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ABSTRACT

Many important cardiac biomarkers used in clinical practice
describe cardiac anatomy and function in three dimensions
(3D). However, common cardiac magnetic resonance imaging
(MRI) protocols often only generate two-dimensional (2D)
image slices of the underlying 3D anatomy and are suscepti-
ble to various types of motion artifacts causing slice misalign-
ment. In this paper, we propose a deep learning method act-
ing directly on point clouds to reconstruct a dense 3D biven-
tricular heart model from misaligned 2D cardiac MR image
contours. The method is able to reduce mild, medium, and
strong slice misalignments (mean translation ∼3.5 mm; mean
rotation ∼2.5◦) to a Chamfer distance below image resolution
(1.25 mm) with high robustness (standard deviation 0.18 mm)
on a statistical shape model dataset. It also manages to recon-
struct smooth 3D shapes with accurate left ventricular vol-
umes from cine MR images of the UK Biobank study.

Index Terms— Cardiac Surface Reconstruction, Cine
MRI, Motion Correction, Point Completion Networks.

1. INTRODUCTION

Cardiac image segmentation is an important task in clinical
practice as it enables the calculation of clinically important
biomarkers from cardiac images. In recent years, deep learn-
ing methods, such as the U-net [1], have largely replaced
previous manual or semi-automatic approaches in image seg-
mentation research and achieved similar performance as hu-
man experts on a variety of datasets, including cine MRI [2].

However, whereas image segmentation quantifies struc-
tures in 2D, most clinically relevant anatomical biomarkers
(e.g. volume, mass) are either inherently 3D or benefit signif-
icantly from the 3D extension of multiple 2D measurements.
One way to obtain accurate 3D biomarkers is to increase the
spatial resolution during image acquisition and directly gen-
erate 3D imaging data, as for example in 3D MRI. However,
in current clinical practice, 3D MRI suffers from considerably
lower temporal resolution and requires breath holds of up to
twice as long as standard 2D cine MRI, making it infeasible
for many patients. Another way to calculate 3D biomarkers is
to estimate them directly from the 2D images of an MRI scan

with the modified Simpson’s rule. While simple and fast, this
approach comes with considerable limitations in terms of ac-
curacy, leading to potentially erroneous diagnostic and treat-
ment decisions [3]. A third way tries to combine the advan-
tages of both approaches by first building a 3D surface recon-
struction based on the available 2D cardiac image contours
and then calculating the required metrics directly from this
3D representation [4]. However, cardiac 3D surface recon-
struction is a challenging problem due to two main reasons:

• Data sparsity: standard cine MRI has relatively low and
anisotropic resolution, resulting in sparse 3D data.

• Motion artifacts: various types of motion during image
acquisition lead to misalignments of anatomical structures
between different image slices.

Considerable research has focused on correcting slice
misalignment induced by respiratory motion between breath
holds [5, 6] and on reconstructing 3D surfaces from sparse
and noisy input data [7, 8]. In this paper, we propose a
fast and fully automatic geometric deep learning method,
capable of addressing both the sparsity and misalignment
problem in a single model. It uses anatomical information
from both short-axis (SAX) and long-axis (LAX) cardiac
imaging planes, which are readily available as part of stan-
dard cardiac cine MRI acquisitions. Our main contributions
are as follows:

• We develop an efficient deep learning method acting di-
rectly on point clouds for fully automatic biventricular sur-
face reconstruction.

• We reinterpret the reconstruction task as a point cloud
completion problem enabling the use of a point comple-
tion network for cardiac surface reconstruction.

• We evaluate our method on a dataset derived from a statis-
tical shape model with different amounts of misalignment
and on cine MR images from the UK Biobank study [9].

To the best of our knowledge, this is the first application
of geometric deep learning to cardiac surface reconstruction
from cine MRI contours and the first deep learning method
overall to demonstrate successful biventricular surface recon-
struction on real cine MR images. Previous deep learning
approaches either focused only on the left ventricle [4], a dif-
ferent modality [10], or lacked validation on real data [11].
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Fig. 1: Biventricular 3D surface reconstruction pipeline from cine MR images.

