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Bivariate Statistical Approach to Check Adequacy
of Dam Spillway
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Abstract: The problem of selecting the appropriate design flood is a constant concern to dam engineering and, in gene
hydrological practice. Overtopping represents more than 40% of dam failures in the world. The determination of the design floo
in some cases on theT-year quantile of flood peak, and in other cases considering also theT-year quantile of flood volume. Howev
flood peak and flood volume have a positive(strong or weak) dependence. To model properly this aspect a bivariate proba
distribution is considered using the concept of 2-Copulas, and a bivariate extreme value distribution with generalized extre
marginals is proposed. The peak–volume pair can then be transformed into the correspondent flood hydrograph, representi
basin response, through a simple linear model. The hydrological safety of dams is considered checking adequacy of dam sp
reservoir behavior is tested using a long synthetic series of flood hydrographs. An application to an existing dam is given.
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Introduction

A large number of existing dams in the world were built dur
the 20th century under engineering, social, economic, and cl
conditions different from those to be faced in this century. D
availability, process knowledge, and modeling techniques we
that time less sophisticated than today. During the last centu
large amount of historical and proxy information, i.e., hourly
ervoir levels and the rules to the operating outflows, were
lected by the dam regulators. This information can improve
knowledge of the dam inflows and consequently the dam s
issues.

Dam failures have been significantly reduced in the last
decades(Berga 1998); the percentage of failures before 1950 w
2.3%, while for dams constructed from 1951 to 1982 it reduce
0.2%, and since 1982 is only 0.09%. This reduction indicates
progress has been achieved in dam safety. Recent regula
codes, and guidelines emphasize the importance of the sp
design flood as a key factor to dam safety(De Almeida and Vise
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1997). It is interesting to note that overtopping represents m
than 40% of dam failures in the world and has been the cau
many other accidents(Committee on Failures and Accidents
Large Dams of the United States Committee on Large D
1975). In the United States, over 2,000 dams(3% of the 75,00
United States dams) have been identified as potential hazard
lives in upstream or downstream areas, due to problems of
equate spillway capacity(ASCE 2000).

The main purpose of the paper is to outline a very gen
model describing the possible bivariate behavior of the ran
variables flood peak and flood volume, which are of primary
terest in hydrological practice. In particular, here the attentio
focused on testing the adequacy of dam spillway. A methodo
for evaluating flood hydrographs is provided: it is based o
bivariate analysis of the maximum annual values of flood
and flood volume. A bivariate extreme value distribution is c
sidered using the mathematical concept of 2-Copulas(see detail
below). A hydrograph is obtained using the flood-peak and flo
volume pair with the river basin response represented throu
lumped model. Successively, a synthetic series of flood-pea
flood-volume pairs is generated using Monte Carlo simula
From this, a series of flood hydrographs is then obtained. O
ating the reservoir routing, it is possible to test adequacy o
dam spillway. An application to the Ceppo Morelli dam locate
the Anza river basin in northern Italy is presented.

Calculating Flood Hydrograph

The flood peak has a fundamental role in both assessing th
drologic safety of dams and checking adequacy of the dam
way. However, the flood volume can play an important role in
definition of the spillway design flood, and, consequently,
significantly influence the hydrologic safety of the dam. Ge
ally, flood peak and flood volume are two statistically depen
random variables. A joint analysis of flood peak and flood vol
can be used to determine the design flood hydrograph. Bel

t

statistical procedure for the evaluation of flood hydrograph is pro-
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posed based on:(1) a bivariate analysis of the maximum ann
values of flood peak and flood volume and(2) a lumped model t
calculate the flood hydrograph from the values of peak and
ume.

Peak–Volume Analysis

In general, the bivariate analysis of two random variables ca
carried out exploiting the mathematical tool of “2-Copula
which is outlined below. Then, an application to the analysi
the statistical dependence between flood peak and flood volu
illustrated.

