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ABSTRACT

The statistical properties embedded in visual stimuli from the surrounding environment guide and affect the
evolutionary processes of human vision systems. There are strong statistical relationships between co-located
luminance/chrominance and disparity bandpass coefficients in natural scenes. However, these statistical rela-
tionships have only been deeply developed to create point-wise statistical models, although there exist spatial
dependencies between adjacent pixels in both 2D color images and range maps.

Here we study the bivariate statistics of the joint and conditional distributions of spatially adjacent bandpass
responses on both luminance/chrominance and range data of naturalistic scenes. We deploy bivariate generalized
Gaussian distributions to model the underlying statistics. The analysis and modeling results show that there
exist important and useful statistical properties of both joint and conditional distributions, which can be reliably
described by the corresponding bivariate generalized Gaussian models. Furthermore, by utilizing these robust
bivariate models, we are able to incorporate measurements of bivariate statistics between spatially adjacent
luminance/chrominance and range information into various 3D image/video and computer vision applications,
e.g., quality assessment, 2D-to-3D conversion, etc.

Keywords: bivariate modeling , 3D natural scene statistics

1. INTRODUCTION

Natural scene statistics (NSS) have proven to be important ingredients towards understanding both the evolution
of the human vision system and the design of image processing algorithms.1 Extensive work has been conducted
towards understanding the luminance statistics of natural scenes,2–5 and the link between natural scene statistics
and neural processing of visual stimuli.6,7 The natural scene statistics and models of 2D images have been applied
to various image and video processing applications with success, e.g., image denoising8,9 and image/video quality
assessment.10–13

There have also been recent work conducted on modeling and understanding 3D natural scene statistics.14–16

Potetz et al.14 examined certain relationships between luminance and range over multiple scales and applied
their results to shape-from-shading problems. Liu et al.15 explored statistical relationships between luminance
and disparity in the wavelet domain, and applied the derived models to improve a Bayesian stereo algorithm.
Recently, Su et al.16 proposed robust and reliable statistical models of both marginal and conditional distributions
of luminance/chrominance and disparity in natural images, and further incorporate these models into a chromatic
Bayesian stereo algorithm with superior performance to luminance-only algorithms.

However, little work has been done on modeling and using the bivariate statistics of luminance/chrominance
and range data from naturalistic scenes. Here we aim to fill this gap using the high-definition, high-quality
color images and corresponding ground-truth range maps from the LIVE Color+3D Database Release-1.17

We first studied the joint statistics of spatially adjacent wavelet coefficients at each sub-band for both lu-
minance/chrominance and range, and also examined the bivariate conditional distributions of luminance and
chrominance wavelet coefficients given different values of co-located range wavelet coefficients. To model these
bivariate statistics, we utilized the relevant, versatile and flexible multivariate generalized Gaussian distributions
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(MGGD). We discovered some interesting and important statistical properties of both bivariate joint and con-
ditional distributions, and showed that they are well-modeled by appropriate choice of the fitting parameters of
bivariate generalized Gaussian models.

The rest of this paper is organized as follows. Section 2 details the types of perceptually relevant pre-
processing that is performed on both the 2D color images and ground-truth range maps. The statistical analysis
and modeling are presented in Section 3. Finally, Section 4 gives concluding remarks.

2. DATA PRE-PROCESSING

The basic resource on which we perform bivariate statistical modeling on natural image and range data is the
LIVE Color+3D Database Release-1, which contains 12 sets of color images with corresponding ground-truth
range maps at a high-definition resolution of 1280x720.17 The image and range data in the LIVE Color+3D
Database Phase-1 were collected using an advanced range scanner, RIEGL VZ-400, with a Nikon D700 digital
camera mounted on top of it.18

Human vision systems extract abundant information from natural environments by processing visual stimuli
through different levels of decomposition and interpretation. Since we want to learn and explore the statistical
relationships between luminance/chrominance and range information carried in natural images, and how these
statistics might be implicated in visual processing, we apply certain perceptually relevant pre-processing steps
on both the 2D color images and the co-registered 2D ground-truth range maps.

