. (2005). Other aspects stay the same including the model specification &

parameter estimation procedure, and, the only difference comes when computing the

within study variances given in (2.6).
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For instance, if we are using the arcsine square root transformation of the sensi-

tivities and specificities; that is, if

θ1i = sin−1(
√
pi) and θ2i = sin−1(

√
qi), i = 1, 2, ...k, (2.29)

then, the within study variances for sensitivity and specificity of study i (using the

delta method) respectively is:

s2
1i = var

(
sin−1(

√
pi)
)
≈ var(pi)

(
d

dpi
sin−1(

√
pi)

)2

=
p(1− p)
n1i

(
1

2
√
p

1√
1− p

)2

=
1

4n1i

(2.30)

and s2
2i = var

(
sin−1(

√
qi)
)
≈ var(qi)

(
d

dqi
sin−1(

√
qi)

)2

=
q(1− q)
n2i

(
1

2
√
q

1√
1− q

)2

=
1

4n2i

.

(2.31)

On the other hand, the Freeman-Tukey double arcsine transformation (Freeman

and Tukey, 1950) of sensitivities & specificities and their corresponding within study

variances, respectively, are given by;

θ1i = (1/2)

[
sin−1

(√
ui

n1i + 1

)
+ sin−1

(√
ui + 1

n1i + 1

)]
, (2.32)

θ2i = (1/2)

[
sin−1

(√
vi

n2i + 1

)
+ sin−1

(√
vi + 1

n2i + 1

)]
. (2.33)

Once again using the delta method, approximate variances are given by:

s2
1i = var(θ̂1i) =

1

4n1i + 2
and s2

2i = var(θ̂2i) =
1

4n2i + 2
, respectively. (2.34)
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Another motivation behind the use of the variance stabilizing transformations is that,

they do not require the ad hoc addition of the so-called continuity correction to the

four cells of the 2×2 data table whenever there is a cell with zero counts. Moses et al.

(1993) have discussed the downward bias that this correction has on the estimated

ROC curves and also showed that it moves the ROC curve away from its ideal

position in the top left corner on the ROC space. Secondly, the variance stabilizing

transformations might also be favored for their asymmetric property, as Chu et al.,

(2010) explained that the asymmetric property of the clog-log transformation led to

better goodness of fit than the logit and probit transformations when modeling the

pairs of (TPR,TNR), (TPR, 1-TNR), (1-TPR,TNR) or (1-TPR, 1-TNR).
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Chapter 3

Simulation Study

In this Chapter, we evaluate the methods we have proposed in Chapter 2 using simu-

lations. Section 3.1 describes how we have designed the simulation study. In Section

3.2, we discuss the techniques we have used in order to evaluate the performance of

the simulation experiment; and the results of the simulations are presented in Section

3.3.

3.1 Simulation Design

In this thesis, we have designed a four-step simulation based on the strategy used by

Hamza et al. (2008) and Doebler et al. (2012). First, the true logit, arcsine square

root (ASR) and Freeman-Tukey double arcsine (FTDA) transformed sensitivities and

false positive rates (θ1i, θ2i) for each study were sampled from a bivariate normal dis-

tribution using specified true values of µ1, µ2, σ
2
1, σ

2
2, & ρ and then back transformed

to their respective unit-interval values (Hamza et al., 2008, Doebler et al., 2012).

32



M.Sc. Thesis - Zelalem Firisa Negeri McMaster - Mathematics & Statistics

Second, the sample sizes for each study arm (with disease and without disease) were

generated independently from a Poisson distribution with mean n, as in Doebler et

al. (2012). Third, we simulated the number of positive test results in each study arm

(TPs and FPs) from the binomial distribution using the two parameters generated

in the first two steps above (i.e. using the back-transformed true sensitivities and

specificities as probabilities and the sample sizes (n1i, n2i) generated from a Poisson

distribution). Finally, the bivariate RE model of Reitsma et al. (2005) was fitted for

each of the three transformations —logit, ASR and FTDA transformation. Although

we have used both the ML and REML methods to obtain estimates of parameters of

the model, we opted to present the result only for the REML case, since we did not

observe substantial differences between the two methods of estimation in the results

of the two parameters of interest.

Three different packages freely available in the R programming language that we

employed during data simulation and analysis are ‘metafor’, ‘mada’ and ‘mvmeta’.

The ‘metafor’ package (Viechtbauer, 2010) was used to transform and back-transform

the simulated sensitivities and specificities within each of the three transformations.

The ‘mada’ package (Doebler, 2015) was used to fit the bivariate RE model using

logit transformation. The model fit using the transformations we proposed —ASR

and FTDA was done with the ‘mvmeta’ package (Gasparrini et al., 2015). The

simulation of the bivariate data from a normal distribution was performed using

the ‘mvrnorm’ function of the ‘MASS’ package (Venables and Ripley, 2002). The

simulation is replicated 1000 times and different seed has been set for each of the

1000 simulation replications for the sake of parallelizing and reproducibility.
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We have summarized the simulation scenarios considered in this thesis in Table

3.1 below, and, a total of 360 scenarios for each of the three transformations have

been examined as shown in the table.

Table 3.1: Summary of Parameters Varied in the Simulation Study.

Parameters Description Values

(µ∗1, µ
∗
2) true back-transformed sensitivity and 1-specificity pairs

(95%, 10%)
(95%, 30%)
(62%, 30%)
(80%, 20%)

(σ2
1, σ

2
2)

true between-study variance of sensitivity
and false positive rate pairs

(0.5, 0.5)
(1.2, 1.2)
(0.5, 1.2)

ρ true between-study correlation coefficient
0.2
0.5

n true mean sample size for each study arm
40
100
500

k number of studies

5
10
25
50
100

Note: The (µ∗1, µ
∗
2) pairs are the back-transformed values of (µ1, µ2) which

corresponds to different values in the transformed scale for the three
transformations—logit ASR and FTDA.

3.2 Performance Evaluation

Once the desired simulated data is obtained and the model is fitted, one must eval-

uate results. Burton et al. (2006) have discussed evaluation approaches in medical
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statistics and based on their recommendations, we have computed measure of ac-

curacy (absolute bias), precision (root mean square error) and coverage (coverage

probability). Although we computed these performance evaluation measures for all

of the estimated parameters, we present the results only for the two parameters of

interest, sensitivity & 1-specificity. We have used the term ‘absolute bias’ to differ-

entiate between the one we calculated here and other types of bias including relative,

percentage, and standardized bias discussed by Burton et al. (2006), and, not to

mean we are taking the non-negative value of the bias.

Absolute Bias = E(µ̂i)− µi = ¯̂µi − µi, i = 1, 2. (3.1)

Root mean square error (RMSE) =
√
MSE =

√
E(µ̂i − µi)2

=
√
E(µ̂i − ¯̂µi)2 + (E(µ̂i)− µi)2

=
√

var(µ̂i) + Bias(µ̂i)2, i = 1, 2.

(3.2)

For each of the 1000 simulation replications, the proportion of times the 95%

confidence interval: µ̂i ∓ 1.96 × se(µ̂i), i=1,2 include the true value µi is called the

95% coverage probability.