Overview of 2–Copulas
The problem of specifying a probability model for dependen
variate observationssX1,Y1d , . . . ,sXn,Ynd from a population with
a non-normal distribution functionFXY can be simplified by ex
pressingFXY in terms of its marginalsFX andFY and an assoc
ated dependence functionC, implicitly defined through the func
tional identity FXY=CsFX,FYd. A natural way of studyin
bivariate data thus consists of separately estimating the d
dence function and the marginals. This two-step approach to
chastic modeling is often convenient, since many tractable m
are readily available for the marginal distributions. It is cle
appropriate when the marginals are known, and it is invaluab
a general strategy for data analysis in that it enables the d
dence structure to be investigated independently of margin
fects.

Let I =f0,1g. A two-dimensional Copula(or 2-Copula) is a
bivariate functionC : I 3 I → I such that
(1) for all u, zP I it holds

Csu,0d = 0

Csu,1d = u

Cs0,zd = 0

and

Cs1,zd = z

(2) for all u1, u2, z1, z2P I such thatu1øu2 andz1øz2 it holds

Csu2,z2d − Csu2,z1d − Csu1,z2d + Csu1,z1d ù 0

For all the mathematical details omitted see Joe(1997) and
Nelsen(1999); for an application to rainfall, see De Michele a
Salvadori(2003) and Salvadori and De Michele(2004). The link
between 2-Copulas and bivariate distributions is provided
Sklar’s theorem:

Let X, Y be continuous random variables and letFXY be their
joint distribution function with marginalsFX andFY. Then there
exists a unique 2-CopulaC such that

FXYsx,yd = CsFXsxd,FYsydd s1d

for all x, y. Conversely, ifC is a 2-Copula andFX and FY are
distribution functions, thenFXY is a joint distribution function
with marginalsFX andFY.

The interesting point is that the properties ofFXY can be dis
cussed in terms of the structure ofC: in fact, it is precisely th
2-Copula that captures many of the features of a joint distribu
and measures of association and dependence properties b
random variables can be investigated in terms of 2-Copulas
tually, a 2-Copula exactly describes and models the depen

structure between random variables, independently of the mar-
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ginal laws of the variables involved. Clearly, this provides a l
freedom in choosing the univariate marginal distributions o
the desired dependence framework has been selected, and
ally makes it easier to formulate bivariate(and/or multivariate)
models. Incidentally, we observe that all the bivariate mo
present in the literature can easily be described in terms of p
2-Copulas.

In the sequel we shall refer to a particular class of 2-Cop
i.e., the Gumbel’s family(Gumbel 1960)—see also Joe(1997)
and Nelsen(1999). The analytical expression is

Cdsu,zd = exph− fs− ln udd + s− ln zddg1/dj s2d

whereu, zP I and dP f1,`f. Hered represents the depende
parameter. The(limit ) cased=1 corresponds to independent v
ables, withC1su,zd=uz; the (limit ) cased→` corresponds t
complete dependence between the variables. Note that this
of 2-Copulas models positively dependent variables, as is o
terest for the random variables considered here.

An interesting property of Gumbel’s 2-Copulas is that th
are Archimedean(Nelsen 1999); this means that a 2-CopulaCd is
the solution of the functional equationgsCdsu,zdd=gsud+gszd,
where the generatorg: I → f0,`f is a continuous, convex, stric
decreasing function such thatgs1d=0. In the present case we ha
(Nelsen 1999), gstd=s−ln tdd, wheretP I . Kendall’st rank corre
lation coefficient can be expressed as a one-to-one functiond
as

tsdd = 1 + 4E
I

gsld
g8sld

dl s3d

which yields, after some algebra

tsdd =
d − 1

d
s4d

Clearly the above relation betweend andt confers a natural in
terpretation tod as an association parameter. Indeed, sincet is a
measure of association based on the ranks, this suggestsd
might be estimated in situations where the marginals are unk
(see, e.g., Genest and Rivest 1993; Carriere 1994; and N
1999).

Let sul ,zld, l =1, . . . ,m, denote a sample of sizem from a con-
tinuous bivariate distribution. The empirical 2-Copulacm is the
function given by, fori , j =1, . . . ,m

cmS i

m
,

j

m
D =

mij

m
s5d

wheremij =number of sample pairssu,zd such thatuøusid andz
øzs jd, with theusids and thezs jds denoting the order statistics fro
the sample.

