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BKP HIERARCHY, AFFINE COORDINATES, AND A FORMULA

FOR CONNECTED BOSONIC N-POINT FUNCTIONS

ZHIYUAN WANG AND CHENGLANG YANG

Abstract. We derive a formula for the connected n-point functions of a tau-
function of the BKP hierarchy in terms of its affine coordinates. This is a BKP-
analogue of a formula for KP tau-functions proved by Zhou in [46]. Moreover,
we prove a simple relation between the KP-affine coordinates of a tau-function
τ(t) of the KdV hierarchy and the BKP-affine coordinates of τ(t/2). As ap-
plications, we present a new algorithm to compute the free energies of the
Witten-Kontsevich tau-function and the Brézin-Gross-Witten tau-function.
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1. Introduction

Integrable systems have drawn a lot of attention in mirror symmetry since the
Witten Conjecture/Kontsevich Theorem [24, 43]. The boson-fermion correspon-
dence developed by Kyoto School is one of the most interesting approaches to study
integrable hierarchies such as the KP (Kadomtsev-Petviashvili) hierarchy, KdV
(Korteweg-de Vries) hierarchy, BKP hierarchy, etc, since it establishes a connection
to representation theory and symmetric functions. See [11] for an introduction to
Kyoto School’s approach to the KP hierarchy and Sato’s theory.

In Kyoto School’s approach, a tau-function can be regarded as either a vector
in the bosonic Fock space, or a vector in the fermionic Fock space, satisfying the
bosonic or fermionic Hirota bilinear relations respectively. Moreover, Sato found
that the space of all tau-functions of the KP hierarchy is a semi-infinite dimensional
Grassmannian [36]. See also [38] for an analytic construction. This Grassmannian is
the orbit of the trivial tau-function τ = 1 under the action of an infinite-dimensional
group ĜL(∞). A traditional way to express a tau-function in the fermionic picture

is τ = eg|0〉, where |0〉 is fermionic vacuum and g ∈ ĝl(∞) is of the form:

g =
∑

m,n∈Z

cn,mψ−m− 1
2
ψ∗
−n− 1

2
,

such that cn,m = 0 for |n+m| >> 0. Here {ψr, ψs}r,s∈Z+ 1
2
are the fermions (and

we choose the notations such that ψr, ψ
∗
r are fermionic creators when r < 0).

In literatures there is an alternative way to express a tau-function in the fermionic
space. A tau-function with τ(0) = 1 can be uniquely represented as a Bogoliubov
transform of the vacuum which only involves fermionic creators (see e.g. [46, §3]):

(1) τ = exp
( ∑

m,n≥0

an,mψ−m− 1
2
ψ∗
−n− 1

2

)
|0〉.

If one applys the boson-fermion correspondence and takes KP-time variables to be
Tn = pn

n where pn is the Newton symmetric function of degree n, then:

τ =
∑

µ

(−1)n1+···+nk · det(ani,mj
)1≤i,j≤k · sµ,

where µ = (m1, · · · ,mk|n1, · · · , nk) is a partition of integer (written in the Frobe-
nius notation), and sµ is the Schur function indexed by µ. See [5,13,45] for examples
of representing tau-functions as Bogoliubov transforms of the form (1). The coef-
ficients {an,m} are called the affine coordinates of τ , and they provide a canonical
choice of coordinates on the big-cell of the Sato Grassmannian (see e.g. [7]).

A natural question is, how to compute the logarithm log τ (called the free energy)
of a tau-function τ using its affine coordinates {an,m}. This is crucial since the
coefficients of some free energies are important invariants in geometry. For example,
the coefficients of the free energy associated to the Witten-Kontsevich tau-function
[24, 43] are the intersection numbers of ψ-classes on the moduli spaces Mg,n of
stable curves. In [46], Zhou has proved the following formula for the connected
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n-point functions associated to a KP tau-function (see [46, Theorem 5.3]):

∑

i1,··· ,in≥1

∂n log τ(T )

∂Ti1 · · · ∂Tin

∣∣∣∣
T=0

· z−i1−1
1 · · · z−in−1

n

=(−1)n−1 ·
∑

σ: n-cycles

n∏

i=1

Â(zσ(i), zσ(i+1))−
δn,2

(z1 − z2)2
,

(2)

where T = (T1, T2, · · · ) are the KP-time variables and Â(w, z) is the generating
series of the affine coordinates {an,m}n,m≥0. Moreover, he found a formula for
the generating series of affine coordinates of the Witten-Kontsevich tau-function
(see [46, §6.9]), thus one can indeed carry out the calculations of the intersection
numbers on Mg,n using (2). See also [41, 42, 48, 49] for some applications of this
formula to other well-known KP tau-functions.

The goal of the present work is to find a BKP-version of (2). BKP hierarchy
is an integrable system introduced by Kyoto School [10, 20], which shares a lot of
common properties with the KP hierarchy. In particular, one also has the fermionic
description (in terms of the neutral fermions) and semi-infinite dimensional Grass-
mannian (the isotropic Grassmannian) description of a BKP tau-function. See
e.g. [22, 25, 34, 39, 40, 44] for more information about the BKP hierarchy and BKP
tau-functions, and see [6, §7] for an introduction to BKP affine coordinates. We
will give a brief review of these notions in §2.

Let τ = τ(t) be a BKP tau-function with τ(0) = 1, where t = (t1, t3, t5, · · · ).
then τ can be represented as a Bogoliubov transform in the fermionic Fock space:

τ = exp
( ∑

n,m≥0

an,mφmφn
)
|0〉,

where {φi}i≥0 are the neutral fermionic creators. The coefficients {an,m}n,m≥0 are
the BKP-affine coordinates of τ (satisfying the condition an,m = −am,n). In the
bosonic Fock space, τ is a summation of Schur Q-functions:

τ =
∑

µ∈DP

(−1)l̃(µ)/2 · Pf(aµi,µj
)1≤i,j≤l̃(µ) ·Qµ(x).

Now denote by A(w, z) and Â(w, z) the following generating series respectively:

A(w, z) =
∑

n,m>0

(−1)m+n+1 · an,mw−nz−m − 1

2

∑

n>0

(−1)nan,0(w
−n − z−n),

Â(w, z) = A(w, z)− 1

4
− 1

2

∞∑

i=1

(−1)iw−izi.

They are actually the fermionic two-point functions (see §3). Our main result is
the following formula for the connected bosonic n-point functions (see §4.3):

Theorem 1.1. Let τ be a BKP tau-function satisfying τ(0) = 1, and let A, Â be
the generating series of its affine coordinates defined as above. Then:

∑

i>0: odd

∂ log τ(t)

∂ti

∣∣∣∣
t=0

· z−i = A(−z, z),
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and for n ≥ 2,

∑

i1,··· ,in>0: odd

∂n log τ(t)

∂ti1 · · ·∂tin

∣∣∣∣
t=0

· z−i1
1 · · · z−in

n = −δn,2 ·
z1z2(z

2
2 + z21)

2(z21 − z22)
2

+
∑

σ: n-cycle
ǫ2,··· ,ǫn∈{±1}

(−ǫ2 · · · ǫn) ·
n∏

i=1

ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)),

where ξ is given by:

ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)) =

{
Â(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)), σ(i) < σ(i+ 1);

−Â(−ǫσ(i+1)zσ(i+1), ǫσ(i)zσ(i)), σ(i) > σ(i+ 1),

and we use the conventions ǫ1 := 1 and σ(n+ 1) := σ(1).

Furthermore, given a tau-function τ(t) of the KdV hierarchy (see [11] for an
introduction to KdV), one knows that τ(t/2) is a tau-function of the BKP hierarchy
[3]. We find the following (see §5 for details):

Theorem 1.2. Let τ(t) be a tau-function of the KdV hierarchy. Then:

(3) ABKP(w, z) = −w − z

4
·AKP(w,−z),

where ABKP(w, z) is the generating series of the BKP-affine coordinates of τ(t/2),
and AKP(w,−z) is the generating series (introduced by Zhou in [46]) of the KP-
affine coordinates of τ(t).

We will discuss some applications of the above formulas. The Witten-Kontsevich
tau-function τWK [24,43] and the Brézin-Gross-Witten (BGW) tau-function τBGW

[8,18] are two well-known tau-functions of the KdV hierarchy. In literatures, there
have been already various methods to compute their free energies, see e.g. [15,16,26]
and [1, 17] respectively. However, there are still mathematical aspects which have
not been fully understood yet, and we hope the discussions in this work may provide
some new understandings from the point of view of the BKP hierarchy. This is
inspired by the works [2,4,27,28,30], in which these two tau-functions were related
to Schur Q-functions; and the work of Zhou [46], in which the KP-affine coordinates
and boson-fermion correspondence are used to compute the free energies.

Using the results in [2,4,27,28,30], we are able to write down the explicit expres-
sions of the BKP-affine coordinates of τWK(t/2) and τBGW(t/2), and then we can
apply Theorem 1.1 to compute the free energies. The generating series of the BKP-
affine coordinates have simple expressions (in terms of the first two basis vectors of
the corresponding elements in the Sato-Grassmannian):

Â•(w, z) = A•(w, z)− w − z

4(w + z)
=

Φ•
1(−z)Φ•

2(−w)− Φ•
1(−w)Φ•

2(−z)
4(w + z)

,

where • = WK or BGW. The vectors ΦWK
1 (z),ΦWK

2 (z) are the Faber-Zagier series:

ΦWK
1 (z) =

∞∑

m=0

(6m− 1)!!

36m · (2m)!
z−3m, ΦWK

2 (z) = −
∞∑

m=0

(6m− 1)!!

36m · (2m)!

6m+ 1

6m− 1
z−3m+1;
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and ΦBGW
1 (z),ΦBGW

2 (z) are:

ΦBGW
1 (z) =

∞∑

k=0

(
(2k − 1)!!

)2

8k · k! z−k, ΦBGW
2 (z) = z −

∞∑

k=0

(2k − 1)!!(2k + 3)!!

8k+1 · (k + 1)!
z−k.

The rest of this paper is arranged as follows. In §2 we recall some preliminaries
of BKP tau-functions and the boson-fermion correspondence. In §3 we represent
the fermionic and bosonic n-point functions in terms of the affine coordinates. In
§4 we compute the connected n-point functions using results of §3. In §5, we prove
the relation (3) for a KdV tau-function. Finally in §6, we apply our methods to
the Witten-Kontsevich tau-function and the BGW tau-function.

2. Preliminaries of BKP Hierarchy and Boson-Fermion

Correspondence

In this section we first give a brief review of the neutral fermions and boson-
fermion correspondence for the BKP hierarchy. See [10,20,44] for details. Then we
recall the affine coordinates of a BKP tau-function, see [6].

2.1. Strict partitions and Schur Q-functions. First we recall the definition of
strict partitions and Schur Q-functions [37]. See e.g. [29] for details.