Besides the scalar absolute bias and MSE computed for the estimators µ̂1 and µ̂2,

we have also included bias and MSE for the vector valued estimator µ̂µµ = (µ̂1, µ̂2)′

computed as:

Bias = ||Bias(µ̂µµ)|| =
√

(µ̂1 − µ1)2 + (µ̂2 − µ2)2. (3.3)

MSE = E(||µ̂µµ− µµµ||2) = trace(var(µ̂µµ)) + ||Bias(µ̂µµ)||2

=
2∑
i=1

var(µ̂i) +
2∑
i=1

(µ̂i − µi)2.
(3.4)
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3.3 Simulation Results

In this section we present the simulation study results for each of the specific scenarios

considered in this thesis. We will use tables to present results in terms of absolute

bias, RMSE, and coverage probability for some selected scenarios. Figures have been

also employed to compare the proposed methods with the existing one in terms of

the vector valued bias & MSE, in addition to the three scalar performance measures

mentioned above.

Although six different combinations of the true between-study variances and cor-

relations are considered, we did not observe any significant effect that they have

on the results of the simulation performance measures of the parameters of inter-

est, which is consistent with the findings of Hamza et al. (2008). Therefore, we

will present one table and figure just for one combination of the true between-study

variance and correlation throughout the presentation of results.

3.3.1 Results in terms of absolute bias

Table 3.2 displays the results of the absolute bias for all combinations of true param-

eters described in Table 3.1. The absolute bias for all the three methods generally

decreases as the sample size increases and that it always underestimates the TPR

and overestimates the FPR, which is consistent with previous simulation studies

(Doebler et al., 2012; Kuss et al., 2013) when they used the logit transformation.

But, the absolute bias is not decreasing as the number of study increases, rather, it

tends to increase with the number of studies in most of the scenarios which is, again,
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in agreement with the study of Doebler et al. (2012) and Eusebi et al. (2014).

Table 3.2: Absolute bias for sensitivity and false positive rate when σ2
1 = 0.5,

σ2
2 = 0.5, and ρ = 0.2.

True µ∗
1 & µ∗

2 Transformation
k = 5 k = 10 k = 25 k = 50 k = 100
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

n = 40

95%, 10%
logit -0.33 0.21 -0.44 0.26 -0.49 0.28 -0.50 0.29 -0.50 0.29
ASR -0.22 0.17 -0.22 0.17 -0.22 0.18 -0.22 0.18 -0.22 0.17

FTDA -0.20 0.16 -0.20 0.16 -0.20 0.17 -0.20 0.16 -0.20 0.17

95%, 30%
logit -0.31 0.05 -0.43 0.06 -0.49 0.06 -0.50 0.07 -0.50 0.07
ASR -0.22 0.07 -0.22 0.07 -0.22 0.07 -0.22 0.07 -0.22 0.07

FTDA -0.20 0.07 -0.20 0.07 -0.20 0.07 -0.20 0.07 -0.20 0.07

62%, 30%
logit -0.01 0.03 -0.01 0.04 -0.02 0.04 -0.03 0.06 -0.03 0.06
ASR -0.05 0.07 -0.05 0.07 -0.04 0.07 -0.04 0.07 -0.04 0.07

FTDA -0.05 0.07 -0.04 0.07 -0.04 0.07 -0.04 0.07 -0.04 0.07

80%, 20%
logit -0.05 0.07 -0.08 0.09 -0.11 0.10 -0.12 0.12 -0.13 0.13
ASR -0.12 0.11 -0.12 0.12 -0.11 0.12 -0.12 0.12 -0.12 0.12

FTDA -0.12 0.11 -0.11 0.11 -0.11 0.11 -0.11 0.11 -0.11 0.11
n = 100

95%, 10%
logit -0.13 0.07 -0.18 0.08 -0.23 0.11 -0.25 0.12 -0.25 0.13
ASR -0.21 0.16 -0.21 0.16 -0.20 0.16 -0.20 0.16 -0.20 0.16

FTDA -0.18 0.14 -0.18 0.14 -0.18 0.15 -0.18 0.15 -0.18 0.15

95%, 30%
logit -0.12 0.02 -0.18 0.02 -0.22 0.02 -0.24 0.02 -0.25 0.03
ASR -0.21 0.06 -0.21 0.06 -0.20 0.07 -0.20 0.07 -0.20 0.06

FTDA -0.18 0.06 -0.18 0.06 -0.18 0.06 -0.18 0.06 -0.18 0.06

62%, 30%
logit 0.00 0.02 -0.00 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01
ASR -0.05 0.06 -0.05 0.06 -0.04 0.07 -0.04 0.07 -0.04 0.06

FTDA –0.04 0.06 -0.04 0.06 -0.04 0.06 -0.04 0.06 -0.04 0.06

80%, 20%
logit -0.01 0.02 -0.02 0.02 -0.03 0.02 -0.03 0.03 -0.04 0.04
ASR -0.11 0.10 -0.11 0.10 -0.10 0.11 -0.11 0.11 -0.11 0.11

FTDA -0.11 0.10 -0.10 0.10 -0.10 0.10 -0.10 0.10 -0.10 0.10
n = 500

95%, 10%
logit -0.01 0.01 -0.02 0.01 -0.03 0.01 -0.03 0.01 -0.03 0.01
ASR -0.20 0.15 -0.20 0.15 -0.19 0.15 -0.19 0.15 -0.19 0.15

FTDA -0.16 0.13 -0.16 0.13 -0.16 0.14 -0.16 0.13 -0.16 0.14

95%, 30%
logit -0.01 0.00 -0.02 0.00 -0.03 -0.00 -0.03 0.00 -0.03 0.00
ASR -0.20 0.06 -0.20 0.06 -0.19 0.06 -0.19 0.06 -0.19 0.06

FTDA -0.16 0.05 -0.16 0.05 -0.16 0.06 -0.16 0.05 -0.16 0.06

62%, 30%
logit 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00
ASR -0.04 0.06 -0.04 0.06 -0.03 0.06 -0.04 0.06 -0.04 0.06

FTDA -0.04 0.05 -0.04 0.05 -0.04 0.06 -0.03 0.05 -0.03 0.06

80%, 20%
logit -0.00 0.01 -0.00 0.00 -0.00 0.00 -0.01 0.00 -0.01 0.01
ASR -0.11 0.10 -0.11 0.10 -0.10 0.10 -0.10 0.10 -0.10 0.10

FTDA -0.10 0.08 -0.09 0.08 -0.09 0.09 -0.09 0.08 -0.09 0.09

Note: The (µ∗
1 , µ

∗
2) pairs are the back-transformed values of (µ1, µ2) which corresponds to

different values in the transformed scale for the three transformations—logit ASR and FTDA.

In terms of bias, both of our proposed methods of transformation performed

better than the standard logit transformation for all of the number of studies when

the sample size for each study arm is small (n = 40) and the true (TPR,FPR) pair

is very high (95%, 10%). The new methods also outperformed their competitor logit

transformation for sensitivity when the true (TPR,FPR) pair is (95%, 30%) for all

of the five study numbers and small sample size. For the same scenario, however,

all the methods have very similar performance for 1-specificity even though the logit
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transformation has slight advantage.