2.1 Luminance/Chrominance

All color images were first transformed into the perceptually relevant CIELAB color space with one luminance
(L*) and two chrominance (a* and b*) components. CIELAB color space is optimized to quantify perceptual
color differences and better corresponds to human color perception than does the perceptually nonuniform RGB
space.19 Each image was then transformed by the steerable pyramid decomposition, which is an over-complete
wavelet transform that allows for increased orientation selectivity.20 Use of the wavelet transform was motivated
by the fact that its space-scale-orientation decomposition resembles the bandpass filtering that occurs in area
V1 of the primary visual cortex.2,21

After applying the multi-scale, multi-orientation decomposition, we performed the perceptually significant
process of divisive normalization on the image wavelet coefficients at all sub-bands.22 Divisive normalization,
i.e., sensory gain control, was proposed in the psychophysical literature to account for the nonlinear behavior
of human perceptual neurons.23 In human vision systems, divisive normalization corresponds to contrast gain
control, where the response of a neuron is normalized based on the responses of a pool of its neighboring neurons,
and partially explains the contrast masking mechanism. Moreover, divisive normalization also reduces statistical
dependencies between neural responses within and/or across different sub-bands.

The divisive normalization transform (DNT) used in this paper is implemented as follows:24

ui =
xi√

α+ xTgxg

=
xi√

α+
∑
j gjx

2
j

(1)

where i is the current pixel location, xi represents the wavelet coefficients, ui represents the coefficients after
DNT, α is a semi-saturation constant, the sum occurs over neighborhood pixels indexed by j, and {gj} is a
Gaussian weighting function.

2.2 Range

Since the depth information acquired by human vision systems is more relative than absolute, the disparity, i.e.,
the reciprocal of range, serves as a more useful stereoscopic analytic cue and disparity statistics are a useful tool
for understanding depth perception. In the absence of measured visual fixations, we took the reciprocal values of
all ground-truth range maps, and then performed the same multi-scale, multi-orientation wavelet decomposition
and divisive normalization transform on them. In the next section, we detail results of statistical modeling of
both the joint and conditional bivariate distributions of the image and range wavelet coefficients following DNT.
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(c) b*
Figure 1. Marginal univariate distributions of image wavelet coefficients at scale = 1 and orientation = 0◦.

3. BIVARIATE STATISTICAL MODELING

It has been demonstrated that there exist strong statistical relationships between co-located luminance/chromin-
ance and disparity bandpass coefficients, where the corresponding magnitudes can be well modeled by univariate
generalized log-normal distributions.16 However, there still exist higher-order dependencies between neighboring
pixels in natural images and range maps, where reliable statistical models remain. In the following, we study
the statistical relationships between spatially adjacent pixels in natural images and range maps, and model both
their joint and conditional bivariate distributions.

3.1 Multivariate Generalized Gaussian Distribution

It is well known that the histograms of sub-band coefficients of natural images become more Gaussian-like after
divisive normalization, as compared to their Laplacian-like nature before normalization. However, we found that
after performing DNT, the joint statistics of spatially adjacent sub-band coefficients of natural images possess
interesting orientation-related dependencies, which no longer can be modeled as bivariate Gaussian distributions.
In order to model both the univariate and bivariate statistics of sub-band coefficients of natural images, we utilized
the multivariate generalized Gaussian distribution, which includes the multivariate Gaussian and multivariate
Laplace distributions as special cases.

The probability density function of a multivariate generalized Gaussian distribution (MGGD) is defined as:

p(x|M, α, β) =
1

|M| 12
gα,β(xTM−1x) (2)

where x ∈ RN , M is an N×N symmetric scatter matrix, α and β are the scale and shape parameters, respectively,
and gα,β(·) is the density generator:

gα,β(y) =
βΓ(N2 )

(2
1
β πα)

N
2 Γ( N2β )

e−
1
2 (
y
α )β (3)

where y ∈ R+. Note that when β = 0.5, Eq. (2) becomes the multivariate Laplacian distribution, and when
β = 1, Eq. (2) corresponds to the multivariate Gaussian distribution. Moreover, when β → ∞, the MGGD
converges to a multivariate uniform distribution.