A partition of an integer n is a sequence of integers µ = (µ1, · · · , µl) such that
µ1 ≥ · · · ≥ µl > 0 and |µ| := µ1 + · · · + µn = n. The number l(µ) := l is called
the length of µ. A partition µ is called strict if µ1 > µ2 · · · > µl > 0. The set of
all strict partitions is denoted by DP , and we allow the empty partition (∅) ∈ DP
of length zero. A partition µ is called odd if each µi is odd. The set of all odd
partitions of n is denoted by OPn. Let x = (x1, x2, · · · ) be a family of variables,
and let pn :=

∑
i x

n
i be the Newton symmetric function of degree n. Define:

(4) qn =
∑

µ∈OPn

2l(µ)∏
i≥1: odd i

m1 ·mi!
pµ,

where pµ := pµ1 · · · pµl
for a partition µ = (µ1, · · · , µl), and mi is the number of

i’s appearing in µ. Then the Schur Q-function Qλ indexed by a strict partition
λ ∈ DP is defined as follows:

Q(m)(x) := qm, Q(m,n)(x) := qmqn − 2qm+1qn−1 + · · ·+ (−1)n2qm+n,

and for λ = (λ1, · · · , λn) ∈ DP with n ≥ 4 even, Qλ is defined by the Pfaffian:

Qλ = Pf




0 Q(λ1,λ2) · · · Q(λ1,λn)

−Q(λ1,λ2) 0 · · · Q(λ2,λn)

...
... · · ·

...
−Q(λ1,λn) −Q(λ2,λn) · · · 0


 ;

and for λ = (λ1, · · · , λn) ∈ DP with n ≥ 3 odd, Qλ is defined by:

Qλ := qλ1Q(λ2,··· ,λn) − qλ2Q(λ1,λ3,··· ,λn) + · · ·+ qλn
Q(λ1,··· ,λn−1).

We will use the convention Q(∅) := 1. By definition, Qλ is a symmetric function in
x = (x1, x2, · · · ) of degree |λ| for every λ ∈ DP , i.e., it is a vector in the bosonic
Fock space Λ = C[p1, p2, · · · ]. Moreover, it lies in the subspace C[p1, p3, p5, · · · ].
Remark 2.1. Schur Q-functions are related to the characters of projective represen-
tations of the symmetric groups Sn, see [19, 37].
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2.2. Neutral fermions and fermionic Fock space. Let {φm}m∈Z be a family
of operators satisfying the following anti-commutation relations:

(5) [φm, φn]+ := φmφn + φnφm = (−1)mδm+n,0.

In particular, one has φ20 = 1
2 , and φ2n = 0 for n 6= 0. These operators {φm} are

called the neutral fermions. The fermionic Fock space FB for the BKP hierarchy
is the vector space (over C) of all formal (infinite) summations

∑
ck1,··· ,kn

φk1φk2 · · ·φkn
|0〉, ck1,··· ,kn

∈ C,

over n ≥ 0, k1 > · · · > kn ≥ 0, where |0〉 is a vector (called the vacuum) satisfying:

(6) φi|0〉 = 0, ∀i < 0.

The operators {φn}n≥0 are called the fermionic creators, while {φn}n<0 are called
the fermionic annihilators. The Fock space FB can be decomposed as follows:

FB = F0
B ⊕F1

B,

where F0
B and F1

B are the subspaces with even and odd numbers of the generators
{φi}i≥0 respectively. The subspace F0

B has a basis {|µ〉}µ∈DP indexed by all strict
partitions. Let µ ∈ DP be a strict partition µ = (µ1 > · · · > µn > 0), then:

(7) |µ〉 :=
{
φµ1φµ2 · · ·φµn

|0〉, for n even;√
2 · φµ1φµ2 · · ·φµn

φ0|0〉, for n odd.

Now we recall the dual Fock space F∗
B and the pairing between FB and F∗

B. Let
F∗

B be the vector space spanned by:

〈0|φkn
· · ·φk2φk1 , k1 < k2 < · · · < kn ≤ 0, n ≥ 0,

where 〈0| is a vector satisfying:

(8) 〈0|φi = 0, ∀i > 0.

Then there is a nondegenerate pairing F∗
B × FB → C determined by (6), (8), the

anti-commutation relation (5), and the requirements 〈0|0〉 = 1 and 〈0|φ0|0〉 = 0.
One easily checks that for arbitrary k1 > k2 > · · · > kn ≥ 0,

(9) 〈0|φ−kn
· · ·φ−k1φk1 · · ·φkn

|0〉 =
{
(−1)k1+···+kn , if kn 6= 0;
1
2 · (−1)k1+···+kn−1 , if kn = 0.

In general, the vacuum expectation value of a product of neutral fermions can be
computed using Wick’s Theorem:

〈0|φi1φi2 · · ·φi2n |0〉 =
∑

(p1,q1,··· ,pn,qn)
pk<qk, p1<···<pn

sgn(p, q) ·
n∏

j=1

〈0|φipj φiqj |0〉,

where (p1, q1, · · · , pn, qn) is a permutation of (1, 2, · · · , 2n), and sgn(p, q) denotes
its sign (sgn = 1 for an even permutation, and sgn = −1 for an odd one).

The normal-ordered product : φiφj : of two neutral fermions is defined by:

(10) : φiφj := φiφj − 〈0|φiφj |0〉.
Then by (9), the anti-commutation relation (5) is equivalent to the following oper-
ator product expansion (OPE):

(11) φ(w)φ(z) =: φ(w)φ(z) : +iw,z
w − z

2(w + z)
,
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where φ(z) is the fermionic field:

(12) φ(z) =
∑

i∈Z

φiz
i,

and iw,z means formally expanding on {|w| > |z|}:

iw,z
w − z

2(w + z)
:=

1

2
+

∞∑

j=1

(−1)jw−jzj.

2.3. Boson-fermion correspondence. Given an odd integer n ∈ 2Z + 1, define
the Hamiltonian Hn by:

(13) Hn =
1

2

∑

i∈Z

(−1)i+1φiφ−i−n.

Then Hn|0〉 = 0 for ∀n > 0. Moreover, the following commutation relation holds:

(14) [Hn, Hm] =
n

2
· δm+n,0, ∀n,m odd.

Now let t = (t1, t3, t5, t7, · · · ) be a family of formal variables, and define:

(15) H+(t) =
∑

n>0: odd

tnHn,

then the so-called boson-fermion correspondence is the following:

Theorem 2.1 ( [10]). There is an isomorphism of vector spaces:

σB : FB → C[[w; t1, t2, · · · ]]/ ∼, |U〉 7→
1∑

i=0

ωi · 〈i|eH+(t)|U〉,

where ω2 ∼ 1, and 〈1| =
√
2〈0|φ0 ∈ (F1

B)
∗. Under this isomorphism, one has:

(16) σB(Hn|U〉) = ∂

∂tn
σB(|U〉), σB(H−n|U〉) = n

2
tn · σB(|U〉),

for every odd n > 0. Moreover,

(17) σB(φ(z)|U〉) = 1√
2
ω · eξ(t,z)e−ξ(∂̃,z−1)σB(|U〉),

where ξ(t, z) =
∑

n>0 odd tnz
n and ∂̃ = (2∂t1 ,

2
3∂t3 ,

2
5∂t5 , · · · ).

Furthermore, one has the following:

Theorem 2.2 ( [44]). Let λ = (λ1 > · · · > λl > 0) ∈ DP , and take:

tn =
2pn
n

=
2

n

∑

i

xni , n odd

in H+(t). Then:

Qλ(x) = 2
1
2 l(λ) · σB(φλ1 · · ·φλl

|α(λ)〉),
where Qλ is the Schur Q-function indexed by λ ∈ DP , and

|α(λ)〉 =
{
|0〉, if l(λ) is even;√
2φ0|0〉, if l(λ) is odd.
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2.4. BKP tau-functions and their affine coordinates. The BKP hierarchy is
introduced by Kyoto School in [10]. A tau-function τ = τ(t) of the BKP hierarchy
is the image of a vector eg|0〉 ∈ F0 under the boson-fermion correspondence:

τ(t) = 〈0|eH+(t)eg|0〉,
where t = (t1, t3, t5, · · · ) and g is of the form g =

∑
m,n∈Z

cm,n : φmφn : such that

(18) cm,n = 0, for |m− n| >> 0.

An alternative way to express a BKP tau-function (or more precisely, an element
in the big cell of the isotropic Grassmannian) in the fermionic Fock space is to use
Bogoliubov transforms which involves only fermionic creators. Now we recall this
approach (see [6, §7] for details). Consider the following vector in FB:

(19) |A〉 := eA|0〉 ∈ F0
B,

where

(20) A =
∑

n,m≥0

an,mφmφn, an,m ∈ C,

are quadratic in the fermionic creators. (Here we do not impose constraints such like
(18) on the coefficients.) Recall that for n,m ≥ 0, one always has φmφn = −φnφm
unless n = m = 0, thus we will always assume that:

(21) an,m = −am,n, ∀n,m ≥ 0.

In particular, an,n = 0 for every n ≥ 0. For an operator A of this form, the following
identity will be useful (which can be proved using the Baker-Campbell-Hausdorff
formula, see e.g. [6, §7.3.4] for details):

(22) e−Aφie
A =

{
φi, i > 0;

φi +
∑

m≥0 2(−1)i(−a−i,m + a−i,0a0,m)φm, i ≤ 0.

One can expand the exponential exp(A) and represent the vector eA|0〉 ∈ F0
B in

terms of the basis {|µ〉}µ∈DP for F0
B. Given an arbitrary strict partition µ ∈ DP ,

we can always regard it as a partition of even length. That means, if µ = (µ1 >
· · · > µk > 0) where k is odd, then we will assign an additional summand µk+1 := 0

to µ. Denote by l̃(µ) ∈ 2Z this modified length of µ:

l̃(µ) =

{
l(µ), if l(µ) is even;

l(µ) + 1, if l(µ) is odd,

Then one has:

(23) eA|0〉 =
∞∑

i=0

1

i!

( ∑

n,m≥0

an,mφmφn
)i|0〉 =

∑

µ∈DP : l(µ) even

cµ · |µ〉.

The coefficients cµ are:

(24) cµ = (−2)l̃(µ)/2 · Pf(aµi,µj
)1≤i,j≤l̃(µ),

where Pf(aµi,µj
) is the Pfaffian of this anti-symmetric matrix of size l̃(µ) × l̃(µ).

This is a straightforward consequence of Wick’s Theorem.
Now one consider the image of a Bogoliubov transformation of the above form

under the boson-fermion correspondence. Denote:

(25) τA := σB(e
A|0〉) = 〈0|eH+(t)eA|0〉 ∈ C[[p1, p3, p5, · · · ]],
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then by (23) and Theorem 2.2 we have the following expansion by Schur Q-functions:

τA =
∑

µ∈DP

cµ · 2−l̃(µ)/2Qµ(x)

=
∑

µ∈DP

(−1)l̃(µ)/2 · Pf(aµi,µj
)1≤i,j≤l̃(µ) ·Qµ(x),

(26)

where the time-variables are taken to be tn = 2pn

n = 2
n

∑
xni for every odd n > 0

in the boson-fermion correspondence. The first a few terms of τA are:

τA =1 +
∑

n>0

a0,n ·Q(n)(x) +
∑

m>n>0

an,m ·Q(m,n)(x)

+
∑

m>n>l>0

(an,ma0,l − al,ma0,n + a0,mal,n)Q(m,n,l)(x)

+
∑

m>n>l>k>0

(an,mak,l − al,mak,n + ak,mal,n)Q(m,n,l,k)(x) + · · · .