For moderate sample size (n = 100), the proposed methods have dominantly over-

performed the standard logit transformation when the true pairs of sensitivity and

false positive rate are (95%, 10%) and (95%, 30%) for all moderate and large number

of studies (k = 25, 50, 100). In contrast, for the same scenarios explained above, but

when the true pairs of sensitivity and false positive rate are (62%, 30%) and (80%,

20%), the logit transformation performed better than the proposed methods.

Although the absolute bias for all the three transformations has asymptotically

decreased, the standard logit transformation has outperformed the others in terms

of absolute bias for all pairs of sensitivity & false positive rate and all number of

studies when sample size is large (n = 500). A better performance for the standard

logit transformation has been observed for false positive rate in all scenarios except

when the true pair of sensitivity & 1-specificity is (95%, 10%) and the sample size is

small.

Below, we present a panel of graphs representing the absolute bias for sensitivity

and 1-specificity separately. In terms of pattern, Figure 3.1 reveals that for the logit

transformation, the bias is generally decreasing in magnitude for both sensitivity and

1-specificity as the sample size increases, it increases for small number of studies (k

= 5, 10) and keeps moving on a constant path for the rest of the number of studies

which is consistent with the simulation studies of Eusebi et al. (2014) and Doebler

et al. (2012).
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Figure 3.1: Absolute bias for sensitivity (top panel) and 1-specificity (bottom panel)

for logit, ASR and FTDA when σ2
1 = 0.5, σ2

2 = 0.5 and ρ = 0.2.

For both of the proposed transformations, the bias decreases with increasing

sample size, slightly decreases for small number of studies and is constant for the

remaining values of k . Another interesting pattern uniformly observed for three
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of the transformations is that, even though the rate varies, for approximately the

same specificity, it seems the bias for sensitivity increases monotonically with true

sensitivity.

Figure 3.1 illustrates that the proposed transformations performed better in sen-

sitivity than the standard logit when; the sample size is small and the true pair of

sensitivity & 1-specificity is (95%, 10%) for all number of studies, the sample size is

small and the sensitivity & 1-specificity pair is (95%, 30%) for moderate and large

number of studies. Another situation where the proposed methods performed better

than the logit for sensitivity is when the sample size is small and the true sensi-

tivity & 1-specificity pair is (62%, 30%) for moderate and large number of studies.

For small number of studies, the logit transformation performs better for the same

scenario. The only time the logit transformation has fully dominated the proposed

methods in terms of sensitivity for all sample size and number of study is when the

true sensitivity & 1-specificity pair is (80%, 20%).

In terms of 1-specificity, the proposed methods performed better than the logit

transformation when the sample size is small, the true pair of sensitivity & 1-

specificity is (95%, 10%) for all number of studies. Additionally, when the true

sensitivity & 1-specificity pair is (62%, 30%), the sample size is small and the num-

ber of studies is large, the proposed methods have a slight advantage over their

competitor the logit transformation. Otherwise, for most of the simulation scenar-

ios, the logit transformation has dominated the proposed methods in terms of bias

for 1-specificity.

In general, in terms of absolute bias, the proposed methods have performed better
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than the logit transformation for small and moderate sample sizes when the true

sensitivity is very high. For the same scenario, and when the sensitivity is lower, the

logit transformation is preferable. Additionally, the logit transformation is better

than the proposed methods for large sample sizes in spite of the simulation scenario.

3.3.2 Results in terms of RMSE

We have tabulated the RMSE of the estimators from the three transformations in

Table 3.3 below. Except for some selected scenarios, in most of the cases considered

in this simulation study, the two newly proposed transformations —the ASR and the

FTDA transformation outperformed the standard logit transformation for both pa-

rameters of interest. The logit transformation performed better for all the sensitivity

& 1-specificity pairs only when the sample size is large and number of studies vary

from moderate to large. The logit transformation also has slight advantage in terms

of RMSE when the pair of sensitivity & 1-specificity is (80%, 20%), the sample size

is moderate and the number of studies is large.

In the rest of the scenarios, the proposed methods have outperformed the standard

one for all the different combinations of σ2
1, σ2

2. and ρ. Particularly, huge performance

dominance of RMSE for the proposed methods has been observed when the true

sensitivity and false positive rate pairs are (95%, 10%) and (95%, 30%) for all the

sample sizes and number of studies. This out-performance of the new methods in

terms of MSE has been also the case for the rest of the variance-covariance parameter

combinations as it can be clearly seen from the figures presented below.
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Table 3.3: RMSE for sensitivity and false positive rate when the true σ2
1 = 0.5,

σ2
2 = 0.5, and ρ = 0.2.

True µ∗
1 & µ∗

2 Transformation
k = 5 k = 10 k = 25 k = 50 k = 100
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

n = 40

95%, 10%
logit 0.49 0.40 0.50 0.34 0.51 0.32 0.51 0.31 0.51 0.30
ASR 0.30 0.26 0.26 0.22 0.23 0.20 0.23 0.19 0.22 0.18

FTDA 0.27 0.25 0.24 0.21 0.21 0.19 0.20 0.17 0.20 0.17

95%, 30%
logit 0.48 0.35 0.49 0.24 0.51 0.16 0.51 0.12 0.51 0.10
ASR 0.30 0.23 0.26 0.16 0.23 0.12 0.23 0.10 0.22 0.08

FTDA 0.27 0.22 0.24 0.16 0.21 0.12 0.20 0.09 0.20 0.08

62%, 30%
logit 0.35 0.35 0.24 0.25 0.15 0.15 0.11 0.11 0.08 0.09
ASR 0.23 0.23 0.17 0.16 0.11 0.12 0.08 0.10 0.07 0.08

FTDA 0.22 0.22 0.16 0.16 0.10 0.12 0.08 0.09 0.06 0.08

80%, 20%
logit 0.35 0.36 0.25 0.25 0.18 0.18 0.16 0.16 0.15 0.15
ASR 0.25 0.24 0.20 0.18 0.15 0.15 0.13 0.14 0.13 0.12

FTDA 0.23 0.23 0.19 0.18 0.15 0.14 0.13 0.12 0.12 0.12
n = 100

95%, 10%
logit 0.37 0.34 0.29 0.24 0.27 0.18 0.27 0.15 0.26 0.14
ASR 0.29 0.26 0.25 0.21 0.22 0.19 0.21 0.18 0.21 0.17

FTDA 0.27 0.25 0.23 0.20 0.20 0.17 0.19 0.16 0.18 0.16

95%, 30%
logit 0.37 0.33 0.29 0.23 0.27 0.15 0.26 0.10 0.26 0.07
ASR 0.29 0.23 0.25 0.16 0.22 0.12 0.21 0.10 0.21 0.08

FTDA 0.27 0.23 0.23 0.16 0.20 0.12 0.19 0.09 0.18 0.08

62%, 30%
logit 0.33 0.34 0.23 0.24 0.15 0.14 0.10 0.10 0.07 0.07
ASR 0.24 0.23 0.18 0.16 0.11 0.12 0.08 0.10 0.07 0.08

FTDA 0.23 0.23 0.16 0.16 0.11 0.12 0.08 0.09 0.06 0.08

80%, 20%
logit 0.33 0.34 0.23 0.23 0.15 0.15 0.10 0.10 0.08 0.08
ASR 0.25 0.24 0.20 0.18 0.14 0.15 0.13 0.13 0.12 0.12