To fit an MGGD model to the bivariate histogram of spatially adjacent sub-band coefficients of a natural image
and to find the corresponding model parameters, we adopt the maximum likelihood estimator (MLE) algorithm.25

Specifically, when the shape parameter, β, of the MGGD model is unknown, the MLEs of parameters M, α,
and β can be obtained by differentiating the log-likelihood of p({x1, · · · ,xK}|M, α, β), where {x1, · · · ,xK} are
K independent and identically distributed (i.i.d.) MGGD random vectors, with respect to M, α, and β. This
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yields the MLEs of the parameters M, α, and β, as below.

M =
1

K

K∑
k=1

[
NK

yk + y1−βk

∑K
j 6=k y

β
j

xkx
T
k

]
(4)

α =

[
β

NK

K∑
k=1

yβk

] 1
β

(5)

f(β) =
NK

2
∑K
k=1 y

β
k

K∑
k=1

[
yβk ln(yk)

]
− NK

2β

[
Ψ

(
N

2β

)
+ ln

(
2β

NK

K∑
k=1

yβk

)]
−K = 0 (6)

where yk = xTkM
−1xk and Ψ(·) is the digamma function, which is the logarithmic derivative of the gamma

function, i.e., Ψ(x) = d
dx ln(Γ(x)).

Note that the MLEs of M and β depend on each other, while α can be estimated directly from β. The
following iterative algorithm yields MLEs of the MGGD model parameters.

Algorithm 1 Estimate the MGGD parameters using the MLEs

1 Initialize M and β
2 for i = 1 to max num iter do
3 Estimate M using Eq. (4).
4 Estimate β using Eq. (6) via the Newton-Raphson method:

βi = βi−1 −
f(βi−1)

f ′(βi−1)
(7)

5 if |βi − βi−1| ≤ fitting error then
6 break
7 end if
8 end for
9 Estimate α using Eq. (5).

Figure 1 histograms both the luminance and chrominance wavelet coefficients of one sub-band following DNT,
along with their univariate Gaussian and generalized Gaussian fits. We can see that although the image sub-band
coefficients after DNT are reasonably well fitted by the univariate Gaussian distribution, the univariate GGD is
able to give an even better fit.

3.2 Joint Distribution and Bivariate GGD Fit

First of all, we examine the joint distribution of spatially adjacent wavelet coefficients following DNT on both
color images and ground-truth range maps at different sub-bands. We utilize the steerable pyramid decomposition
with five scales, from 1 (finest) to 5 (coarsest), and eight orientations, i.e., 0◦, 22.5◦, . . . , 157.5◦. Note that the
orientation is defined as the propagation direction of the sinusoidal signal used in the bandpass filtering.

We focus on two cases of spatial adjacency between bandpass responses: horizontal and vertical adjacency.
Specifically, for horizontally adjacent bandpass samples, we form an N -by-2 matrix, where N is the total number
of pairs of samples from the database, where each pair is sampled from locations (x, y) and (x + 1, y) of an
image or range map. Similarly, for vertically adjacent samples, each pair is sampled from the locations (x, y)
and (x, y + 1). We observed that similar statistics hold with consequent similar models for both horizontal and
vertical adjacency; hence, we will discuss the results only for the horizontal case hereafter, unless otherwise
explicitly stated.

The joint histograms of both luminance/chrominance and range wavelet coefficients after DNT were computed
from all the N row vectors ∈ R2 in the corresponding N -by-2 matrix. Thus, the bivariate generalized Gaussian
models are fitted by estimating the parameters M, α, and β using algorithm 1 with N = 2.
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(c) 2D illustration of bivariate GGD fit
Figure 2. Joint distribution and bivariate GGD fit of image L* wavelet coefficients at scale = 1 and orientation = 0◦.
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(c) 2D illustration of bivariate GGD fit
Figure 3. Joint distribution and bivariate GGD fit of image L* wavelet coefficients at scale = 1 and orientation = 45◦.
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(c) 2D illustration of bivariate GGD fit
Figure 4. Joint distribution and bivariate GGD fit of image L* wavelet coefficients at scale = 1 and orientation = 90◦.