The function τA is a tau-function of the BKP hierarchy. Moreover, a formal
power series tau-function τ = τ(t) with constant term τ(0) = 1 can be uniquely
represented as τ = τA for an operator A of the form (20) satisfying the anti-
symmetric condition (21) (see [6, Theorem 7.3.7]). In fact, the coefficient an,m is
exactly the coefficient of Q(m,n) in the Schur Q-function expansion of τ for m >
n ≥ 0. The coefficients {an,m}n,m≥0 are called the affine coordinates of this tau-
function. In the rest of this paper, we will always assume τ(0) = 1.

2.5. Isotropic Sato Grassmannian. The affine coordinates {an,m} discussed
above provide a natural choice of coordinates on the big-cell of the isotropic Sato
Grassmannian associated to the BKP hierarchy. Here we end this section by giving
a brief review of the isotropic Grassmannian. See e.g. [6, §7] for an introduction.

Let H = H+ ⊕ H−, where H+ := span{zi}i≥0 and H− := span{zi}i<0, then
{ej := z−j−1}j∈Z form a basis for H. Let {ẽi}i∈Z be the dual basis for H∗, and
define Hφ ⊂ H ⊕H∗ to be the linear subspace spanned by {e0i }i∈Z, where:

e0i :=
1√
2
(ei + (−1)iẽ−i).

Let Qφ : Hφ × Hφ → C be the nondegenerate symmetric bilinear form on Hφ

satisfying Qφ(e
0
i , e

0
j) = (−1)i+jδi,−j . Then the subspace H0

φ := span{e0i }i<0 ⊂ Hφ

is maximally totally isotropic with respect to Qφ. The Grassmannian Gr0
H0

φ

(Hφ) is

defined to be the orbit of H0
φ under the action of the orthogonal group:

O(Hφ, Qφ) := {g ∈ GL(Hφ)
∣∣Qφ(gu, gv) = Qφ(u, v), ∀u, v ∈ Hφ}.

Let w0 ∈ Gr0
H0

φ

(Hφ) be a maximally isotropic subspace of Hφ, and assume that

w0 = span{wi}i>0. Then one can associate an element Ca(w0) in the projectiviza-
tion P(FB) of the fermionic Fock space to w0 by defining Ca(w0) := [

∏
i>0 φwi

|0〉],
where for wi =

∑
j∈Z

cjie
0
j ∈ Hφ we denote φwi

=
∑

j∈Z
cjiφj . This defines a map

Ca : Gr0H0
φ
(Hφ) → P(FB), w0 7→ Ca(w0),

which is called the Cartan map. It is the infinite-dimensional version of the map
introduced by Cartan [9]. The image of an element in this Grassmannian under the
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Cartan map is of the form (up to projectivization):

(27)
∑

µ∈DP

κµ · |µ〉,

where the coefficients {κµ} satisfy the so-called Cartan relations (which are the
analogue of the Plücker relations on the ordinary Grassmannian). Moreover, the
Cartan relations are equivalent to the BKP Hirota bilinear relations, thus this
fermionic vector becomes a BKP tau-function under the boson-fermion correspon-
dence. The coefficients {κµ} are called the Cartan coordinates of this tau-function.
When w0 lies in a certain subspace (called the big-cell) of the isotropic Grassman-
nian, the fermionic vector corresponding to this BKP tau-function can be uniquely
represented as a Bogoliubov transform of the form (19), and its Cartan coordinates
{κµ} are given by the Pfaffians Pf(aµi,µj

)1≤i,j≤l̃(µ) of the affine coordinates {an,m}.
In particular, an,m is exactly the Cartan coordinate indexed by the strict partition
µ = (m > n ≥ 0). For details, see the book [6, Theorem 7.1.1; §7.3].

3. Computation of Fermionic and Bosonic N-Point Functions

In this section, we compute the fermionic and bosonic n-point functions associ-
ated to a tau-function of the BKP hierarchy. We represent the results in terms of
the generating series of the affine coordinates {an,m}n,m≥0.

3.1. Bosonic and fermionic n-point functions. Let n ≥ 1 be a positive integer,
and let A be an operator of the form (20) satisfying the condition (21). Similar to
the case of KP tau-functions (see [46, §4]), here we consider the bosonic n-point
functions associated to a BKP tau-function τA of the form (25):

(28) 〈H(z1) · · ·H(zn)〉A := 〈0|H(z1) · · ·H(zn)e
A|0〉,

where z1, · · · , zn are some formal variables, and

(29) H(z) =
∑

n∈Z: odd

Hnz
−n

is the generating series of the bosons Hn defined by (13).
Our goal in this section is to represent the bosonic n-point functions in terms of

the affine coordinates {an,m}n,m≥0. In order to do that, we will need to compute
the following fermionic n-point functions first:

(30) 〈φ(z1) · · ·φ(zn)〉A := 〈0|φ(z1) · · ·φ(zn)eA|0〉,
where φ(z) is the generating series (12) of neutral fermions.

3.2. Fermionic 2-point function in terms of affine coordinates. In this sub-
section, we derive a formula for the fermionic 2-point function 〈φ(w)φ(z)〉A in terms
of the generating series of the affine coordinates.

First denote:

φ(w)+ =
∑

i>0

wiφi, φ(w)− =
∑

i<0

wiφi,

then one has φ(w) = φ(w)+ + φ0 + φ(w)−, and:

φ(w)φ(z) =φ(w)+φ(z)+ + φ(w)+φ(z)− + φ(w)−φ(z)+ + φ(w)−φ(z)−

+ φ(w)+φ0 + φ(w)−φ0 + φ0φ(z)+ + φ0φ(z)− +
1

2
.

(31)
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Now we compute the right-hand side of (31) term by term. Since φ−(z)|0〉 = 0,
and 〈0|φi1 · · ·φis |0〉 = 0 unless s is even and i1, · · · , is contains an equal number of
positive and negative integers, we easily see:

〈φ+(w)φ+(z)〉A = 0, 〈φ+(w)φ−(z)〉A = 0,

〈φ(w)+φ0〉A = 〈φ0φ(z)+〉A = 0,

and

〈φ−(w)φ+(z)〉A = 〈
∑

j<0,i>0

wjziφjφi〉A = −iw,z
z

z + w
,

where

(32) iw,z
z

z + w
:=

∞∑

i=1

(−1)i+1w−izi.

Moreover, we have:

〈φ−(w)φ−(z)〉A =〈
∑

i,j<0

wjziφjφi ·
( ∑

m,n>0

an,mφmφn

)
〉

=
∑

n,m>0

(−1)n+man,m(w−nz−m − w−mz−n)

=
∑

n,m>0

(−1)n+m · 2an,mw−nz−m,

where in the last step we have used the anti-symmetry property an,m = −am,n.

Remark 3.1. In the expansion of eA there are terms of the form an,0am,0φ0φnφ0φm.
However, the total contribution of all such terms to 〈φ−(w)φ−(z)〉A turns out to
be zero due to the anti-commutation relation of {φi}i>0 and the anti-symmetry
property an,m = −am,n. In fact, one has:

∑

n,m>0

an,0am,0φ0φnφ0φm =
∑

n,m>0

(−1

2
an,0am,0 · φnφm),

∑

n,m>0

a0,nam,0φnφ0φ0φm = −
∑

n,m>0

1

2
an,0am,0φnφm = −

∑

n,m>0

1

2
am,0an,0φmφn,

where in the second step of the second equality we have exchanged the indices m,n.
Therefore the total contribution of

∑

n,m>0

an,0am,0φ0φnφ0φm +
∑

n,m>0

a0,nam,0φnφ0φ0φm

to 〈φ−(w)φ−(z)〉A is:

−1

2
〈
∑

i,j<0

wjziφjφi ·
∑

n,m>0

an,0am,0(φnφm + φmφn)〉 = 0.

Similarly, the total contribution of
∑

n,m>0

an,0a0,mφ0φnφmφ0 +
∑

n,m>0

a0,na0,mφnφ0φmφ0

is also zero, thus 〈φ−(w)φ−(z)〉A does not contain terms of the form an,0am,0.
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Finally, we have:

〈φ(w)−φ0〉A = 〈
∑

i<0

wiφiφ0 ·
∑

n>0

(
an,0φ0φn + a0,nφnφ0

)
〉A =

∑

n>0

(−1)nan,0w
−n,

〈φ0φ(z)−〉A = 〈
∑

i<0

ziφ0φi ·
∑

n>0

(
an,0φ0φn + a0,nφnφ0

)
〉A = −

∑

n>0

(−1)nan,0z
−n,

since φ20 = 1
2 . Thus by (31) we conclude that:

Proposition 3.1. The fermionic 2-point function is given by:

(33) 〈φ(w)φ(z)〉A = −2A(w, z) + iw,z
w − z

2(w + z)
,

where A(w, z) is the following generating series of {an,m}:

(34) A(w, z) =
∑

n,m>0

(−1)m+n+1 · an,mw−nz−m − 1

2

∑

n>0

(−1)nan,0(w
−n − z−n),

and

(35) iw,z
w − z

2(w + z)
=

1

2
− iw,z

z

z + w
=

1

2
+

∞∑

i=1

(−1)iw−izi.

In what follows, we will also use the following notation:

(36) Â(w, z) := −1

2
〈φ(w)φ(z)〉A = A(w, z)− iw,z

w − z

4(w + z)
.

Remark 3.2. The assumption an,m = −am,n implies that A(w, z) is anti-symmetric:

(37) A(w, z) = −A(z, w).

3.3. Fermionic n-point functions for general n. In this subsection we compute
the fermionic n-point functions 〈φ(z1)φ(z2) · · ·φ(zn)〉A for general n.

It is clear that 〈φ(z1) · · ·φ(zn)〉A = 0 if n is odd. And if n = 2s is even,

〈φ(z1) · · ·φ(z2s)〉A =
∑

i1,··· ,in

zi11 · · · zi2s2s 〈0|φi1φi2 · · ·φi2seA|0〉

=
∑

i1,··· ,in

zi11 · · · zi2s2s 〈0|(e−Aφi1e
A)(e−Aφi2e

A) · · · (e−Aφi2se
A)|0〉

since 〈0|e−A = 〈0|. By (22) we know that e−Aφke
A is a linear combination of the

neutral fermions {φi}i∈Z, thus we can apply Wick’s theorem and get:

〈0|(e−Aφi1e
A)(e−Aφi2e

A) · · · (e−Aφi2se
A)|0〉

=
∑

(p1,q1,··· ,ps,qs)
pk<qk, p1<···<ps

sgn(p, q) ·
s∏

j=1

〈0|(e−Aφipj e
A)(e−Aφiqj e

A)|0〉

=
∑

(p1,q1,··· ,ps,qs)
pk<qk, p1<···<ps

sgn(p, q) ·
s∏

j=1

〈φipj φiqj 〉A,
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where (p1, q1, · · · , ps, qs) is a permutation of (1, 2, · · · , 2s) and sgn(p, q) is the sign
of this permutation. Therefore,

(38) 〈φ(z1) · · ·φ(z2s)〉A =
∑

(p1,q1,··· ,ps,qs)
pk<qk, p1<···<ps

sgn(p, q) ·
s∏

j=1

〈φ(zpj
)φ(zqj )〉A.