FTDA 0.24 0.23 0.18 0.17 0.14 0.14 0.12 0.12 0.11 0.11
n = 500

95%, 10%
logit 0.32 0.33 0.23 0.23 0.14 0.14 0.10 0.10 0.08 0.07
ASR 0.28 0.26 0.25 0.21 0.21 0.18 0.20 0.17 0.20 0.16

FTDA 0.27 0.25 0.22 0.20 0.19 0.16 0.17 0.15 0.17 0.14

95%, 30%
logit 0.32 0.33 0.23 0.23 0.14 0.14 0.10 0.10 0.08 0.07
ASR 0.28 0.24 0.25 0.17 0.21 0.12 0.20 0.10 0.20 0.08

FTDA 0.27 0.23 0.22 0.17 0.19 0.12 0.17 0.09 0.17 0.08

62%, 30%
logit 0.31 0.33 0.23 0.23 0.14 0.14 0.10 0.10 0.07 0.07
ASR 0.24 0.24 0.18 0.17 0.11 0.12 0.08 0.10 0.06 0.08

FTDA 0.23 0.23 0.17 0.17 0.11 0.12 0.08 0.09 0.06 0.08

80%, 20%
logit 0.32 0.33 0.23 0.23 0.14 0.14 0.10 0.10 0.07 0.07
ASR 0.25 0.24 0.20 0.18 0.14 0.14 0.12 0.12 0.11 0.11

FTDA 0.24 0.24 0.18 0.17 0.14 0.14 0.11 0.11 0.10 0.10

Note: The (µ∗
1 , µ

∗
2) pairs are the back-transformed values of (µ1, µ2) which corresponds to

different values in the transformed scale for the three transformations—logit ASR and FTDA.

Figure 3.2 reveals that the pattern of RMSE is decreasing both in terms of the

sample size and number of studies. The fact that the RMSE decrease as the number

of studies increase reflects that the estimates of the transformed sensitivity and 1-

specificity become more precise as the number of studies gets larger as expected.

However, for the logit transformation, this property does not hold for sensitivity

when the sample size is small for large true sensitivity and specificity values. We

suspect the significant increment of the bias with the number of studies for sensitivity

may contribute to this result for the specified scenarios.
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Figure 3.2: Root mean square error for sensitivity (top panel) and 1-specificity (bot-

tom panel) for logit, ASR and FTDA when σ2
1 = 0.5, σ2

2 = 0.5, and ρ = 0.2.

As the sample size gets larger, the RMSE for the standard logit transformation

is rapidly decreasing although it does not get better than the proposed methods. It

can also be observed from Figure 3.2 that the proposed methods best performance
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in RMSE notably is when the sample size is small and the sensitivity & 1-specificity

pairs are (95%, 10%) & (95%, 30%) for all number of studies considered in this

simulation study. The RMSE is in favor of the standard logit when both the sample

size and number of studies are large for all pairs of true sensitivity & 1-specificity as

it was also observed in Table 3.3. For the other scenarios, it is the proposed methods

that dominate the standard logit in terms of RMSE as a measure of performance.

In sum, the proposed methods of transformations are preferable in terms of RMSE

for most of the scenarios considered in this thesis except for large sample size and

number of studies, in which the logit transformation performed better.

3.3.3 Results in terms of coverage probability

Regarding coverage probability, Table 3.4 presents the results for a selected scenario

when σ2
1 = 0.5, σ2

2 = 0.5 and ρ = 0.2. An increasing trend of coverage probability

for all of the scenarios in terms of sample size, and for selected scenarios in terms

of number of studies has been observed, which agrees with the study by Hamza et

al. (2008) when they used mean log diagnostic odds ratio as parameter of interest.

For instance, the coverage probability has increased with the number of studies for

both parameters and logit transformation when the sensitivity and false positive rate

pairs are (62%, 30%) & (80%, 20%) and sample size varies from moderate to large.

For small sample size and true pairs of sensitivity & false positive rate of (95%,

10%) & (95%, 30%), the proposed methods have better performance for both pa-

rameters of interest in terms of coverage when the number of study varies from small

to moderate. However, the logit transformation has outperformed the other two
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Table 3.4: The 95% Coverage probability for sensitivity and false positive rate when
the true σ2

1 = 0.5, σ2
2 = 0.5, and ρ = 0.2.

True µ∗
1 & µ∗

2 Transformation
k = 5 k = 10 k = 25 k = 50 k = 100
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

n = 40

95%, 10%
logit 0.81 0.85 0.57 0.77 0.12 0.50 0.00 0.22 0.00 0.02
ASR 0.80 0.84 0.66 0.83 0.21 0.50 0.01 0.15 0.00 0.01

FTDA 0.84 0.85 0.74 0.84 0.35 0.54 0.06 0.21 0.00 0.02

95%, 30%
logit 0.83 0.89 0.58 0.92 0.12 0.92 0.00 0.89 0.00 0.85
ASR 0.80 0.87 0.66 0.92 0.21 0.89 0.01 0.83 0.00 0.70

FTDA 0.84 0.87 0.74 0.91 0.35 0.89 0.06 0.83 0.00 0.69

62%, 30%
logit 0.89 0.88 0.92 0.92 0.94 0.94 0.94 0.93 0.94 0.89
ASR 0.86 0.86 0.90 0.92 0.92 0.89 0.90 0.83 0.87 0.70

FTDA 0.88 0.88 0.90 0.91 0.92 0.89 0.91 0.84 0.87 0.68

80%, 20%
logit 0.90 0.88 0.90 0.90 0.88 0.87 0.78 0.76 0.57 0.56
ASR 0.85 0.86 0.87 0.90 0.79 0.79 0.59 0.59 0.28 0.29

FTDA 0.87 0.87 0.87 0.89 0.80 0.79 0.60 0.64 0.29 0.32
n = 100

95%, 10%
logit 0.87 0.88 0.82 0.90 0.64 0.85 0.31 0.76 0.06 0.55
ASR 0.81 0.85 0.73 0.86 0.34 0.62 0.06 0.27 0.00 0.04

FTDA 0.85 0.86 0.80 0.86 0.50 0.67 0.18 0.37 0.01 0.08

95%, 30%
logit 0.87 0.88 0.82 0.92 0.65 0.93 0.32 0.95 0.07 0.95
ASR 0.81 0.86 0.73 0.92 0.34 0.90 0.06 0.86 0.00 0.75

FTDA 0.85 0.87 0.80 0.91 0.50 0.90 0.18 0.88 0.01 0.77

62%, 30%
logit 0.88 0.89 0.92 0.91 0.94 0.94 0.95 0.95 0.95 0.95
ASR 0.86 0.86 0.90 0.92 0.93 0.90 0.92 0.86 0.88 0.76

FTDA 0.88 0.87 0.91 0.91 0.93 0.90 0.92 0.87 0.90 0.77

80%, 20%
logit 0.88 0.89 0.92 0.92 0.94 0.94 0.94 0.95 0.93 0.93
ASR 0.85 0.86 0.88 0.90 0.82 0.82 0.67 0.68 0.39 0.40

FTDA 0.87 0.88 0.90 0.90 0.83 0.84 0.71 0.72 0.44 0.46
n = 500

95%, 10%
logit 0.88 0.88 0.92 0.91 0.94 0.93 0.94 0.95 0.94 0.95
ASR 0.82 0.85 0.77 0.88 0.48 0.68 0.13 0.39 0.00 0.09