Using the empirical 2-Copula frequencycm, an estimatort̂ of
t is given by

t̂ =
2m

m− 1o
i=2

m

o
j=2

m

o
p=1

i−1

o
q=1

j−1 FcmS i

m
,

j

m
DcmS p

m
,
q

m
D

− cmS i

m
,
q

m
DcmS p

m
,

j

m
DG s6d

Once an estimatet̂ of t is obtained, it is then possible to calcul

an estimated̂ of d using Eq.(4), and thus select a well-defin
2-Copula from Gumbel’s family. Most importantly, we obse
that such a procedure does not depend upon the margina

involved, which then need not be known or estimated in advance;

OLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2005 / 51



pre-
re to

ivest
dori

ndi-
flood

nnual
l
d

-
ider
unded

int
th

seful

the

me

n the

-

ted in
lcu-

oun-

ve a

y by
om

d in

er

-
be

n

iod

, if
lting
the

ould

very
opula

e

same
pu-

atly
s of
pairs
lcu-
f the
ll as
indeed, in practical applications, empirical 2-Copulas may re
sent a fundamental tool for fitting a given dependence structu
the available data(see, e.g., Deheuvels 1979; Genest and R
1993; Nelsen 1999; De Michele and Salvadori 2003; Salva
and De Michele 2004).

Below we show how Gumbel’s 2-Copulas are suitable ca
dates to model the dependence between flood peak and
volume.

Peak–Volume Model
The random variables of interest here are the maximum a
values of flood peak,Qmax, and flood volume,V; as a margina
distribution function for bothQmax andV we use the generalize
extreme value(GEV) distribution

FQmax
sqd = 5expF− S1 − kQ

q − «Q

aQ
D1/kQG q . «Q +

aQ

kQ

0 otherwise
6

s7d

FVsvd = 5expF− S1 − kV

v − «V

aV
D1/kVG v . «V +

aV

kV

0 otherwise
6 s8d

where«Q,«V are location parameters,aQ,aV.0 are scale param
eters, andkQ,kV,0 are shape parameters. We only cons
negative shape parameters in order to deal with upper-unbo
random variables. In addition we have«Qù−aQ/kQ and «Vù
−aV/kV becauseQmax andV are positive defined. The constra
kQ,kV,0 yields (asymptotic) excess probability functions wi
an algebraic falloff, i.e., forx@1

1 − FGEVsxd < x1/k s9d

and hence only the moments of order less than −1/k exist. It is
just the presence of such heavy tails that makes GEV laws u
for describing extreme phenomena.

In order to model the dependence betweenQmax andV we use
a 2-Copula from Gumbel’s family and Sklar’s theorem. Thus
joint distributionFQmaxV of Qmax andV is given by

FQmax,V
sq,vd = CdsFQmax

sqd,FVsvdd

= exph− fs− ln FQmax
sqddd + s− ln FVsvdddg1/dj

s10d

It is then easy to obtain the joint density function,fQmax,V by
differentiatingFQmax,V with respect toQmax andV. Then, inverting
Eq. (10), it is possible to determine the flood peak and volu
with a given frequency of occurrence or return period.

Return Period of Pair (Qmax,V) and Comparison between
Univariate and Bivariate Analysis
The determination of the design flood is commonly based o
quantileqT of the maximum annual flood peakQmax with return
period TQmax; alternatively, the quantilevT of the maximum an
nual flood volumeV with the same return periodTV=TQmax is
considered. Thus, essentially, an univariate approach is adop
practice. In particular, the spillway design flood is usually ca
lated choosing a return periodT=TQmax=TV=1,000 years(or,
sometimes,T=5,000 or 10,000 years, depending upon the c
try considered).

However, since in general flood peak and flood volume ha

positive(strong or weak) dependence, the design flood should be

52 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FEB
determined considering the return period of the pairsQmax,Vd; in
other words, the flood event would be correctly identified onl
considering the joint variability of the relevant pair of rand
variables.

Now, at least two different “design events” can be define
the bivariate case. In fact, having fixed a return periodT, we may
consider as critical events the following ones:
1. (OR case) eitherQmax.qT, or V.vT, or both, i.e.

Eor = hQmax. qT or V . vTj s11d

2. (AND case) both Qmax.qT andV.vT, i.e.