This is equivalent to say that 〈φ(z1) · · ·φ(z2s)〉A equals to the Pfaffian of the anti-
symmetric matrix of size 2s × 2s whose upper-triangular part is given by the
fermionic two-point functions (〈φ(zi)φ(zj)〉A) for 1 ≤ i < j ≤ 2s. Then by Propo-
sition 3.1, we conclude that:

Proposition 3.2. We have:

(39) 〈φ(z1) · · ·φ(zn)〉A =

{
0, if n is odd;

Pf
(
B̂ij

)
1≤i,j≤n

, if n is even,

where

(40) B̂ij =





−2Â(zi, zj), if i < j;

0, if i = j;

2Â(zj , zi), if i > j,

and Â(w, z) is the generating series (36) of the affine coordinates.

Remark 3.3. Notice here we cannot take Bij = −2Â(zi, zj) directly for i > j, since

in general Â(zi, zj) 6= −Â(zj , zi). In fact,

Â(w, z) + Â(z, w) = −1

2

∑

n∈Z

(−z
w

)n

= −1

2
δ(−z, w),

where δ is the formal delta-function.

3.4. Representing bosonic fields in terms of fermionic fields. In this sub-
section, we first recall the fact that the bosonic field H(z) is the normal-ordered
product of two fermionic fields. This relation will provide us a way to compute
the bosonic n-point functions using the above results about the fermionic n-point
functions. We deal with the simplest case n = 1 in this subsection, and compute
〈H(z1) · · ·H(zn)〉A for general n in the next subsection.

By the definition (13) we see:

H(z) =
1

2

∑

n∈Z: odd

z−n
(∑

i∈Z

(−1)i+1φiφ−i−n

)

=− 1

2

∑

n∈Z: odd

∑

i∈Z

(−z)iφi · z−i−nφ−i−n.

(41)

Notice that one can also define H2k for a nonzero integer k using (13), and the
anti-commutation relation (5) implies:

H2k = 0, ∀k 6= 0,
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immediately. Thus the equality (41) can be rewritten as:

H(z) =− 1

2

∑

n6=0

∑

i∈Z

(−z)iφi · z−i−nφ−i−n

=− 1

2

∑

n6=0

∑

i∈Z

(−z)i · z−i−n : φiφ−i−n :,

(42)

since : φiφj := φiφj if i+ j 6= 0. Moreover, recall : φ20 := φ20 − 〈0|φ20|0〉 = 0, and

∑

i6=0

(−z)−izi : φ−iφi :=
∑

i>0

(−1)i(φiφ−i − φiφ−i) = 0,

thus one can rewrite (42) as follows:

(43) H(z) = −1

2

∑

n∈Z

∑

i∈Z

(−z)i · z−i−n : φiφ−i−n :,

or equivalently,

(44) H(z) = −1

2
: φ(−z)φ(z) : .

Now we are able to compute the bosonic n-point functions using the relation (44)
and the results for the fermionic n-point functions. The normal-ordered product of
two fermionic fields are given by the OPE:

(45) : φ(w)φ(z) := φ(w)φ(z) − iw,z
w − z

2(w + z)
,

thus:

〈: φ(w)φ(z) :〉A =〈φ(w)φ(z)〉A − 〈0|iw,z
w − z

2(w + z)
· eA|0〉

=〈φ(w)φ(z)〉A − iw,z
w − z

2(w + z)
.

Then by Proposition 3.1 we obtain:

Lemma 3.1. We have 〈: φ(w)φ(z) :〉A = −2A(w, z).

Furthermore, let w → −z and use (44), then we finally get:

Proposition 3.3. The bosonic 1-point function is given by:

(46) 〈H(z)〉A = A(−z, z),

where A(w, z) is the series (34). Or more explicitly,

(47) 〈H(z)〉A =
∑

n,m>0

(−1)m+1 · an,mz−(m+n) +
∑

n>0

ǫn · (−1)nan,0z
−n,

where

ǫn =

{
0, n even;

1, n odd.



BKP HIERARCHY AND CONNECTED BOSONIC N-POINT FUNCTIONS 15

3.5. Bosonic n-point functions for general n. Now we can compute the bosonic
n-point functions 〈H(z1) · · ·H(zn)〉A for general n. First we prove the following:

Proposition 3.4. We have:

(48) 〈: φ(z1)φ(z2) :: φ(z3)φ(z4) : · · · : φ(z2s−1)φ(z2s) :〉A = Pf(Bij)1≤i,j≤2s,

where the entries Bij are defined as follows. For 1 ≤ i < j ≤ 2s,

(49) Bij =

{
−2A(zi, zj), if i = 2r − 1, j = 2r for some 1 ≤ r ≤ s;

−2Â(zi, zj), otherwise,

and Bij = −Bji if i > j, where A(w, z) and Â(w, z) are given by (34) and (36)
respectively. And Bii = 0 for every i.

Proof. First recall the OPE (45). We have:

〈: φ(z1)φ(z2) :: φ(z3)φ(z4) : · · · : φ(z2s−1)φ(z2s) :〉A
=〈

(
φ(z1)φ(z2)− iz1,z2

z1 − z2
2(z1 + z2)

)
· · ·

(
φ(z2s−1)φ(z2s)− iz2s−1,z2s

z2s−1 − z2s
2(z2s−1 + z2s)

)
〉A

=
∑

K⊔L={1,2,··· ,s}

(∏

l∈L

fl

)
· 〈φK〉A,

(50)

where for a subset K = {k1, · · · , kr} ⊂ {1, · · · , s} with k1 < k2 < · · · < kr, denote:

(51) φK = φ(z2k1−1)φ(z2k1 )φ(z2k2−1)φ(z2k2 ) · · ·φ(z2kr−1)φ(z2kr
),

and

(52) fl = −iz2l−1,z2l

z2l−1 − z2l
2(z2l−1 + z2l)

.

Then applying Wick’s theorem (see (38)) to 〈φK〉A in (50), we get:

〈: φ(z1)φ(z2) :: φ(z3)φ(z4) : · · · : φ(z2s−1)φ(z2s) :〉A

=
∑

K⊔L={1,2,··· ,s}

∑

(p1,q1,··· ,pr ,qr)
pi<qi, p1<···<pr

sgn(p, q) ·
(∏

l∈L

fl

)
·

r∏

i=1

〈φ(zpi
)φ(zqi )〉A,(53)

where (p1, q1, · · · , pr, qr) is a permutation of (2k1 − 1, 2k1, 2k2 − 1, 2k2, · · · , 2kr −
1, 2kr) and sgn(p, q) is the sign of this permutation.

On the other hand, since for every 1 ≤ i < j ≤ 2s one has:

Bij =

{
〈φ(zi)φ(zj)〉A + ft, if i = 2t− 1, j = 2t for some 1 ≤ t ≤ s;

〈φ(zi)φ(zj)〉A, otherwise,

thus the Pfaffian of the matrix B = (Bij)1≤i,j≤2s is:

(54) Pf(B) =
∑

(p′
1,q

′
1,··· ,p

′
s,q

′
s)

p′
i<q′i, p′

1<···<p′
s

sgn(p′, q′)
s∏

i=1

(
〈φ(zp′

i
)φ(zq′

i
)〉A + f(p′i, q

′
i)
)
,

where (p′1, q
′
1, · · · , p′s, q′s) is a permutation of (1, 2, · · · , 2s), and

f(p′i, q
′
i) :=

{
ft, if p′i = 2t− 1, q′i = 2t for some 1 ≤ t ≤ s;

0, otherwise.



16 ZHIYUAN WANG AND CHENGLANG YANG

It is clear that (53) and (54) are equal, thus we have proved the conclusion. �

Now recall that H(w) = − 1
2 : φ(−w)φ(w) :. Therefore the following theorem is

proved by taking z2i−1 → −wi and z2i → wi.

Theorem 3.1. We have:

(55) 〈H(w1) · · ·H(wn)〉A = Pf(Cij)1≤i,j≤2n,

where the entries Cij are defined as follows. For 1 ≤ i < j ≤ 2n,

(56) Cij =

{
A(−wr, wr), i = 2r − 1, j = 2r for some 1 ≤ r ≤ n;

Â
(
(−1)iw⌈ i

2 ⌉
, (−1)jw⌈ j

2 ⌉
), otherwise,

and Cij = −Cji if i > j; Cii = 0 for every i. Here ⌈ i
2⌉ = i

2 if i is even, and

⌈ i
2⌉ = i+1

2 if i is odd.

Example 3.1. Let us present some examples. For n = 1, we see:

〈H(w)〉A = Pf

[
0 A(−w,w)

−A(−w,w) 0

]
= A(−w,w).

For n = 2, we have:

〈H(w1)H(w2)〉U

=Pf




0 A(−w1, w1) Â(−w1,−w2) Â(−w1, w2)

−A(−w1, w1) 0 Â(w1,−w2) Â(w1, w2)

−Â(−w1,−w2) −Â(w1,−w2) 0 A(−w2, w2)

−Â(−w1, w2) −Â(w1, w2) −A(−w2, w2) 0




=A(−w1, w1)A(−w2, w2)− Â(−w1,−w2)Â(w1, w2) + Â(−w1, w2)Â(w1,−w2).

And for n = 3, one can check that:

〈H(w1)H(w2)H(w3)〉A = Â(−w1, w3)Â(w1,−w3)A(−w2, w2)

− Â(−w1,−w3)Â(w1, w3)A(−w2, w2)− Â(−w1, w3)Â(w1, w2)Â(−w2,−w3)

+ Â(−w1, w2)Â(w1, w3)Â(−w2,−w3) + Â(−w1,−w3)Â(w1, w2)Â(−w2, w3)

− Â(−w1, w2)Â(w1,−w3)Â(−w2, w3) + Â(−w1, w3)Â(w1,−w2)Â(w2,−w3)

− Â(−w1,−w2)Â(w1, w3)Â(w2,−w3) +A(−w1, w1)Â(−w2, w3)Â(w2,−w3)

− Â(−w1,−w3)Â(w1,−w2)Â(w2, w3) + Â(−w1,−w2)Â(w1,−w3)Â(w2, w3)

−A(−w1, w1)Â(−w2,−w3)Â(w2, w3) + Â(−w1, w2)Â(w1,−w2)A(−w3, w3)

− Â(−w1,−w2)Â(w1, w2)A(−w3, w3) +A(−w1, w1)A(−w2, w2)A(−w3, w3).