FTDA 0.86 0.87 0.83 0.88 0.64 0.74 0.32 0.52 0.04 0.17

95%, 30%
logit 0.88 0.88 0.92 0.92 0.94 0.93 0.94 0.95 0.94 0.96
ASR 0.82 0.86 0.77 0.93 0.48 0.90 0.13 0.88 0.00 0.80

FTDA 0.86 0.87 0.83 0.92 0.64 0.92 0.32 0.90 0.04 0.81

62%, 30%
logit 0.89 0.87 0.91 0.92 0.94 0.93 0.94 0.95 0.95 0.95
ASR 0.85 0.86 0.90 0.92 0.93 0.90 0.92 0.88 0.89 0.80

FTDA 0.88 0.88 0.91 0.92 0.93 0.91 0.93 0.90 0.92 0.81

80%, 20%
logit 0.88 0.88 0.91 0.92 0.94 0.93 0.95 0.95 0.95 0.95
ASR 0.85 0.86 0.88 0.91 0.84 0.85 0.73 0.73 0.48 0.50

FTDA 0.89 0.88 0.90 0.91 0.86 0.87 0.76 0.78 0.57 0.58

Note: The (µ∗
1 , µ

∗
2) pairs are the back-transformed values of (µ1, µ2) which corresponds to

different values in the transformed scale for the three transformations—logit ASR and FTDA.

methods for the same scenario when the sample size is moderate & large.

On the other hand, for large number of studies, it was the logit transformation

that has the best performance for all the sample sizes and pairs of sensitivity &

1-specificity; although in sensitivity, all three methods performed poorly when the

number of study is very large and the sample size is small or moderate. This result is

expected, since for these scenarios, the bias is large (Table 3.2) and the standard error

is small (Table 3.3), hence resulting in a narrower interval which does not include the

true values. For moderate and large sample sizes, all the three methods performed
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almost similarly although the logit transformation is favored for all the four pairs of

sensitivity & 1-specificity and all number of studies.

We observed that even for large sample size, large number of studies, high true

sensitivity and specificity values, the coverage probability goes down to zero for

both of the proposed transformations. One explanation is that the magnitude of

the assumed between-study variances that we considered might be unrealistic for

the arcsine-based transformations. Since the three transformations have different

scales, the assumption of the same between-study variance is unrealistic and a vari-

ance proportional to the underlying scale of each transformation would be needed.

In practice, the choice of an appropriate between-study variance for different trans-

formation is challenging. One possible approach is to analyze a large number of

empirical diagnostic study data and estimate a range of plausible variances that can

be used to inform the simulations. As an illustration, we estimated the between-

study variances of logit, ASR and FTDA transformed sensitivity and 1-specificity

using the three empirical motivating data sets introduced in Chapter 1 and observed

that the magnitude of the between-study variances for ASR and FTDA is approxi-

mately (1/10)th, (1/20)th, (1/30)th of that of the estimates for the logit transformed

sensitivity and 1-specificity. To provide one concrete example, we simulated new

data for the ASR transformation corresponding to n = 500, k = 100, µ∗1 = 95%, µ∗2

= 90%, ρ = 0.2 by changing the between-study variance from 0.5 to 0.05 ((1/10)th),

0.025 ((1/20)th) & 0.017 ((1/30)th) and observed a dramatically improved coverage

probability for sensitivity of 91%, 92% and 94%, respectively, unlike the zero coverage

reported in the above table.
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From Figure 3.3, one can also observe that the increasing trend of the coverage

probability with sample size for all the four pairs of sensitivity & 1-specificity, and,

its decreasing pattern as the number of study increases for both sensitivity and

1-specificity pairs except the (80%, 20%) pair. All three methods also performed

uniformly poorly when the true pairs of sensitivity & 1-specificity is (95%, 10%) &

(95%, 30%) for small & moderate sample sizes as the number of studies increase.
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Figure 3.3: 95% coverage probability of sensitivity (top panel) and 1-specificity (bot-

tom panel) for logit, ASR and FTDA when σ2
1 = 0.5, σ2

2 = 0.5 and ρ = 0.2.

Among the four pairs of sensitivity & 1-specificity considered in this simulation

study, all the methods consistently performed well in terms of coverage probability
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only for the (80%, 20%) case and also the coverage probability increases with in-

creasing number of studies, particularly for sensitivity. For this scenario, although

all methods performed similarly, the logit transformation has slight but consistent

better performance for both parameters of interest.

We have also observed that the only exception where the proposed methods have

outperformed the standard one is when the true sensitivity & 1-specificity pairs are

(95%, 10%) & (95%, 30%), the sample size is small and the number of study varies

from small to moderate. For other scenarios, the standard logit transformation has

better performance over the proposed ones in terms of coverage probability.

The surprising coverage probabilities of less than 10% when the true sensitivity

& specificity is very high and the number of studies is large is consistent with the

findings of Hamza et al. (2008) and Kuss et al. (2013), although the parameter of

interest used in the Hamza et al. (2008) was mean log diagnostic odds ratio. We

suspect that the relatively smaller standard error estimates for these scenarios is the

possible reason for the confidence intervals missing to include the true values.

Generally, for small sample sizes and high values of sensitivity & specificity, the

proposed methods have better coverage than the standard method when the number

of studies vary from small to moderate. For moderate and large sample sizes, regard-

less of the sensitivity & specificity pairs, though the logit transformation has slight

advantage, all methods have similar coverage in both parameters of interest when

the number of studies vary from small to moderate. However, for large number of

studies, the logit transformation outperforms the proposed methods in spite of the

scenario combinations.
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3.3.4 Results in terms of vector valued bias and MSE

In this Section we present the results for absolute bias and MSE computed for the

combined estimators of mean sensitivity and 1-specificity as given in (3.3) and (3.4).

We have chosen to employ a panel of scatter plots to visualize the pairwise perfor-

mance of the three methods at a time.

Figure 3.4 presents the scatter plot showing the pairwise comparison of the meth-

ods using vector-valued absolute bias and MSE as a performance measure. It can

be observed that the logit transformation is better than the proposed methods in

absolute bias mostly when both the number of studies and sample size is large for all

pairs of sensitivity & 1-specificity except the (62%, 30%) pair. Conversely, as both

the sample size and number of studies get smaller, the proposed methods perform

better in all of the four sensitivity and 1-specificity pairs considered in the simulation

study.

When the vector-valued MSE is used as a measure of performance, Figure 3.4

shows that, although the methods perform similarly for large number of studies and

sample size, the logit transformation still performed better than the proposed meth-

ods marginally for all pairs of sensitivity & 1-specificity except the (62%, 30%) pair.

On the other hand, the proposed methods performed better in terms of MSE when

the sample size gets smaller in spite of the size of number of studies and the pairs of

the sensitivity & 1-specificity. The results presented here are also in agreement with

the RMSE results given under Table 3.3 for sensitivity and 1-specificity individu-

ally. When the sensitivity & 1-specificity pair is (62%, 30%), all methods performed

similarly both in absolute bias and MSE for large number of studies and sample
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Figure 3.4: Scatter plot of the vector-valued absolute bias (top panel) and MSE
(bottom panel) when σ2

1 = 0.5 = σ2
2 and ρ = 0.2.

size. Finally, we have observed that there is no substantial difference of performance

between the proposed methods both in terms of bias and MSE, although the double

arcsine transformation of Freeman-Tukey has a marginal advantage.
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Chapter 4

Real Data Analysis

In this Chapter, we use three real data sets to illustrate the methods discussed in

this thesis. The data sets are chosen so that they are representative of the considered

methods/transformations in the simulation study. We compute and present estimates

of sensitivity and 1-specificity with their 95% confidence interval using REML method

of estimation.