Figure 2 to 4 show the joint empirical distributions and the corresponding bivariate GGD (BGGD) fits of
luminance L* wavelet coefficients at scale = 1 and three different orientations. From the three-dimensional
illustrations, where the blue bars represent the actual coefficient histograms and the colored meshes represent
the bivariate GGD fits, it can be seen that the joint distributions of L* wavelet coefficients are well modeled
as bivariate generalized Gaussian. The 2D illustrations, which show the iso-probability contour maps of the
joint distributions, also illustrate the close fit of the bivariate GGD model. The most important observation
is that the shape and height of the joint distributions both vary with the relative orientation of the sub-band.
In particular, when the spatial relationship between bandpass samples, e.g., horizontal, matches the sub-band
orientation, e.g., 90◦, then the joint distribution becomes peaky and extremely elliptical. On the other hand,
when the spatial relationship and the sub-band orientation are orthogonal, e.g., horizontal and 0◦, then the
joint distribution becomes nearly a circular Gaussian. This implies that there exist higher dependencies between
spatially adjacent L* bandpass samples that have relative orientation that matches the sub-band orientation.
Note that similar results are obtained on both chrominance and range wavelet coefficients, which are not shown
here due to space limits.
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Figure 5. Parameters of joint bivariate GGD fit as a function of scale at orientation = 45◦.
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Figure 6. Parameters of joint bivariate GGD fit as a function of orientation at scale = 3.

To further examine the sub-band dependency of luminance, chrominance, and range wavelet coefficients, we
plot the bivariate GGD model parameters, i.e., α and β, both as a function of scale at the same orientation,
and as a function of orientation at the same scale. Figure 5 plots the bivariate GGD fitting parameters as
a function of scale at orientation = 45◦, while Figure 6 plots the parameters as a function of orientation at
scale = 3. As the scale becomes coarser, both parameters α and β decrease monotonically, meaning that the
corresponding bivariate GGD fit becomes more peaky and elliptical. In other words, spatially adjacent wavelet
coefficients tend to possess higher dependencies at larger scales on both luminance/chrominance and range in
natural scenes. Figure 6 shows the strong orientation dependency of both parameters α and β, which reach
a minimum when the spatial relationship of adjacent pixels matches the sub-band orientation, meaning that
the corresponding spatially adjacent coefficients possess the highest dependencies compared to other sub-bands
orientations. These scale- and orientation-dependent statistics also match what can be observed from both the
3D and 2D illustrations as shown in Figure 2 to 4.

In fact, we can examine these statistical dependencies from another, probably more intuitive, perspective in
terms of correlation coefficients. Figure 7 shows the plots of correlation coefficients between horizontally adjacent
luminance/chrominance and range wavelet coefficients as a function of scale and orientation. It is apparent from
Figure 7(a), with the same sub-band orientation, e.g., 90◦, that the two horizontally adjacent wavelet coefficients
are highly correlated, with correlation coefficients larger than 0.9. As the scale becomes coarser, the correlation
coefficients also become even larger. On the other hand, Figure 7(b) clearly indicates that at the same sub-band
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Figure 7. Correlation coefficients of horizontally adjacent wavelet coefficients as a function of scale and orientation.

scale, the horizontally adjacent wavelet coefficients are most correlated when the orientation of bandpass filtering
aligns at 90◦. These statistics relating the correlation coefficients between spatially adjacent wavelet coefficients
again substantiate the scale and orientation dependencies found in Figure 2 to 6.

3.3 Conditional Distribution and Bivariate GGD Fit

In addition to the rich information embedded in the joint statistical models of luminance/chrominance and
range wavelet coefficients, we are also interested in exploring the conditional statistics and models between
luminance/chrominance and range data in natural scenes. Interesting past work has been directed towards
utilizing conditional statistical models between luminance/chrominance and range wavelet coefficients to improve
the performance of practical stereo algorithms.15,16 However, to our knowledge, there hasn’t been reported work
on bivariate modeling of any form of conditional distributions between luminance/chrominance and range data
in natural scenes. Therefore, we also examined the bivariate distributions of spatially adjacent luminance and
chrominance wavelet coefficients conditioned on co-located range wavelet coefficients.