3.6. A(w, z) as a specialization of tau-function. Similar to the case of the
KP hierarchy (see [46, §5.6]), the generating series A(w, z) defined by (34) can be
represented as a special evaluation of the tau-function τA(t). We show this in the
present subsection. This relation will be useful in §5.
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First recall the relation (17). One has:

〈0|eH+(t)φ(w)φ(z)eA|0〉 =1

2
eξ(t,w)e−ξ(∂̃,w−1)eξ(t,z)e−ξ(∂̃,z−1)τA(t)

=
1

2
e−[ξ(∂̃,w−1),ξ(t,z)]eξ(t,z)+ξ(t,w)e−ξ(∂̃,w−1)−ξ(∂̃,z−1)τA(t)

=iw,z
w − z

2(w + z)
· exp

( ∑

n>0: odd

tn(w
n + zn)

)

· exp
(
−

∑

n>0: odd

2

n
(w−n + z−n)

∂

∂tn

)
.τA(t),

where the operator exp
(
−∑

n>0: odd
2
n (w

−n + z−n) ∂
∂tn

)
acts by shifting each time

variable tn by −( 2n (w
−n + z−n)). Thus:

〈0|eH+(t)φ(w)φ(z)eA|0〉

=iw,z
w − z

2(w + z)
· exp

( ∑

n>0: odd

tn(w
n + zn)

)
· τA

(
tn − 2

n
(w−n + z−n)

)
.

Restricting to t = 0, one obtains:

〈φ(w)φ(z)〉A = iw,z
w − z

2(w + z)
· τA(t)

∣∣
tn=− 2

n
(w−n+z−n)

.

Then by (36) we have:

Proposition 3.5. The generating series Â(w, z) of affine coordinates is given by
the following evaluation of the tau-function τA(t1, t3, t5, · · · ):

(57) Â(w, z) = −iw,z
w − z

4(w + z)
· τA(t)

∣∣
tn=− 2

n
(w−n+z−n)

.

Or equivalently,

(58) A(w, z) = −iw,z
w − z

4(w + z)
·
(
τA(t)

∣∣
tn=− 2

n
(w−n+z−n)

− 1
)
.

4. A Formula for Connected Bosonic N-Point Functions

In the previous section we have computed the bosonic n-point functions associ-
ated to a BKP tau-function τA(t). Now in this section, we derive a formula for the
connected bosonic n-point functions 〈H(z1) · · ·H(zn)〉cA in terms of the generating
series of affine coordinates. This formula is the BKP-analogue of the formula (2)
derived by Zhou in [46]. We will see that the connected bosonic n-point functions
〈H(z1) · · ·H(zn)〉cA is the generating series of the n-point correlators of the free
energy FA = log τA (with an additional modification at n = 2).

4.1. Connected bosonic n-point functions. First we recall the notion of the
connected bosonic n-point functions associated to a tau-function τA(t).
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Following [46, §5.1], define the connected n-point functions 〈H(z1) · · ·H(zn)〉cA
associated to the tau-function τA(t) by the Möbius inversion formulas:

〈H(z1) · · ·H(zn)〉A =
∑

I1⊔···⊔Ik=[n]

1

k!
〈H(zI1)〉cA · · · 〈H(zIk)〉cA,

〈H(z1) · · ·H(zn)〉cA :=
∑

I1⊔···⊔Ik=[n]

(−1)k−1

k
〈H(zI1)〉A · · · 〈H(zIk)〉A,

(59)

where [n] := {1, 2, · · · , n}; and for a subset I = {i1, i2, · · · , im} ⊂ [n] with i1 <
i2 < · · · < im, denote:

H(zI) = H(zi1)H(zi2) · · ·H(zim).

For example:

〈H(z1)〉cA = 〈H(z1)〉A,
〈H(z1)H(z2)〉cA = 〈H(z1)H(z2)〉A − 〈H(z1)〉A · 〈H(z2)〉A,
〈H(z1)H(z2)H(z3)〉cA = 〈H(z1)H(z2)H(z3)〉A − 〈H(z1)H(z2)〉A · 〈H(z3)〉A

− 〈H(z1)H(z3)〉A · 〈H(z2)〉A − 〈H(z2)H(z3)〉A · 〈H(z1)〉A
+ 2〈H(z1)〉A · 〈H(z2)〉A · 〈H(z3)〉A.

4.2. Relation to the free energy. Given a BKP tau-function τA = τA(t), one
can consider the formal quantum field theory associated to τA (see [47] for an
introduction of the notion of formal quantum field theory). Roughly speaking, we
regard the tau-function τA = τA(t) as a partition function and regard the BKP-time
variables t = (t1, t3, t5, · · · ) as the coupling constants. Then the logarithm

(60) FA(t) := log τA(t)

is called the free energy, and the coefficient of the term tm1
1 tm3

3 · · · tm2k+1

2k+1 (where
mi ≥ 0 and

∑
imi =n) in FA(t) is called a connected n-point correlator.

Now we are interested in the computation of the free energy FA, or equivalently,
the computation of the connected correlators. This question is actually equivalent
to the computation of the connected bosonic n-point functions 〈H(z1) · · ·H(zn)〉cA,
since we have the following:

Lemma 4.1. For every n ≥ 1,

∑

i1,··· ,in>0: odd

∂nFA(t)

∂ti1 · · · ∂tin

∣∣∣∣
t=0

· z−i1
1 · · · z−in

n

=− δn,2 · iz1,z2
z1z2(z

2
2 + z21)

2(z21 − z22)
2

+ 〈H(z1) · · ·H(zn)〉cA,
(61)

where:

(62) iz1,z2
z1z2(z

2
2 + z21)

2(z21 − z22)
2

:=
∑

n>0: odd

n

2
z−n
1 zn2 .

This lemma can be proved by the same method used by Zhou in [46, §5], and
one only needs to replace the KP-time variables (T1, T2, T3, · · · ) in that work by
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the BKP-time variables (t1, t3, t5, · · · ). Here we briefly review the verification of
the cases n = 1, 2 since our additional term

−δn,2 · iz1,z2
z1z2(z

2
2 + z21)

2(z21 − z22)
2

appearing at n = 2 is different from the additional term in [46]. First, we denote:

f(z1, · · · , zn) :=σB
(
H(z1) · · ·H(zn)e

A|0〉
)
/τA(t)

=〈0|eH+(t)H(z1) · · ·H(zn)e
A|0〉/τA(t),

and define f c(z1, · · · , zn) by:

f c(z1, · · · , zn) :=
∑

I1⊔···⊔Ik=[n]

(−1)k−1

k
f(zI1) · · · f(zIk),

then we easily see that:

〈H(z1) · · ·H(zn)〉A = f(z1, · · · , zn)|t=0,

〈H(z1) · · ·H(zn)〉cA = f c(z1, · · · , zn)|t=0.

Now we can compute f(z1, · · · , zn) using (16). For n = 1 we have:

f(z) =
1

τA(t)
·
( ∑

n>0: odd

∂

∂tn
· z−n +

∑

n>0: odd

n

2
tn · zn

)
τA(t)

=
∑

n>0: odd

∂FA(t)

∂tn
· z−n +

∑

n>0: odd

n

2
tn · zn,

and thus by restricting to t = 0 we obtain a proof of the case n = 1 of (61), since
f c(z) = f(z). Similarly, for n = 2 one has:

f(z1, z2) =
1

τA

∑

n1,n2>0: odd

( ∂

∂tn1

z−n1
1 +

n1

2
tn1z

n1
1

)( ∂

∂tn2

z−n2
2 +

n2

2
tn2z

n2
2

)
τA,

and thus:

f(z1, z2) =
∑

n1,n2>0: odd

( ∂2FA

∂t1∂t2
+
∂FA

∂t1

∂FA

∂t2

)
z−n1
1 z−n2

2 +
∑

n>0: odd

n

2
z−n
1 zn2

+
∑

n1,n2>0: odd

(n1

2
tn1

∂FA

∂tn2

· zn1
1 z−n2

2 +
n2

2
tn2

∂FA

∂tn1

· z−n1
1 zn2

2

)

+
∑

n1,n2>0: odd

(n1n2

4
tn1tn2

)
zn1
1 zn2

2

=
∑

n1,n2>0: odd

∂2FA

∂t1∂t2
· z−n1

1 z−n2
2 + f(z1)f(z2) + iz1,z2

z1z2(z
2
2 + z21)

2(z21 − z22)
2
,

and then by f c(z1, z2) = f(z1, z2)− f(z1)f(z2) we get:

f c(z1, z2) = iz1,z2
z1z2(z

2
2 + z21)

2(z21 − z22)
2

+
∑

n1,n2>0: odd

∂2FA

∂t1∂t2
· z−n1

1 z−n2
2 .

Taking t = 0, and we have proved the case n = 2.
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In general cases n ≥ 3, the relation (61) follows from:

f c(z1, · · · , zn) =
∑

i1,··· ,in>0: odd

∂nFA(t)

∂ti1 · · · ∂tin
· z−i1

1 · · · z−in
n , ∀n ≥ 3.

See [46, Prop. 5.1] for a detailed proof for n ≥ 3, and here we will not repeat this.

4.3. Computation of the connected bosonic n-point functions. In this sub-
section we derive a formula for the connected bosonic n-point functions of a tau-
function τA using the results in §3.5. First we prove a combinatorial result about
Pfaffians. The following is a Pfaffian-analogue of [46, Prop. 5.2]:

Proposition 4.1. Assume ξ(x, y) is a function with ξ(x, y) = −ξ(y, x), and for
each n ≥ 1 we define an anti-symmetric matrix M(n) of size 2n× 2n by:

(63) M(n)ij = ξ
(
(−1)iz⌈ i

2 ⌉
, (−1)jz⌈ j

2 ⌉
)

for 1 ≤ i < j ≤ 2n. Define:

ϕ(z1, · · · , zn) := Pf(M(n)ij)1≤i,j≤2n

for every n, then the connected version

ϕc(z1, · · · , zn) :=
∑

I1⊔···⊔Ik=[n]

(−1)k−1

k
ϕ(zI1) · · ·ϕ(zIk),

is given by:

(64) ϕc(z1, · · · , zn) =
∑

n-cycles σ
ǫ2,··· ,ǫn∈{±1}

(−ǫ2 · · · ǫn) ·
n∏

i=1

ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)),

where we use the conventions ǫ1 := 1 and σ(n+ 1) := σ(1).

Proof. We prove by induction on n. For n = 1, there is only one 1-cycle σ = (1),
and the right-hand side of (64) is −ξ(z1,−z1) = ξ(−z1, z1). This matches with:

ϕc(z1) := ϕ(z1) = Pf

[
0 ξ(−z1, z1)

−ξ(−z1, z1) 0

]
= ξ(−z1, z1).

Now assume (64) holds for 1, 2, · · · , n− 1, and consider the case of n. We intro-
duce some notations for convenience. Let Ck ⊂ Sn be the subset of permutations
that can be decomposed as a product of k cycles. Given σ ∈ Ck, one decomposes
it as a product σ = σ1 · · ·σk, where σj is a cycle σj = (i1j i

2
j · · · i

rj
j ). Denote:

X(z;σ) =

k∏

j=1

∑

ǫ(ilj)∈{±1}
l=2,··· ,rj

(
−

rj∏

l=2

ǫ(ilj)
) rj∏

s=1

ξ(ǫ(σj(i
s
j))zσj(isj )

,−ǫ(σj(is+1
j ))zσj(i

s+1
j

)),

where we use the convention ǫ1j := 1 and σj(i
rj+1
j ) := σj(i

1
j).