4.1 The ‘Children US’ Data

Doria et al., (2006) meta-analyzed the log-transformed sensitivity & specificity sep-

arately, and evaluated the accuracy of two diagnostic tests; ultrasonography (US)

and computed tomography (CT) for diagnosis of appendicitis in children and adults.

We will only consider the children data set which we call ‘Children US’. This data

consists of 23 studies and the average number of diseased and non-diseased children

are 77 and 254, respectively. Table 4.1 shows the data set and Figure 4.1 displays the
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forest plot and SROC curve with 95% confidence region. Table 4.2 presents the re-

sults of sensitivity & false positive rate estimates and their respective 95% confidence

interval.

Table 4.1: The ‘Children US’ data from Doria et al. (2006) study.

Study Author FP FN TP TN
1 bAng 13 14 145 102
2 Cha 1 0 3 7
3 Chang 2 4 26 18
4 Crady 4 4 22 68
5 Davidson 9 8 62 174
6 Hahn 97 50 444 3268
7 Han 1 0 13 79
8 Hayden 1 1 53 75
9 Kaiser 20 48 196 336
10 Karakas 9 9 26 138
11 Lessin 3 4 28 64
12 Lowe 7 0 20 51
13 Pena 6 28 22 83
14 Quillin 5 5 34 56
15 Ramachandran 6 5 55 206
16 Rice 7 5 36 55
17 Ronco 8 8 104 188
18 Rubin 5 5 40 60
19 Siegel 0 7 31 140
20 Sivit 92 5 6 46 123
21 Sivit 00 17 18 65 215
22 Vignault 4 2 31 33
23 Wong ML 1 4 25 61

The estimates of the sensitivity & 1-specificity pairs in percentage value are

(85.8%, 6.1%) for logit, (87.2%, 5.0%) for ASR and (88.6%, 4.2%) for FTDA trans-

formation. This result shows that there is sizable difference in the estimates of the
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Forest plot for Sensitivity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

Study 11

Study 12

Study 13

Study 14

Study 15

Study 16

Study 17

Study 18

Study 19

Study 20

Study 21

Study 22

Study 23

0.91 [0.85, 0.94]

0.88 [0.40, 0.99]

0.85 [0.69, 0.94]

0.83 [0.65, 0.93]

0.88 [0.78, 0.94]

0.90 [0.87, 0.92]

0.96 [0.73, 1.00]

0.97 [0.89, 0.99]

0.80 [0.75, 0.85]

0.74 [0.57, 0.85]

0.86 [0.71, 0.94]

0.98 [0.81, 1.00]

0.44 [0.31, 0.58]

0.86 [0.72, 0.94]

0.91 [0.81, 0.96]

0.87 [0.74, 0.94]

0.92 [0.86, 0.96]

0.88 [0.76, 0.95]

0.81 [0.66, 0.90]

0.88 [0.76, 0.94]

0.78 [0.68, 0.86]

0.93 [0.79, 0.98]

0.85 [0.68, 0.94]

0.31 0.66 1.00

Forest plot for Specificity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

Study 11

Study 12

Study 13

Study 14

Study 15

Study 16

Study 17

Study 18

Study 19

Study 20

Study 21

Study 22

Study 23

0.88 [0.81, 0.93]

0.83 [0.51, 0.96]

0.88 [0.68, 0.96]

0.94 [0.86, 0.97]

0.95 [0.91, 0.97]

0.97 [0.96, 0.98]

0.98 [0.92, 1.00]

0.98 [0.92, 1.00]

0.94 [0.91, 0.96]

0.94 [0.88, 0.97]

0.95 [0.87, 0.98]

0.87 [0.76, 0.94]

0.93 [0.86, 0.97]

0.91 [0.81, 0.96]

0.97 [0.94, 0.99]

0.88 [0.78, 0.94]

0.96 [0.92, 0.98]

0.92 [0.82, 0.96]

1.00 [0.97, 1.00]

0.96 [0.91, 0.98]

0.92 [0.88, 0.95]

0.88 [0.74, 0.95]

0.98 [0.90, 0.99]

0.51 0.75 1.00

(a) Forest plot for ‘Children US’ Data
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(b) SROC curve for ‘Children US’ Data

Figure 4.1: Forest Plot (a) and SROC curve (b) for the ‘Children US’ Data

two parameters of interest from the three methods of transformation. In our simula-

tion study, we have discussed that all the methods underestimate the sensitivity and

overestimate the 1-specificity. In this data example, the estimates of the sensitivity

for the ASR and FTDA transformation is higher than the logit transformation by

1.4% and 2.8%, respectively, and the estimates of the 1-specificity for the ASR and

FTDA transformation is lower than the estimate by logit transformation by 1.1%

and 1.9%, respectively. Although it is difficult to identify the sample size as it differs

substantially in each study arm for the data, this result agrees with our simulation

study when the true pairs of sensitivity & 1-specificity is (95%, 10%) and the sample

size is small.
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Table 4.2: Estimates of sensitivity & 1-specificity and their respective (95% confi-

dence interval) for the ‘Children US’ data.

Parameter
Transformation

Logit ASR FTDA

Sensitivity 85.8% (81.5%, 89.2%) 87.2% (82.9%, 90.9%) 88.6% (84.2%, 92.4%)

1-Specificity 6.1% (4.8%, 7.7%) 5.0% (3.7%, 6.5%) 4.2% (2.9%, 5.7%)

Additionally, the width of the confidence intervals differ substantially between

the three methods. Both of the proposed methods have narrower confidence interval

width for 1-specificity, and the logit transformation has narrower confidence interval

width than the proposed methods for sensitivity. Accordingly, the width of the

confidence interval for sensitivity from both proposed methods (ASR & FTDA) is

higher than that of the standard logit transformation by 0.3 and 0.5 respectively.

For 1-specificity, the widths are narrower for both proposed methods than the logit

transformation by 0.1.

Even though Doria et al. (2006) analyzed the log transformed sensitivity and

specificity separately by ignoring the possible correlation between the two, our esti-

mated sensitivity of 88.6% by the double arcsine transformation is the nearest to their

result. On the other hand, the estimated specificity of 6% by the logit transformation

agrees with their.

55



M.Sc. Thesis - Zelalem Firisa Negeri McMaster - Mathematics & Statistics

4.2 The ‘VIA’ Data

The VIA data is one of the three published data from three screening tests: ‘visual

inspection with acetic acid’ (VIA), ‘visual inspection with Lugols iodine’ (VILI),

and ‘human papillomavirus’ (HPV). These data were considered in Fokom-Domgue

et al. (2015) to compare the performance of the three tests for primary cervical

cancer screening in sub-Saharan Africa. In their study, they have employed the

arcsine square root transformation to pool sensitivity and specificity when assessing

the prevalence of cervical intraepithelial neoplasia grade 2 or worse (CIN2+) and

positivity rate of these screening methods in sub-Saharan Africa and fit a bivariate

RE model to compare the performance of the three tests in the region. The data we

use is given in Table 4.3, the forest plot and SROC curve (with a 95% confidence

region) of the data is displayed in Figure 4.2 and the results using the three methods

discussed in this project are shown in Table 4.4.