Eand= hQmax. qT andV . vTj s12d

In simple words: forEor to happen it is sufficient that eith
Qmax or V (or both) exceed given thresholds; instead, forEand to
happen it is necessary that bothQmax and V are larger than pre
scribed values. Thus, two different joint return periods can
defined accordingly

Tor =
1

PfQmax. qT or V . vTg
=

1

1 − CdsuT,zTd
s13d

Tand=
1

PfQmax. qT andV . vTg
=

1

1 − uT − zT + CdsuT,zTd

s14d

where uT=FQmaxsqTd and zT=FVsvTd. Since for Archimedea
copulasCdsx,xd,x, then necessarilyTor,T,Tand. This last in-
equality has important consequences. In fact, if a return perT
is fixed, thenEor appears more frequently than expected(since
Tor,T); thus,Eor is not aT-years bivariate event, and ifEor were
used as a “critical” design event, in order to haveTor=T the
marginal quantilesqT,vT should be increased; in other words
qT,vT were used as “critical” design quantiles, then the resu
work would be underdimensioned, and would be at risk! On
contrary, Eand appears less frequently than expected(since
Tand.T); again,Eand is not aT-years bivariate event, and ifEand

were used as a “critical” design event, in order to haveTand=T the
marginal quantilesqT,vT should be decreased; thus, ifqT,vT were
used as “critical” design quantiles, then the resulting work w
be overdimensioned, yielding a waste of money!

Note that the above bivariate analysis also includes, as a
particular case, the univariate one: in fact, considering the c
used in this paper, as the dependence parameterd→` (i.e., asV
becomes almost surely a function ofQmax, and vice versa), both
Tor→T and Tand→T. As an example, in the present casd
<3.055; then, fixingT=1,000 years, we obtainTor<798 years
and Tand<1,341 years, i.e.,Tor<79% T and Tand<134% T, in
agreement with the previous explanation. In general, the
conclusions remain valid for other families of Archimedean co
las.

Evidently, the analysis of bivariate return periods is gre
facilitated by using copulas; furthermore, many other kind
joint events can be considered, and all the corresponding
sQmax,Vd having a prescribed return period can easily be ca
lated: this gives the hydrologists a precise understanding o
stochastic joint dynamics of the variables of interest, as we
the possibility of correctly sizing the works.

Monte Carlo Generation of Flood Peak and Flood Volume
An algorithm to generate random variablessQmax,Vd with

2-CopulaCd is as follows(Nelsen 1999). Let
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suszd =
]

]u
Cdsu,zd = PhZ ø zuU = uj s15d

which exists and is nondecreasing almost everywhere inI , then:
1. Generate two independent random variables,r1 and r2, both

uniform on I ;
2. Setu=r1 andz=su

−1sr2d; and
3. From the pairsu,zd it is possible to generate a pairsqmax,vd

extracted from the joint law FQmaxVsq,vd
=CsFQmaxsqd ,FVsvdd settingq=F Qmax

−1 sud andv=FV
−1szd.

Shape of Flood Hydrograph

Here we consider the hypothesis that the maximum annual
peak and the maximum annual flood volume are generated b
same flood event. This hypothesis will be tested against obs
data for the case study considered in the following section.

The determination of flood hydrograph given peakQmax and
volumeV requires the knowledge of the shape of the hydrogr
A first-order approximation is to consider a triangular flood
drograph, where the base timeTb is equal toTb=2V/Qmax, the
time of rise equalsTp=Tb/2.67, and the time of recession is eq
to 1.67Tp, (Soil Conservation Service 1972; Chow et al. 1988
229). Then the flood hydrographqstd is

qstd =51.335
Qmax

2

V
t 0 ø t ø Tp

1.6Qmax− 0.8
Qmax

2

V
t Tp ø t ø Tb

6 s16d

Another possibility is to build the flood hydrograph with fix
flood peakQmax and flood volumeV through the convolution o
an instantaneous unit hydrograph of a linear reservoir. In this
the flood hydrographqstd is

qstd =5
V

t0
s1 − e−t/kd 0 ø t ø t0

V

t0
fe−st−t0d/k − e−t/kg t0 ø t 6 s17d

where t0=function of Qmax and V via the transcendentequation
t0Qmax/V=1−e−st0/kd, andk=time constant of the linear reserv
model, easy to estimate using the method of moments(see Bra
1990, p. 445).