Specifically, we first sampled and collected the range wavelet coefficients after DNT from all ground-truth
maps in the database. Then, we also collected the co-located pairs of spatially adjacent luminance/chrominance
wavelet coefficients. For example, if the range wavelet coefficient at (x, y) was collected, then the pair of image
wavelet coefficients at (x, y) and (x + 1, y) (for horizontally adjacent pixels), or at (x, y) and (x, y + 1) (for
vertically adjacent pixels), were also collected. Next, we created a number of bins based on the absolute value of
the range wavelet coefficients, and for each range bin, we collected the corresponding pairs of spatially adjacent
luminance/chrominance wavelet coefficients. Finally, the conditional bivariate distribution of spatially adjacent
image wavelet coefficients given range wavelet coefficients is built as the bivariate joint distribution of spatially
adjacent luminance/chrominance wavelet coefficients, as described in Section 3.2, within each bin of the range
wavelet coefficients.

Figure 8 shows the conditional distributions of horizontally adjacent L* wavelet coefficients given different bins
of range wavelet coefficients at one sub-band, scale = 3 and orientation = 90◦, and their corresponding bivariate
GGD fits. As observed in the case of bivariate joint distributions of spatially adjacent wavelet coefficients in
Section 3.2, the bivariate conditional distributions also possess peaky and elliptical natures when the spatial
relationship between wavelet coefficients align with the sub-band orientation. An important observation here
is that the shape and height of the bivariate conditional distribution remains almost the same across different
range bins. Moreover, in Figure 9 we plot the parameters, α and β, of the bivariate GGD fits as a function of
range bin at the same sub-band as in Figure 8. We can clearly see that both fitting parameters remain constant
as the range bin varies, supporting the observations from Figure 8.

Similar to the analysis of the bivariate joint distribution in Section 3.2, we also computed and examined the
correlation coefficients between spatially adjacent luminance/chrominance wavelet coefficients conditioned on
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Figure 8. Conditional distribution and bivariate GGD fit of image L* wavelet coefficients on different range bins at scale
= 3 and orientation = 90◦.
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Figure 9. Parameters of conditional bivariate GGD fit as a function of range bin at scale = 3 and orientation = 90◦.

different bins of range wavelet coefficients. Figure 10 shows the plots of correlation coefficients between spatially
adjacent luminance/chrominance wavelet coefficients as a function of range bin for four different orientations, 0◦,
45◦, 90◦, and 135◦, at the same scale = 3. In addition to the same orientation dependency, where the correlation
coefficient of spatially adjacent image wavelet coefficients reaches a maximum when the spatial relationship
between wavelet coefficients aligns with the sub-band orientation and a minimum when orthogonal, the correlation
coefficients remain the same across different range bins, reinforcing the invariance property of the conditional
statistics observed in Figure 8 and 9.

4. CONCLUSIONS

We have studied both the joint and conditional distributions of spatially adjacent luminance/chrominance and
range wavelet coefficients in natural scenes, and modeled them using the relevant, versatile and flexible bivariate
generalized Gaussian distributions. We discover several interesting as well as important statistical properties
from these bivariate GGD models.

Specifically, there are both scale and orientation dependencies embedded in the joint distributions of spatially
adjacent luminance/chrominance and range wavelet coefficients. Spatially adjacent pairs of wavelet coefficients
in both natural images and ground-truth maps are highly correlated when decomposed by a bandpass filter whose
orientation is parallel to their spatial relationship; however, these pairs of wavelet coefficients become almost
uncorrelated when their spatial relationship and the sub-band orientation are orthogonal. Moreover, when con-
ditioned on different values of range wavelet coefficients, both luminance and chrominance coefficients maintain
constant correlation coefficients between spatially adjacent wavelet coefficients. These joint scale and orientation
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Figure 10. Correlation coefficients of spatially neighboring wavelet coefficients as a function of range bin for four different
orientations at the same scale = 3.

dependencies, as well as the conditional invariant correlation are effectively captured by the parameters of the
corresponding bivariate GGD models.

We believe that these bivariate statistics and models will help us better understand the processing of three-
dimensional visual stimuli in human vision systems, and will also benefit perception-driven 3D image/video and
computer vision applications, e.g., 3D quality assessment, 2D-to-3D conversion, etc.
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