2. METHODS

This section describes the datasets used in this work (Sec. 2.1)
and explains the proposed surface reconstruction pipeline
(Sec. 2.2 and 2.4) and training procedure (Sec. 2.3).

2.1. Datasets

We use two datasets, one for training our method and provid-
ing a first validation and the other to evaluate our method.

We derive the first dataset from the biventricular statistical
shape model (SSM) by Bai et al. [12]. The SSM was created
based on 3D cardiac MRI scans with a resolution of 1.25 ×
1.25 × 2 mm of 1084 healthy volunteers, followed by image
registration, segmentation, and principal component analysis.
The 3D nature of the MRI acquisitions offers high spatial res-
olution both in-plane and between planes with drastically re-
duced slice misalignment and data sparsity compared to 2D
acquisitions, which allows us to consider the shapes as our
ground truth for method development.

The second dataset consists of 10 cases randomly sampled
from the UK Biobank study [9]. Each case consists of a 4-
chamber (ch) LAX, a 2ch LAX, and a stack of SAX cardiac
cine MRI slices at the end-diastolic (ED) phase.

2.2. Surface Reconstruction Pipeline

We propose a 3D surface reconstruction pipeline that con-
verts misaligned 2D cine MR images into dense biventricular
3D meshes (Fig. 1). The SAX image stack and the 2ch and
4ch LAX images from a standard cine MRI acquisition serve
as inputs to our pipeline. First, the SAX and 4ch LAX im-
ages are segmented into 4 anatomical regions: left ventricular

(LV) cavity, LV myocardium, right ventricular (RV) cavity,
and background; whereas the 2ch LAX image is divided into
3 areas: LV cavity, LV myocardium, and background. Next,
we position the contours of each image slice in 3D space and
convert the contours to point clouds by selecting each point
along a given contour according to the in-plane resolution of
the underlying image. The resulting point cloud is a sparse
and misaligned 3D representation of the true biventricular
surface. In the subsequent step, we employ a deep learning
method to correct both misalignment and sparsity simultane-
ously (see Sec. 2.4). Our method outputs a dense biventricular
point cloud with corrected misalignment, which we convert
into a mesh using the Ball Pivoting Algorithm [13].

2.3. Training Data Generation

We use the SSM described in Sec. 2.1 to construct three
datasets to analyze our method’s performance for different
levels of misalignment. We first apply random deformations
to the mean shape mesh along its first 31 modes of variation
(∼99.7% of total variance in heart shapes) to generate 125
different biventricular meshes. For each mesh, we extract
its vertices to form dense point clouds, which serve as the
ground truth for network training. Next, we generate sparse
and misaligned point clouds as network inputs. To this end,
we first determine the LAX and SAX slice planes of each
mesh by mimicking the procedure of a standard cardiac cine
MRI acquisition [14]. We then artificially introduce slice
misalignment caused by respiratory motion between breath
holds at three different severity levels (mild, medium, strong)
by rigidly transforming each slice. We sample the translation
and rotation values for each level from separate normal dis-



tributions with zero mean. The respective standard deviations
are selected to reflect realistic values observed in clinical
practice [11] (translation: 1.5 mm, 2.5 mm, 3.5 mm; rotation:
0.5◦, 1.5◦, 2.5◦). Finally, we slice the mesh at the randomly
misaligned planes and sample points along each resulting
contour to create the input point clouds. We apply 8 different
sets of misalignment transforms to each of the 125 meshes to
create a dataset of size 1000 for each level of misalignment.