Alternatively, a flood hydrograph with fixed flood peakQmax

and flood volumeV can be obtained through the convolution
an instantaneous unit hydrograph of a cascade ofn equal linea
reservoirs(Nash 1957), see also Bras(1990, pp. 446–447). In this
caseqstd is

qstd =5
V

t0
E

0

t 1

kGsndS t − z

k
Dn−1

e−st−zd/kdz 0 ø t ø t0

V

t0
E

0

t0 1

kGsnd
S t − z

k
Dn−1

e−st−zd/kdz t0 ø t 6 s18d

where t0=again a function ofQmax and V; and t0 can be deter
mined numerically assuming that the maximum ofqstd is equal to
Qmax. Heren andk are the model parameters: the first one re
sents the number of linear reservoirs and the second one a
constant;n and k are easy to estimate using the method of

ments(Bras 1990, pp. 446–447).

JOURNAL OF HYDR
Simulation of Reservoir Behavior and Adequacy of
Dam Spillway

A simulation of reservoir behavior can be carried out conside
a long synthetic series of maximum annual flood events(repre-
senting the expected design life of the reservoir), and thus it is
possible to check adequacy of the dam spillway. The frame
of simulation can be outlined as follow:
1. Generate a synthetic couple of maximum annual valu

flood peak and flood volumesQmax, Vd;
2. Transform the couplesQmax, Vd into the flood hydrograp

qstd;
3. Associate an initial reservoir level(e.g., taken as outcome

the empirical distribution of initial levels recorded in seve
years); and

4. Operate the reservoir routing of flood hydrograph[for more
details see Bras(1990, pp. 475–478) and Zoppou(1999)]
considering as an outlet only the uncontrolled spillway,
check that the reservoir level does not pass the crest le
the dam. The procedure is iterated to consider a long s

of maximum annual flood eventss1,000 yearsd representing th
expected design life of the dam. Thus it is possible to c
adequacy of dam spillway during the life of the reservoir.

Case Study

The procedure given in the previous sections is illustrated he
the Ceppo Morelli dam. The dam with a hydroelectric po
plant was built in 1929 on the Anza catchment, a subbasin o
Toce river basin, located in Northern Italy. The catchment ar
125 km2. The maximum water storage is small, about 0
3106 m3. The maximum water level is at 782.5 m.a.s.l., and
dam crest level is 784 m.a.s.l. The dam has 84 m of uncontr
spillway at 780.75 m.a.s.l. The dam has also intermediate o
and bottom outlets. The last ones are obstructed by river
ments. Hourly observations of reservoir level and operation
the controlled outlets are available from 1937. This informa
yields the flood hydrograph downstream from the reservoir.
erating an inverse reservoir routing it is possible to recons
the historical flood hydrograph for the inflow to reservoir(see
Zoppou 1999), and from this obtain the series of maximum
nual flood peak and maximum annual flood volumes49 yearsd. In
addition, checking the dates of occurrence of maximum an
values of flood peaks with those of maximum annual flood
umes, it turns out that in almost all of the cases these occ
during the same flood event, for this reason, in this pape
consider these variables generated by the same storm. T
pairs of maximum annual flood peak and volume are given in
1. A strong positive dependence between the two variabl
present.

We estimate the statistical dependence between the max
annual flood peakQmax, and maximum annual flood volumeV,
considering as measures of association the canonical(Pearson’s)
coefficient of linear correlationrP, and the Kendall’st. The esti
mated values are given in Table 1. The dependence betweeQmax

andV is positive. For the latter measure, shown is the corresp
ing estimate of the dependence parameterd of the 2-Copula, ca
culated using Eq.(4). For the sake of comparison, also show
the estimate ofd calculated via the maximum likelihood meth
Finally, we compute the average estimate ofd equal to 3.055; thi
indicates a strong association between the variables consi

The estimates reported are consistent with one another, and pre-

OLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2005 / 53



-
aly-

with

ually
t,

the

f the
e
e

be-
.
nce
ech-
st

e
lated
le 2.
ram-
e an-

e pa-
en the
of
oth

of-fit

l the

the
opula
ot
rder
socia-
rrela-
-
r

ood

’s
e of

a

rs for
int

and
d
d

cisely fix the degree of dependence betweenQmax andV indepen
dently of the marginal laws of such variables. As a further an
sis, in Fig. 2 we plot the Gumbel’s 2-Copula, and compare it
the corresponding empirical 2-Copula functioncm calculated via
Eq. (5). The agreement between the data and the model is vis
good, and is objectively checked via a standardx2 test: as a resul
the hypothesis that the theoretical model is consistent with
data can be accepted at all the standard significance levels(1, 5,
and 10%).