Now recall that by the Möbius inversion formula we have:

ϕ(z1, · · · , zn) =
∑

I1⊔···⊔Ik=[n]

1

k!
ϕc(zI1) · · ·ϕc(zIk)

=ϕc(z1, · · · , zn) +
∑

k≥2

∑

I1⊔···⊔Ik=[n]

1

k!
ϕc(zI1) · · ·ϕc(zIk).

(65)
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Let [n] = I1 ⊔ · · · ⊔ Ik be a decomposition of [n] = {1, 2, · · · , n} (for k ≥ 2), and

denote Ij = {i1j , · · · , i
|Ij |
j } where i1j < · · · < i

|Ij |
j . Then by induction hypothesis:

ϕc(zIj ) =
∑

σj : |Ij |-cycle

ǫ2j ,··· ,ǫ
|Ij|

j
∈{±1}

(−ǫ2j · · · ǫ
|Ij|
j )

|Ij |∏

s=1

ξ(ǫ
σj(s)
j z

i
σj(s)

j

,−ǫσj(s+1)
j z

i
σj(s+1)

j

),

and thus:

ϕc(zI1) · · ·ϕc(zIk) = (−1)k
∑

σ1,··· ,σk

ǫlj∈{±1}

k∏

j=1

|Ij |∏

l=1

ǫlj

|Ij |∏

s=1

ξ(ǫ
σj(s)
j z

i
σj(s)

j

,−ǫσj(s+1)
j z

i
σj(s+1)

j

).

Now fix a decomposition [n] = I1⊔· · ·⊔Ik. Then given a family of cycles σ1, · · · , σk,
one can associate a permutation σ ∈ Sn by:

σ = (i
σ1(1)
1 · · · iσ1(|I1|)

1 ) · · · (iσk(1)
k · · · iσk(|Ik|)

k ).

Conversely, each permutation σ ∈ Sn can be uniquely decomposed into a product
of cycles. Therefore, from the above discussions we see:

(66)
∑

σ∈Ck

X(z;σ) =
∑

I1⊔···⊔Ik=[n]

1

k!
ϕc(zI1) · · ·ϕc(zIk), ∀k ≥ 2,

where the additional factor 1
k! indicates that there are k! ways to permute the

indices of the subsets I1, · · · , Ik.
Recall that the conclusion we want to prove is actually:

ϕc(z1, · · · , zn) =
∑

σ∈C1

X(z;σ),

thus by (65) and (66), it suffices to prove:

(67) ϕ(z1, · · · , zn) =
∑

σ∈Sn

X(z;σ).

Now we prove this equality. First recall that:

ϕ(z1, · · · , zn) =
∑

(p1,q1,··· ,pn,qn)
pi<qi, p1<···<pn

sgn(p,q) ·
n∏

i=1

(M(n))piqi

=
∑

(p1,q1,··· ,pn,qn)
pi<qi, p1<···<pn

sgn(p,q) ·
n∏

i=1

ξ
(
(−1)piz⌈ pi

2 ⌉, (−1)qiz⌈ qi
2 ⌉

)
,

(68)

where (p1, q1, · · · , pn, qn) is a permutation of (1, 2, · · · , 2n). Notice that the ar-
guments {(−1)piz⌈ pi

2 ⌉, (−1)qjz⌈ qj

2 ⌉} run over {±z1, · · · ,±zn}, thus one can always

decompose the product

(69)

n∏

i=1

ξ
(
(−1)piz⌈ pi

2 ⌉, (−1)qiz⌈ qi
2 ⌉

)

into some ‘loops’ of the form:

±ξ(zi1 ,−γ2zi2)ξ(γ2zi2 ,−γ3zi3) · · · ξ(γrzir ,−zi1),
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where γ2, · · · , γr = ±1, and we have used ξ(x, y) = −ξ(y, x) to rearrange the
arguments suitably and produced some factors ±1. A loop of this form determines
a cycle of length r in Sn, and a decomposition into such loops corresponds to an
element σ in Sn which is the product of these cycles σ = (i1 · · · ir)(j1 · · · js) · · · .
One easily sees that for each cycle (i1 · · · ir), the (r − 2) signs γ2, · · · , γr = ±1
can be chosen arbitrarily. Moreover, a choice of the permutation (pi, qi)

n
i=1 of [2n]

(with pi < qi and p1 < · · · pn) is equivalent to a choice of the permutation σ ∈ Sn

together with this signs ±1 for each cycle. Thus we obtain:

ϕ(z1, · · · , zn) =
∑

σ∈Sn

Y (z;σ),

where Y (z;σ) is of the form:

Y (z;σ) = ±
k∏

j=1

∑

γ(ilj)∈{±1}
l=2,··· ,rj

rj∏

l=2

γ(ilj)

rj∏

s=1

ξ(γ(σ(isj))zσ(isj ),−γ(σ(i
s+1
j ))zσ(is+1

j
)),

and the choice of the sign ± is determined by the rearrangement of the product
(69) using ξ(x, y) = −ξ(y, x). Notice that fixing a permutation σ ∈ Sn is actually
equivalent to fixing a family of cycles σ1, · · · , σk (and there are k! ways to permuting
the subscripts), thus by comparing X(z;σ) with Y (z;σ) we see that in order to
prove (67), we only need to show the sign ± in Y (z;σ) is (−1)k for σ ∈ Ck.

First we consider a permutations σ0 ∈ Sn of the following standard form:

(70) σ0 = (1, · · · , r1)(r1 + 1, · · · , r2) · · · (n− rk + 1, · · · , n),
together with the simplest choice of signs γi ≡ 1. In this case the sign ± is simply
sgn(p, q). Notice that the first cycle (1, 2, · · · , r1) corresponds to the product:

ξ(z1,−z2)ξ(z2,−z3) · · · ξ(zr1 ,−z1),
and the corresponding permutation (pi, qi) of [2n] contains the cycle (2, 3, · · · , 2r1, 1)
which is an odd permutation in S2n. Similarly, every cycle in σ0 corresponds to an
odd cycle in (pi, qi), therefore sgn(p, q) = (−1)k where k is the number of cycles,
which proves the conclusion in this special case.

Now we consider a general permutation σ ∈ Sn together with the simplest choice
of signs γi ≡ 1. Assume that σ contains k cycles, then it is conjugate to the standard
form (70) for some ri, i.e., one can find a sequence of transpositions τ1, · · · , τt ∈ Sn

such that σ = τt · · · τ1σ0τ−1
1 · · · τ−1

t . It is easy to check that conjugation by a
transposition τi does not change sgn(p, q) and the sign produced in rearranging
the produce (69). Furthermore, replacing a sign γi = 1 by γi = −1 also preserves
the sign ± in Y (z;σ). Thus the sign ± in Y (z;σ) is always (−1)k where k is the
number of cycles in σ ∈ Sn, thus we have proved Y (z;σ) = X(z;σ). �

Now we can state our main result of this work. Take the matrix M(n) to be
(Cij)1≤i,j≤2n (see Theorem 3.1), then we find a way to compute the connected
n-point functions 〈H(z1) · · ·H(zn)〉cA. For n = 1, this simply tell us:

〈H(z1)〉cA = ξ(−z1, z1) = A(−z1, z1).
Notice that the special case σ(i) = σ(i + 1) only appearing in the case n = 1 since
σ is an n-cycle.
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And for n ≥ 2, the above proposition gives the following formula for the con-
nected bosonic n-point functions:

〈H(z1) · · ·H(zn)〉cA =
∑

n-cycles σ
ǫ2,··· ,ǫn∈{±1}

(−ǫ2 · · · ǫn) ·
n∏

i=1

ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)),

where for σ(i) < σ(i + 1),

(71) ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)) := Â(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1));

and for σ(i) > σ(i + 1),

ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)) :=− ξ(−ǫσ(i+1)zσ(i+1), ǫσ(i)zσ(i))

=− Â(−ǫσ(i+1)zσ(i+1), ǫσ(i)zσ(i)).
(72)

Thus by Lemma 4.1, we obtain the following:

Theorem 4.1. Let τA = τ(t) be a tau-function of the BKP hierarchy with τ(0) = 1,

and let A(w, z), Â(w, z) be the generating series of the affine coordinates defined by
(34) and (36) respectively. Denote FA = log τA, then we have:

(73)
∑

i>0: odd

∂FA(t)

∂ti

∣∣∣∣
t=0

· z−i = A(−z, z),

and for n ≥ 2,

∑

i1,··· ,in>0: odd

∂nFA(t)

∂ti1 · · · ∂tin

∣∣∣∣
t=0

· z−i1
1 · · · z−in

n = −δn,2 · iz1,z2
z1z2(z

2
2 + z21)

2(z21 − z22)
2

+
∑

σ: n-cycle
ǫ2,··· ,ǫn∈{±1}

(−ǫ2 · · · ǫn) ·
n∏

i=1

ξ(ǫσ(i)zσ(i),−ǫσ(i+1)zσ(i+1)),
(74)

where ξ is given by (71)-(72), and we use the conventions ǫ1 := 1, σ(n+1) := σ(1).

Example 4.1. Here we write down the explicit formulas for small n. For n = 2,
there is only one 2-cycle σ = (12), thus:

∑

n1,n2>0: odd

∂2FA(t)

∂tn1∂tn2

∣∣∣∣
t=0

z−n1
1 z−n2

2

=− iz1,z2
z1z2(z

2
2 + z21)

2(z21 − z22)
2

− Â(z1, z2)Â(−z1,−z2) + Â(z1,−z2)Â(−z1, z2).

And for n = 3, there are two 3-cycles σ = (123), (132), thus the result is:

∑

n1,n2,n3>0: odd

∂3FA(t)

∂tn1∂tn2∂tn3

∣∣∣∣
t=0

z−n1
1 z−n2

2 z−n3
3

=− Â(z1, z2)Â(−z2,−z3)Â(−z1, z3) + Â(z1, z2)Â(−z2, z3)Â(−z1,−z3)
− Â(z1,−z2)Â(z2, z3)Â(−z1,−z3) + Â(z1,−z2)Â(z2,−z3)Â(−z1, z3)
+ Â(z1, z3)Â(−z2,−z3)Â(−z1, z2)− Â(z1, z3)Â(z2,−z3)Â(−z1,−z2)
+ Â(z1,−z3)Â(z2, z3)Â(−z1,−z2)− Â(z1,−z3)Â(−z2, z3)Â(−z1, z2).
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For n = 4, there are six 4-cycles σ = (1234), (1243), (1324), (1342), (1423), (1432),
and there are 6×23 = 48 terms in the right-hand side of the formula. For simplicity
here we only write down the first 8 terms (corresponding to σ = (1234)):

∑

n1,n2,n3,n4>0: odd

∂4FA(t)

∂tn1∂tn2∂tn3∂tn4

∣∣∣∣
t=0

z−n1
1 z−n2

2 z−n3
3 z−n4

4

=Â(z1,−z2)Â(z2,−z3)Â(z3,−z4)Â(−z1, z4)
− Â(z1,−z2)Â(z2,−z3)Â(z3, z4)Â(−z1,−z4)
− Â(z1,−z2)Â(z2, z3)Â(−z3,−z4)Â(−z1, z4)
+ Â(z1,−z2)Â(z2, z3)Â(−z3, z4)Â(−z1,−z4)
− Â(z1, z2)Â(−z2,−z3)Â(z3,−z4)Â(−z1, z4)
+ Â(z1, z2)Â(−z2,−z3)Â(z3, z4)Â(−z1,−z4)
+ Â(z1, z2)Â(−z2, z3)Â(−z3,−z4)Â(−z1, z4)
− Â(z1, z2)Â(−z2, z3)Â(−z3, z4)Â(−z1,−z4) + other 40 terms.