2.4. Point Completion Network

Our surface reconstruction network has an encoder-decoder
architecture similar to the Point Completion Network (PCN)
proposed by Yuan et al. [15]. Two PointNet [16] layers are
used as the encoder; whereas a multi-layer perceptron is fol-
lowed by a FoldingNet [17] block in the decoder. We adjust
the input and output layers of the PCN to fit the dimensional-
ity of the biventricular point clouds and select a patch size for
the FoldingNet block that enables a dense surface reconstruc-
tion. The loss function consists of two terms [15]:

Ltotal = Lcoarse + α ∗ Ldense (1)

The first loss term Lcoarse compares the point cloud pro-
duced by the decoder before the FoldingNet block with the
dense ground truth point cloud. Its goal is to force this sparse,
intermediate point cloud to be a good overall representation of
the global biventricular shape. The second loss term Ldense

acts on the dense point cloud prediction of the FoldingNet
block and enforces the desired smooth shape representation
on both a global and local level. The weight α controls the
importance of each of the two loss terms for the total loss
and is steadily increased during training. We use the Chamfer
distance for both loss terms.

3. EXPERIMENTS

For each of the three levels of misalignment severity, we split
the respective dataset derived from the SSM into a training,
validation, and test dataset of sizes 750, 50, and 200. We then
train three different PCNs for each misalignment level and
evaluate them on the corresponding test datasets.

Fig. 2 shows the sparse input point cloud, the network’s
coarse and dense predictions, and the ground truth point cloud
for a representative sample case of each misalignment level.
Overall, our method is able to predict the global shape of the
ground truth point clouds accurately for all levels of misalign-
ment. The coarse predictions show a good coverage of the
biventricular anatomy with points evenly spread out across
the respective surfaces, and the LV myocardium, RV, and LV
cavity are clearly discernible despite the low resolution. The
dense prediction exhibits a smooth and mesh-like surface that
captures shape variations on both a global and local scale.

In order to obtain quantitative results, we compare the
dense model predictions with the ground truth point clouds
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Fig. 2: Qualitative reconstruction results for each level of mis-
alignment on the SSM-derived dataset. Point colors represent
the Chamfer distances to the respective ground truth.

Table 1: Quantitative reconstruction results

Misalignment level

Mild Medium Strong

Chamfer (mm)1 0.84 (±0.11) 1.01 (±0.17) 1.19 (±0.18)

Exec. time (ms)2 24.10 23.78 24.50
1 Chamfer: mean (± SD). 2 Exec. time: mean.

of the test datasets for each level of misalignment using the
Chamfer distance (Table 1). We find that our method achieves
a mean Chamfer distance of 0.84 mm in case of mild mis-
alignment with standard deviation (SD) of 0.11 mm. The
Chamfer distance rises steadily when increasing the amount
of misalignment, but remains below the underlying image
pixel resolution of 1.25 mm for all misalignment levels. Stan-
dard deviations also increase with larger amounts of misalign-
ment although to a lesser extent than the mean values. The
execution time, i.e. the time required by the network to gen-
erate an output point cloud from an input, remains close to
24 ms for all misalignment levels.

Since no ground truth is available for the UK Biobank
(UKB) dataset, we first conduct a visual analysis of the re-
constructed shapes. We select the PCN trained on the SSM
dataset with medium misalignment due to its closeness to real
misalignment conditions and apply it directly to cine MRI
segmentations of the UKB without further training.

Fig. 3 shows the sparse and misaligned input point cloud,
the reconstructed dense output point cloud with corrected
misalignment, and the final biventricular mesh for three sam-
ple cases of the UKB dataset. Similar to our results on the
SSM dataset, we find that the output point clouds exhibit
an overall smooth structure with little to no remaining mis-



Table 2: Comparison of UKB results with references values

Ours Petersen et al. [18]

LV ED Volume (ml)1 112 (±11) 124 (±21)
1 Values represent mean (± SD).

alignment and a high correspondence to the respective input
shapes on both a local and a global level. The Ball Pivoting
Algorithm [13] was able to quickly and accurately transform
the point clouds into triangular meshes.
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Fig. 3: Qualitative reconstruction results for three UKB cases.

For a quantitative validation of our method on the UKB
dataset, we calculate the LV volume of 10 randomly se-
lected female UKB cases, which were reconstructed with our
method, and compare them to the clinical reference ranges,
which were derived directly from the 2D SAX images of 432
female UKB participants [18] (Table 2). We find a difference
in mean volume of about 12 ml, which is similar to previously
reported error estimates [3].