In Table 2 we show the estimates of the parameters o
GEV marginal laws ofQmax andV; here theL moments techniqu
is used(Hosking 1990). The shape parameterk is always negativ

Fig. 1. Maximum annual flood peak versus maximum annual fl
volume

Table 1. Estimated Values of Two Measures of Association: Pearsonrp

and Kendall’st; for Last Measure, Shown is Corresponding Estimat
Dependence Parameterd of Gumbel’s Copula

Dependence
parameter d

rp 0.964 —

t 0.651 2.868

ML — 3.241

Note: For sake of comparison, also shown is estimate ofd calculated via
maximum likelihood(ML ) method.

Fig. 2. Comparison between empirical and theoretical copul
54 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY/FEB
for both variables, which then exhibit asymptotic heavy tail
havior. It is important to note that, as a consequence of Eq(9),
the skewness ofQmax does not exist at all, as well as the varia
of V; thus, apparently, the traditional method of moments t
nique could not be used to estimate the parameters of intere(as
opposed to theL moments technique adopted here). For the sak
of comparison, the joint estimates of the parameters calcu
using the maximum likelihood method are also shown in Tab
From this, it is evident that the estimates of the marginal pa
eters obtained with the two methods are consistent with on
other. In Figs. 3 and 4 the empirical distributions ofQmax andV
are shown, as well as the corresponding GEV fits, using th
rameter’s estimates given in Table 2. The agreement betwe
empirical and theoretical distribution(considering the two sets
estimates) is good for both variables; in particular, the use of b
the Kolmogorov–Smirnov and Anderson–Darling goodness-
tests(see, e.g., Kottegoda and Rosso 1997, pp. 285–293) shows
that the theoretical model is consistent with the data at al
standard significance levels(1, 5, and 10%).

In passing, we observe a further important feature of
present approach: the possibility of selecting a suitable 2-C
via the estimate of the Kendall’st, as explained above, may n
be affected at all by the possible nonexistence of lower-o
moments. On the contrary, the use of other measures of as
tion such as the canonical Pearson’s coefficient of linear co
tion rP (which, instead, is often used in common practice) neces
sarily requires the existence of(at least) the second-orde

Table 2. Estimated Values of Generalized Extreme Value Paramete
Both Flood Peak and Volume UsingL Moments Technique and Also Jo
Estimates Using Maximum Likelihood(ML ) Method

Parameter L moments ML

«Q sm3/sd 57.972 59.221

aQ sm3/sd 33.689 35.676

kQ (2) −0.420 −0.338

«V s106 m3d 1.744 1.774

aV s106 m3d 1.620 1.544

kV (2) −0.564 −0.570

Fig. 3. Comparison between empirical distributions of observed
synthetic data(only upper part −lnf−lnsFQdg.4) and generalize
extreme value fits usingL moments and maximum likelihoo
parameters estimations forQmax.
RUARY 2005
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moment. However, it is clear that meaningless estimates orP

may be obtained if, as in the considered case, the existence
variance is questionable: in fact,kV<−0.564,−1/2; neverthe
less, the “suspicious” value ofrP is also reported in Table 1 f
the sake of completeness.

From the couple flood peakQmax and flood volumeV the cor-
responding flood hydrograph is calculated using the instantan
unit hydrograph of a cascade ofn equal linear reservoirs(Nash
model) [Eq. (18)]. The model parameters,n andk, are estimate
applying the method of moments to each of the observed

Fig. 4. Comparison between empirical distributions of observed
synthetic data(only upper part −lnf−lnsFVdg.4) and generalize
extreme value fits usingL moments and maximum likelihoo
parameters estimations forV

Fig. 5. Comparison between o
JOURNAL OF HYDR
hydrographs. The rainfall precipitation was transformed into
off using the Soil Conservation Service(SCS)–CN method with
an estimated value of the CN parameter, at basin scale, eq
55 (this was obtained by fitting over the observed hyetograph
hydrograph data).