The other 40 terms are obtained by permuting the indices {2, 3, 4}, suitably exchange

the arguments in Â such that i < j in Â(±zi,±zj), and then suitably multiplying
by some ±1 on each term.

5. Tau-Functions of KdV Hierarchy: KP vs. BKP

In [3], Alexandrov showed that if τ = τ(t) is a tau-function of the KdV hierarchy,
where t = (t1, t3, t5, · · · ) are the KdV-time variables, then

τ̃ (t) := τ(t/2)

is a tau-function of the BKP hierarchy with time variables t. Moreover, it is well-
known that the KdV hierarchy is a reduction of the KP hierarchy, thus τ is auto-
matically a tau-function of the KP hierarchy. Now given a tau-function τ of the
KdV hierarchy, one has two parallel approaches to study its affine coordinates and
compute the connected n-point functions:

1) The KP-affine coordinates {aKP
n,m}n,m≥0 of τ ;

2) The BKP-affine coordinates {aBKP
n,m }n,m≥0 of τ̃ .

In this section, we show that the two generating series of these two family of affine
coordinates are related by a simple relation (see Theorem 5.1).

5.1. Relation between KP- and BKP-affine coordinates. Let τ(t) be a tau-
function of the KdV hierarchy with τ(0) = 1, and let τ̃ (t) := τ(t/2). To avoid
confusions, we denote by ABKP(w, z) the generating seires (34) of affine coordinates
{aBKP

n,m }n,m≥0 of the BKP tau-function τ̃ (t), and denote by

(75) AKP(x, y) =
∑

n,m≥0

aKP
n,mx

−n−1y−m−1

the generating series of the affine coordinates of the KP tau-function τ(T ) (see [46]
for details). Notice here T = (T1, T2, T3, · · · ) are the KP-times variables, and
tn = Tn for every n > 0 odd. The KP tau-function τ(t) = τ(T ) is independent of
(T2, T4, T6, · · · ) by the definition of the KdV hierarchy.
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In [46, §5.6], Zhou has proved the following relation for KP tau-functions:

(76) AKP(x, y) = ix,y
1

x− y

(
τ(T )

∣∣
Tn=

1
n
(y−n−x−n)

− 1
)
,

thus in our case we have:

(77) AKP(x,−y) = ix,y
1

x+ y

(
τ(t)

∣∣
tn=− 1

n
(x−n+y−n)

− 1
)
,

since τ is independent of (T2, T4, · · · ).
On the other hand, by Proposition 3.5 we have:

ABKP(w, z) =− iw,z
w − z

4(w + z)
·
(
τ̃ (t)

∣∣
tn=− 2

n
(w−n+z−n)

− 1
)

=− iw,z
w − z

4(w + z)
·
(
τ(t)

∣∣
tn=− 1

n
(w−n+z−n)

− 1
)
.

(78)

Now comparing (77) with (78), we obtain the following:

Theorem 5.1. Let τ(t) be a tau-function of the KdV hierarchy. Then:

(79) ABKP(w, z) = −w − z

4
·AKP(w,−z).

5.2. Affine coordinates for a special class of KdV tau-functions. In [46,
§6.9] Zhou derived a simple formula for the generating series of the KP-affine coor-
dinates of the Witten-Kontsevich tau-function in terms of the Faber-Zagier series,
using a result of Balogh-Yang in [7]. One easily sees that this method applies to a
family of tau-functions of the KdV hierarchy satisfies a special condition (the condi-
tion detG(z) = 1 below). This will provide us a way to find simple formulas for the
generating series of KP- and BKP-affine coordinates of such KdV tau-functions. In
this subsection, we first give a brief review of this method for such tau-functions,
and then combine it with Theorem 5.1.

In Sato’s theory [36], a tau-function of the KdV hierarchy corresponds to an
elementW in the big cell of the Sato-Grassmannian satisfying the condition z2W ⊂
W . Here W is a subspace W ⊂ C[z]⊕ z−1C[[z−1]] of the form:

W = span{Φ1(z),Φ2(z),Φ3(z), · · · },
where

Φi(z) = zi−1 + lower order terms

is Laurent series in z of degree i − 1. The subspace W is uniquely determined by
the first two basis vectors Φ1(z) and Φ2(z), since one has:

W = span{z2nΦ1(z), z
2nΦ2(z)}n≥0.

Denote:

(80) Φ1(z) = 1 +
∑

n≥1

anz
−n, z−1Φ2(z) = 1 +

∑

n≥1

bnz
−n,

and denote by {aKP
n,m}n,m≥0 the KP-affine coordinates of this tau-function. The

following formula is due to Balogh-Yang [7, Lemma 2.4]:

(81)
∑

m,n≥0

[
aKP
2n,2m+1 aKP

2n+1,2m+1

aKP
2n,2m aKP

2n+1,2m

]
x−m−1y−n−1 =

1

x− y

(
I −G(x)G(y)−1

)
,
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where G is the matrix:

G(z) =

[
1 +

∑
n≥1 a2nz

−n
∑

n≥0 b2n+1z
−n

∑
n≥1 a2n−1z

−n 1 +
∑

n≥1 b2nz
−n

]
.

If the condition det(G(z)) = 1 holds, then:

G(y)−1 =

[
1 +

∑
n≥1 b2nz

−n −∑
n≥0 b2n+1z

−n

−∑
n≥1 a2n−1z

−n 1 +
∑

n≥1 a2nz
−n

]
.

The relation (81) for 2× 2 matrices gives us four identities, and the first one is:
∑

m,n≥0

aKP
2n,2m+1x

−m−1y−n−1

=
1

x− y

(
1−

∑

k,l≥0

a2kx
−kb2ly

−l +
∑

k,l≥0

b2k+1x
−ka2l−1y

−l
)
,

and taking x = z2, y = w2 gives:
∑

m,n≥0

aKP
2n,2m+1z

−2m−2w−2n−1

=
w

z2 − w2

(
1−

∑

k,l≥0

a2kz
−2kb2lw

−2l +
∑

k,l≥0

b2k+1z
−2ka2l−1w

−2l
)
.

One can similarly write down the other three identities and then sum the four
identities together, and the final result is (see [46, (282)] for the case of the Witten-
Kontsevich tau-function):

(82)
∑

m,n≥0

aKP
n,mw

−n−1z−m−1 = iw,z
1

z − w
+

Φ1(z)Φ2(−w)− Φ2(z)Φ1(−w)
z2 − w2

.

Thus by Theorem 5.1, we obtain the following formulas for the generating series of

the BKP-affine coordinates ABKP, ÂBKP defined by (34) and (36) respectively:

Proposition 5.1. Let τ(t) be a tau-function of the KdV hierarchy satisfying the
condition detG(z) = 1. Then the generating series of the BKP-affine coordinates
{aBKP

m,n } of τ̃ (t) = τ(t/2) is given by:

(83) ABKP(w, z) =
w − z +Φ1(−z)Φ2(−w)− Φ1(−w)Φ2(−z)

4(w + z)
,

and

(84) ÂBKP(w, z) =
Φ1(−z)Φ2(−w)− Φ1(−w)Φ2(−z)

4(w + z)
,

where Φ1(z),Φ2(z) are the first two basis vectors (80) of the corresponding point in
the Sato-Grassmannian.

Now one can plug ABKP(w, z) and ÂBKP(w, z) into Theorem 4.1 to obtain for-
mulas for the connected n-point functions and compute the free energy. Here for
the special case n = 1, one needs to use L’Hôpital’s rule:

∑

n>0: odd

∂ log τ̃ (t)

∂tn

∣∣∣∣
t=0

· z−n = lim
w→−z

ABKP(w, z)

=
1− Φ1(−z)Φ′

2(z) + Φ′
1(z)Φ2(−z)

4
.
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In the next section, we will present two examples of tau-functions of this type.

6. Examples: Witten-Kontsevich and BGW Tau-Functions

Hypergeometric tau-functions (see Orlov [34]) provide a large family of BKP
tau-functions, and they are known to be related to the spin Hurwitz numbers [31].
A hypergeometric tau-function is of the form:

(85) τθ,t∗(t/2) =
∑

λ∈DP

2−l(λ)θλQλ(t
∗/2)Qλ(t/2),

where θ =
∏l

j=1

∏λj

k=1 θ(k) and θ(k) is a function on the set of positive integers,

and t
∗ = (t∗1, t

∗
3, t

∗
5, · · · ). The BKP-affine coordinates of τθ,t∗(t/2) are:

(86) a0,n =
θ(n)

2
Q(n)(t

∗/2), an,m =
θ(m,n)

4
Q(m,n)(t

∗/2),

where m,n > 0. One can use Theorem 4.1 to compute log τθ,t∗(t/2).
In what follows, we will discuss two examples of hypergeometric tau-functions

– the Witten-Kontsevich tau-function and the BGW tau-function. Using the re-
cent results [27, 28] of X. Liu and the second author, we obtain automatically the
explicit formulas for their affine coordinates. Moreover, we can write down simple
expressions for the generating series using Proposition 5.1.

6.1. Affine coordinates of Witten-Kontsevich tau-function. The famous
Witten Conjecture/Kontsevich Theorem [24, 43] claims that the generating series
of intersection numbers of ψ-classes on the Deligne-Mumford moduli space Mg,n

of stable curves [12, 23] is a tau-function τWK of the KdV hierarchy. Then

(87) τ̃WK(t) := τWK(t/2)

is automatically a tau-function of the BKP hierarchy due to [3]. The following
Schur Q-expansion formula was proposed by Mironov-Morozov [30] (see also [2],
and see [27] for a proof by Virasoro constraints):

(88) τWK(t) =
∑

λ∈DP

(
~

16

)|λ|/3

· 2−l(λ)Qλ(δk,1)Q2λ(δk,3/3)

Q2λ(δk,1)
Qλ(t),

where Qλ(δk,1) means evaluating at the time tk = δk,1 for every k in the Schur
Q-function Qλ. This formula is inspired by the work [14], see also [21].

Then one is able to read off the BKP-affine coordinates for τ̃WK by observing
the coefficients of Qλ with l(λ) ≤ 2. For simplicity we take ~ = 1. The evaluation
Qλ(δk,1) is given by the hook-length type formula (see e.g. [30, (56)]):

(89) Qλ(δk,1) =
2|λ|

∏l(λ)
i=1 λi!