Table 4.3: The ‘visual inspection with acetic acid’ (‘VIA’) data.

Study Author Country Year TP FN TN FP
1 University of Zimbabwe Zimbabwe 1999 158 48 1233 691
2 Sankaranarayan Burkina Faso 2004 45 5 1485 516
3 Sankaranarayan Congo 2004 313 76 5014 1532
4 Sankaranarayan Guinea 2004 153 15 7935 524
5 Sankaranarayan Mali 2004 130 34 4892 496
6 Sankaranarayan Niger 2004 13 7 2376 138
7 De Vuyst Kenya 2005 44 16 460 133
8 Sangwa-Lugoma DRC 2006 22 7 965 534
9 Muwonge Angola 2010 105 27 8238 479
10 Ngoma Tanzania 2010 220 13 9958 183

DRC = Democratic Republic of Congo
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Forest plot for Sensitivity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

0.77 [0.70, 0.82]

0.90 [0.79, 0.96]

0.80 [0.76, 0.84]

0.91 [0.86, 0.95]

0.79 [0.72, 0.85]

0.65 [0.43, 0.82]

0.73 [0.61, 0.83]

0.76 [0.58, 0.88]

0.80 [0.72, 0.86]

0.94 [0.91, 0.97]

0.43 0.70 0.97

Forest plot for Specificity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

0.64 [0.62, 0.66]

0.74 [0.72, 0.76]

0.77 [0.76, 0.78]

0.94 [0.93, 0.94]

0.91 [0.90, 0.92]

0.95 [0.94, 0.95]

0.78 [0.74, 0.81]

0.64 [0.62, 0.67]

0.95 [0.94, 0.95]

0.98 [0.98, 0.98]

0.62 0.80 0.98

(a) Forest plot for ‘VIA’ Data
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(b) SROC curve for ‘VIA’ Data

Figure 4.2: Forest Plot (a) and SROC curve (b) for the ‘VIA’ Data

The VIA data’s average sample size in each study arm for the 10 studies is 145

and 4,778, respectively. The back-transformed estimates of the pairs of sensitivity &

1-specificity in percentage points for logit, arcsine and double arcsine transformation

are (82.4%, 12.6%), (82.5%, 15.0%) and (83.0%, 15.0%) respectively.

Table 4.4: Estimates of sensitivity & 1-specificity (95% confidence interval) for the

‘VIA’ data.

Parameter
Transformation

Logit Arcsine Double Arcsine

Sensitivity 82.4% (76.2%, 87.3%) 82.5% (77.0%, 87.3%) 83.0% (77.4%, 87.9%)

1-Specificity 12.6% (6.6%, 22.9%) 15.0% (7.8%, 24.0%) 15.0% (7.8%, 24.0%)

In the VIA data example, Table 4.4 shows that the results of the mean sensitivity

estimates are similar as they range from 82.4% to 83.0%. The result from the logit
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transformation is exactly the same as the one Fokom-Domgue et al. (2015) reported

as they have also fitted the same model. The increasing pattern in the estimates of

the 1-specificty for the proposed methods than the estimates from the logit trans-

formation reflects our simulation study, as it has been reported in Table 3.2 except

when the sample size is small and the true sensitivity & 1-specificity pair is (95%,

10%).

In terms of the width of confidence intervals, the proposed methods appear to

have narrower values. The logit transformations width of confidence interval for

sensitivity is higher than those from the ASR and FTDA transformation by 0.8 and

0.6 respectively. Similarly for 1-specificity, the proposed methods (ASR and FTDA)

have lower confidence interval width by 0.1 than the logit transformation.

4.3 The ‘Cytology’ Data

Table 4.5 presents another published data (‘Cytology’) from Kocken et al. (2012).

Their study aimed to evaluate the performance of three tests: ‘high-risk human pa-

pillomavirus testing’, ‘Cytology test’ and ‘Co-testing’ for high-grade cervical disease.

The ‘Cytology’ data has eight studies & average sample size of 19 and 170 in each

study arm. Kocken et al. (2012) analyzed the double arcsine transformed sensitivity

and specificity by fitting a univariate FE and RE MA models. We will here give the

results of the analysis for this data using bivariate RE model in Table 4.6. Before

that, we have also presented the ‘Cytology’ data’s forest plot and SROC curve with

a 95% confidence region in Figure 3.3.
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Table 4.5: The ‘Cytology’ data

Study Author Year TP FP FN TN
1 Cecchini 2004 8 12 2 62
2 Sarian 2004 7 15 0 66
3 Alonso 2006 19 24 5 155
4 Kreimer 2006 25 140 7 313
5 Verguts 2006 4 6 2 60
6 Smart 2010 4 15 0 80
7 Heymans 2011 16 15 5 27
8 Kocken 2011 35 63 10 310

Forest plot for Sensitivity
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Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

0.77 [0.48, 0.93]

0.94 [0.60, 0.99]

0.78 [0.59, 0.90]

0.77 [0.61, 0.88]

0.64 [0.30, 0.88]

0.90 [0.46, 0.99]

0.75 [0.54, 0.88]

0.77 [0.63, 0.87]

0.30 0.65 0.99

Forest plot for Specificity
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Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

0.83 [0.73, 0.90]

0.81 [0.71, 0.88]

0.86 [0.81, 0.91]
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0.84 [0.75, 0.90]

0.64 [0.49, 0.77]
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0.49 0.72 0.95

(a) Forest plot for ‘Cytology’ Data
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(b) SROC curve for ‘Cytology’ Data

Figure 4.3: Forest Plot (a) and SROC curve (b) for the ‘Cytology’ Data

According to Table 4.6, the back-transformed estimated values of the pair of

sensitivity & 1-specificity in percent are (77.1%, 19.2%), (79.2%, 18.8%) and (82.0%,

16.0%) for logit, ASR and FTDA transformation respectively. The result obtained

from the ASR transformation has the closest agreement with the reported estimated

value for sensitivity & specificity pair of (79%, 81%) in Kocken et al. (2012) study.
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However, the result from FTDA transformation, the same transformation used in

their study, has higher estimates of mean sensitivity & specificity pair (82.0%, 84%)

when the bivariate RE model is fitted.

Table 4.6: Estimates of sensitivity and 1-specificity (95% confidence interval) for the

‘Kocken’ data.

Parameter
Transformation

Logit Arcsine Double Arcsine

Sensitivity 77.1% (69.7%, 83.1%) 79.2% (72.4%, 85.3%) 82.0% (74.6%, 88.5%)

1-Specificity 19.2% (14.2%, 25.4%) 18.8% (13.5%, 24.8%) 16.0% (13.1%, 24.5%)

It can be observed from Table 4.6 that the estimates of the mean sensitivity

& 1-specificity pairs differ substantially. The estimated sensitivity from the logit

transformation is lower by 2.1% and 4.9% than ASR and FTDA transformation

respectively. Contrarily, the estimated 1-specificity from the logit is higher by 0.4%

and 3.2% than the ASR and FTDA transformation, respectively.