For four flood events, Fig. 5 gives a comparison between
observed flood hydrograph and the estimated one, consideri
sample estimate ofn and k obtained on the single flood eve
Fig. 5 also includes the rainfall hyetograph and the estim
direct runoff.

The expected value and the standard deviation of estima
the two parametersn and k are as follows:Efng=2.2, Efkg
=2.1 h, sfn̂g=1.35, sfk̂g=0.63 h. Note thatEfng and Efkg are
used in the long hydrologic simulation to assess the safety o
dam in terms of adequacy of the dam spillway.

A long synthetic series of 1,000 flood-peak–flood-volu
pairs is generated using Monte Carlo simulation. The upper
of the empirical distribution of synthetic datah−lnf−lnsFdg.4j is
reported, respectively, in Fig. 3 forQmax and in Fig. 4 forV.
Using the series of peak–volume pairs, the corresponding
1,000 synthetic hydrographs was generated(covering the ex
pected design life of the dam), using the Nash model and E
(18). To each flood hydrograph is associated a reservoir lev
the start of the flood event. Also available is the series of rese
levels antecedent to the maximum annual flood event. F
shows the cumulative distribution of the reservoir level. Note
several distributions were considered to fit such data, but
provided acceptable agreements. This is due to the fact th
levels are influenced not only by the precipitation inflows but
by the operation policy of the dam manager. Accordingly, in
present analysis we used the empirical distribution. From th

ed and calculated flood hydrographs
bserv
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extracted a series of 1,000 reservoir levels and associated e
these to a synthetic hydrograph. Operating the reservoir routi
the synthetic series of hydrographs we assessed the safety
dam in terms of adequacy of dam spillway.

Fig. 7 shows the empirical distribution of the maximum re
voir level reached during the simulated flood event. The ana
show that the maximum water levels782.5 md is exceeded onl
in <2% of the cases, whereas the dam crest levels784 md was
never exceeded. Thus, the overall result indicates the hydrolo
safety of the Ceppo Morelli dam.

Fig. 6. Empirical distribution of initial reservoir level before flo
event

Fig. 7. Empirical distribution of maximum reservoir level duri
flood event as result of simulation of 1,000 flood events. Da
vertical line indicates maximum water levels782.5 md and tick solid
vertical line dam crest levels784 md.
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Conclusions

The main purpose of the paper is to outline a very general m
that describes the possible bivariate behavior of the random
ables flood peak and flood volume, which are of primary inte
in hydrological practice. The paper presents a bivariate stati
procedure for the evaluation of flood hydrograph and to chec
adequacy of spillway, an important issue for dam enginee
and in general for the hydrological practice, where the varia
of interest usually show some(weak or strong) degree of depen
dence requiring a bivariate model. Indeed, from a mathem
point of view, the use of 2-Copulas represents the easies
proach to problems involving couples of variables. Many of
difficulties in the bivariate approaches present in the litera
(having a theoretical and/or a practical origin), can now be by
passed through a proper formulation of the problem in term
2-Copulas, which represent the most recent and most prom
mathematical tool for investigating bivariate problems: this
resents a significant improvement in the field of statistical hy
ogy and modeling.

The proposed procedure is based on the bivariate probab
analysis of maximum annual values of flood peak and flood
ume. A bivariate extreme value distribution is considered u
2-Copulas. In particular the Gumbel’s 2-Copula is adopted to
resent the positive dependence between the flood peak and
volume, and a GEV law is considered as a marginal distribu
for both variables. From the pair peak–volume, the flood
drograph is obtained through the convolution of an instantan
unit hydrograph of a linear model. Successively, a long seri
flood hydrographss1,000 yearsd is generated, and operating
reservoir routing on this, it is possible to check the behavior o
reservoir during the expected design life of the dam and
adequacy of dam spillway. The Ceppo Morelli dam is conside
The results show the adequacy of spillway and consequent
safety of the dam. The proposed methodology does not rely
the specific climate conditions, or the size of the catchment
or the dimension of the dam considered. The model presen
fully general, and in principle it could be applied to scena
different from the one considered here.