·
∏

i<j

λi − λj
λi + λj

,

and Qλ(δk,3/3) for |λ| ≤ 2 is given by (see [27, Theorem 3.1]):

Q(3m,3n)(δk,3/3) =
(2
3

)m+n

· (m− n)

(m+ n) ·m!n!
, m > n ≥ 0;

Q(3m+1,3n+2)(δk,3/3) =
(2
3

)m+n+1

· 2

(m+ n+ 1) ·m!n!
, m > n ≥ 0;

Q(3m+2,3n+1)(δk,3/3) = −
(2
3

)m+n+1

· 2

(m+ n+ 1) ·m!n!
, m ≥ n ≥ 0;
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and Qλ(δk,3/3) = 0 if |λ| 6≡ 0(mod 3). Thus the affine coordinates of the BKP
tau-function τ̃WK(t) are given by:

(90) aWK
0,3m = −aWK

3m,0 =
2 · (6m− 1)!!

4m+19m · (2m)!
, m > 0,

and

aWK
3n,3m =

(m− n)(6m− 1)!!(6n− 1)!!

4m+n+19m+n(m+ n)(2m)!(2n)!
, n,m > 0;

aWK
3n+2,3m+1 = − (6m+ 1)!!(6n+ 3)!!

4m+n+29m+n+1(m+ n+ 1)(2m)!(2n+ 1)!
, n,m ≥ 0;

aWK
3n+1,3m+2 =

(6n+ 1)!!(6m+ 3)!!

4m+n+29m+n+1(m+ n+ 1)(2n)!(2m+ 1)!
, n,m ≥ 0,

(91)

and

(92) aWK
m,n = 0, if m+ n 6≡ 0(mod 3).

Here we use the conventions (−1)!! = 1 and 0! = 1. Let AWK(w, z) be the generating
series of {aWK

n,m}:

AWK(w, z) =
∑

n,m>0

(−1)m+n+1aWK
n,mw

−nz−m − 1

2

∑

n>0

(−1)naWK
n,0 (w−n − z−n).

The following are first a few terms of AWK(w, z):

AWK(w, z) =
5

96
z−3 +

1

48
z−2w−1 − 1

48
z−1w−2 − 5

96
w−3 − 385

4608
z−6

− 35

2304
z−5w−1 +

35

2304
z−4w−2 − 35

2304
z−2w−4 +

35

2304
z−1w−5

+
385

4608
w−6 +

85085

331776
z−9 +

5005

165888
z−8w−1 − 5005

165888
z−7w−2

+
1925

331776
z−6w−3 +

1225

82944
z−5w−4 − 1225

82944
z−4w−5 − 1925

331776
z−3w−6

+
5005

165888
z−2w−7 − 5005

165888
z−1w−8 − 85085

331776
w−9 + · · · .

6.2. A formula for the generating series AWK(w, z). It is not easy to find
a simple formula for the generating series AWK(w, z) directly using the above ex-
pressions of {aWK

n,m}. However, one can do this using Theorem 5.1. The explicit

formulas of the KP-affine coordinates {aZhoun,m }n,m≥0 of τWK was given in [45], and
their generating series are ( [46, (282)]):

(93)
∑

n,m≥0

aZhoun,m x−n−1y−m−1 =
1

y − x
+
a(y)b(−x)− a(−x)b(y)

y2 − x2
,

where a(z), b(z) are the Faber-Zagier series [35]:

(94) a(z) =

∞∑

m=0

(6m− 1)!!

36m · (2m)!
z−3m, b(z) = −

∞∑

m=0

(6m− 1)!!

36m · (2m)!
· 6m+ 1

6m− 1
z−3m+1.

They are the first two basis vectors of the point in Sato-Grassmannian correspond-
ing to τWK. Thus by Theorem 5.1 one has:
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Proposition 6.1. The generating series of the BKP-affine coordinates aWK
m,n of

τ̃WK(t) are given by:

AWK(w, z) =
w − z + a(−z)b(−w)− a(−w)b(−z)

4(w + z)
,

ÂWK(w, z) =
a(−z)b(−w)− a(−w)b(−z)

4(w + z)
.

(95)

Now one can plug AWK(w, z) and ÂWK(w, z) into Theorem 4.1 to obtain numer-
ical data and formulas for the connected n-point functions. The following are first
a few terms of the free energy:

log τ̃WK(t) =
( t3
16

+
105

256
t9 +

25025

2048
t15 +

56581525

65536
t21 +

58561878375

524288
t27 + · · ·

)

+
( 5

32
t1t5 +

3

64
t23 +

1155

512
t1t11 +

945

512
t3t9 +

1015

512
t5t7 +

425425

4096
t1t17 + · · ·

)

+
( t31
48

+
35

128
t21t7 +

15

32
t1t3t5 +

3

64
t33 +

15015

2048
t21t13 +

3465

256
t1t3t11 + · · ·

)
+ · · · .

The original free energy of the Witten-Kontsevich tau-function is recovered from
log τ̃WK(t) by a rescaling ti 7→ 2ti for every i.

6.3. Affine coordinates of Brézin-Gross-Witten tau-function. The Brézin-
Gross-Witten (BGW) tau-function τBGW(t) was introduced in the study of lattice
gauge theory [8,18], and it conjecturally describes the intersection numbers of cer-
tain classes on Mg,n, see Norbury [33]. It is known that τBGW(t) is a tau-function
of the KdV hierarchy [32], thus

(96) τ̃BGW(t) := τBGW(t/2)

is a tau-function of the BKP hierarchy. The following Schur Q-function expansion
was conjectured in [2] and proved in [4, 28] by two different methods:

(97) τBGW(t) =
∑

λ∈DP

(
~

16

)|λ|

· 2−l(λ) Qλ(δk,1)
3

Q2λ(δk,1)2
Qλ(t).

For simplicity we take ~ = 1. Using (89), one may find that:

aBGW
0,n = −aBGW

n,0 =

(
(2n− 1)!!

)2

23n+1 · n! , n > 0;

aBGW
n,m = −aBGW

m,n =
(m− n) ·

(
(2m− 1)!!(2n− 1)!!

)2

23(m+n)+2 · (m+ n) ·m!n!
, m, n > 0.

(98)

Now let

ABGW(w, z) =
∑

n,m>0

(−1)m+n+1aBGW
n,m w−nz−m − 1

2

∑

n>0

(−1)naBGW
n,0 (w−n − z−n),

ÂBGW(w, z) = ABGW(w, z)− w − z

4(w + z)
,



30 ZHIYUAN WANG AND CHENGLANG YANG

The following are first a few terms of ABGW(w, z):

ABGW(w, z) = − 1

32
w−1 +

1

32
z−1 +

9

512
w−2 − 9

512
z−2 − 75

4096
w−3

− 3

4096
w−2z−1 +

3

4096
w−1z−2 +

75

4096
z−3 +

3675

131072
w−4 +

75

65536
w−3z−1

− 75

65536
w−1z−3 − 3675

131072
z−4 − 59535

1048576
w−5 − 2205

1048576
w−4z−1

− 135

524288
w−3z−2 +

135

524288
w−2z−3 +

2205

1048576
w−1z−4 +

59535

1048576
z−5 + · · · .

6.4. A formula for the generating series ABGW(w, z). In the case of the BGW
tau-function, we can also find a simple formula for the generating series following
the discussions in §5.2. The first two basis vectors of the point associated to the
tau-function τBGW in the Sato-Grassmannian are (see Alexandrov [1]):

ΦBGW
1 (z) = 1 +

∞∑

k=1

(
(2k − 1)!!

)2

8k · k! z−k,

ΦBGW
2 (z) = z −

∞∑

k=0

(2k − 1)!!(2k + 3)!!

8k+1 · (k + 1)!
z−k.

(99)

(Notice here ΦBGW
1 (z),ΦBGW

2 (z) differ from those in [1] by a rescaling z 7→ 2z,
since we’re picking the notations in [46] which is slightly different from that in [1].)
These two vectors are related by a Kac-Schwarz operator [1]:

(100) Φ2(z) = (z
∂

∂z
+ z − 1

2
)Φ1(z).

Denote:

ak =

(
(2k − 1)!!

)2

8k · k! , bk = − (2k − 3)!!(2k + 1)!!

8k · k! , k ≥ 1,

and denote:

GBGW(z) =

[
1 +

∑
n≥1 a2nz

−n
∑

n≥0 b2n+1z
−n

∑
n≥1 a2n−1z

−n 1 +
∑

n≥1 b2nz
−n

]
.

Lemma 6.1. We have detGBGW(z) = 1.

Proof. It is clear that:

GBGW(z) =

[
(ΦBGW

1 (x) + ΦBGW
1 (−x)

)
/2 (ΦBGW

2 (x) − ΦBGW
2 (−x)

)
/(2x)

(ΦBGW
1 (x) − ΦBGW

1 (−x)
)
/2 (ΦBGW

2 (x) + ΦBGW
2 (−x)

)
/(2x)

]

where x := z
1
2 , thus we only need to check the following identity:

(101) ΦBGW
1 (x)ΦBGW

2 (−x) + ΦBGW
1 (−x)ΦBGW

2 (x) = 2x.

Denote

Ψ(x) :=
1

2x

(
ΦBGW

1 (x)ΦBGW
2 (−x) + ΦBGW

1 (−x)ΦBGW
2 (x)

)
,

then by (100) one can compute:

d

dx
Ψ(x) =

1

2
Φ1(−x)BGW

(
(ΦBGW

1 )′′(x) + 2(ΦBGW
1 )′(x)

)

− 1

2
Φ1(x)

BGW
(
(ΦBGW

1 )′′(−x) + 2(ΦBGW
1 )′(−x)

)
.
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Using the explicit expressions (99) one can may directly check that

(ΦBGW
1 )′′(x) +

1

4x2
ΦBGW

1 (x) + 2(ΦBGW
1 )′(x) = 0,

then d
dxΨ(x) = 0. Thus Ψ(x) is a constant, and one easily finds that it is 2. �

Thus by Proposition 5.1 we know that:

Proposition 6.2. The generating series of the BKP-affine coordinates aBGW
m,n of

τ̃BGW(t) are given by:

ABGW(w, z) =
w − z +ΦBGW

1 (−z)ΦBGW
2 (−w)− ΦBGW

1 (−w)ΦBGW
2 (−z)

4(w + z)
,

ÂBGW(w, z) =
ΦBGW

1 (−z)ΦBGW
2 (−w)− ΦBGW

1 (−w)ΦBGW
2 (−z)

4(w + z)
,

(102)

where ΦBGW
1 (z),ΦBGW

2 (z) are given by (99).

Then the connected n-point functions can be computed by Theorem 4.1. The
first a few terms of the free energy are:

log τ̃BGW(t) =
( t1
16

+
9

256
t3 +

225

2048
t5 +

55125

65536
t7 +

6251175

524288
t9 + · · ·

)

+
( t21
64

+
27

512
t1t3 +

1125

4096
t1t5 +

567

4096
t23 +

385875

131072
t1t7 + · · ·

)

+
( t31
192

+
27

512
t21t3 +

3375

8192
t21t5 +

1701

4096
t1t

2
3 + · · ·

)
+ · · · .

And log τBGW(t) is obtained by a rescaling ti 7→ 2ti.
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