There is also a notable difference in terms of confidence interval width between the

methods. The width of the confidence interval for sensitivity from the logit transfor-

mation is higher by 0.5 than the ASR transformation and lower by 0.4 than the FTDA

transformation. Whereas, the confidence interval width of the logit transformation

for 1-specificty is lower by 0.1 and 0.2 than the ASR and FTDA transformation,

respectively.

The results from Table 4.6 are in agreement with our simulation study as it has

been reported in Chapter 3 that the logit transformation severely underestimates
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sensitivity and overestimates 1-specificity when the sample size is small and the true

pairs of parameter of interest is (95%, 10%).

To conclude this Chapter, we have observed that all methods produced similar

results with the ones we have reported in our simulation study. Moreover, we have

noticed that the use of the recommended bivariate random-effects model resulted in

better point estimates of the two parameters of interest, sensitivity & 1-specificity,

than the estimates obtained when analyzing the parameters separately.

61



Chapter 5

Summary, Discussion and Future

Directions

Meta-analysis (MA) is the statistical aggregation of effect sizes. It has been used

in many fields of study, including medicine. A diagnostic test is a procedure for

identifying or categorizing patients in accordance to their disease status (with or

without disease). Quantifying the accuracy of a diagnostic test is important as

inaccuracies result in mistreatment, particularly, when the patient truly has the

disease. Sensitivity and specificity are the two most commonly used methods of

measuring the accuracy of a diagnostic test. The sensitivity of a diagnostic test is

the ability of the test to correctly detect when a person has the disease from a patient

who has it, and specificity is the ability of a test to correctly detect when a person

does not have a disease when the patient does not have it.

Several meta-analytic models to synthesize the sensitivity and specificity of a
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diagnostic test have been proposed in the literature. In this thesis, we have focused on

the Reitsma et al. (2005) bivariate RE model because of its popularity in application

and ease of understanding. However, we have adapted the model of Reitsma et al.

(2005) by introducing two new transformations —arcsine square root and Freeman-

Tukey double arcsine transformation.

We performed an extensive simulation study with the aim of assessing the relative

performances of three transformations: the traditional logit, and two transformations

we proposed in this thesis—the arcsine square root and the double arcsine transfor-

mation of Freeman-Tukey, in terms of bias, RMSE, and coverage probability. In

addition to the univariate bias and MSE, we have compared the methods in terms

of a vector-valued bias and MSE combining the two parameters, sensitivity and 1-

specificity, also known as false positive rate. Finally, we have examined how the

methods perform in real data by applying each method to three published data sets.

All the analysis for the logit transformation was done using the ‘mada’ package of

the R statistical software, while, for both of the proposed methods, the ‘mvmeta’

package has been employed.

In our simulation study, we have varied the pairs of sensitivity & 1-specificity,

the between-study variance pairs and correlation, the sample size and number of

studies. The values considered in the simulation scenario are adopted from two

studies: Hamza et al. (2008) and Doebler et al. (2012). We have observed that

the true pairs of between-study variances and correlation have no substantial impact

on the results of the performance evaluation measures, agreeing with Hamza et al.

(2008) study, although they used mean log diagnostic odds ratio as a parameter of
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interest. However, the true values of sensitivity & 1-specificity, the mean sample size

and number of studies influence the results of the performance measures.

We have found that the bias from the three methods decreases as sample size

increases, underestimates the sensitivity and overestimates false positive rate, which

is consistent with Doebler et al. (2012) who use the logit transformation. We have

also found that for small sample sizes and very large sensitivity and specificity, the

proposed methods have better bias in sensitivity regardless of the number of studies.

However, when the sample size is small and the sensitivity and specificity are rea-

sonable, the methods perform similarly in terms of bias, both in sensitivity and false

positive rate. However, for moderate and large sample sizes, regardless of the number

of studies, the logit transformation has performed better regarding bias compared

to the proposed transformations for all scenarios of the sensitivity and false positive

rate pairs considered. The constant absolute bias over moderate and large number of

studies is consistent with the logit transformation’s behavior in Eusebi et al. (2014).

The RMSE generally decreases as both the sample size and number of studies

increase, which agrees with Doebler et al. (2012) for the logit transformation. This

study revealed that in terms of RMSE, both of the proposed transformations outper-

form the standard logit for most of the scenarios. Contrarily, the logit transformation

is slightly favorable in terms of RMSE when the number of studies vary from mod-

erate to large and the sample size is large despite the sensitivity and false positive

pairs considered in this study.

Although the coverage probability is increasing with sample size as expected,

the methods did not perform well in most of the scenarios as the coverage is often
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less than the nominal 95%. The surprisingly less than 10% coverage probability

values observed when the sensitivity & specificity are very large and the number of

studies is large is consistent with Hamza et al. (2008) study when they used the logit

transformation and mean log diagnostic odds ratio as parameter of interest. In our

study, this happens since the bias was large but the standard error was small. This

will then make the confidence intervals narrow and true values to be outside of the

intervals. Generally, the logit transformation outperformed the proposed methods in

terms of coverage probability.

Regarding the vector valued bias and MSE, the proposed transformations have

outperformed the standard logit transformation for smaller sample sizes. However,

the logit transformation has better performance than the proposed methods in vector-

valued bias and MSE for all the sensitivity & specificity pairs considered in this study

as the sample size and number of studies gets larger.

We have also illustrated the methods discussed in this thesis on real data. The

pattern of the point estimates from the methods mirrors our simulation results.

The point estimates of sensitivity from the logit transformation is relatively smaller

than the estimates of sensitivity from the proposed methods. Contrarily, the point

estimates of the 1-specificity from the commonly used logit transformation is higher

than those estimates from the proposed methods. Moreover, the proposed methods

of transformation appear to have narrower confidence interval width than the usual

logit transformation.

In general, we recommend either of the proposed transformations: the arcsine

square root or the Freeman-Tukey double arcsine transformation when the sample
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size is small, the sensitivity and specificity values are very large regardless of the

between-study variances and correlation values. For moderate and large sample sizes,

if the desire is accuracy, we recommend one to use the logit transformation, however,

if precision is desired, we rather prefer the proposed arcsine-based transformations

as the large bias might be traded-off for low variance, and, generally lower values of

the precision measure, MSE, is desired.

We have evaluated the performance of a single diagnostic test using several esti-

mation properties. However, in reality, the quantification of the accuracy of a single

diagnostic test alone is not sufficient, as there can be more than one competing

test to diagnose the same disease. Therefore, in the future, we aim at extending

our simulation study to the case where there is more than one test and compare

the performance of the proposed methods in terms of hypothesis testing optimality

properties like power. We can also include other transformations like the Doebler

et al. (2012) known as the ‘tα family of transformations’. In this thesis, we have

observed the consideration of the same true between-study variances for three of the

transformations is unrealistic. Therefore, in the future, we aim to solve this issue by

choosing more realistic true values of between-study variances based on assessment

of real meta-analysis data sets from the medical literature. Moreover, we are inter-

ested in extending the assessment of our methods with the standard one by fitting

the bivariate RE model of Chu et al. (2010)—the “exact likelihood” approach.
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