4. DISCUSSION

We have shown in this work that PCNs can be highly effec-
tive in solving both the sparsity and misalignment problems
in cardiac 3D surface reconstruction from cine MRI contours.

With a deep learning approach similar to Bai et al. [2]
used for the segmentation task, our method is fully automatic
and therefore does not suffer from inter-/intra-operator vari-
ability or other human errors. We utilize both SAX and LAX
contours information, which gives our method access to slice
intersection points and therefore decreases the negative ef-
fects of potential outliers. Once trained, our method is able

to generate dense point clouds with corrected misalignment
in less than a tenth of a second (Table 1). This constitutes a
vast reduction in processing time compared to previous itera-
tive mesh-fitting methods (e.g. [8]), which need several hours
to achieve results of similar quality. Our method acts directly
on point clouds, which enables a fast, scalable, and memory-
efficient surface reconstruction. This is in contrast to the grid-
based representations (e.g. voxelgrids) required by classical
deep learning approaches (e.g. [11]), which are inefficient at
storing sparse surface data and have limited resolution lead-
ing to partial volume effects. This reduced spatial efficiency
coupled with longer running times is especially disadvanta-
geous for applications in clinical practice and large-scale car-
diac physiology simulations.

Our method is able to correct even strong misalignments
to Chamfer distances below image resolution, which demon-
strates a high robustness and an ability to handle a wide va-
riety of anatomical shapes, variations in image plane selec-
tion, and motion-induced slice misalignments. This is fur-
ther corroborated by the low standard deviations of the Cham-
fer distances, which show the method’s low susceptibility to
outliers. Furthermore, Chamfer distances evaluated on point
clouds are known to overestimate the true surface-to-surface
distances due to the discrete and sparse nature of point clouds.
Therefore, we hypothesize that the true reconstruction quality
might be slightly higher than the reported results.

We have successfully applied the PCN trained on the SSM
dataset to the UKB dataset without any further training on
the latter. This shows that we are able to extract realistically
misaligned slices from the SSM meshes and that large-scale,
high-quality datasets can be leveraged to train deep learning
methods for applications on similar data. We have also ob-
served a slight difference in mean LV volumes between our
reconstructed meshes and the UKB reference values [18]. On
the one hand, this is indicative of the plausibility of our results
due to the closeness of values with established clinical prece-
dent. On the other hand, the small difference might reflect the
higher accuracy of volume calculations from dense 3D data
compared to the 2D slices [3].

5. CONCLUSION

In this paper, we have developed and validated a deep learning
method based on point completion networks that can gener-
ate high-quality biventricular 3D surface reconstructions from
cardiac MRI contours in a fully automatic and fast process.
Our method has been able to correct even strong amounts
of misalignment and reconstruct meshes with accurate shapes
and volumes from cine MR images of the UKB study.
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Cláudio Silva, and Gabriel Taubin, “The ball-pivoting
algorithm for surface reconstruction,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 5,
no. 4, pp. 349–359, 1999.

[14] Andrew M Taylor and Jan Bogaert, “Cardiovascular MR
imaging planes and segmentation,” in Clinical Cardiac
MRI, pp. 93–107. Springer, 2011.

[15] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz,
and Martial Hebert, “PCN: Point completion network,”
in International Conference on 3D Vision. IEEE, 2018,
pp. 728–737.

[16] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas, “Pointnet: Deep learning on point sets for
3D classification and segmentation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 652–660.

[17] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian,
“Foldingnet: Point cloud auto-encoder via deep grid de-
formation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp.
206–215.

[18] Steffen E Petersen, Nay Aung, Mihir M Sanghvi, Filip
Zemrak, Kenneth Fung, et al., “Reference ranges
for cardiac structure and function using cardiovascular
magnetic resonance (CMR) in Caucasians from the UK
Biobank population cohort,” Journal of Cardiovascular
Magnetic Resonance, vol. 19, no. 1, pp. 18, 2017.