Note how the approach proposed could be used both
evaluation method of an existing design and as a design mo
dam spillway or river polder spillway. In other words, if a d
already exists, the approach can be used to check the adequ
dam spillway; at the same time, if flood hydrographs are avai
(as usually provided by flood gages), the approach provides
clear methodology for the design of dam spillways.

Acknowledgments

The research was partially supported by MURST via the pr
“Hydrological Safety of Impounded Rivers.” The support of “P
getto Giovani Ricercatori” is also acknowledged.

References

American Society of Civil Engineers(ASCE). (2000). “Dam safety.”
Policy Statement 280, New York.

Berga, L. (1998). “New trends in hydrological safety.”Dam safety, L.
Berga, ed., Balkema, Rotterdam, The Netherlands, 1099–1110.

Bras, R. L. (1990). Hydrology: An introduction to hydrologic scienc,

Addison-Wesley, Reading, Mass.

RUARY 2005



of

tates
s,

nt
nd
.
ther-

pro-
.

o

for

urs

is-
.

i-

h.”

f
ar-

g
Ag-

vel
Carriere, J. F.(1994). “A large sample test for one-parameter families
copulas.”Commun. Stat: Theory Meth., 23(5), 1311–1317.

Chow, V. T., Maidment, D. R., and Mays, L. W.(1998). Applied hydrol-
ogy, McGraw–Hill, Singapore.

Committee on Failures and Accidents to Large Dams of the United S
Committeee on Large Dams.(1975). “Lessons from dam incident
USA.” ASCE/USCOLD, New York.

De Almeida, A. B., and Viseu, T.(1997). “Dams and valley: A prese
and future challenge.”Proc., Int. NATO Workshop on Dams a
Safety Management at Downstream Valleys, Lisbon, Portugal, A. B
De Almeida, and T. Viseu, eds., Balkema, Rotterdam, The Ne
lands, 3–25.

Deheuvels, P.(1979). “La fonction de dependence empirique et ses
prietes. Un test non parametrique d’independence.”Acad. Roy. Belg
Bull. Cl. Sci., 65(5), 274–292.

De Michele, C., and Salvadori, G.(2003). “A generalized Paret
intensity-duration model of storm rainfall exploiting 2-copulas.”J.
Geophys. Res., [Atmos.], 108(D2), ACL 15-1–ACL 15-11.

Genest, C., and Rivest, L.(1993). “Statistical inference procedures
bivariate archimedean copulas.”J. Am. Stat. Assoc., 88(423), 1034–

1043.

JOURNAL OF HYDR
Gumbel, M. E. J.(1960). “Distributions des valeurs extrêmes en plusie
dimensions.”Publ. Inst. Stat. Univ. Paris, 9, 171–173.

Hosking, J. R. M.(1990). “L-moments: Analysis and estimation of d
tributions using linear combinations of order statistics.”J. R. Stat
Soc. Ser. B. Methodol., 52, 105–124.

Joe, H.(1997). Multivariate models and dependence concepts, Chapman
and Hall, London.

Kottegoda, N. T., and Rosso, R.(1997). Statistics, probability and rel
ability for civil and environmental engineers, McGraw–Hill, New
York.

Nash, J. E.(1957). “The form of the instantaneous unit hydrograp
IAHS Publication, 45(3–4), 114–121.

Nelsen, R. B.(1999) An introduction to copulas, Springler, New York.
Salvadori, G., and De Michele, C.(2004). “Analytical calculation o

storm volume statistics involving Pareto-like intensity-duration m
ginals.” Geophys. Res. Lett., 31, L04502.

Soil Conservation Service.(1972). “Hydrology.” National engineerin
handbook, Sec. 4, Soil Conservation Service, U.S. Department of
riculture, Washington, D.C.

Zoppou, C.(1999). “Reverse routing of flood hydrographs using le

pool routing.”J. Hydraul. Eng., 4(2), 184–188.

OLOGIC ENGINEERING © ASCE / JANUARY/FEBRUARY 2005 / 57


